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ABSTRACT

This research investigated whether human motion prediction by an assistive robot
can always lead to a safe and efficient human-robot interaction. Using human
motion, prediction can encourage interaction in close physical proximity and can

help build trust in collaborative human-robot interactions. However, when the inter-
action gets more complicated due to external disturbances and the complex nature of
the humans, it may lead to physical harm or interaction failures. Despite the literature
raising safety issues in physically assistive robots, research regarding potential distur-
bances and adverse outcomes is limited. Therefore, this research considers the impact of
external disturbances and their effect on collaboration.

To address this gap, the present study investigates the consequences of external
disturbances on the collaborative state of humans, particularly in the context of assistive
tasks in natural living environments like care homes. A comprehensive examination of
the impact of disturbances on human motion is conducted through surveys, human-robot
interaction experiments, human motion recordings, and observational studies involv-
ing professionals in care homes. Two case studies are conducted to analyze different
interaction scenarios and complexities, resulting in the collection of two time-series
datasets capturing human movement. The first case study focuses on human reaching
movement in a shared workspace, utilizing movement primitives to predict and distin-
guish minor variations in the final reaching position. The second case study examines
human movement during an assistive dressing task, introducing cognitive overloading
and distractions to evaluate the effects of disturbances in a more complex interaction
environment. Quantitative and qualitative techniques are employed to identify differ-
ences in movement patterns during these irregularities, revealing that collaboration is
hindered in the presence of disturbances.

The findings from the observations carried out in care homes contribute to further
analysis of complex interaction and their requirements to provide safe physical assis-
tance. The natural occurrence of successful, safe and efficient collaborative interactions
witnessed in care homes, regardless of the vulnerability level of older adults, is examined
and questioned. This leads to the belief that a measure of collaboration between humans
and robots through input modalities is necessary for ensuring safety. This measure acts
as an implicit constraint for the robot, particularly when there is variation between
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human and robot movement, especially during changes in the collaborative state of
humans. It enables a more realistic evaluation of human motion prediction by directly
assessing the safety of continuing collaborative movements.

The aforementioned case studies served as a foundation for further analysis of
human movement as input modalities. To ensure physical safety, knowledge similar
to that obtained from the second case study can be utilized as priors, represented
in the form of latent spaces, to provide information about the human’s collaborative
state. This approach allows for a more accurate assessment of the safety of continuing
collaborative movements. The core contribution of the thesis lies in leveraging the input
modality of human movement as an affordance that ensures physical safety in assistive
robots, incorporating knowledge about collaboration while considering the influence of
environmental factors, human factors, and the human state.
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INTRODUCTION

The Challenger exploded in 1986: "The chart implicitly defined the extent of the
relevance, and no one seems to have asked for additional data, the ones they could not
see. That is why the managers made the tragic decision to go ahead despite the
weather" by Diane Vaughn as part of her account of the tragedy "The Challenger

Launch Decision".

In this work, we ask professional caregivers to guide us towards the unseen in

physically assistive robots. We question the viability and safety of physically assistive

robots in different task complexities. The answers lead to defining and understanding

the relevance of a safety measure that assesses collaboration in close-proximity

physical assistive tasks.

The lesson from the Challenger tragedy is that even though one might have large

datasets in the world, sometimes we need better and new data collection. Looking

for answers with an incomplete perspective of the problem leads to imposing

the wrong questions. Such assumptions can deceive us into looking for solutions from

incorrect data. The overarching argument running through this thesis is that is that
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previous literature insufficiently addresses the delivery of safe assistive \gls{hri} by

failing to adequately question the practical needs of end-users and the contexts in

which these systems operate. These aspects need to play a more prominent role than we

think; otherwise, we are also imposing the wrong questions in assistive HRI. Either we

start understanding how our technology can directly address these needs in a realistic

environment or start thinking about how we can make these natural environments more

welcoming to future technology.

The understanding process that should shape assistive robots research questions

must be approached with a safe and ethical point of view towards the older adults’

(end-users’) needs and, most importantly, empathy. We cannot expect and assume to

solve all shortages of carers in care homes with an assistive tool because sometimes it can

be undignifying. Furthermore, we need to understand the complexities of humans over

time, the challenges that are part and parcel of the interaction environment and tasks,

and the limitations of robots, tools and interaction methodologies. Ultimately, this thesis

uncovers the need to ask all the what-ifs before providing solutions to assistive robots

because we cannot afford a ’challenger tragedy’ in assistive robots. This thesis questions

how the Human-Robot Interaction (HRI) in assistive robots have been theorised within

laboratory environments and suggests that a better understanding is needed to directly

fulfil the contributions that such research is trying to provide.

Figure 1.1 illustrates the nested arguments of this thesis together with a set of what-
ifs questions that try to understand the different interaction complexities in realistic

environments. The assistive HRI experiments in a laboratory environment are insuffi-

cient to claim that the robot’s interaction will always be safe and viable, especially when

the complexities of the human behaviour are not considered. When unexpected events

happen during a complex assistive task, it is essential to consider consequences and

question the safety methodologies used in less complex interaction setting to guarantee

the same measure of safety. It is also crucial to understand how professional caregivers

provide their daily assistance and how they can always guarantee that the older adult’s

safety is prioritised in an ethically and dignifying way. Consequently, in this thesis, we

delve into the constraints of current adaptive robot behaviours, focusing on human move-

ment prediction. It analyses how this approach can ensure safety only within specific

levels of complexities in assistive HRI.

definition: Unexpected Events (UnEv) The occurrence of any form of distraction

from the surrounding environment or from the user itself can hinder the planned
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interaction between the human and the robot.

HUMAN Movement and 
Intention Prediction. 

Is it sufficient for safety? What 
if ...

... INTERACTION Complexities 
due to distraction and 

cognitive overload arise.

 Human movement predication 
without context is not safe. 

What if ...

...  the ROBOT's role as 
assistant can assess this. 

How is assistance provided in 
care homes? What metrics 

help carers to  achieve a safe 
and successful interaction? 

What if ...

... robots can learn and adapt 
these metrics?

Assistive Task HRI 
Complexities emanate in 

real-world contexts.

Figure 1.1: A top-down hierarchical view of the main arguments discussed in Thesis.

definition: Close-Proximity Collaborative Interaction (CPCI)
An interaction that requires a robot to move very close to the human or vice versa.

The interaction workspace is directly around the end user and, in some cases, the user

itself. The actions of the robot and human are simultaneous, not sequential.

Physically Assistive Tasks require close-proximity collaborative interactions before a
physically assistive task can take place.

1.1 Motivation

The development of systems that involve complex robotic interactions is still minuscule

when compared to progress in digital technology and machine learning. This is because
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HRI is highly dependent on the task and the dynamic environment in which the in-

teraction occurs. These complexities leave a significant gap in research: a completely

safe robotic system when interacting in the same environment and sharing the task

with humans [66, 131, 151]. The objective for collaborative robots is to achieve a safe

commercialization of systems that can recognize, work with, and adapt to human or

other robot behaviours in a dynamic environment [7].

To achieve full deployability, it is critical to guarantee a decision-making approach

valid for all situations and contexts. This decision-making process must safely adapt to

changes in a highly dynamic environment. The decision process must be explainable and

safe for other human-operated systems and all humans interacting in the same space. A

significant challenge in this research field is related to having a robotic system performing

actions or tasks that can be physically harmful in the context of the unpredictable human

behaviour. Uncertainty and ambiguity in a decision making process make it harder for

such robotic systems to be deployed in an interactive environment with humans. For

example, collaborative robots for tasks requiring simultaneous sharing of space, must

consider all these hazards to carry out their tasks safely. Such robots are needed in

industrial, medical or home environments either in the form of small mobile platforms

and/or manipulators. The overall approach to considering HRI in these areas is an

interconnection between the autonomous control of the robotic systems and the human

inferred intention and behaviour. The complexity of the task and the type of collaboration

deepen the intricacy of this interconnection. Ultimately, representing these intricacies

in an explainable way leads to providing a good decision process in a highly dynamic

environment.

definition: Human State (HS)
This term in HRI refers to a general term that describes the current cognitive and

emotional state of the human during the interaction. See glossary HS. Other terms
used to describe the human state in literature are: acceptance, fatigue, stress, frus-
tration, trust, safety, mental, exhaustion, anxiety, arousal, cognition, workload, sleep,
psychological, user state, awareness [72].

For safety in these interaction contexts, collaborative robots need to be able to classify

the actions of human and evaluate the relevance of these actions to the task and the

robot’s next move. This relevance needs to be continuously verified in the context of the

collaborative tasks by being able to anticipate the next move within that action. The

validity of the nature of the robot’s next move and the human makes it safe for the
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robotic system to adapt to the user’s next movement. For example, in an interactive

robot in an industrial or assistive environment, the action classification would highly

depend on the task and the number of humans interacting. Action classification for

assistive robots can be what type of task the user wants, the human’s state and the

current state of interaction. The relevance of these actions requires further evaluation

predicting the human intention and behaviour within the classified action. Suppose

interactions occur in a highly dynamic environment, in that case, many factors can

suddenly change the intention and behaviour of the person interacting with the robot.;

Therefore, the assumptions on which the robot is adapting its behaviour can suddenly

become unfounded.

In physically assistive tasks, the prediction of human intention and behaviour can be

the prediction of the individual arm movement and the robot’s ability to adapt to it. In

these contexts, the prediction needs to be based on some prior observation and knowledge

and determine whether the user/human next move is relevant to the current state of

adaptation. Most importantly, accurate prediction and relevance of the collaborative task

are key determinants of safety. The critical aspects of any close-proximity collaborative

interaction with humans can be described as follows [104].

• Human Movement Understanding: deals with knowledge of human movement and

trajectories in dynamic environments with an added complexity of social and phys-

ical interaction between other humans and the robot. Interpreting human motion

goes beyond the ability to understand muscle or neural activation and requires

knowledge from other research fields, such as cognitive science. Previous research

has focused on how humans handle obstacles. However, there is no precise model

describing the human ability to process the sensing of the dynamic environment

and their reactions due to a changing environment during a collaborative task

[104]

• Motion Optimization and Control: The robot motion planning and manipulation

can be learned from demonstration by representing human motion principles

in a utility functions that best describes this imitation. Near-optimal solutions

represent these learned behaviours and can be represented in low-feature spaces,

scaling down from high-dimensional spaces, which depend on the number of sensor

inputs considered for the interaction. However, these representations need to be

continuous in terms of the state and action. Therefore, motion optimisation comes

into play where motion planning and control require adaptation to obtain better
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solutions. A better solution is required when the state and action pairing changes

due to changes in reactivity and synchronisation [18] explained in Human-Robot
Collaboration (HRC).

• Human-Robot Collaboration (HRC): aims at understanding and matching the

reactivity and synchronisation of the Human Movement (HM) between humans and

a robotic manipulator in the environment. Such capabilities require a predictive

model of human behaviour integrated with high-dimensional sensing. This aspect of

collaborative robots is fundamental in recognising and implementing what humans

expect and react to from robot motion in close proximity. These intricacies in the

interaction must be characterised and represented by frameworks that evaluate

the interaction in a human-in-the-loop way. Such human-aware approaches require

predictive models of human behaviour that can be deemed safe in all contexts and

situations. To achieving this safety in all contexts and situations is challenging. In

practice this requires an HRI framework that optimizes motion based on models of

human behaviour with some constraints/ boundaries that represent the interaction

safety when changing between state and action pairs.

This thesis provides the groundwork that connects the formal methods of human

movement prediction with robot learning to achieve a measure of synchronisation be-

tween human and robot movement in a collaborative task. It first examines human

movement in a simple interactive task. The interactive task is a board game played

between a human and a robot manipulator. Secondly, a case study of close proximity

assistive robotics is implemented to evaluate the impact of a dynamic environment on

collaborative interaction. For this case study, an assistive dressing scenario is used,

where a human is assisted with putting on a jacket by two articulated seven-degree of

freedom compliant robot arms mounted on a static platform. This case study, investigates

the problems involved in building human movement models when a changing collabora-

tive behaviour is present. Such investigation helps to understand how to enable a safe

assistance by consider the collaborative state of the human as one of the state-action

pairs. Ultimately, it questions how this state-action pair can be incorporated in the prior

knowledge used by the robot to adapt its behaviour. The importance of understanding

the change in collaborative behaviour is based on feedback from professional caregivers

in care homes.

This work aims to create a safety measure in collaborative tasks by designing a prior

that determines the cooperative behaviour of the human with respect to the robot. Such
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prior will enable us to verify that the robot is adapting its behaviour on the correct

assumption that the human is still willing to collaborate and, therefore, safe in the

current context. In Section 1.2, the key research questions and objectives are listed. This

is followed by a brief overview of the thesis outline in Section 1.3 and in Section 1.4 the

main contributions and associated publications are listed.

1.2 Research Questions and Objectives

This research was part of the MSCA-ITN project Social Cognitive Robot Agents in The

European Society (SOCRATES), grant agreement no. 721619, which studies different

aspects of interaction quality between assistive robots and older adults. One aspect that

would allow such robots to become a commercial reality is assuring safety both for the

users and the robot. As part of SOCRATES, a set of target applications were put together

for each work package. The two applications for the work package of Interaction Safety
Design were:

• Modelling and adapting to varying user behaviour: "Linda has surfed an-
other fall, and she needs help on a daily basis to dress up and put her shoes on.
Some days, the dressing is more difficult due to more intensive Parkinson’s tremors,
and her dressing robots need to adapt its behaviour to safely put Linda’s robe on."

• Creating Situational awareness to allow the robot to perform the right
action: "Katherine is often visited by her children and grandchildren. They like
to see how the robot helps her with dressing but often create noise and commotion
in the room. Katherine finds it more difficult to interact with the robot due to the
background noise and movement. The robot, however, can distinguish interactions
directed to him and disregard unrelated inputs. "

The thesis’s primary focus is to evaluate collaboration through movement in close-

proximity interactions to identify the instances mentioned in the above target applica-

tions. Synchronisation of human and robot movement can be achieved through precise

timing and tight collaboration. Identifying what can hinder this synchronisation and

representing these situations leads to a step closer to safer close-proximity interaction

and, therefore, better interaction quality. On this premise, the following questions are

raised:

7
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RQ1: In a socially assistive robot interaction context, is human movement prediction

enough to guarantee physical safety?

This research question investigates to what extent human movement prediction
can provide information about the collaboration intent of the human and keep
physical safety. In the context of a socially assistive robot, variation in human
movement are hand related and therefore a reaching action is to be predicted as
per these sub-research questions:

RQ1a: What is the most appropriate methodology to predict human reaching

movements such that variations within the same reaching goal can be repre-

sented and still distinguished between different reaching goals?

RQ1b: Can the human reaching movement be represented in the form of prior

knowledge?

RQ1c: Can the human reaching movement prior knowledge be generalised over

different humans?

RQ2: In a socially assistive robot interaction context, does the state-action pairing for

safe robot manipulation need to change when the collaborative state of the human

changes?

To properly address if reaching movement prediction defined in RQ1 can guar-
antee physical safety in a socially assistive robot, the following two sub-research
questions are made:

RQ2a: What is the smallest time window possible that allows a high accuracy

prediction of the human reaching movement? Is it small enough to guarantee

safety?

RQ2b: Can this human reaching movement prediction guarantee the same de-

gree of physical safety when changing the context from a socially to a physi-

cally assistive robot?

RQ3: In a physically assistive robot interaction context, can human behaviour impact

their physical safety?

8



1.2. RESEARCH QUESTIONS AND OBJECTIVES

This research question investigates if human behaviour during a physically col-
laborative task can hinder the synchronisation of human movement with the robot.
It looks at the human’s collaborative state in a realistic and dynamic environment
in which human movement prediction can be not enough. To guarantee safety, in
the context of a physically assistive robot is more challenging and therefore these
sub-research questions are asked:

RQ3a: Can disturbances in a dynamic environment lead to unusual variations in

human movement, and therefore a failed collaboration task?

RQ3b: Can prediction of human movement still guarantee safety during such

known disturbances?

RQ3c: In such context, can the state-action pairing remain non-adaptive to guar-

antee safety during such disturbances?

RQ3d: Can some of the humans become familiar with some of the disturbances in

the environment?

RQ3e: Can movement synchronization fail even though the human learned how

to adapt and collaborate in the task?

RQ4: Can collaboration intent be gauged from the variations in the human movement

and guarantee physically safety from a more complex state-action pairing?

This question investigates if variations in human movement due to disturbance
in the environment indicate an intent to the collaboration the human during the
physically interaction.

RQ5: What are the requirements for a physically assistive robots to deliver physically

assistive tasks?

In order to properly answer this research question the following sub-research
questions are posed to carer in care-homes:

RQ5a: How do carers physically assist older people in order to guarantee a physi-

cal safety?

RQ5b: What do carers think that the requirements and guidelines for a physically

assistive tools or robots should be?

9
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RQ5c: Do carers think physical safety can be guaranteed by only looking at the

optimal behaviour of humans?

RQ6: Following from RQ4 and RQ5, how can such prior knowledge be used to couple the

human movement and robot’s motion planning to guarantee safety in the context

of disturbance?

RQ6a: How can the variations in human movement be modelled as a prior knowl-

edge?

RQ6b: Can a measure of collaboration be created from this prior knowledge

to indicate a lack of synchronisation and hence a possible failure in the

interaction?

RQ7 Ultimately can such collaboration measure be embedded and modelled in the

robot’s motion planning?

1.3 Research Approach and Thesis Outline

The thesis outline aims to highlight the significance of a measure that captures the

collaborative state of the human in physical assistive HRI tasks for ensuring physical

safety. The understanding is built upon two case studies that involve real HRI, as

well observations conducted in care homes. Two datasets were collected from human

participants in two separate experiments, both including recordings of human movement

during the interactions. The first Case Study (CS1) focuses on participants’ movements

while reaching different positions on a shared workspace with a socially assistive robot.

The second Case Study (CS2) involves a close proximity robotic dressing assistance

experiment designed to incorporate unexpected events. Figure 1.2 provides a graphical

representation of the relationship between the chapters and their corresponding studies.

A chapters structure is outlined as follows:

• Chapter 2 defines the methodologies related to the key accepts of human-robot

collaboration, human movement understanding and; robot learning and motion

planning. The literature review primarily focuses on aspects that are applica-

ble to close-proximity HRI, with a specific emphasis on identifying the types of

disturbances that can pose safety risks in such interactions.

10
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Chapter 3 
Human Movement Prediction | CS 1

Human Robot Interaction on a Table Worktop

Cognitive Socially Assistive Robot

Chapter 4 
Variation in Human Movement | CS 2

HRI During an Assistive Dressing Task

Close Proximity and Physical Assistive Robot

Chapter 5 
Physically Assistance in Care Homes | OS 3

Caring Professional Perspective on Assistive Tasks

Hazard Analysis and Collabrotion Evalution from Carers

Chapter 6 
Cooperative Measure for Close-Proximity HRI 

Analysis from CS2 lead to a cooperative mesure

Analysis from OS3 lead to a safety mesure from CS2

Chapter 1 
Motivation

Research Questions

Contributions and Publications

Chapter 2
Background Literature 

Methodlogy

Chapter 7 
Discussion and Framework

for Safe Collabortive 

Human Robot Interactions

Figure 1.2: Overview of the thesis structure.

• In Chapter 3, the research delves into the study of human arm movement by

collecting a dataset of recorded reaching positions. Various methodologies are ex-

plored to evaluate the accuracy and efficiency in predicting human arm movement

final reaching positions. The prediction of the human arm movement is crucial in

differentiating between trajectories associated with different reaching positions,

thereby identifying distinct movement styles within the shortest possible time

frame. The HRI scenario investigated in CS1 involves a socially assistive task with

a board on a table as the interaction workspace. The aim is to examine whether

achieving a reliable prediction of the reaching area within a small time window

can ensure physical safety during the assistive task.

• In Chapter 4, a more complex HRI case study is explored, focusing on physically

assistive tasks. The workspace for close-proximity human-robot collaboration is

the end user itself. Therefore, the prediction of human movement must be robust

in all contexts and situations to ensure both safety and efficiency are achieved in

real-world environment. CS2 examines a robot-assisted dressing task, considering

environmental disturbances and unexpected events. This case study evaluates

what leads to variations in human behaviour, attention, and intention during the

collaborative task. The experiment is designed to provide insights into how humans

learn to collaborate over time and how this collaboration can be easily disrupted

when interacting in a natural environment.

• Chapter 5 examines how caring professionals physically assist older adults. The

caring professionals are trained to access the context of the surrounding environ-
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ment, disturbances or unexpected events. The observation study, referred to as

Observation Study (OS3) allows for a deeper understanding of complex HRI by

engaging with experts who deliver safe assistance on a daily basis. The hazard

safety analysis methods in the literature fail to address the complexity of assistive

tasks because they do not consider the necessary what-ifs scenarios. Additionally,

while the social assistive robot literature emphasizes the importance of moral,

trust and ethical measures, physically assistive robots still lack a comprehensive

measure for safe assistance.

• Chapter 6 builds on knowledge gathered from Chapter 4 and Chapter 5 tackling

the prediction of failure through the creation of a collaborative measure between

the robot and human movements during the collaborative task. This Collaborative

measure validated the instance in the second case study in which failure occurred.

Furthermore, it connects Chapter 3 and Chapter 6 by coupling the human move-

ment and robot motion in the context of a collaborative task. This coupling leads to

a safety measure framework approach derived from the collaboration measure.

• Chapter 7 recapitulates the work presented in each chapter by providing an

overview and discussion on the obtained results presented in the previous three

chapters. The main research questions raised are addressed here by highlighting

the interrelation of the chapter and the key findings across all chapters. Next,

the limitations and future research direction of the work presented are discussed.

Lastly, the chapter concludes with a summary of the key contributions.

All the methods and algorithms developed are based on data obtained from the

designed experiments. The dataset presented in Chapter 3 was collected on secondment

at the Institute of Robotics and Information in Barcelona. The dataset presented in

Chapter 4 and Chapter 6 was collected from human experiments carried out at Bristol

Robotics Laboratory at the University of West of England.

1.4 Contributions

The primary contribution of this research is the creation of collaborative metric for close-

proximity HRI. This work emphasises that relying solely on human movement prediction

may not always ensure physical safety. As Collabortive task become more complex,

humans are prone to deviating from their optimal behaviour. Figure 1.3 illustrates the

12
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Workspace

Robot

Caring 
Professional 

Human 

Interaction Complexity

Care Homes

Observational Studies

Case Study 1

Case Study 2

Figure 1.3: An diagram showing the different interaction complexities analysed in all
the three case studies. The robots assumed to be used for CS1 is the TIAGo Robot by
PAL Robotics [116] and for CS2 is Baxter by Rethink Robotics [126].

type of studies conducted to assess these deviations in various interaction complexities.

The key contributions of this thesis are as follows:

i A dataset of recorded human movement required during interactions with a cogni-

tively assistive robot in a reaching task on a table worktop. Probabilistic Movement

Primitives were used for predicting human movement in this case study, and a

comparison to other prediction models is conducted - Chapter 3.

ii. The second case study CS2 investigates how a dynamic environment can influence

human intention and behavior. The dataset in CS2 captures human movement

during an assistive dressing task, considering the impact of changes in the dy-

namic environment on collaborative task performance. The recording of human

movements and analysis of overall human behavior shed light on instances where

failure in the task may occur, emphasizing the importance of physical safety. This

is detailed in Chapter 4.
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iii. Observation studies OS3 conducted in care homes explore how carers handle the

complexities of assistive tasks in different contexts and scenarios. The studies

reveal that proper hazard analysis and collaboration evaluation are crucial factors

for ensuring efficient and safe completion of assistive tasks. Chapter 5 provides

insights into these observations.

iv. The development of a collaborative measure for close-proximity HRI. This measures

utilizes the the dataset from CS2 as prior knowledge and assesses the similarity

between the human and robot movement in collaborative and non-collaborative

instances. It enables the robots to gauge the level of interaction or distraction

experienced by the human partner. Considering that humans may deviate from

predicted behavior in the presence of external distractions, evaluating the degree of

collaboration becomes essential for synchronization purposes, akin to professional

practise in care homes. This measure is discussed in Chapter 6

v. Discussion of the previous chapters, leading to the proposal of a new framework

that integrates the collaborative measure with appropriate coupling between the

robot and the human. The framework emphasize the importance of bounded safety

measures on each input modality to ensure safe and efficient close proximity

interaction in HRI Chapter 7.

1.5 Publications and Scientific Contributions

• Presented as part of Chapter 3:

• Publication - not submitted : A. Camilleri, S. Dogramadzi, and P. Caleb-Solly,

Prediction of Human Movement in the context of Cognitive Assistive
Board Games.

• Dataset: Human Movement Dataset which consists of 30 Participants per-
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The final objective of this thesis is to provide insight and a solution that brings us

one step closer to safer Physically Assistive Robots (PARs) by properly evaluating the

importance of collaboration in such assistive tasks. This chapter describes the subsection

of HRI research in the area of interest of this thesis. Section 2.1, outlines the relevant

work for HRI in the context of physically assistive tasks. Subsequently, the section

describes the central theme throughout the thesis: collaboration. The first part of section

2.2 describes how robot learning is used to achieve physical safety in physically assistive

tasks. Secondly, section 2.2 describes how optimal human movement enables the robots

to adapt their learned movement to the predicted human movement for physical safety.

Section 2.3 presents an overview of how humans process and behave during collaborative

tasks. Finally, section 2.4 describes the safety requirements in care homes for assistive

tasks compared to the state-of-the-art and research direction of PARs.
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2.1 Approach, Strategies and Methodologies to
Human-Robot Interaction for Assistive Tasks

The research area of assistive Human-Robot Interaction (aHRI) is vast, but ultimately it

aims to deliver social, cognitive, or physical assistance [107] for tasks without human

intervention. The Director-Feneral of the World Health Organization (WHO), in a report

from 2018 [59], describes the need for assistive technology and estimates that more than

one billion people would welfare from such technology. The WHO states that: “assistive
technology can enable older people to continue to live at home and can delay or prevent the
need of long-term care”. However, providing access to assistive technology to one billion

people still comes with challenges in research and development, standards and regulation,

manufacturing, supply, services provision, and health emergencies. Overcoming these

challenges will ultimately reduce the strain on carers and health budgets [59]. Assistive

technology, including robots is constantly undergoing new efforts and developments by

employing advances in machine learning and sensing technology [107]. aHRI is a type

of collaborative Human-Robot Interaction (cHRI) with a different focus, as the human

requires the task rather than the task being assigned to both the human and the robot.

Even though the focus is different, aHRI can still involve the aspect of collaboration (see

section 2.1.2.1). For these reasons, the new efforts and development in aHRI also benefit

from the tenfold growth seen in the cHRI sector between 2015 and 2020 [4] .

Research in cHRI has accumulated interest in recent years, especially due to the

formalisation of Industry 4.0 (I4.0) and Industry 5.0 (I5.0) frameworks. I4.0 is technology-

driven, whereas I5.0 is value-driven. Technological advancements and solutions are

desired only if they align with imperative societal values, needs, and responsibilities

[164]. Ensuring that these economic and societal expectations are guarded is arduous,

and many challenges are yet to be overcome for a successful deployment. The works

of Panagour et al. [117] and Neumann et al. [111] respectively expose how research in

I4.0 and I5.0 largely neglected Human Factors (HFs) in the design of HRI. Additionally,

limited papers have been identified that considered humans in the cHRI research [111].

So far, in research, HFs are considered dependent variables that the robot factors can

manipulate. Only a limited number of research has examined the direct effect that HFs

can have on performance and fluency metrics in HRI [72]. If the approach to aHRI is not

a joint optimisation problem, then we can never achieve a combination of technology and

value-driven frameworks. A strategy of team cohesion between the human and the robot

can only be achieved if research starts addressing the gaps by identifying HRI metrics
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that can be used to address the HFs based on the current HSs [111, 117]. In the literature

overview by Hopko et al. [72], the influence by environmental factors (such as context,

task characteristics and workspace) and robot factors (such as reliability and automation)

are deemed as important as HF and HS. Regardless of this emerged importance, it was

reported that no studies were found to include the changing environmental factors (see

section 2.1.2.1) and robot factors as direct attributes to the state of the cHRI [72, 99, 125].

These works all highlight that aHRI cannot be based on approaches that are keeping

cHRI from being fully deployable [18, 63, 72, 111, 142]. Consequently, based on these

gaps in the literature, the thesis focuses on and exposes how to start addressing physical

safety through by properly considering the relevant HFs and HSs based on any adaptable

environmental factors.

2.1.1 Methodologies in Physically Assistive Human-Robot
Interaction

All methodologies in aHRI research aim to assist socially, cognitively, or physically while

minimizing the uncertainty caused by unpredictable robot behaviour, human behaviour

and other factors. By reducing uncertainty, the reliability and safety of the interaction are

improved. This thesis focuses on the third category, which includes physically assistive,

industrial and collaborative robotics. Physically assistive robots are a relatively new field

of robotics compared to industrial robotics. The methodologies implemented in industrial

robotics are mostly control-related, whereas machine learning approaches have only

recently been introduced to provide adaptability and complex decision-making in cHRI.

Mukherjee et al. [108] argue that there is still a gap in the literature when it comes to

combining cHRI with aHRI.

For effective collaboration, the robot must be aware of the surroundings and the

human in order to learn how to assist. This is achieved by relying on predictive method-

ologies based on data gathered from the same surroundings and humans. Such data helps

to inform the robot about the HS, HF and environmental factors that aid in improving

the robot factors in relation to the assistive task. In physically assistive tasks, this data

is referred to as input modalities and is highly dependent on the target users. A large and

growing body of literature has investigated various input modalities, including touch in-

put [24, 129, 158], voice-base input [24, 121, 128, 129], eye-based gestures [93, 129, 144],

head-movement input [144], facial emotions input, hand or arm gestures and move-

ment [129], brain-computer interfaces [125], bio-metric inputs [125] and physical touch
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[8, 99, 129].

However, in PARs and care-home environments, the types of impairments experienced

by older adults dictate and limit the use of different input modalities for each assistive

task. This perspective is supported by research suggesting that selecting and designing

multimodal inputs aligns with providing appropriate support and fostering collaboration

for older adults with physical upper-body impairment [96]. In the same vein, research

shows that cognitive decline in older adults can restrict communication to non-verbal

modalities [85]. While Mingzhe Li et al. [96] focus on how to input modalities assist

in addressing human needs, Caleb-Solly et al. in [24] demonstrate that humans have

the ability to adapt to the robot’s modalities. Collectively this research emphasizes

the critical point of selecting input modalities while considering the mutual awareness

between that humans and robots. Overall, this literature underscores the necessity for

more longitudinal studies to understand how each input modality can be investigated

with more robust metrics to deem aHRI physically safe.

The learning strategies used for the robot metrics in physically assistive tasks

encompass supervised, unsupervised, reinforcement, and inverse reinforcement learning.

While supervised and unsupervised learning focus on specific patterns and structures

in the data, reinforcement learning takes a different approach by optimizing a policy

to maximize cumulative rewards. However, there is a drawback to using reinforcement

learning in this context. The main challenge with reinforcement learning is that in

order for policies to converge and encompass all the intricacies of human factors, safety

considerations, and environmental factors, a large dataset is needed. Simulating such a

dataset is practically impossible, and it becomes apparent that the safety aspects and

considerations required in physically assistive tasks are much more complex than what a

simulation environment can guarantee. This implies that relying solely on reinforcement

learning approaches may not be sufficient to address the full range of factors and

ensure the safety of physically assistive tasks. A more comprehensive and context-aware

approach is needed to integrate the complexities of human-robot interaction, human

behaviour, and the physical environment. By considering these factors in conjunction with

learning strategies, this thesis aims to develop a way of how such complex interaction

can be analysed and provide knowledge for physically assistive robotics.

Some researchers have demonstrated that the robot metrics used for trajectory

planning in close proximity can have an impact on HF and HS in cHRI [18]. These

impacts not only affect HS but also have implications for physical safety. Mukherjee et al.

also address the issue of physical safety and discuss methodologies aimed at addressing
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these factors in the interaction [108]. Their work further verifies that, for ensuring

physical safety, human factors are just as crucial as robot factors. The highlighted issues

in the literature include human errors, physiological safety, human trust, emulation of

human emotional states, bidirectional trust, human adaptability towards robots, human

action recognition, human action prediction, and human intention prediction. These

factors play a significant role in the interaction between humans and robots, and their

estimation is crucial for ensuring safety. In the following sections, we will thoroughly

evaluate how these safety requirements change in different interaction complexities and

how the estimation of HS becomes increasingly important in these complex scenarios.

Ultimately, our objective is to assess how examining complex assistive tasks in

real-world contexts can help bridge the existing research gap that hinders the full deploy-

ability of physically aHRI . By addressing these safety requirements and considering the

complexities of real-world interactions, we can strive towards the successful deployment

of physically aHRI systems that prioritize human safety and well-being.

2.1.2 Levels of Complexities in Physically Assistive
Human-Robot Interaction.

2.1.2.1 Collaboration, Cooperation and Coexistence

ROBOT 

HUMAN 

HUMAN 

ROBOT 

HUMAN 

ROBOT 

HUMAN 

ROBOT 

HUMAN 

ROBOT 

Collaboration Cooperation 

Fully 
Shared 
Workspace

No 
Interaction

Adaptive

Tool Use

Figure 2.1: Visualisation of the distribution of task responsibilities for different levels of
collaboration. This image is adapted from [88] and [89] to fit with the main visualisation,
showing collaboration as uniting the effort of the human and the robot.

In order to further characterise the difference between an aHRI and cHRI, researchers
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define the human roles in the HRI and workspace, time and task sharing as criteria

for the classification of complexities in interactions [105]. Others name the levels of

collaboration as cooperation and coexistence and would require understanding the basic

requirements for the robot to define the level of perception and decision-making [2].

Additionally, any social, physical and cognitive assistance can be remote or proximate

(Proximate Human-Robot Interaction)[60]. These characterisations make the different

levels of collaboration in aHRI and are extensively tackled in previous literature [2, 88,

89, 105, 148] to try and identify appropriate methodologies for each level. To correctly

highlight the gap in the literature we are trying to answer, it is crucial to understand

the different types of assistive tasks and contexts that come with different levels of

interaction complexities.

Researchers in [88] visualise these collaboration levels to express the increasing

collaboration responsibility depending on the task. Therefore an assistive Proximate

Human-Robot Interaction (pxHRI) can be collaborative or non-collaborative depending

on the characterisations of the HRI task. The authors, Wang et al. [154], also classify

these characteristics based on the workspace, nature of the contact, nature of the task

and sharing resources. The researchers in [108], after reviewing [2, 88, 105, 154], create

their taxonomy that combines all these slight differences and describes the robot’s

autonomy level. These works suggest that the distance of interaction between the robot

and human directly correlates to the interaction complexity. Figure 2.1 shows the adapted

visualisation from [89] presented by [88], which indicates that an increasing autonomy

of the assistance is to be accompanied by an increasing adaptivity towards the human.

Therefore, close proximity physical assistive interaction requires actions that are time-

dependent between the respective actions of the robot and human to fulfil the interaction

goal. What stands out in Figure 2.1 is the variability in complexity levels which must be

accompanied by variability in methodology to guarantee interaction quality and safety

at the different levels. Based on these levels of collaboration, this thesis investigates case

studies in different levels of complexity. The ultimate aim is to study the requirements

and how this can change to maintain safety when moving along these levels to highly

complex physically aHRI tasks, where the workspace and task are highly dependent on

the human in the interaction.

In Figure 2.2, our case studies are projected on the Interaction Task Space to show

their respective complexity level. This Interaction Task Space shows the HRI charac-

teristics based on the interaction’s nature. The vertical axis represents the timing of

actions, sequential or simultaneous processing. The horizontal axis represents the inter-
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section of the robot’s workspace with the human’s workspace; the far left is a separate

workspace, and the far right is a shared workspace. The intersection of these parameters

portrays the various applications and tasks in HRI as described in [88]. The four corners

of the Interaction Task Space represent different complexities in HRI as cooperating,

coexisting or collaborating to perform a task. The level of complexity in the collaboration

of these corners is also visualized in the distributions shown in Figure 2.1. The OS3
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Figure 2.2: HRI complexity characterisation plot showing the level of complexity in each
case study. Each corner of the Interaction Task Space is one of the distribution task
responsibilities in Figure 2.1.

(yellow marker), assistance by professional carers to older adults, is the most complex

type of interaction and should be used as a benchmark for any assistive HRI. The CS2

(green marker) is the physically robot-assisted task of dressing, one of the tasks carers

perform daily, and therefore a similar level of complexity to OS3. CS1 (blue marker)

is the socially assistive cognitive game in which actions are primarily sequential, and

the workspace is a tabletop. The complexity of interaction is highest at the top right

corner of the Interaction Task Space because all interaction actions shift from sequential

to simultaneous in an ultimately shared workspace. This top right corner in Figure

2.2 is the last distribution of task responsibility in Figure 2.1. This thesis aims to ask
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realistic what-ifs for this top right corner by looking at an actual interaction from OS3

and address the gap in the literature of interaction scenarios like CS2.

The above characteristics interchangeably have a significant impact on the human
and robot while both being susceptible to the surrounding environment. During an

interaction, these three main components influence each other and, therefore, directly or

indirectly affect the interaction quality. Not considering the complexity of the human,

the robot and the environment can lead to failure in achieving the goal or task. The impli-

cation of the following interaction parameters relies on carefully selecting the approach

and methodology used to solve a particular interaction problem. To better understand

the level of complexity in our case studies, we can apply the taxonomy presented in

[108]. The set T contains the entire set of tasks, subtasks and actions possible in an

HRI-enabled environment for these taxonomies. Elements from this set are associated

with human actions
{
Th

}
and robot actions

{
Tr

}
. The binary indicator functions E

(
k
)

and

E
(
u
)

represent a set of known and unknown environmental conditions, respectively, and

E(.) is used to represent any level of interaction at any instance. Finally, the universal

function is D = F
(
.
)
E

(
.
)
, where F

(
.
)

is the output decision pertaining to the set of input

parameters
{
Th

}
and

{
Tr

}
in the presence of the current environment conditions E

(
.
)
.

CS1:
{
Th

}ª{
Tr

}= {
T

}
and D = F(R)E(k)+F(H)E(.)

In the cognitively assistive robot case study, cooperation exists between humans

and robots. Cooperation is another level above coexistence since both agents possess

autonomy but share space and resources to achieve the common goal. Their respective

roles are decoupled, and their actions occur in a sequential manner. Decisions are taken

separately, and even though there are instances when the actions of the human affect

the robot’s next decisions, the sequential nature of the task space allows the symmetric

difference between the two task spaces to provide the entire set of tasks. There is no

physical contact here, and the robot operates at an adapted speed.

CS2:
{
Tr

}∩{
Th

} 6= ; and D = F(R,H)E(.).
In the physically assistive robot case study, a form of collaboration occurs between

the human and the robot since continuous autonomy is needed from both agents to share

a workspace and carry out simultaneous actions as tasks to achieve the final goal. The

decisions are made based on parameters from the human and robot that fit the common

task elements at any level of interaction for any instance of the environment (known and

unknown) conditions. The intersection of
{
Th

}
with

{
Tr

}
can also vary depending on the

task itself, but overall for a collaborative interaction is the above taxonomy.

OS3:
{
Trcarer

}∩{
Th

} 6= ; and D = F(Rcarer,H)E(.)
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The observation study of professional carers
{
Trcarer

}
is an ideal collaboration example

for any robot since the carers interact for any overlap of the task with the older adults{
Th

}
. The main difference from CS2 is their ability to carry out tasks for E(.) (any given

level of interaction at any given instance) and always guarantee safety. The collaborative

level here can also be maintained where the intersection of
{
Th

}
with

{
Trcarer

}
changes

depending on the individual needs of the older adult. In this context, the taxonomy of

collaboration still applies but for any E(.) and all possible intersection combinations

of
{
Trcarer

}∩{
T

} 6= ;. Such contexts make more complex responsibilities in the level of

collaboration. Hence, the universal function D can only be achieved due to the carers’

capabilities as the interaction agent.

From these taxonomies, we can see what is dependent on to make the collaboration

successful while guaranteeing physical safety. In particular, when there is an intersection

between
{
Th

}
and

{
Tr

}
, a shared representation is necessary. In a philosophical review

by Bratman [21], collaboration is stated to involve the agent’s need for an internal

model that allows them to anticipate the future states E(.) of themselves F(R), the

other agent F(H) and the task T. Additionally, forms of communication can help explain

these models to the other agent and make collaboration successful. In such a way, you

would be able to direct someone’s attention to the focus on desired for the task[139].

Literature of cognitive science states that joint attention T can provide the basis for a

common perceptual ground [139] and that it is a crucial mechanism for successful joint

actions leading to fewer errors and reduced task complexity in less time [110]. Shared

representations or notions of internal models and the ability to communicate or at least

direct the attention of the human within a joint reference framework are undoubtedly

critical features for collaboration behaviour. Furthermore, as shown in figures 2.1 and

2.2, the degree to which such representations exist and are shared represents a crucial

criterion for distinguishing between levels of collaboration.

In OS3, the ability of the carer to have a shared representation is what makes their

assistive tasks successful daily. Comparing these different case studies (different levels of

collaboration) allows us to target this shared representation from a different perspective

and look at when there is no common perceptual ground for the interaction. In other

words, we want to learn how carers approach such tasks when there is no joint attention

in a physically assistive HRI and assess how we can apply this to robot-assistive tasks.

In aHRI, complexity increases depending on the humans’ physical ability and their

sensory and cognitive health. The human ability or state can have a considerable effect

on interaction safety. Having a human distracted or not paying attention due to fatigue or
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cognitive overload adds more complexity to the interaction. The environment also plays

a vital role in the overall interaction. Any repercussions or changes in the environment

can affect the HRI, and for safety, this needs to be carefully considered. During such

instances, no shared representation of the joint task T can exist since the joint attention

is disrupted.

In Chapter 1, we stated that, for the level of complexity of close-proximity, collabo-

rative interactions consist of Human Movement Understanding, Motion Optimization
and Control, and Human-Robot Collaboration. Human Movement Understanding is

necessary for both CS1 and CS2; however, in the shared workspace of the physically

assistive task, the knowledge about the shared representation and joint attention is

critical to the safety of the human in question. Therefore the human movement under-

standing methodologies in literature might not address the gap in the literature when

there is no joint attention. Consequently, the assumption on which human movement is

understood is no longer valid since the shared representation of the collaborative task is

also not valid. The human movement prediction methodologies understood to work in

CS1 might not be adequate for CS2. When it comes to Motion Optimization and Control,
the interaction of

{
Th

}
and

{
Tr

}
is what dictates how successful the collaboration will

be as long as the learned behaviours of the robots are valid for E(.). Therefore, if only

near-optimal behaviours are learned when there is no joint attention, the shared repre-

sentation of motion optimization is also not valid. Finally, Human-Robot Collaboration is

directly affected by the task, workspace and interaction nature. It is used to understand

the reactivity and synchronization of the human movement between humans and a

robotic manipulator in any given instance in any environment. However, as stated by

[21, 110, 139], the task will not be successful if there is no common perceptual ground on

which the collaboration is based. The collaborative interaction is disrupted if any changes

in the context and situation occur. In these instances, safety cannot be maintained as the

shared representation and assumptions of the environment, and humans are not valid.

Therefore, in this chapter, we exposed the gaps in the literature on these three aspects

concerning lack of joint attention and an inaccurate common representation of the task.

CS2 is experimentally designed to create instances where the collaborative intention

is disrupted, and a lack of common perceptual ground is made. Ultimately we want to

address this gap in the literature by understanding how such context and situation can

be learned in models for motion optimization based on the realistic understanding of

human movement in a collaborative task.
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2.1.3 Research Gap and Thesis Contribution

Consequently, based on these gaps in the literature, the thesis focuses on and exposes how

to start addressing physical safety through one metric of HRI by properly considering the

relevant HFs and HSs based on any adaptable environmental factors. The contributions

towards this gap in research are made in the context of aHRI through the evaluation of

human movement predictions as a metric. Ultimately, the taxonomy of CS2 and OS3 will

be analysed to find ways how to ensure that there exists joint attention in order to keep

the aHRI physically safe. The OS3 is needed to evaluate what is required when there

are unknown environmental factors E(.) at any given level of interaction at any given

instance.

2.2 Physical Safety in Assistive Human-Robot
Interaction

Physical interaction is typically rarely used in complex robot-assisted applications. The

goal of these assisted living applications is only achieved with a limited number of

input modalities, and safety is never at the centre of this interaction. As part of a

dressing task, where close physical interaction is required, [165] focuses on pulling

trousers along the legs. The subject’s safety is addressed by recognizing the state of

the manipulated clothing and visual and force sensory information. The research team

at Georgia Tech created mechanical assistance for people who have difficulty dressing

themselves. [166] relies on cloth simulation to extract data which could classify the

dressing task into three scenarios: successfully going into the sleeve, missing the sleeve

opening completely or getting caught by the gown. They divide the system into three

main stages: optimization, simulation and classification. The first stage optimizes the

parameters of a physics simulator by matching the simulated data to three haptic data

sequences for one participant from the real-word. This results in new simulated haptic

data. In the final stage, hidden Markov Models are trained with the simulated data

to classify real-world test data accurately. [48] used a physics-based simulation and

data-driven methods to find the forces being inferred on the person’s body using only end

effector measurements(force and position) during an assistive dressing task. The method

used is that of a long short-term memory (LSTM), which outputs a force map consisting

of hundreds of inferred forces across the person’s body. This methodology approach is not

applicable in the context of CPCI since force feedback is not available.
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The authors in [166] present a new method of learning that can adapt to dynamic

model parameters and sudden changes in the environment. On the other hand, [57]

believes that having personalized assistance will help in reducing the burden of daily

living activity and proposes an approach for home-environment assistive humanoid

robots to provide assistance for dressing applications. The clothing garment tested was

a sleeveless jacket. Furthermore, the I-Dress project at Bristol Robotics Laboratory at

UWE addresses some of the problems associated with dressing in the context of physical

HRI by predicting the type of garment that the user is wearing through assessing

end-effector’s forces in [36] and [35]. All of the above-mentioned research attempts to

target physically assistive robots but fail to acknowledge the context of close proximity

interaction and always assumes that the human behaviour is non-erratic and goal-

directed and performing at an optimal or near-optimal collaboration state. For physical

safety, this cannot be hypothesised.

2.2.1 Physical Safety: Robot Learning for Assistive Tasks

The physically assistive robotic task requires complex motion to achieve human-like adap-

tation during the interaction. These complex motor skills are represented by the known

Movement Primitives. The dominant method for representing movement primitives is

the DMPs [75, 119, 135].

The DMPs are a combination of a forcing term to represent the movement and a stable

non-linear attractor. The attractor in this dynamic system affirms asymptotic stability,

and the forcing term enables it to follow a specific movement. The general idea of a DMP

is to take a dynamical system with stable properties and add another term by modulating

it with another non-linear term such that it achieves the desired trajectory based on

the attractor behaviour[76]. An improvement to the formerly present DMP is the PDMP

presented by [119]. The probabilistic approach allows obtaining an inference from sensor

measurement to measure the likelihood that the movement primitive is being executed

correctly. The drawback of this approach is that of generated movement primitives, which

deviate from the demonstration since not being a data-driven approach. The difference,

when compared to ProMPs, is that ProMPs allow the ability to make inferences from the

force so that the robot to pass by several initial via points. Both approaches allow for

temporal scaling of the movement, learned from a single demonstration to the new final

position. Temporal scaling is a requirement for our application to allow realistic adaption

to unexpected alterations in human motion. Other ways of inferring the truth have been

obtained by minimising the error between the inferred position from the human brain
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activity of the next time step and the ground truth obtained from demonstrations.

Additionally, in [100], a probabilistic approach to movement primitives is imple-

mented by using a time-warping method based on the Gaussian basis model to represent

a time-warping function. The method allows alignment between the two movements

without skipping indexes. This allows for a more realistic and smoother projection of

movement primitives. In [119], a review of dynamic movement primitives is presented.

DMPs can be approached from various aspects; one of them is by adding prior knowledge

with imitation learning or trial and error learning with reinforcement learning. Addition-

ally, DMPs are allowed to perform multiple obstacle avoidance through the approach of

reactive control with direct feedback from the environment. Ultimately the [119] propose

a Dynamic Bayesian Network to integrate perception and action through the concept of

associate skill memories.

These characteristics of DMP can adequately incorporate prediction and adaptation

in close-proximity. Further, the ability to be able to restrict and couple the representation

in the latent variable movement of the predicted trajectory will allow the coupling of the

dynamic movement primitives of the robot trajectory to that of the unexpected human

arm movement. The probabilistic approach will be used to infer the predicted human

arm motion in time. Additionally, the projection of the DVBF with the DMP will adapt

movement entirely by representing various movements in the latent close proximity

because the restriction of movement representation with that of the robot is critical

for safe coupling. Additionally, having a conjoint, capable methodology for projecting,

coupling and restricting both the human’s and robot’s motion is ideal for achieving a

coherent safe and adaptive collaboration that is also time-dependent. The advantage of

having time-dependent Variational auto-encoders is that of updating the prior in time

and representing the context at hand.

2.2.2 Physical Safety: Human Movement Analysis and Intention
Predictions in Assistive Tasks

When humans and robots collaborate, mutual understanding is vital for the success of

the shared task. Mutual understanding incorporates that the human is attentive to the

robot’s current task, state, and goal and additionally to predict what to do next and vice

versa. Foreseeing a human’s intention implies that the robot should be able to interpret

the verbal and non-verbal cues that humans naturally use to identify each other’s

intentions. A simple approach can be that of the assumption that each action is a goal-
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directed movement. [138] reported on how humans implicitly attribute their intention

using gaze to inform their goals to the robot. In [54], a method called Bayesian Human

Motion Intentionality Prediction was implemented to geometrically infer the human

motion hitting the target. using the Expectation-Maximization and a simple Bayesian

classifier. [155] proposed the Intention-Driven dynamics model, based on GPDM [155], to

infer the intention of the opponent during a ping-pong match. The intention was achieved

by looking at the entire human movement before the human hits the ball.

A more composite procedure for intention recognition is to estimate the future tra-

jectory from past observations. This involves predicting the forward dynamics of the

modelled human motion as a dynamical system. An efficient methodology for predict-

ing a trajectory is based on using motion primitives. This entails the generation of a

parametric time model to provide a sequence of points of the trajectory. [75] method of

Interaction Primitives uses the dependencies between collaborative human movements

to learn a distribution over the dynamic movement primitives (DMP)’s parameters. This

is further explored in [16] through observations of two humans collaborating using a

motion capture system. Estimating in time, the state of the human is necessary to adopt

the robot trajectory at any level of interaction coherently. For example, in [52] the robot

infers the human intention utilizing the measure of the human’s forces and by using

Gaussian Mixture Models. In [133], the arm impedance is adapted by a Gaussian Mixture

Model based on measured forces and visual information. Many studies focused on the

robot’s ability to act only when and how its user wants [33, 143] and to not interfere with

the partner’s forces [77] or actions [12]. Bayesian networks have also been successfully

used in [97] and[37] to track human postures.

In the literature, the use of human movement primitives projection on a latent space

as a real-time coupling for robot trajectories in an assisted dressing task has not been

found. The challenge in human movement prediction stems from the high-dimensional

movement representation, which increases the difficulty of learning and inverse kine-

matics that can sometimes comprise redundant degrees of freedom representation. The

authors in [39] show that variational auto-encoders (VAE) can project more meaningful

manifolds in the latent spaces than auto-encoder of the traditional principle component

analysis (PCA) . Auto-Encoders can be described as non-linear, unsupervised dimen-

sionality reductions method that tries to represent the input data in a latent space by

minimizing differences between the input and the output instead of predicting the output

based on the input. Gaussian Process Latetn Variable Models (GP-LVM) [19, 94] and

denoising Auto-Encoders [38] have been implemented for movement representation in
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latent space using DMP. In [39] DVBF and (DMP) are used to learn movements from

a multi-dimension. The integration of DMPs with DVBF increases the constraints of

the latent space, which therefore forces the prior distribution of the movement to be

more meaningful to the respective task. The advantage over ProMP is that when a

different task is present, the combination of DVBF with DMP adapts movement entirely

by representing various movements in the latent space.

Furthermore, human motion trajectory prediction can refer to either prediction of

the next movement in general, for example, pedestrian movements as presented in

[146] or the actual joints prediction for producing the human pose as presented in

[41]. For safety, both types of predictions are critical in HRI which takes place in a

common space of the surrounding environment. However, when it comes to collaboration

tasks with robotic manipulators, human pose prediction and monitoring is an essential

feedback component that adaption depends on. In cHRI the robot requires to maintain

an interactive skill which dynamically adapts to changing goals and obstacles. These

abilities in robots can be learned as movement primitives, either dynamical movement

primitives (DMPs) [136] or probabilistic movement primitives (ProMPs) [118]. Such

primary skills can be learned by demonstrations, optimised or generalised accordingly, as

shown in [16, 26, 27, 42, 103]. The importance of correlating movement in CPCI is critical

in order to enable the adaption of these learned skills. This coupled adaption is presented

by Ben Amor et al. in [16] which shows a way of learning the inherent correlations

of a collaboration interaction to infer the behaviour of the partner and to participate

in the collaboration by coupling the movement. These so-called abilities and skills of

performing manipulation tasks can also be attributed to human movement. A mixture

model of human-robot interaction primitives is presented in [101] that allows us to infer

human movement from observations. On the other hand, in [42] it is shown that human

intention can be inferred during physical collaboration after human demonstrations

are used to guide the robot. On the other hand, Mainprince et al. in [102] present an

interactive re-planning process to capture the adaption to the human reaching motion in

shared work spaces.

2.2.3 Research Gap and Thesis Contribution

From this research, it can be summarized that when it comes to human collaboration

tasks [16], the interaction is always executed in the context where the partner is fully

aware of collaborating with the robot. The ability in the human skill is assumed to be

constant or at least not changing frequently. In any HRI that involves close proximity,
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particularly if the interaction involves physical assistance, it is critical to have prior

knowledge about how human skill varies when not fully vigilant during the interaction.

According to our knowledge, the variations of human movement skills to perform a

physically assistive task due to any distraction have never been researched and modelled.

Being able to know to what extent we can manage to represent these variations through

a collaboration measure can help in the adaption of the assistive task. The changes in

the movement to execute the task cannot be just represented by general movement,

but it requires further in-depth evaluation to describe the collaboration in the task.

The advantage of having such a measure is that of having a natural cost function

that can describe the viability of the continuous adaption of the robot in terms of the

current state. Assuming that the motion prediction is pattern-based, as explained in

[134] and affected by the dynamic environment cues, we need to have a measure of how

the correlation between the movements of the human and the robot varies when the

human is distracted due to external disturbances. We would also like to know how these

disturbances affect the learned skill of the human for performing the assistive task.

Based on these arguments, we want to create case studies to show if failures CS2 in

assistive tasks can happen and what is the best way to deal with them OS3. The aim is

to evaluate how robot learning can be adjusted to include the additional knowledge of

cognitive overloading or distraction in the surrounding environment. Ultimately we want

to evaluate if it is possible to be done implicitly through the input modality of human

movement. The contribution of this work is to visualise the variations in the correlation

between the movements of the human and the robot in the assistive task when the

collaboration and attention are shifted away from the assistive task. Furthermore, we

introduce the concept of a collaboration measure by analysing in what ways this natural

cost function can be presented most appropriately - in the form of new skills, simple

distance measures, trajectory matching or correlation.

2.3 Understanding the Human Behaviour in
Collaborative and Assistive Tasks.

2.3.1 Predicting Actions and Interactions: the human
perspective

In any research context, both robots and humans need to predict each other in order to

achieve collaboration. When humans interact with other humans or complex objects, they
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seek predictability in their interactions. This implies that humans desire predictability

and naturalness in their interactions with robots, especially in the context of physically

aHRI.

Human collaboration encompasses various aspects. Firstly, humans tend to converge

towards an initial state to simplify subsequent actions within the interaction. Secondly,

they strive to minimize transitional periods and reach a steady state more rapidly. Lastly,

humans actively work towards increasing predictability and synchronization in their

interactions by maintaining a steady state. Results from the literature that studies

collaboration between humans show that humans learnt to simplify the interaction

forces with other objects, making interaction more predictable.

However, it is crucial to acknowledge that the ability to maintain this steady state is

not always within their control. While it is widely recognized that anticipating human

motion is crucial for intelligent systems that coexist or interact with humans, there

remains a gap in the literature when it comes to addressing situations where the steady

state cannot be achieved or sustained. This represents an important area of research

that requires further exploration and investigation. To be able to address the complex

interaction of CS2 and OS3 this cannot be only analysed through data collection from

simulation. If research continues to do so, only near-optimal behaviours are learned and

when the steady state cannot be maintained and when there is no joint attention, the

shared representation of motion optimization and prediction cannot be valid. Simulations

offer a convenient and cost-effective means of collecting data compared to real-world

systems. In the context of robot learning, the accuracy and reliability of simulation

models play a crucial role in determining the robot’s decisions regarding poses and

trajectories[55] . However, the simulation does not represent the real-world context

that physically aHRI are required in. The taxonomy of CS2 and OS3, it is essential for

the robot to possess knowledge about the human’s state at any given instance, even

in unfamiliar environmental conditions, to ensure physical safety. In situations where

elevated mental stress or distraction is detected, a collaborative robot can have the

capability to mitigate the risk by adjusting its speed, providing physical support to the

human, or modifying its end-effector trajectory. Surprisingly, there is a scarcity of studies

that have explored the implementation of tailored assistive robot actions in response to

humans’ mental stress or safety awareness during collaborative tasks[99].
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2.3.2 Human Collaboration, Mental Models and Cognitive
Overloading and Distractions

Understanding human cognition and mental model is necessary when instigating a lack

of collaboration in interactions. Neuroscience research defines action cognition as the

amalgamates of human motor control, perception, and cognition [58] and that it can

be mathematically formulated to describe human adaptive behaviour as a resistance

to a natural tendency to disorder. One principle that can explain these mathematical

formulas is the free-energy principle which states that the human brain actively makes

observations while concurrently minimizing the world’s model [56]. This equilibrium

obtained from the minimized free-energy model will be disrupted when an unexpected

event occurs. The human reaction would be to minimize the differences between their

free energy world model and the world updates brought by their senses and associated

perception. The work presented in [56] suggests that human movement gets disrupted

when trying to minimize these differences in the collaborative task. The impact on the

equilibrium described in the works of [56, 58, 115] is similar to the disruption of a

shared task representation due to a lack of synchronicity described in [40, 140, 141].

Disruptions during task performance, and hence the world model, can be due to cognitive
overloading and/or environmental distractions as defined by [115]. Cognitive load is the

amount of information that a person can hold in their working memory at a given time

[56, 58, 115]. Memory can be classified into short-term, long-term, working and sensory

memory. Sensory memory perceives and preserves auditory and visual cues in short-term

memory. On the other hand, working memory takes new information and organizes it

among already learned information that is stored in the long-term memory [56, 58, 115].

Long-term memory is effectively limitless, unlike working memory, which is essential

for learning and performing a task. When unexpected events occur during a physically

assistive task, the working memory has to process new information, increasing the

cognitive load. The ability to work with robots together to achieve the task can be greatly

impacted in these instances, and understanding the joint interaction can be crucial in

interaction contexts similar to CS2.

2.3.3 Intention Estimation and Joint Attention

Literature that analyses intention estimation and joint attention states that a team

can be seen as a group of individuals who share a joint intention, which refers to their

collective commitment to perform a coordinated action while being in a shared mental
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state. The establishment of a joint intention requires the team members to understand

and estimate each other’s intentions and to agree on working together towards a common

goal [162]. In the case of a cHRI and aHRI, human needs typically set the goal and

may not always intend to achieve it. The robot’s role is to estimate this intention and

take appropriate actions to assist the human in accomplishing the goal. The intention of

a person can be communicated either explicitly through deliberate communication or

implicitly through actions. Problems can arise when the mental stress on the working

memory disrupts communication or when older adults are not able to communicate.

Therefore in this thesis, we want to evaluate the possibility of estimating this through

human movement.

Achieving synchronized motion between humans and robots is crucial for the suc-

cessful completion of collaborative tasks. However, this synchronization can be affected

by external factors. Humans possess unique capabilities and limitations that can either

enhance or impede the accomplishment of physically collaborative tasks. According to

the work of Haddadin et al. [68] the safety of the robot’s collaborative mode depends on

taking into account the human’s collaborative intention during the task. It is important

to further investigate potential disruptions in the collaborative state of humans in order

to ensure safe and smooth recovery from these disruptions and facilitate adaptive robot

behaviour.

Existing literature reviewed in this area assumes that human behaviour either

correctly adapts to robot movements or remains consistent throughout interactive tasks.

However, our concern is that collaborative human movement can be disrupted, leading to

a loss of synchronicity in certain situations. The literature on close-proximity interactions

mainly focuses on task completion through continuous adaptation to human movements,

without considering the possibility of discontinuity that may arise in different dynamic

environments. It is crucial to address these potential disruptions and explore strategies

for maintaining synchronization and graceful recovery in order to ensure effective

collaboration between humans and robots.

Collaborative HRIs are typically addressed through prediction and adaptation by

the robot, whereas the human collaborative state is assumed constant [16, 53, 120,

153]. Prediction in HRI relies on evaluating the current interaction state and choosing

correct actions [71, 137]. In [71] a reactive and anticipatory action selection is compared.

The anticipatory approach combines the current state with a probabilistic view of the

temporal activity, providing better efficiency over the reactive approach [71]. The work

presented by [16] involves interaction primitives that combine the probabilistic temporal
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view of the movement variation with performed adaptation. Both [71] and [16] state that

the robot is interacting with an engaged human. Hence, in such works, the selection of

the appropriate anticipatory action can only be done with a high level of confidence when

there is mutual responsiveness and commitment to the collaborative task. If the human

is not in a collaborative state, it can potentially pose a safety risk.

In other related studies, which are focused on physical contact, ([49]), adaptation of

the robot movements considers changes in human movement, but changes in human

behaviour (distinct to specific movements) due to distractions or cognitive loading are not

addressed. In an assistive dressing task, human movement is in close proximity to the

robot, and for safety, it requires high confidence in predicting and adapting the robot’s

movement. Distractions and failure are very likely in a real-life context, and a clear

understanding of human engagement and movement changes is required. Robot-assisted

dressing failures have been considered by [35], but analysis and modelling of the human’s

collaborative state in the presence of disruptions were not included. Additionally, the

changes to the synchronicity cannot be modelled using a probabilistic approach or be

recognized as yet another movement primitive, as shown in [42], if the probabilistic

models are not trained on a disrupted human movement dataset as shown in [155].

Similarly, the modelling of human motion uncertainty has only been performed for

collaborative tasks. The works of [79, 86, 165, 166] and [57] model this uncertainty in

close-proximity collaborative tasks in specific scenarios in which either a global trajectory

is learned or motor skills are encoded. However, the human movement modelled in

these studies is for general skills to perform a task without considering disrupted

human movement. Therefore, if a lack of synchronicity between movements affects the

representation of the shared task due to an uncooperative partner ([40, 140, 141]) then

these learned motor skills need to encode such information for safe physical Human-

Robot Interaction (pHRI). This encoding will allow the recognition of non-collaborative

instances during pHRI.

Furthermore, the non-linearity and high dimensionality features comprising human

behaviour can be challenging to investigate. For human movement analysis, dimension-

ality reduction is used to express the limb-based characterization in a more readable

space. This methodology takes advantage of visualization to spot disruption within the

human movement as a change in collaborative behaviour. Latent variable models ([114])

are used to address these challenges([79, 167]) to model limitations in human movement

or to personalize human movements.
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2.3.4 Research Gap and Thesis Contributions

Therefore, in conclusion understanding human cognition and mental model is necessary

when instigating a lack of collaboration in interactions. Based on these related works, we

hypothesize that cognitively overloading humans with the robot-assisted dressing task

will disrupt the synchronicity of their collaborative physical interaction. We consider how

cognitive overloading, as well as distractions, will unbalance the overall cognitive load

made up of intrinsic, extraneous and germane loads. The aim is to address the lack of

addressing of the impact of mental stress and how this affects physical safety. In order to

properly evaluate this timing unexpected events will be considered and staged to trigger

increased mental effort. CS2 experiment will explore these hypotheses by taking care of

the temporal layout of these staged events (see Figure 4.1). The nature of the unexpected

staged events is based on how to research describes how to disrupt the equilibrium in

the mental model by looking at the different cognitive loads, which are further explained

in Section 4.2.2.

We also hypothesise that a change in a human’s collaborative state can lead to a

change in human movement. This hypothesis is based on work from [58]. In this thesis,

we want to be able to visualise this in the input modality of human movement and

model the discontinuity of the human’s collaborative state through human movement

observations. Therefore we aim to create a series of controlled HRI experiments in which

we can observe variations, limitations, and differences in human movements in the

presence of disruptions during a collaborative task. Again, disruptions included in the

experiment were based on relevant literature on human behaviour, action cognition and

motor control. The aim is to have data that is not based on simulation and that can

provide knowledge about what happened when the joint intention of collaborating is

disrupted. In a robot-assisted dressing context, physical interactions start when human

limbs are inside the dressing garment. The aim is to contribute to the research gap by

showing how when humans are exposed to distractions and cognitive overloading, their

collaborative state can change even before the physical interaction starts and impact their

movements. Additionally, the aim is to understand whether this lack of joint attention

can be identified through data from the input modality of human movement. To further

analyse the data of human moment we use a related approach to model the human

movement and highlight any disruptions associated with the change in collaborative

behaviour. The method used is the Gaussian Process Latent Variable Model (GP-LVM),

which is a Bayesian non-parametric model which acts as a dimensionality reduction

method by using a Gaussian Process(GP) to learn a low-dimensional representation
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of high-dimensional data. The advantage of using such a method is using the non-

linear learning characteristic of GP, which is ideal for human movement ([167]). The

non-parametric model properties allow a distribution-free form model with a flexible

structure that can scale to accommodate the complexity of the dataset.

2.4 Carer’s Requirement for Physically Assistive
Robots

In the introduction chapter, we discussed the necessity of comprehending the process

through which physically assistive robots are designed to support older adults, as well as

the importance of considering all the what-ifs concerning physical safety (see Section1.2).

By employing this approach, we examine the aspects of physical safety in assistive robots

by considering various interaction complexities. By utilizing human movement as an

input modality, we examine the implications for physical safety when transitioning from a

socially assistive interaction context (RQ1 and RQ2) to a physically assistive interaction

context (RQ3). This prompts a critical assessment of the requirements necessary to

ensure physical safety, particularly by examining how caregivers perform their assisting

tasks (RQ5).

The overview provided in this chapter highlights the lack of consideration for these

requirements in the current state of the art, especially in terms of incorporating adequate

HF and HS during the design process (RQ2 and RQ4). The importance of adopting a

holistic approach is also proposed in the WHO framework for people-centered health,

accentuating that care itself is a value and originates from the patient’s perspective. This

encompasses patient safety, patient satisfaction, responsiveness to care, human dignity,

physical well-being and psychological well-being [157]. Given the lack of standardized

guidelines and early stage of development, it is crucial to integrate care-centered designs

for such technology [150]. Achieving this integration requires proper consideration of

how to incorporate these aspects of care and interdisciplinary collaboration between

robotics engineers, designers, programmers, philosophers, psychologists, and software

engineers. Preliminary studies suggest that establishing trust between users and robots

fosters a more collaborative attitude and a higher tolerance for increased autonomy,

enabling the completion of complex assistive tasks [47]. The summary provided in this

chapter regarding the current state of the art indicates that these requirements have not

been addressed up to this point. This research provides direct evidence of the significant
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benefits of HF in designing robots, as a more collaborative attitude leads to successful

assistive tasks.

In literature, there is this continuous claim that the interests of carers and older

adults are marginalized when it comes to assistive robots. In some instances, the interests

of the carer surpass those of the older adult, while in others, the physical safety of the

older adult can outweigh the ethical and privacy issues [78]. These different points of

view and arguments can only be understood through a proper long-term analysis of the

environment in which physically assistive robots are to be used. It is highly important

to assess the real-world environmental factors, HF and HS from the perspective of the

carers and have them establish the requirements needed to fulfil the criteria of physical

safety. Studies have shown that carers express appreciation for the benefits of assistive

robots and are open to employing such technology in care homes, but only if a fully

functional automated approach can be provided. Carers also believe that such assistive

technology can help older adults if it starts to consider what caregivers need and provides

assistance to them, especially when it comes to cognitive impairment [15]. Ultimately, the

requirements emphasized in the literature indicate a willingness to introduce technology

as long as it properly considers the needs of older adults, carers, and any factors that

can impact the assistive interaction. Furthermore, the current literature highlights

the importance of rating all work in physically assistive robots for older adults
based on the level of collaboration between humans and robots [47]. These claims

support the foundational requirements outlined in this thesis. The literature gap we

are addressing involves introducing the needs of older adults by examining how carers

carry out their own tasks. The research questions the approaches to human movement

prediction in different interaction complexities while maintaining a value-centered

approach of physical safety. Answering these questions requires a deeper understanding

of the factors that can impact physical safety at higher levels of collaboration while

considering a more realistic environment and carefully assessing the effect of the HS.

According to evidence in the literature of the current state-of-the-art, the answers to

the appropriate what-ifs can and need to be identified by the carers themselves. With

this in mind, the objective of this thesis is to examine the design PAR by considering the

perspective of carers in real-world scenarios, specifically focusing on the evaluation of

physical safety concerning human movement.

In conclusion, although most of the current literature addresses some of the afore-

mentioned requirements none of them appear to have considered a holistic approach

to utilizing an input modality that provides feedback on a value-centred approach of
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physical safety based on the carers’ perspective. This approach, with a focus on the users’

needs at the appropriate level of complexity, will ultimately lead to an assistive robot

design that aligns with the required collaboration standards [47].

2.5 Summary

This chapter provides an overview of physically assistive robots, specifically focusing on

robots designed to assist physically impaired older adults. The primary research topics

examined are human movement prediction and robot learning for assistive tasks. It

becomes apparent that the design of robot factors is often not adequately considered

in relation to HF, HS, and environmental factors. Overall, there is a lack of a holistic

consideration of all the factors that affect the behaviour of the human and interactions.

The research concluded that collaboration tasks are not considered in an environment

where the unknown in the environment can, directly and indirectly, impact the joint

attention to collaborating in the assistive task. From the taxonomies that describe

the complexities of interactions, it was noted that to maintain physical safety, the

methodology used in simpler interaction contexts will not provide this. Therefore, we

want to evaluate how much robot factors in physically assistive tasks can be improved

to consider these unknowns. All research always assumes the optimal behaviour of the

human. This invalidates the taxonomies of the most complex interaction scenarios since

you cannot guarantee physical safety if this is not properly considered.

Moreover, research on human mental models, behaviour, intention estimation, and

joint interactions reveals joint attention’s susceptibility to disruption in collaborative

tasks. This highlights the existing gaps in research and emphasizes the need to address

these shortcomings to enable successful physically assistive human-robot interactions.

Additionally, it is important to note that no prior work has effectively addressed the

requirements of physically assistive human-robot interactions based on the insights

and expertise of professional carers in care homes. Their experience and knowledge are

invaluable in shaping the development and implementation of such tasks. Therefore, it

is crucial to explore how professional carers currently approach these tasks and analyze

how their approach can be integrated into the operation of robots performing physically

assistive tasks.

In conclusion, this chapter highlights the need for a more comprehensive and inclusive

approach to physically assistive robots. It emphasizes the importance of considering

the interplay between human and robot factors, addressing the impact of unknown
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environmental conditions, and incorporating the expertise of professional carers. By

addressing these research gaps and improving our understanding of physically assistive

human-robot interaction, we can pave the way for safer and more effective collaboration

in the field of physically assistive robotics.
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HUMAN MOVEMENT IN A SOCIALLY

AHRI TASK

3.1 Introduction

With the aim to leverage the input modality of human movement as an affordance

that ensures physical safety in all interaction complexities, this thesis starts exploring

human movement and evaluating the extent to which it can provide physical safety

for older adults. The methodology involves assessing real-context human movement to

understand the knowledge it can offer in terms of time and space, and if it can guarantee

predictability and physical safety in both socially and physically assistive tasks.

In this chapter presents CS1, a case study involving an aHRI tool aiding cognitively

training for older adults with dementia using Social Assistive Robotic Agent (SARA)

[9, 10]. It focuses on whether human movement prediction within this

In order to evaluate this, a human movement experiment and data collection were

designed and implemented. The resulting time-series dataset was then prepared, cleaned
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and analyzed. Our goal was to explore how human movement data manipulation and

visualization could serve as priors for predicting future aHRIs and cHRIs. The results

demonstrate the feasibility of human movement prediction and the effectiveness this

approach in distinguishing between slightly different movements. The results demon-

strate the feasibility and effectiveness of human movement prediction in distinguishing

between subtle movements. However, certain constraints and observations, crucial in

addressing the lack of physical safety solely through human movement prediction, are

further discussed in the subsequent chapter.

3.1.1 Research Questions

In summary, three research questions will be investigated in this chapter through these

human movement experiments:

3RQa Can subtle difference between similar human reaching movements for different

reaching positions be differentiated from one another through prediction? (see

section 1.2, RQ1a, RQ1b and RQ1c )

3RQb What is the most accurate approach for movement prediction while minimizing

the prediction time window? (see section 1.2, RQ2a )

The research questions in this chapter are also aligned with the main research

questions previously described in section 1.2. Specifically, the primary research questions

addressed are RQ1 and partially RQ2 (see section 1.2).

3.1.2 Contributions

In answering the above-mentioned research questions, the following contributions are

made:

- The dataset was collected from 30 participants whilst performing reaching move-

ments towards a shared workspace with a socially assistive robot.

- Validation of human movement prediction methodology as a means to differentiate

between highly similar human reaching movements.
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(A) (B)

Figure 3.1: Different methodologies to recorded human reaching movement. Sub-figure
A shows the Motion Capture Xsens suit and sub-figure B shows the OpenPose and
PointCloud merging.

3.2 The Socially aHRI Task and Interaction Context.

3.2.1 Experimental Layout and Data Recordings

The socially aHRI task facilitates assistance to dementia patients through a board

game. Figure 3.1 shows the workspace shared between the patients and the robot. The

games assesses the cognitive and physical abilities of the patients by encouraging and

instructing them to sort numbered tokens on the board (see Figure 3.1). Each one of

these tokens is on one cell on a board placed on a table. The older adult and the robot sit

on opposite sides of the table. The board is equipped with Radio Frequency Identification

(RFID) sensing, allowing the SARA to detect when a token is picked and where it is

placed. The exercises can involve:

- Sorting five odd tokens in ascending order.

- Sorting five tokens in ascending order.

- Sorting five numbers in descending order.

- Moving first storage row to goal row.

When lettered tokens are used in the cognitive training, additional exercises can involve:

- Spelling a 5-lettered word.

- Sorting five tokens in lexicographical order.
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These exercises are designed to help the cognitive function of the older adults by working

with the robot to complete task correctly. The current state of the exercise refers to the

position of the token IDs on the electronic board. This position knowledge forms the

precondition part of the action. An action is defined by a precondition and effect where

the effect is the possible token adjustment that can modify the current state by changing

the token position from one cell to another. The term ’trace’ represents to the possibilities

that the caregiver can provide to allow the SARA to learn the rules required to place a

set of z tokens in five correct positions. These traces will generate at least x preconditions

(depending on the type of exercise), some of which can be redundant. Non-technical

professionals can modify the SARA by straightforwardly programming the traces. As

part of the first interaction loop, a caregiver can implement the configuration of the

rules. The second interaction loop describes the interaction between the robot and the

older adults through speech and gestures to encourage patients to complete the exercise

correctly and in the least possible time.

For the second loop, user-centred interaction design is facilitated through the im-

plementation of the Persona-Behavior Simulator (PBS) which generates a high level of

abstraction for the user’s action that can be employed in the SARA in cognitive training

scenarios. The learning of these abstraction levels is presented in [11]. The benefit of a

PBS is that being able to generate data for HRI scenarios more efficiently and feasibly.

The PBS provides the ability to learn an assistive policy that can adapt the SARA be-

haviour by offering more or less assistance towards completing the cognitive exercise

based on the current state of the environment and the robot’s action.

The main two components of the PBS are the Persona Definition (PD) and the

Task Engine (TE). The PD is the static component based on the memory (the patient’s

cognitive impairment), reactivity (the patient’s physical reactivity) and attention span

(the patient’s ability to keep focus). On the other hand, TE is the dynamic component

which shapes the given state through the complexity and number of attempts. The

complexity characteristic is the probability of guessing the right move at a given game

state. This probability will be different for different patients (personas) at a given

environment state.

3.2.2 SOCRATES Secondment Collaboration Contribution

PD is defined as a static component; however, the characteristic described in [11] as

safety risk can be dynamic. During the cognitive training, patients interacted in the

same workspace, manually picking tokens from the board. The SARA also uses the
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same workspace, to suggest a possible token as the next move. User errors, unexpected

events or any form of distraction during the interaction can divert the older adults’

attention from the cognitive exercise on the board. This can result in incorrect token

movements or abnormal trajectories of the older adults’ arm in the shared workspace

above the electronic board. These incorrect moves can pose a physical hazard to the

older adult if the cognitively assistive robot cannot predict their intention to move to an

unexpected cell on the tabletop board. The complexity characteristic in the TE can be

better inferred if the trajectory of the older adult’s arm can be predicted based on initial

trajectory observations during the interaction. Each cell on the board is associated with

a specific token through the RFID technology. Collecting human movement data allows

us to identify the intended cell position before the action is executed and, consequently,

determine the goal intention by predicting the movement trajectory of the older adult.

Therefore the contribution to the SARA is that of providing physical safety through

prediction of the human movement. Human movement prediction adds knowledge about

the HS based on HF in addition to the state of the environment and robot’s action already

considers through the dynamic and static components.

These are results obtained during a SOCRATES secondment visit to another Early Stage
Researcher (ESR) who developed the SARA. The secondment is a requirement of the

SOCRATES project and aims to find a common research goal between ESRs.

3.3 Methods

Figure 3.2 displays the markings on the workspace around which the SARA provided the

assistive interaction. The board, on which the tokens are placed, measures approximately

45cm by 36cm. The various markings show the distinction between possible reaching

movements. At a higher level, prediction can either predict larger sub-spaces of the

board marked in green (A) and red (b) or the actual reaching cells where the tokens

are located. The more complex reaching movement included the ability to differentiate

between reaching movements for different cells. The TIAGO from PAL Robotics robotic

platform is used the assistive robot (agent) in the SARA.

The Xsens suit is used to record the dataset of the human movement reaching (see

Figure 3.1). This equipment is a motion capture suit used to capture the joint position

and orientation of the human body at different segments. 23 frames are collected from a

set of inertial measurement units (IMU) attached to the suit. The focus in the scope of

this chapter is on the upper body, particularly the right/left arm. The suit is worn by the
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Figure 3.2: The desired objective of human reaching movements in the context of a aHRI
around a common workspace. The workspace is a table where a cognitive game is being
played, and the reaching subspace refers to the area on the table where the tokens are
located in the different cells positions. The goal is to reach each and everyone of these
cells, indicated as the final reaching position for the human’s movements.

participants in the form of strips attached to arms and legs together with a bodysuit that

holds the shoulder IMUs and battery pack. The advantage of using this motion capture

suit is that it ensures continuous even when the assistive robot occludes the field of view

in the workspace. Moreover, when calibrated correctly, the readings from this suit are

more accurate compared to RGBD cameras. However, it is important to note that it is

not practical to have patients wear this suit in real life-scenarios, and the calibration

process can be time-consuming.

During the secondment, another method was implemented by merging the OpenPose

and PointCloud methodology to acquire the 3D position of the joints, as shown in Figure

3.1. However, for the purpose of this study, the focus is assessing the extent to which

human movement prediction methodology can provide physical safety in such interaction

contexts. Considering the limited duration of the secondment and the need to prioritize

accuracy, the decision was made to concentrate solely on movement prediction rather

than on extracting accurate 3D joint positions from the 2D OpenPose results.

Figure 3.3 shows the board, the tokens, a user with the XSens Suit and the targeted

rows for the cognitive assistive task. The top, middle and bottom rows are highlighted

with their respective cell numbers. From figure 3.3, illustrates the visually marked cells
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Top Row

Middle Row

Bottom Row

Top Row

Middle Row

Bottom Row

Figure 3.3: Workspace layout where each token or cell position on the board can be a
reaching goal for the older adults.

on the board. Participants were instructed to perform reaching movements to retrieve

tokens placed at these marked positions. Five cells meaning five tokens could be placed

on each row, and therefore for this CS1 we will consider 15 cells in total. The middle row

in Figure 3.3 shows how the far left cell (Cell 6), whereas the far right cell is(Cell 10).

This cell labelling format is also kept in the top and bottom rows. It is important to note

that colour coding for each cell in the legend of Figure 3.3 is kept consistent throughout

this whole chapter.

For the data collection, ethical approval had to be obtained from the board of the IRI

institution before proceeding with recording the human movement. The ethical approval

document was written in Spanish and can be found in the appendix (see Appendix A). In

total of 30 participants took part in the data collection of human reaching movements.

However, the data of three participants data was corrupted, possibly due to slightly

lower battery levels, and therefore, this was not available for the data analysis. Figure

3.4 illustrates the different skeletons of all the participants, along with their respective

joint-to-joint lengths, which would be used in this CS1. The joints of interest include the

arms, torso and head.

In total the time-series dataset comprises the position(x,y,z) and rotation (x,y,z,w)
of 23 frames. Each frame represents one of the 23 body segments, including joints, the

head, or parts of the spine. Prior to data collection, a set of measurements (height, hips
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height, shoulder width, arm’s length etc.) were taken for each participant to calibrate

the suit and ensure accurate recording of joint movements. All participants used their

right arm to perform the reaching movement.

The data collection process was divided into three main parts with each part starting

the participants’ arm from a different position. The first position was on the table right

next to the board, the second was the chair’s armrest, and the third was with the arm rest-

ing on the participant’s leg. The reason for having three different starting positions was

to make the human movement prediction as realistic as possible and assess its performs

in such contexts, ensuring that the data can be easily generalised. The experimental

setup included a chair and a table, upon which the board was positioned. The distance

between the table and the chair remained constant throughout the experiment. Moreover,

the board was consistently situated within a marked area on the table delineated by

tape.

The reaching movements from these the three starting positions to the 15 cells were

repeated ten times, resulting in a total of 450 reaching movements for each partic-

ipant. Therefore, each participant contribute a time-series dataset consisting of 450

reaching movements. In total, the dataset encompasses approximately 12,150 reaching

movements.
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Figure 3.4: The skeleton of participants showing joint-to-joint lengths for each participant.
These lengths were necessary for calibration purposes. The legs, arms, head and torso
are colored differently. Each sub-figure shows 23 joints of each participant for which the
X-Sens suit was used to record the complete dataset as shown in Figure 3.5.
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3.3.1 Data Preparation and Cleaning

Figure 3.5: An example of the full reaching movement dataset collection for one user is
shown in this Figure. It illustrates all the repetitions recorded for each cell from each
joint frame using the X-sens Suit. For each joint frame, the translation (X, Y, Z) and
rotation (X,Y,Z,W) are recorded.

Figure 3.5 shows an example of the time-series dataset for just on participant. From this

Figure, one can realise the extent of the data collected from just one participant. From

every joint frame, the translation and rotation were recorded; therefore, 161 variables

made up the time-series dataset. Each of the 23 body segments had its own frame

represented by three variables for translation and an additional four for rotations using

quaternions. In the legend shown in Figure 3.5 the rotational (x, y, z,w) are referred to

as rotx, roty, rotz and rotw. The preparation and cleaning of such a dataset were quite

intensive and required continuous visualisation methods that ensured that the right

reaching movement was extracted from the whole dataset.

Figure 3.6 shows the plot of the right-hand translation reading for one of the partici-

pants for the three different starting positions. These illustrations were used as guide to

be able to segment, clean and prepare the time-series dataset in an easier way. Preceding

the layout of the data collection, we made sure to facilitate the cleaning and preparation

of the data by including some visual guides in the data itself. These guides in the data

can be seen in the Z position of the right hand in Figure 3.6. Based on the assumption
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that the right hand will only move above the table on which the board rests, we asked

participants to raise both hands between the ten reaching movements for each cell. In

this way, we made sure to have a way of segmenting the data collection from the different

cells. The Python scripts were written to implement automatic peak detection was used.

The peak differences in the Z reading of the right hand were quite different from when

the user was doing the reaching movement. Therefore, this automatic peak detection

worked perfectly to separate the different cells. Although this was extracted automati-

cally, a visual verification before segmenting the time series dataset was implemented for

each of the 450 reaching movements for every participant. The X translation shows that

the distance between the starting position and the cells was more when starting from

position three (subplot 3.6B - participant’s leg) when compared to starting position one

(subplot 3.6A - table), provided that the latter starting position was close to the board

itself. From the X translation, it is visible that there are five cells in each row (three

rows in total). From the Y translation, it can be seen that the five cells are next to each

other.

Figure 3.7 depicts exactly where the ten repeated reaching movements are from the

sub-figure 3.6B. For clarity, the repeated ten reaching movement are marked with the

colour coded markers. Additionally, the hand-up between the different cells (differ color

markers) is marked on the Z translation. As stated in Figure 3.6, cell5, cell10 and cell15

are the far right cells on the board and, therefore, closest to the right hand. Figures 3.6

and 3.7, illustrate this through the lowest magnitude along the Y translation for the

reaching movement.
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(B)

(A)

(C)

Figure 3.6: The recorded (X,Y,Z) of the right hand of one user from the three different
starting positions. Sub-figures (A), (B) and (C) show the (X,Y,Z) position of the right
hand respectively from the three different starting positions.
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Ten Repeated 
Reaching Movements 
for One Cell

          Hands up 
           between 
      di�erent cells

Figure 3.7: An illustration to explain how the full time-series segmentation was imple-
mented based on the projection of the recorded (X,Y,Z) of the right hand of each user. The
segmentation is required to fully separate the ten reaching movements for the 15 cells
marked by the circular markers according to the cell legend on the RHS of the Figure.

After segmenting the different sets of reaching movement for each cell, we are left

we subsets of 10 reaching movements for the same cells. Figure 3.8 shows these ten

repeated reaching movements segmented from the rest of the 15 cells. An automatic peak

detection algorithm was implemented in Python scripts to these data subsets. However,

as shown in Figure 3.8, the peak detection in this segmentation failed to generalise for

all the participants by simply adjusting the parameters. Therefore, a Python script was

developed to capture the x-position of the cursor in the time series translation, enabling

the extract of the start and finish points of the ten reaching movements. This manual

extraction and labelling process had to be repeated for the 450 time-series segmentation,

similar to the one shown in Figure 3.8, resulting in a total of 12,150 reaching movements.

Once this segmented reaching movement was extracted, visualisation and analysis for

prediction could be implemented.
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(B)

(A)

Segmented ten reaching movements for one cell

Wrong Peak Detection: 
automatic segmentation 
not possible

Manually corrected peaks 
provide ten segmented 
reaching movements

Figure 3.8: An illustration that shows how the segmentation of each reaching movement
was implemented based on the projection of the recorded (X,Y,Z) of the right hand of
each user. This segmentation is required to separate the ten reaching movements from
each other after they have already been separated from the other cells. In the illustration,
the grey tick marks indicate the start of the reaching movement while the red tick marks
indicate the end of the reaching trajectory. It should be noted that the red and grey tick
marks were manually corrected on the plotted graphs.

3.3.2 Algorithms

3.3.2.1 Data Representation

The data collected from CS1 is a time-series segment, specifically for one of the 15

reaching cell positions. Each segment of data is a multivariate time series

{X t}, t ∈ T (3.1)
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x = {segkl (i) : 1≤ i ≤ T,1≤ j ≤ Fdims} (3.2)

With i the time sample index for a segment (one type of reaching movement) and j
the dimension index, where T is the number of time samples per segment and Fdims is,

23, the total number of joint dimensions of the Xsens Suit. Each participant has a total

of K segments, with each data segment seg having a label from 1 ≤ l ≤ 15. Therefore

this means that if an appropriate time-series clustering algorithm had to be applied to

our reaching movement dataset, the number of clusters Ck will be required to be equal

to k = 15 and Cm ∩Cn =® for m 6= n for the whole time-series dataset x =∪k
m=1Cm. In a

time-series clustering literature review, Aghabozorgi et al. [6] explain how clustering

on such datasets can be implemented in three ways, whole, sub-sequence or time-point

clustering. Whole time-series clustering is when the segments of the individual time-

series are clustered based on their similarity. Sub-sequence clustering is when a sliding

window is used to extract the clusters. Time-point clustering is when a combination of

the temporal and values is used to create the clusters. The methodology used to carry

out these clustering approaches can either be shape-based, feature-based or model-based

[6]. At this stage, we are interested in identifying whether or not the reaching movement

is distinguishable at most of the time-series data-point. The underlying assumption is

that the final reaching cell on the board cannot be approximated for the initial part of

the movement, but it should be more distinguishable as soon as it gets closer to the

final reaching cell position. In order to be able to visualise this, the whole time-series

clustering is required to visualise all the time-series data-point in one space.

There exist many different approaches that allow clustering. In particular, for time-

series datasets, time-series representation, similarity/distance measures, clustering

prototypes, and time-series clustering algorithms are the four approaches mainly high-

lighted in the literature [6]. To verify the sanity of our datasets, we need a dimensionality

reduction method that somehow allows the visualisation of the 15 reaching cells on the

same manifold to allow comparison at the different data points so the time series. In

order to be able to do this, dimensionality reduction methods used the form of similarity

measure to be able to perform dimensionality reduction. The two approaches of dimen-

sionality reduction implemented here are PCA, which uses Euclidean distance measures,

and t-SNE represents the distance between points to probabilities.
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3.3.2.2 Principal Component Analysis

PCA, is a linear dimensionality reduction method which is commonly used to obtain

the general information content from a multivariate time series x for each movement.

This methodology transforms input data to a lower dimensional manifold which in

turn facilities visualisation [23] and feature extraction [50] by identifying variation in

movements while ignoring noise [113] in the high dimensional input data. The data is

prepossessed as described in the previous section by removing anything that is not a

reaching movement toward the cognitive game board and correcting the shift through

the pelvis frame along every participant. The reaching movement data is centring along

all reaching movement dimensions by removing each mean value from the dimension

and scaling back.

In these analyses, the reaching movement data is a matrix [seg i, j]k of dimensions

T ×Fdims for each segment k. PCA provided the eigenvectors yk,i on each of the grouped

k matrices for each participant along the i-th principal direction. The PCs are ordered in

decreasing eigenvalues variance λ j,i, from the first dimension until the last PC with

λ j,i −λ j,(i+1)∑T
i=1λ j,i

>λ (3.3)

This threshold provides T-dimensional eigenvector that projects the data into its

principal components. The principal components are the mean projections of the input

matrix on the eigenvectors obtained through the PCA. The threshold set on y defines the

total number of PC dimensions to keep as per equation 3.3. This threshold will provides

the spatial variance of the reaching movement with the compound PCs p projection

transforming the collected input data x(l) into a collection of PCs which form a manifold

surface Mp.

3.3.2.3 t-Distributed Stochastic Neighbor Embedding

Unlike the PCA, the t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear

dimensionality reduction method suitable for easier visualisation of high dimensional

complex datasets. The main drawback of PCA is that it is not able to interpret complex

polynomial relationships between features. Any human movement, in particular reaching

movement, can be dynamically explained in an interrelation of polynomials in space,

that is, a curved manifold. The t-SNE can retain the local and global structure of the

dataset, unlike most of nonlinear techniques. As a technique, it aims to map close points
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nearby in the low-dimensional representations and also map distant points to distant

points while preserving the geometry.

The SNE method tries to minimise the dissimilarities of the two conditional probabili-

ties, one for the data point in the high dimensional space and one for the low dimensional

space. The conditional probability for the high-dimensional data-points is given by:

pr|q = e
−∥hq−hr∥2

2σ2
q

∑
k 6=q e

−∥hq−hk∥2

2σ2
q

(3.4)

The low-dimensional data-point are lq and lr and therefore the conditional probability

for this space is provided by:

qr|q = e
−∥lq−lr∥2

2σ2
q

∑
k 6=q e

−∥lq−lk∥2

2σ2
q

(3.5)

where the σq is the variance of the t-distribution centred over each high dimensional

input data feature xq. The σq is not unique since it cannot be an optimal value for all

data points due to varying densities across the whole dataset. In dense regions of the

curved manifolds, a small σq is a better representation of the variance in the data than

in sparser regions. All the values of σq are obtained through a binary search and form

a probability distribution Pq. This Pq distribution provides the perplexity, which is a

parameter to the t-SNE. The perplexity limits the number of effective neighbours and the

minimization of this cost function is performed through gradient descent. The perplexity

is defined as:

Perp(Pq)= 2H(Pq) (3.6)

where H(Pq) is the Shannon entropy of Pq given by:

H(Pq)=−∑
r

pr|qlog2Pr|q (3.7)

These conditional probabilities are aimed to model pairwise similarity, and therefore

when q = r the conditional probability is set to zero. The main difference between the

SNE and the t-SNE is the minimization approach of the sum of differences of the

conditional probability. The t-SNE uses a symmetric version of the SNE cost function

(Kullback-Leibler divergences) which is computationally more efficient
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The drawback of using the t-SNE technique is that when a multivariate datasets is

mapped to a lower dimensional space cannot be constructed back to the input features.

Thus such techniques are mainly a visualization tool, and non-inference can be based

only on the t-SNE lower dimensional space.

3.3.2.4 Distance Measures

The outcome of the dimensionality reduction methods explained above highly depends

on their methodology’s underlying distance measure approach. The most appropriate

distance measure highly depends on the time-series dataset and whether or not there are

challenges of noises, offset translation, longitudinal scaling, linear drift, discontinues, and

temporal drift. The data preparation and cleaning explained in section 3.3.1 aimed to take

care of offset, translation, linear drift and discontinues in each of the reaching movement

segments extracted as shown in Figure 3.8. The temporal shift and different temporal

speeds of the reaching movement that make up each segment K cannot be corrected

because they are characteristics of how humans move in space. These characteristics

indicate that the similarity in our reaching movement dataset is ideally found in the

shape and structural change between data-point and not in time.

There are four types of distance measures: shape-based, comparison-based, features-

based and model-based. Shape-based measures use time and shape to extract the similar-

ity, for example, Euclidean, DTW, Longest Common Sub-Sequence(LCSS), and Minimal

Variance Matching (MVM) [62, 163]. Compression-based similarity examples are cosine

wavelets, Pearson’s correlation coefficient and Piece-wise normalisation. Feature-based

measures are used only for long time series in statistics, whereas model-based mea-

sures, such as Hidden Markov Models (HMM)[84, 112, 156], are used for more extended

datasets.

Out of these, the Euclidean distance and DTW are the most prominent methods of

distance measures. Euclidean can work with some of the time-series datasets; however,

the DTW outperforms in most cases when it comes to a dataset that requires an elastic

distance measure due to unequal clustering. These similarity measures are often com-

bined with clustering approaches so that no information in the data is overlooked [90].

Additionally, the authors indicated that to handle the shifts in time, DTW is required as a

step in clustering [169]. The authors, Aghabozorgi et al., [6] highlight that the challenges

of a time-series dataset can fail in the most conventional clustering algorithms and that

it is essential to understand what the potential clusters in the data can represent.
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3.3.3 Probabilistic Movement Primitives (ProMPs)

As the literature shows, ProMPs are more efficient for collaborative tasks when compared

to DMP[53] [101] [118]. The error in prediction is far lower in ProMP, as well as they

provide the ability to do inference learning and to know the correlation between the

input and the train ProMP.

3.3.3.1 Learning Probabilistic Movement Primitives for the Reaching
Movement

The ProMP is modelled as Bayesian parametric models of the recorded reaching move-

ment trajectories in the form:

ξ(t)= (Φt)w+εξ (3.8)

where wεRM is the time-independent parameter vector. This vector is the weighted RBFs

where Φ is a vector of M radial basis functions evaluated at time t. The εξ ∼N (0,β) is

trajectory noise.

The vector of M radial basis functions will be tuned during training. This is repre-

sented by the following equation:

Φ= [ψ1(t),ψ2(t), ...ψM(t), ] (3.9)

where

ψi(t)= 1
ΣM

j=1ψ j(t)
exp(−(t−c(i))2

2h ) (3.10)

c(i)= i/M (3.11)

h = 1/M2 (3.12)

For each reaching trajectory, the weighted parameter vectors need to be computed to

minimize the error between the observed trajectory and the Bayesian parametric model

itself. The algorithm used to do this is a Least Mean Square algorithm. To avoid having

a matrix of weights that is not inverted a diagonal term is added, and Ridge Regression

is performed. This is done through:

wi = (Φt
TΦt +λ)−1Φt

Tξi(t) (3.13)

The above weights are used to compute the Normal Distribution:

p(w)∼N (µw,Σw) (3.14)
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where

µw = 1
n

n∑
i=1

wi (3.15)

Σw = 1
n−1

n∑
i=1

(wi −µw)T(wi −µw) (3.16)

What the ProMP does is that it captures the distribution over the observed reaching

trajectories. Each reaching trajectory is represented by the movement primitives, and

the mean of the distribution is used to represent each of the 15 reaching ProMP created.

3.3.3.2 Predicting Reaching Movement from Partial Observations

Once these ProMPs are created, it can be assumed that the observed reaching movements

(Ξo = [ξo(1), ...,ξo(no)]) will follow these learned distributions. This hypothesis is valid,

provided that enough movement data is collected. When collecting the dataset for CS1,

we ensured we had enough data samples. The goal is to predict the reaching trajectory

after no observations for an estimated time t̂ f for the rest of the predicted trajectory Ξ̂.

The learned prior distributions are taken and updated to give p(ŵ) ∼N (µ̂w, Σ̂w) from

the following equations:

µ̂w =µw +K(Ξo −Φ[1:no]µw) (3.17)

Σ̂w =Σw −K(Φ[1:no]Σw) (3.18)

Where K is a gain computed through marginal and conditional distributions:

K =ΣwΦ[1:no](Σo
ξ+Φ[1:no]ΣwΦ

T
[1:no])−1 (3.19)

3.3.3.3 Predicting a One Reaching Movement From All Reaching Movement

When predicting an observed trajectory in real context, a time modulation parameter â
is needed. There are different methods that can be used to estimate the time modulation,

either using the mean, maximum likelihood, minimum distance and other criteria. Time

modulation is implemented by dynamic time wrapping (DTW). In this socially aHRI the

number of ProMPs are 15, and the assistive robots need to be able to select one. This is

done by using minimizing the distance between the early observation and the mean of

the ProMP for the first portion of the trajectory:

k̂ = argmink∈[1:K]

[
1
no

no∑
t=1

∣∣∣Ξt −Φ ˆaktµwk

∣∣∣] (3.20)
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After this is computed, Equations 3.17, 3.18 and 3.19 are used to update the posterior

distribution and the inferred trajectory is given based on :

∀t ∈ [1 : t̂ f ], ξ̂(t)=Φtµ̂wk (3.21)

The training of the ProMP was implemented based on a library built through the

work of Dermy et al. [42].

3.4 Results

3.4.1 Visualisations of the Cleaned Reaching Movement Dataset

Figure 3.9 shows an example of the segmented reaching movement data after the process

described in section 3.3.1. Each column in Figure 3.9 shows the trajectories from a

different starting position, whereas each row shows the right hand’s X , Y and Z position.

From the X (m) plot, it can be seen that there is a group of 5 cells in each row. cell1 to

cell5 top row, cell6 to cell10 middle row, and cell11 to cell15 bottom row.

Such plots are required to know if there is a need to correct the reference frame of the

human posture. By looking at the data, it was observed that the Xsens Suit recordings

could sometimes show a drift from the calibrated reference frame. Correcting any shift

or drift depends on the methodology used for visualising and predicting the reaching

movement. Some methodologies require data scaling, and others do not, but it is essential

to keep this in mind. During the experiment, the chair’s position relative to the table

and board was fixed by markings on the table and floor. Based on this assumption, a

general correction was implemented on all joints. By such correction, we assume that the

participants’ seating position did not change from outside the markings on the floor. The

correction was carried out by keeping the pelvis frame fixed to the calibrated reference

frame of the Xsens.

Figure 3.10 shows the 3D joint plots of one of the participants while sitting in front of

board cognitive game. These figures were visually checked for all the 12,150 reaching

movements as a sanity check to verify that the human movement dataset is correct.Sub-

Figures 3.10A, 3.10C and 3.10D show the reaching movement of one cell at a random

time (t). Sub-figure 3.10 B shows how the human movement in the other sub-figure

appears when overlapped on one 3D plot.

To better visualise the reaching movement shown in Figure 3.9, Figure 3.11 is plotted

to show the 3D plots for the 450-reaching movements of one of the participants. Figure
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3.11A shows all the 450-reaching movements for one participant, whereas, sub-figure

3.11B shows the reaching movement of the top row, that is cell1 to cell5, Sub-figure

3.11C shows the reaching movement of the middle row, that is cell6 to cell10, and

Sub-figure 3.11D shows the reaching movement of the middle row, that is cell11 to

cell15.

These visual check and plots were necessary to gain a comprehensive understanding

of the data complexity and to ensurer its sanity before proceeding with reaching move-

ment prediction. Understanding the data is crucial, particularly when it is collected from

a real-world contexts and scenarios involving humans performing the desired movements.

The human reaching movement datasets is extensive and requires through examination

to ensure that the values obtained from the X-sen suit are accurate and devoid of any

misleading information.
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Figure 3.9: 2D plots for the segmented (X,Y,Z) Right Hand Trajectories for Participant
1028. The sub-figures in the first column shows trajectories from starting position one,
middle column from starting position two and last column from starting position three.
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Figure 3.10: 3D joint plots for one user during a reaching movement for one of the
cells. Sub-figure (B) shows the overlay of sub-figures (A), (C) and (D) on one 3D plot.
Sub-figures (B), (C) and (D) show a reaching movement at a random time (t) from one
of trajectories shown in Figure 3.9.
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Figure 3.11: Sub-figure (A) shows the 3D plots for the segmented (X,Y,Z) Right Hand
Trajectories from starting position two of Participant 1028. Sub-figures (B), (C) and (D)
respectively show the reaching trajectories for the top, middle and bottom rows.
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3.4.2 Visualisations of the Reaching Movement Dataset

To visualize the reaching movement data collected from CS1, where the target reaching

cell varies across 15 different classes representing different positions on the reaching

board. Each labelled data xl class is required to be projected onto 2-dimensions according

to the leading principal components. Each colour projection in this 2D space represents a

complete reaching movement, labelled according to the corresponding cell colour. Figures

3.12, 3.13, 3.14, 3.15, 3.16 and 3.17 show the PCs for the reaching segments of each

participant separately. The remaining visualization of the PCs for the other participants

can be found in appendix A.

Immediately the first aspect visualised through the PCs is that the data point with

standard labels, meaning the reaching movement for each cell, are clustered closely

together. The projection on the 2D manifold shows that this dataset is non-linear since

the 15 clusters created are not distinct. The clusters overlap each other for the initial

part of the trajectory, however, when the arm is closer to the cell there is a distinction on

the manifold between the different final reaching positions. On these manifold, there is a

resemblance in how the three different rows project on the manifold. The dimensionality

reduction for each participant is vital to verify the sanity of the dataset after cleaning

and preparing the original and raw data collected during the experiments. The projection

on this 2D space is necessary to compare the similarity between each participant on

common ground.

The visualisation of the PCs hints at the fact that prediction of the final reaching

movement might need the consideration of non-linear approach to be able to generalise

properly between all the different participants. The t-SNE algorithm operates by estab-

lishing conditional probabilities between data pairs and aims to minimize the disparity

between high and low probability dimensions. This method identifies patterns in the

data based on similarities among the multivariate features, revealing clusters within

the reaching movement dataset that are not readily visible in PCA. Unlike PCA, t-SNE

performs non-linear dimensionality reduction, comparing conditional probabilities to

expose these hidden clusters. This approach delineates soft boundaries between neigh-

boring data points, effectively preserving the global structure and accurately clustering

curved manifolds. Such properties allow the Figures 3.18, 3.19, 3.20, 3.21, 3.22 and

3.17 shows the visualisation of selected participants using the t-SNE approach. The

t-SNE algorithm shows the clusters according to the final reaching position of the cells.

The visualisations are very different from the results obtained through PCA. The main

reason is that PCA cannot take care of the dynamic shift in time. PCA does not inherently
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handle the temporal or sequential aspect of time-series data. It doesn’t consider the

temporal order or the dynamics inherent in time-dependent data. These results echo the

statements made in [6] that additional steps are required prior to clustering. The t-SNE

overcomes the unequal segments and time-shifted by looking at the similarity between

data features and comparing the lower and higher dimensional probabilities.

The main differences between the two visualisation methods expose the requirements

of a times-series dataset for movement prediction. It highlights that each reaching

movement must be viewed similarly to all of the other sub-sequences that make up the

rest of the reaching movements. These similarity bases are required to look at each

movement in the same way, irrespective of how much time samples it takes for the

movement to be complete. Some users might have employed different speeds for the

different cells on the cognitive game; therefore, the movement’s curved manifold can

have different data points. The t-SNE approach addresses the similarity and differences

in the time-series dataset by looking at the differences in the conditional probability in

the higher and lower dimensional space. The PCA fails to do so due to its underlying

distance measure that fails to extract similarity in the shape of a time-varying dataset.

Figure 3.12: Principal components of the Reaching Movement Dataset from Participant
1000. The first two dimensions of the low-dimensional manifold of movements are
portrayed here. The colour of each data point is according to the class label of the 15 cells
on the board.
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Figure 3.13: Principal components of the Reaching Movement Dataset from Participant
1011. The first two dimensions of the low-dimensional manifold of movements are
portrayed here. The colour of each data point is according to the class label of the 15 cells
on the board.

Figure 3.14: Principal components of the Reaching Movement Dataset from Participant
1018. The first two dimensions of the low-dimensional manifold of movements are
portrayed here. The colour of each data point is according to the class label of the 15 cells
on the board.
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Figure 3.15: Principal components of the Reaching Movement Dataset from Participant
1021. The first two dimensions of the low-dimensional manifold of movements are
portrayed here. The colour of each data point is according to the class label of the 15 cells
on the board.

Figure 3.16: Principal components of the Reaching Movement Dataset from Participant
1024. The first two dimensions of the low dimensional manifold of movements are
portrayed here. The color of each data point is according to the class label of the 15 cells
on the board.
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Figure 3.17: Principal components of the Reaching Movement Dataset from Participant
1026. The first two dimensions of the low dimensional manifold of movements are
portrayed here. The color of each data point is according to the class label of the 15 cells
on the board.

Figure 3.18: t-SNE visualisation of the Reaching Movement Dataset from Participant
1000. The colour of each data point is according to the class label of the 15 cells on the
board.
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Figure 3.19: t-SNE visualisation of the Reaching Movement Dataset from Participant
1011. The colour of each data point is according to the class label of the 15 cells on the
board.

Figure 3.20: t-SNE visualisation of the Reaching Movement Dataset from Participant
1018. The colour of each data point is according to the class label of the 15 cells on the
board.
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Figure 3.21: t-SNE visualisation of the Reaching Movement Dataset from Participant
1021. The color of each data point is according to the class label of the 15 cells on the
board.

Figure 3.22: t-SNE visualisation of the Reaching Movement Dataset from Participant
1024. The color of each data point is according to the class label of the 15 cells on the
board.
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Figure 3.23: t-SNE visualisation of the Reaching Movement Dataset from Participant
1026. The color of each data point is according to the class label of the 15 cells on the
board.

3.4.3 Reaching Movement Prediction with Probabilistic
Movement Primitives

In the previous section, it was verified that the different reaching movement from the

participants can be distinguished from each other as long as the non-linearity and

relationship between data points are preserved. However, as per the final objective of

this thesis and the chapter itself, ensuring physical safety is essential. The research

questions defined in section 3.1.1 aim to answer how these different reaching movements

can be easily distinguished in the shortest possible time to ensure physical safety. In

order to answer these research questions the prediction of reaching movement is tested

using the ProMPs methodology.

Figure 3.24 shows the top view of the cognitive game board. This illustration provides

a more detailed explanation of Figure 3.3 displaying the colour-coded cells representing

the final reaching goal of each participant. In order to ensure physical safety, it is crucial

to predict the reaching goal for each of these different cells before they come too close

to the socially assistive robot. The visualisation presented in section 3.4.2 involves

projecting a dimensionally reduced trajectory onto a space. In this section, as a fulfilment

to the research question posed in section 3.1.1 we present a way of identifying the final
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reaching cell based on only partial observation of the trajectory.
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Figure 3.24: The top view of the cognitive game board with respect to the Xsens suit
calibration frame. The way reaching movement segments are grouped determines what
regions or cells the ProMPs will be able to predict.

3.4.3.1 Learning the reaching movement ProMPs

In order to be able to predict reaching movement for each cell, ProMPs rely on predefined

learning models that determine the extent to which they can make accurate predictions.

In other words, to correctly predict each cell correctly with high confidence, we need

to determine the minimum percentage of the observed trajectory required for accurate

prediction. If it results that a high percentage of the trajectory needs to be observed to

obtain a high confidence in predicted the cell, it would mean that a longer observation

time is required before the socially assistive robot can determine the intentions of the

older adult. This longer observation time starts when the older adult begins to move

his right arm towards the workspace. If this situation occurs, physical safety cannot be

guaranteed in such an interaction context.

In order to compromise between accuracy and observation time, it is necessary to

investigate the effect of grouping a set of reaching trajectories and learning them with

ProMPs. Grouping the trajectories enables the grouping of regions on the cognitive

game board (for reference see Figure 3.2). This grouping can lead to higher confidence in

predicting the correct region in a shorter time. Therefore, physical safety can be achieved

by correctly predicting the regions on the board and subsequently refining the prediction

as time progresses, utilizing a set of trained ProMPs for the individual cells.

The evaluation of grouping the reaching movement trajectories is presented in

Figures 3.25, 3.26, 3.27, and 3.28. Figure 3.25 shows the learned probability distribution

for grouped reaching movement of one user. The grouping was implemented to all the

reaching movement of this user along the three different rows. The top three ProMPs
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represent the learned probability distribution for the right-hand x-axis movement. These

ProMPs demonstrate that, regardless of the percentage of the observed trajectory, they

can effectively differentiate between the three rows. However, the bottom three ProMPs,

which represent the learned probability distribution for the right-hand y-axis movement,

exhibit higher variance, making it practically impossible to differentiate between the

three rows based solely on this degree of freedom.

Similarly, Figure 3.26 and Figure 3.27 shows the grouped reaching movement for

the same user along the five columns. The top three plots ProMPs show the learned

probability distribution for the right-hand degree of freedom along the x-axis of the board.

The bottom three ProMPs depict the learned probability distribution for the right-hand

degree of freedom along the y-axis of the board. Contrary to Figure 3.28, both Figure

3.26 and Figure 3.27 demonstrate that when grouping the columns the greater difference

observed in the ProMPs is across the y-axis, as each column has different values in the

y-dimension but similar values along x-axis.

Figure 3.28 illustrates the different ProMPs when grouping reaching movement

trajectories based on the different starting positions. The target cell of the reaching

trajectories shown is all the same, cell 1.
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Learned ProMPs of the Right Hand X and Y translational for the three rows.

Figure 3.25: Trained ProMPs for one user, grouping reaching movement for each row.
The top illustrations highlight the rows from which the reaching movement segments
were selected and grouped.
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Learned ProMPs of the Right Hand X and Y translational for the �rst three columns.
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Figure 3.26: Trained ProMPs for one user for the grouped reaching movement for the
first three columns. The top illustrations highlight the columns from which the reaching
movement segments were selected and grouped.
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Figure 3.27: Trained ProMPs for one user for the grouped reaching movement for the last
two columns. Top illustrations highlight the columns from which the reaching movement
segments were selected and grouped.
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Sub-figure 3.28A shows the ProMP for cell 1 from starting position one. Sub-figure

3.28B shows the ProMP for cell 1 from starting position two. Sub-figure 3.28C shows

the ProMP for cell 1 from starting position three. Sub-figure 3.28D shows the ProMP

for cell 1 for the grouped starting positions one and two. Sub-figure 3.28E shows the

ProMP for cell 1 for the grouped starting positions two and three. Sub-figure 3.28F shows

the ProMP for cell 1 for the grouped starting positions one, two, and three. The target

reaching position at the 1.0 (100% of the observed trajectory) is similar in all three parts.

However, the most noticeable difference can be observed in the plot showing the ProMP

with a starting position three. This position required the participants to start with the

arm resting on the leg, whereas starting position one and two were more or less similar

along the y-axis. The grouping of the different parts reveals that the ProMP allows

for more variability in the probability distribution. This increased variance can make

the prediction of the reaching movement more challenging, as it can lead to the wrong

prediction of the target cell. However, for ensuring physical safety in all interaction

scenarios, it is important to base predictions on realistic datasets. In reality, it is difficult

to restrict older adults from choosing where to start playing cognitive games. Therefore,

the dataset of CS1 takes on a more realistic approach by considering these different

starting positions.

(A) (B) (C)

(D) (E) (F)

Figure 3.28: Trained ProMPs for one user for the grouped reaching movement from the
different starting positions.
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3.4.3.2 ProMPs Reaching Movement Prediction Results per User

In this section, a summary and analysis of the results from the human-reaching move-

ment datasets are presented. The objective is to evaluate whether and to what extent

the prediction of human reaching movement can be easily distinguished, even between

very close cells on the cognitive board game.

While a detailed explanation for one user and one cell will be provided in this

chapter, more extensive results can be found in Appendix A. Table 3.1 presents the

cross-validation results using a 20-fold validation over the segmented dataset per user.

Each column in Table 3.1 displays the best-chosen parameters of the basis function M1

and M2, as well as the noise e for a given percentage of the observed trajectory. These

parameters were manually tuned by exploring different sets over 20-fold cross-validation

to determine the optimal values over a range of parameters. The middle-colored rows in

the Table 3.1 indicate the predicted cells from 1 to 15. This process allowed us to select

the most suitable parameters for each percentage of the observed trajectory. So for every

percentage of observed trajectory, 20 sets of different basis functions and noise were used

to train the ProMP over a 20-fold cross-validation. The increments in the percentage of

the observed trajectories were 5%. The training of the ProMP was cross-validated on

observed percentages from 10% to 90%. The tables for these extensive results can be all

found in Appendix A.
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Chosen Prediction Parameters of User 1019 for Cell 15 from 10% to 90% observed trajectory
Error 0.09 0.11 0.057 0.18 0.15 0.19 0.17 0.1 0.02 0.13 0.03 0.09 0.08 0.18 0.18 0.11 0.01
M1 32 32 32 35 32 32 32 32 32 31 31 31 31 29 28 28 22
M2 20 20 20 20 20 20 18 18 18 18 18 18 18 18 18 18 18
Trajectory Prediction 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

9 9 8 14 9 5 9 5 9 9 9 15 10 15 14 10 15
9 9 9 14 9 5 9 5 9 10 10 15 15 15 15 15 15
9 13 9 14 9 9 9 5 9 10 15 15 15 15 15 15 15
9 14 13 14 9 9 9 9 10 10 15 15 15 15 15 15 15
9 14 14 14 9 9 9 9 10 10 15 15 15 15 15 15 15
9 14 14 14 14 10 9 9 10 15 15 15 15 15 15 15 15
14 15 14 14 14 14 9 9 10 15 15 15 15 15 15 15 15
14 15 15 14 14 14 9 14 15 15 15 15 15 15 15 15 15
15 15 15 15 14 14 9 15 15 15 15 15 15 15 15 15 15
15 15 15 15 14 14 9 15 15 15 15 15 15 15 15 15 15
15 15 15 15 14 15 10 15 15 15 15 15 15 15 15 15 15
15 15 15 15 14 15 10 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 60% 70% 65% 60% 40% 50% 35% 60% 65% 75% 90% 100% 95% 100% 95% 95% 100%
Exact + Neighbour Cells 100% 95% 90% 100% 100% 90% 100% 85% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 95% 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 5% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 3.1: Chosen ProMPs training parameters for trajectory observations from 10% to
90% for User 1019 to predict Cell 15.

Table 3.1 shows the parameters selection and the predicted cell for the 5% increments

on the observed trajectory. The cells are labelled from 1 to 15 as indicated in the legend of

Figure 3.29a. The bottom row of the table specifies the region to which the predicted cell

is compared to the actual reaching movement target. The target cell is cell 15, located

in the last column and bottom row of the cognitive board game (see Figure 3.24). The

neighbouring cells to cell 15 are cells 9, 10 and 14 while cell 13 represents the cell exactly

in the middle of the cognitive board game. Cell 5 is positioned above cell 10 (see Figure

3.24).

The results demonstrate that even with a very low percentage of observed trajectory,

the ProMP is capable of predicting the correct region of the cell. At a 15% observed

trajectory, the ProMPs predicts the target reaching movement as cell 13 once, and at a

20% observed trajectory, it predicts cell 8 once and cell 13 once. Given that each cell is

an 8cm square, the corresponding error at these observed percentages is approximately

16cm. At 50% and 60% observed trajectory, the error remains within two cells above the

target cell. At this point, it is worth noting that the error arises from the similarity in

the movement style between cell 15 and cell 5, as cell 5 is positioned just above cell 15.

For the majority of the remaining observed trajectory, it was predicted that the final

reaching movement is cell 15 or the neighbour cell (cell 14 or cell 9).
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Figure 3.29 shows 3D bar graphs of the predicted accuracy over the whole cognitive

board game. Figure 3.29a shows the prediction for a 90% observed trajectory. The bar at

100% is the target cell on the board. From Table3.1 and from Figure 3.29a prediction

at 90% observed trajectory is 100% accurate. Figure 3.29b shows the 3D bar graphs of

the predicted cell locations for the grouped predicted results from 10% to 90% observed

trajectory. The error of 16cm between cell 13(1% error) and cell 5(1% error) occurs at 2%

out of all predicted observed trajectories. The prediction accuracy of a correct region up

to 8cm of error is that of 98%. The prediction error with an 8cm prediction error, meaning

that the neighbouring cell was predicted is that of 24%. The prediction of the target cell,

meaning the correct location within a 8cm square, is that of 74% .

From these results, it can be seen that even within the smallest variation of 8cm as

a target, there exists a methodology that can distinguish such movement and predict

with high accuracy. For an overall approach it can be deduced that between 10% to

20% observed trajectory, the ProMPs can predict the correct region. Whereas, from 25%

observed trajectory or higher the predicted cell will be correct within 8cm.
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(a) Predictions for Cell 15 for trajectory observations at 90%

(b) Grouped Predictions for Cell 15 from 10% to 90% trajectory observa-
tions

Figure 3.29: Predictions for Cell 15 for trajectory observations at 90% compared to the
overall grouped prediction from10% to 90%
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(a) Trajectory 10% Observed for Cell 15 (b) Trajectory 15% Observed for Cell 15

(c) Trajectory 20% Observed for Cell 15 (d) Trajectory 25% Observed for Cell 15

Figure 3.30: Predictions for Cell 15 for trajectory observations from 10% to 25%

Figure 3.30 displays the 3D bar projection of the predicted cells based on 10%, 15%,

20% and 25% observed trajectory. The predictions are concentrated in the region close to

cell 15, with no prediction extending beyond 5% of the total count. This level of prediction

accuracy is commendable; however, it is important to prioritize physical safety. When

considering a low observed percentage of the older adults’ complete trajectory, the socially

assistive robot should maintain a distance of at least by 16cm away from the target cell.

Figure 3.31 displays the 3D bar projection of the predicted cells based on 30%, 35%,

40% and 45% observed trajectory. The majority of predictions are concentrated in the

neighbouring cells to cell 15. The prediction accuracy is slightly improved compared to

the observed trajectories in Figure 3.30. Notably, there is there are predictions of 10%
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and 15% for cell 5. As previously mentioned, the trained ProMP can easily confuse these

cells. The prediction is of the 35% (see Figure 3.31b ) and 45% (see Figure3.31d) for the

target cell 5. This confusion arises due to the similarity in y translation for the column

containing cell 15, cell 10 and cell 5. Similarly, the x translation for target cell 15 can

resemble that of cell 10 and cell 5 when using a low observed trajectory for prediction

from a trained ProMP (see Figures 3.27 and 3.28). The same can be observed in Figure

3.31c, where the x and y translations on the cognitive board game can closely resemble

cell 9. This confusion can occur when participants execute curved reaching movement

directed towards the corner of the board, where column C5 and row R3 intersect.

(a) Trajectory 30% Observed for Cell 15 (b) Trajectory 35% Observed for Cell 15

(c) Trajectory 40% Observed for Cell 15 (d) Trajectory 45% Observed for Cell 15

Figure 3.31: Predictions for Cell 15 for trajectory observations from 30% to 45%
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(a) Trajectory 50% Observed for Cell 15 (b) Trajectory 55% Observed for Cell 15

(c) Trajectory 60% Observed for Cell 15 (d) Trajectory 65% Observed for Cell 15

Figure 3.32: Predictions for Cell 15 for trajectory observations from 50% to 65%

Figure 3.32 displays the 3D bar projection of the predicted cells based on 50%, 55%,

60% and 65% observed trajectory. In Figures 3.32a, 3.32b and 3.32c the predictions

sometimes include cell 9 and cell 10. The inaccuracy of approximately 8cm from the

centre of cell 15 is due to the way human reaching movements are performed. As

observed in Figure 3.11, human reaching movement tend to follow a curved trajectory.

Consequently, the learned ProMPs for cell 9 and cell 10 can exhibit curved trajectories

with very similar x and y translations, especially during the initially observed trajectory.

As a result, the probability distributions of the ProMPs for cell 9 and cell 10 can overlap

with the ProMP of cell 15.

Figure 3.33 illustrates the 3D bar projection of the predicted cells based on 70%, 75%,
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80% and 85% observed trajectory. The predictions in these figures are 0.95 accurate

or higher. The overall result exhibited in these 3D bar projection shows that accuracy

in the reaching movement prediction can be achieved up to 8 cm when observing the

trajectories at 45% or more. Furthermore, It was observed that the correct region can be

accurately predicted even when observing only 10% of the entire reaching movement.

The correct region defines a region of 16cm away from the target cell.

(a) Trajectory 70% Observed for Cell 15 (b) Trajectory 75% Observed for Cell 15

(c) Trajectory 80% Observed for Cell 15 (d) Trajectory 85% Observed for Cell 15

Figure 3.33: Predictions for Cell 15 for trajectory observations from 70% to 85%
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3.5 General Discussion

3.5.1 Findings

The work presented in this chapter demonstrated the ability of human movement

prediction to provide information to a socially assistive robot in order to maintain

physical safety.

A case study CS1, was conducted to address RQ1 and RQ2, which aimed to evaluate

the accuracy of predicting very close human reaching movements in a real-context sce-

nario. The results obtained from the collected dataset suggested that human movement

prediction can be highly accurate when appropriate parameters are selected for the

ProMPs. The trained ProMPs serve as a representation of prior knowledge about human

reaching movement within the socially aHRI framework. Therefore utilizing this prior

knowledge can help the robot differentiate between very close reaching targets before the

human actually touches the target cell. Additionally, the results show that even slight

variations in human movement can be detected, even when the reaching goal differs by

as little as 8cm. When only a very little initial part of the executed trajectory is observed,

this accuracy extends up to 16 cm on the cognitive game board. This means that the

assistive robot can approach as close as 16cm while still observing the user in order to

providing guidance and assistance in performing the cognitive game. These findings

were observed to generalise across the rest of the participants. Collectively these findings

strongly support RQ1.

On average, each trajectory consisted of approximately 50 time samples recorded by

the Xsens suit at a frequency of 50Hz. This means that an observed trajectory of 10%

is equivalent to around 100ms. Therefore, based on the results, it is evident that the

correct region on the board can be predicted within 100ms of the older adults changing

hand posture and moving toward the board. The actual target cell can be predicted

within the first 450ms, allowing the robot to accurately determine the closest 8cm where

the reaching movement will end. This demonstrates that within a mere 100ms, a robot

can acquire knowledge about the human’s intention through the modality of human

movement prediction.

However, whether this time can guarantee physical safety highly depends on the

context of the aHRI. In the presented case study, CS1, physical safety from the socially

assistive robot can be guaranteed up to 16cm away from the human’s arm reach. The

physical safety in this context is required to be around the common workspace, and hence

the cognitive board game. Consequently, this accuracy time window of 450ms may not be
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sufficient in the context of a physically assistive robot where the workspace of the robot

is the human itself. All things considered, the answer to RQ2a is yes but answering

RQ2b requires further analysis.

3.5.2 Lesson Learnt

This section highlights the critical lesson learned throughout the development of the

prediction of human movement. Below are the most relevant ones:

- Data cleaning, preparation and sanity checks of large time-series datasets. The

dataset collected from CS1 was extensive, necessitating meticulous python scripts

to carefully examine and correct any inconsistencies. Properly segmenting the

reaching movement trajectory and performing accurate shift checks were crucial for

obtaining correct prediction results. This iterative and time-consuming process was

essential to ensure reliable outcomes from real-context data. This is a fundamental

requirement for the deployment of assistive robots in real-world scenarios. The

same approach was also implemented when collecting data for the second case

study, CS2.

- Human reaching movement in such contexts can provide added value in making

aHRI more adaptive to the user needs. Being able to predict the target cell and

the intention of reaching the cognitive board can enhance the sense of natural

interaction. Therefore, even though other modalities may sometimes offer more

intuitive knowledge to the assistive robots, input modalities need to be carefully

evaluated to ensure the most successful and efficient interactions.

3.5.3 Limitations

Despite our results showing that human movement as an input modality enhance

physical safety by predicting reaching movements within a socially assistive task, the

current case study has specific limitations. We aim to partially address these limitations

in the subsequent sections of the thesis through additional case studies and observations.

These limitations primarily stem from the absence of consideration for to the lack of HF,

HS and environmental factors.

- Human Factors: The participants selected for these experiments were all physically

and cognitively healthy individuals. The time modulation of ProMP showed the
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ability to integrate different reaching speeds and movement styles among partici-

pants, leading to reliable prediction methodology. However, the inclusion or even

the consideration of participants with diverse physical and cognitive needs was not

evaluated.

- Human State: The participants involved in the task of performing movements

for a socially assistive cognitive game were solely focused on completing the task

as outlined in the provided information sheet. Their intentions were consistently

directed towards task completion and collaboration was not disrupted or altered.

- Environment Factors: The target users of a socially assistive robot are typically

older adults in care homes or home environments. This environment may introduce

more distraction compared to the controlled laboratory environment in which this

case study CS1 was completed.

By acknowledging these limitations, we can recognize the need for further exploration

and understanding of how human factors, human state, and environmental factors

influence the effectiveness of socially assistive robots.

3.6 Summary

In this chapter, we presented a methodology that could provide physical safety in a

socially aHRI for individuals playing a cognitive game on a worktop table. This chap-

ter displays the first contribution towards evaluating collaboration through human

movement for complex assistive tasks.

Initially, we described the socially assistive task and the framework [9] used to

adapt to the end-users needs. The framework was evaluated based on its ability to

ensure physical safety by carefully assessing whether or not the physical safety could

be maintained when the workspace is shared between the robot and the human. The

adaption of the robot was based on the physical movement of tokens from the board

game. This meant that the older adults’ intentions were only known after they were

actually executed.

Interaction contexts like CS1 often assume that the robot will operate at very low

speeds and overlook additional physical safety requirements. One can argue that low end-

effector speed and collision detection through force sensing are the only necessities for

physical safety in socially assistive tasks. However, when doing so the additional benefit
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of having an intuitive interaction is not fully utilized, and such a claim can only stand

if the interaction workspace does not become more complex. It is important to consider

other factors and potential risks that may arise. The results showed that: i) human

movement prediction can provide information about the intent of the human’s reaching

movement and therefore ensure physical safety, and ii) the accuracy of this prediction is

able to differentiate between very similar movements as long as the appropriate time

window is chosen to achieve the desired physical safety and accuracy on the workspace.

However, the presented approach has limitations related to HF, HS and environmental

factors

The remainder of the work presented in this thesis aims to tackle these limitations,

Firstly, human movement will be evaluated in a more complex interaction context and

assessed in a less controlled environment to mimic real- world scenarios. To properly

address the observed limitations, testing the extremes of physical safety through move-

ment prediction will be implemented by targeting to initiate a change in the human

state HS as a result of environmental factors. To achieve such goals, case study CS2 (see

Chapter 4) was designed to uncover factors that can hinder physical safety by influencing

the success and effectiveness of a physically aHRI. Secondly, in order to ensure that

human movement is evaluated in appropriate environmental factors and real contexts,

observation study OS3 was carried out to access how different human factors are properly

addressed by professionals in care homes when designing physically aHRI systems to

meet user needs (see Chapter 5).
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I n the context of Physically aHRI close-proximity is often required, and ensuring

safety and the ability for real-time adaptation are essential for achieving collab-

orative tasks efficiently. Safety measures, must in place for the robot to effectively

avoid or adapt to dynamic obstacles, such as a human arm movement with high reliabil-

ity. Additionally, the robot’s adaptive behaviour in response to the human’s actions is

necessary to maintain synchronization and ensure smooth interaction during physically

assistive tasks.

In this chapter, builds upon the findings presented in Chapter 3, where we demon-

strated the ability to identify and predict variations in human movement. It was con-

cluded that in the context of CS1, safety can be guaranteed by predicting human reaching
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movement on the workspace during socially aHRI. This is because the assistive task

primarily involved the movement of the older adults’ arm with a workspace in front of

them. In physically aHRI, robots need to adapt their trajectories based on validated

human movement predictions to ensure physical safety. This chapter focuses on the

analysis of human movement during interaction with the Baxter Research Robot in a

CPCI. The CPCI presented in the case study CS2 involves a jacket-dressing task, where

the workspace is practically the human themselves. Specifically, we want to validated the

input modality of human movement in the context of changing HS, HF, and environmen-

tal factors within a more complex interaction context. Therefore, human movements is

examined when unexpected events occur in the surrounding environment in to evaluate

cognitive and physical distraction from the physically assistive task. Our findings provide

the first evidence that human arm movement have variations sometimes lead to task

failures when the HF, HS and environmental factors are considered. In addition, the

experimental results show that the variations in human movement are influenced by the

type of unexpected events and the user’s familiarity with performing and completing the

assistive task. Lastly, it is observed that the variations in movement are spatially bound,

meaning they occur within a certain range of movement, but they can vary temporally,

leading to asynchronous movement between the human and the robot. This can result

in failed synchronization of movements and unsuccessful completion of the task when

unexpected events occur.

The work in this chapter is also described in the following publication:

A. Camilleri, S. Dogramadzi, and P. Caleb-Solly, A Study on the Effects of Cogni-
tive Overloading and Distractions on Human Movement During Robot-Assisted
Dressing, Frontiers in Robotics and AI - Human Movement Understanding for Intelli-

gent Robots and Systems, (2022).

4.1 Introduction

For robots that can provide physical assistance, maintaining synchronicity of the robot

and human movement is a precursor for interaction safety. pHRIs are complex and

require synchronized human-robot movements. Synchronicity for the robot involves

recognizing and predicting the intentions of human movements, while for the human,

it involves being ready to collaborate. Research in cognitive neuroscience, show that
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disruption in human movements can occur due to external disturbances, which not

only affect action cognition but also motor control ([58]). Existing research on cHRI

does not address how synchronicity can be affected if humans are subjected to cognitive

overloading and distractions during close physical interaction.

If the robot is to safely adapt its trajectory to distracted human motion, quantitative

changes in the human movement should be evaluated. To ensure safe and adaptive

interactions, it is important to have prior knowledge of quantitative changes in the

human movement when their behaviors is disrupted. If the behavior of the human

is disrupted, then this disruption needs to be investigated further to ensure safe and

timely adaptive interactions. Such prior knowledge would benefit from ensuring that

any movement adaptation is implemented in a safe context and not in an instance in

which the collaborative state of the human is disrupted. Understanding how a changes

in behavior, caused by cognitive overloading and distractions, affects human movement

in robot-assisted dressing is an important research problem that can improve pHRI and

address safety concerns. Monitoring deviations from the expected trajectory and the loss

of the human-robot synchronicity can provide insights on these disruptions. Previous

research in similar interaction contexts, such as learning demonstration, feedback control

and adaptation of robot movements [120], [49] and [87], does not consider the impact of

unexpected events on human behavior, and adaptation of the robot movements assumes

that the human’s action cognition is solely focused on the assistive task.

In this case study, the focus is on a robot-assisted dressing using the bi-manual Baxter

robot, which helps participants put on a jacket. Tracking human arms just before physical

contact with the garment ensures a correct starting position for dressing. When the hand

is in the sleeve, the robot trajectory can be guided by force feedback as described by [35]).

However, achieving physical coupling between the sleeve opening and the human hand

can be challenging before the hand enters the sleeve. At this initial stage of the dressing

task, where humans can freely move their arms in a shared workspace, disruptions in

human movement due to external disturbances need to be modeled for appropriate robot

adaptation. While adaptation through feedback control is not possible when there is no

direct physical contact [49], identifying non-collaborative instances takes priority over

executing the reference dressing trajectory. Psychology literature of joint tasks shows

the importance of synchronicity to achieve cooperation ([40, 140, 141]). Such literature

state that poor synchronization (non-collaborative instances) between movements is

perceived as an uncooperative partner, which affects the representation of the shared

task. Therefore, it is crucial to understand how human motor control is affected when
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external disturbances occur during an assistive task.

To study the effect of the disruptions, we designed a controlled experiment to obtain

reliable data and model the impact of various external disturbances. These disturbances

were carefully timed unexpected events that disrupt the human movement before the

hand made contact with the jacket, causing deviations from the expected trajectory.

By recording the human and robot movements, we evaluated differences between the

expected and disrupted human trajectory. This analysis allowed us to and quantify the

disrupted human movement and model the lack of collaboration. The NASA-Task Load

Index (NASA-TLI) was used to measure perceived workload and the Pertinence of Robot

Decisions in JoinT Action (PeRDITA) to capture participants’ perceived experience. These

qualitative user experience results support the quantitative data of human movements.

Overall, this research serves as a crucial first step in addressing the challenges of

maintaining synchronicity and collaboration in close pHRI when unexpected events and

disruptions occur. It provides valuable insights into the impact of disruptions on human

movement and highlights the importance of considering human motor control in realistic

pHRI scenarios.

4.1.1 Research Questions

The main objective of this study is the analysis and quantification of disrupted human

movement during a physical collaborative task that involves robot-assisted dressing.

Quantifying disrupted movement is the first step in maintaining the synchronicity of

the human-robot interaction. The human movement data collected from a series of

experiments where participants are subjected to cognitive overloading and distractions

during the human-robot interaction, are projected in a 2-D latent space that efficiently

represents the high-dimensionality and non-linearity of the data. The quantitative data

analysis is supported by a qualitative study of user experience, using the NASA to

measure perceived workload, and the PeRDITA questionnaire to represent the human

psychological state during these interactions. In addition, we present an experimental

methodology to collect interaction data in this type of human-robot collaboration that

provides realism, experimental rigour and high fidelity of the human-robot interaction

in the scenarios. Therefore we aim to investigate the following research questions:

RQ3: In a physically assistive robot interaction context, can human behaviour impact

their physical safety?
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RQ3a: Can disturbances in a dynamic environment lead to unusual variations

in human movement, and therefore a failed collaboration task?

RQ3b: Can prediction of human movement still guarantee safety during such

known disturbances?

RQ3c: In such context, can the state-action pairing remain non-adaptive to

guarantee safety during such disturbances?

RQ3d: Can some of the humans become familiar with some of the disturbances

in the environment?

RQ3e: Can movement synchronization fail even though the human learned how

to adapt and collaborate in the task?

RQ4: Can collaboration intent be gauged from the variations in the human movement

and guarantee physically safety from a more complex state-action pairing?

4.1.2 Contributions

In addressing the above-mentioned research questions, the following contributions were

made:

- Design of an experimental HRI methodology that includes timed cognitive over-

loading to expose changes in the collaborative interaction during a robot-assistive

dressing task.

- An analysis of the changes comprising qualitative evaluation of the user experi-

ence showing how cognitive overloading and distractions increased the cognitive

workload.

- The quantitative analysis of the effect of the change in collaborative behavior on

human movement when exposed to unexpected events during a robot-assisted

dressing task

4.2 Methodology

4.2.1 Hypotheses

In an assistive dressing task, where human movement is in close proximity to the

robot, safety requires high level of confidence in predicting and adapting the robot’s
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movement. Distractions and failures are very likely in a real-life contexts, and it is

crucial to have a clear understanding of human engagement and changes in movement.

From Section 2.3, it is evident that existing literature on pHRI primarily focuses on

changes in human movement and overlooks human behaviors when adapting robot

movement. Furthermore, the effects of distraction and cognitive overloading are rarely

addressed. Therefore, in these works, select the correct anticipatory action can only be

done with high confidence when there is mutual responsiveness and commitment to

the collaborative task. Otherwise, the human’s non-collaborative state can pose a safety

risk. Based on these arguments and the ones mentioned in Section 2.3.2 understanding

human cognition and mental model is necessary when instigating a lack of collaboration

in interactions. There with the design of case study CS2. The aim is to evaluate the

following hypotheses:

H1. User’s attention from the collaborative task can be affected by cognitive overload-

ing and distractions

H2. User’s collaborative state can lead to a change in human movement.

We hypothesize that cognitively overloading humans in the robot-assisted dressing

task will disrupt the synchronicity of their collaborative physical interaction. We consider

how cognitive overloading, as well as distractions will unbalance the overall cognitive

load made up of intrinsic, extraneous and germane loads. We also take into consideration

of how the timing of unexpected events should be staged to trigger increased mental

effort. Our HRI experiment explores these hypotheses by taking care of the temporal

layout of these staged events (see Figure 4.1). Additionally, the nature of the unexpected

staged events is based on how to disrupt the equilibrium in the mental model by looking

at the different cognitive loads, which are further explained in Section 4.2.2.

4.2.2 Experiment Setup and Procedure

Our controlled HRI experiment was set up to demonstrate and study disruptions to col-

laboration during a robot-assisted dressing task in the presence of cognitive overloading
and distractions. Our experimental procedure is shown in Figure 4.1 and Figure 4.2. We

used a bi-manual Baxter research robot to perform pre-recorded dressing trajectories

while a jacket was held by the gripper. The jacket was moved from the participant’s hand

to their elbow. Subsequently, the jacket was pulled towards the participant’s left-hand

side to allow them to insert their left hand/arm in the left sleeve.

96



4.2. METHODOLOGY

Figure 4.1: One dressing task timeline. Markers from (1) to (4) highlight the different
stages during the assistive task. The first image on the far LHS shows the moment in
the dressing task when the right arm is unrestricted. The following two images show the
dressing with the left arm unrestricted. The two images between Markers (2) and (3)
show the instance where the left hand becomes restricted, followed by an image where
both hands become restricted. After Markers (3), the robot drags the jacket back down
the arms of the participant. The orange block represents the time during which cognitive
overloading occurred. The yellow block represents the time during which distractions
occurred. For all three parts of the experiment the dressing task was repeated ten times.

Right Arm  Restricted 

 Left Arm Restricted

Time-Series Data Extraction -
Jacket above shoulder 

One Dressing 
Iteration
Timeline 

Teaching Phase of One Dressing 

Part 1 
Ten Dressing  Iterations

Part 2 
  Ten Dressing  Iterations

+
Cognitive Overloading

Part 3
  Ten Dressing Iterations

+ 
Distractions

Cognitive Overloading Overlap with Dressing 

Distraction Overlap with Dressing 

Time /ms 

Task 
Progress

1 2 3 4

1

2

3

1 2 3 4 1 2 3 4 1 2 3 41 2 3 4

Teaching Phase 

Temporal Layout of the HRI Experiment

Figure 4.2: Overall experiment timeline after marker one: (i) teaching phase followed by
Part 1 made of ten dressing tasks, (ii) Part 2 consisting of ten dressing tasks with cogni-
tive overloading and (iii) Part 3 again consisting of ten dressing tasks with distractions.
Markers from one to four represent the same instances in the dressing task as shown in
Figure 4.1.
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One iteration of the dressing task is completed when the jacket reaches the participants’

shoulders. The robot then pulls the jacket down and prepares for the next dressing

iteration. The whole process shown in Figure 4.1 will be referred to as one dressing

iteration. The researcher chose when to start the first dressing iteration.

The entire experiment is divided into three parts, with an initial learning sequence

of one dressing iteration to familiarize participants with the task. The overall temporal

layout of the experiment is shown in Figure 4.2. In parts Two and Three, we introduced

unexpected events to disrupt human’s collaborative state. In Part Two, the disruption

to the collaborative task is the cognitive overloading, whereas, in Part Three, the dis-

ruption is in the form of environment distractions. A monitor was placed in front of

the participants to display letters that participants had to memorize as part of the

cognitive overloading. The letters appeared at four different positions (from the LHS

to the RHS) on the monitor, and participants had to memorize four consecutive letters

as they appeared (and then disappeared) from the monitor. When the fourth letter was

displayed, they had to say the four letters in their order of appearance. The letters that

appeared on the monitor were always different. In Part Three of the experiment, there

were two types of distractions, one was created by sounding a fire alarm, and the other

was random questioning of the participants. Each participant had two distractions that

occurred during one dressing iteration, as shown in Figure 4.2. The color-coded mark-

ers, numbered one to four, in Figure 4.1 represent different sequences of one dressing

task. These color-coded markers are also shown in the overall temporal layout in Figure

4.2. Marker one is a temporal mark of the jacket’s initial position (participant’s RHS)

and when participants start inserting the right arm in the jacket’s sleeve. Marker two

shows when the robot positions the jacket close to the participant’s left hand and when

participants start inserting the left arm until it becomes constrained in the jacket. The

cognitive overloading was applied until marker two since, at this stage, the participant’s

arms were still not entirely restricted by the jacket. Marker three shows when the robot

end-effector reached both shoulders. At marker four, the robot starts to pull the jacket

down and out of the participant’s hands.

The temporal layout of these unexpected events is based on how our working memory

is used to recover already learned knowledge stored in the long-term memory. In Part
One, participants used relevant knowledge on how to collaborate in the assistive dressing

task acquired in the initial learning stage. In Part Two, new information related to the

unexpected events had to be processed, which increased their cognitive load and led

to disruption in the collaborative state ([115]). Part Two and Three further imbalanced
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this cognitive load and disrupted the efficient storage of the new information([115]).

Participants had to continuously modify their collaborative task plan based on the

initially acquired knowledge of the task. To efficiently process new information in our

working memory, we have to balance the cognitive load. For effective learning, the

intrinsic cognitive load must be managed, extraneous cognitive load minimized, and

germane cognitive load maximized. These three loads make the overall cognitive load.

Intrinsic cognitive load is related to new information that needs to be processed to

complete a task. The extraneous cognitive load [115] involves searching for information

while trying to learn a task. The cost of processing information goes against the process

of learning. Whereas, the germane cognitive load is described as an effort to construct a

mental model of the task.

The Intrinsic cognitive load is often managed by good instructional sequencing, and

in our controlled experiment, it is prompted by instructing participants to carry out an

additional task during the collaborative dressing task. In Part Two, the letters appearing

on the monitor were continuously changing with no obvious pattern. This increased

intrinsic cognitive load due to a lack of proper instructional sequencing since it required

a higher mental effort to process new information. The distractions in Part Three that

included a fire alarm further increased intrinsic cognitive load. It was hypothesized that

cognitive overloading and distractions would lead to inefficiency in performing the task

since the intrinsic load will not be managed properly. In our experiment, extraneous

loading is triggered by asking participants to remember and say the four letters in

the order of appearance, marked as cognitive overloading. In Part Three, this was

implemented by posing questions to the participants and triggering a new information

process. These distractions introduced new tasks that prevented using the initially

acquired knowledge of the collaborative task. Therefore, the extraneous load was not

minimized in these instances, requiring a higher mental effort from the participants.

The temporal layout of the experiment was constructed to manipulate the germane load.

The unexpected events do not allow participants to use an already built mental model of

the task from Part One therefore, the maximization of the germane load got disrupted.

This overall experimental structure allowed us to analyze the change in the human’s

collaborative state through quantitative data collection of the human movement.

4.2.3 Human Movement Data Collection.

Participants repeated the dressing task for ten iterations in each part of the experiment,

as shown in Figure 4.1. An experiment information sheet was provided before the start,
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explaining the dressing task and the cognitive overloading of Part two. The distractions
used in Part Three were not included in the information sheet. In total, 18 participants

took part in the experiment, aged 18 to 24 (4 participants) and aged 25 to 34 (14

participants). All of them had completed higher education. The experiments generated a

dataset of 540 dressing tasks. The dataset includes the right and left robot end-effector

poses, forces and torques, and participants’ pose features. The data recorded from the

robot and participants resulted in a time-series dataset with a dimension size of 753,910

by 206 features.

We recorded human movement using a motion capture XSens suit [132] to obtain

23 joint positions and orientations on the participant’s body. The XSens suit provides a

set of inertial measurement units that, together with bio-mechanical models and sensor

fusion algorithms, can instantly validate data output. The joints recorded were the pelvis,

spine, sternum, neck, head, collar bones, shoulders, elbows, hands, hips, knees, heels and

toes, creating a data set of 161 features (7 readings per joint) at the frequency of 50Hz.

Participants were asked to take part in the calibration of the motion capture suit before

the start of each part. For the calibration process, we had to measure each participant’s

height, shoulder width, arm lengths, knees height, and hip height. Since this experiment

focused on recording human movement disruptions, the XSens suit was used instead of

RGB-D cameras to alleviate occlusion problems. The robot joint positions, orientations,

forces and torques were streamed as messages in a ROS environment synchronized with

the published motion capture suit data. Participants were instructed not to move their

feet outside the marked area on the floor in front of them. The two joint frames of the

feet were used as fixed reference frames with respect to the robot base.

From the time-series data collected, the data until marker three on Figure 4.1 were

extracted from the rest of the data. This segment of one dressing iteration is represented

in the first five images in Figure 4.1. The position (x, y, z) and the quaternion orientation

(x, y, z,w) of the right and left arms were used for the human movement projection in a

latent space. Figure 4.3 shows how one of the participants moved during one collaborative

dressing task. Sub-Figure 4.3A shows the human movement recording in Part One. Sub-

Figure 4.3B shows the human movement recording during one dressing iteration with

cognitive overloading. There is a clear visual difference in the human movement in

Sub-Figure 4.3B when compared to Sub-Figure 4.3A. The orange and green markers are

the joint positions of interest to identify any disruptions in the human movement due

to a change in collaborative behavior. The orange markers represent the hands, elbows,

and shoulder movement, whereas the green markers represent the collar bones, head,
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neck, spine, pelvis, and sternum. The upper body movement was considered to analyze

the type of movements and visualization on the projected latent space. The orange

(shoulders, elbows and hands) and green markers (collar bones, head, neck, spine, pelvis

and sternum) joint positions were used from the dataset to generate the comparison in

the latent space.

A B

Figure 4.3: A 3D projection of the human movement recorded using the XSens mo-
tion capture suit. Sub-Figure 3A shows the movement of one participant during one
dressing iteration performed in Part One. Sub-Figure 3B shows the movement of the
same participant during one dressing iteration performed in Part Two (with cognitive
overloading).

4.2.4 User Experience Data Collection

The qualitative user experience data collection is critical for supporting our arguments

based on hypothesis derived from human behavior, action cognition and motor control.

We evaluated the collaborative behavior from the participant’s feedback, particularly

how they expressed their experience when their movement was disrupted during the col-

laborative task. After every ten dressing iterations, participants were asked to evaluate

their workload during each collaborative task. This qualitative measure was collected

using the NASA questionnaire, which was scored based on a weighted average of six

sub-scales: (i) mental demand, (ii) physical demand, (iii) temporal demand, (iv) perfor-

mance, (v)effort, and (vi)frustration [70]. This measure estimates the impact of cognitive
overloading and distractions and verifies that participants experienced an increase in

the mental effort in Part Two and Three compared to Part One of the experiment.
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Additional participant feedback was gathered using the PeRDITA questionnaire

as presented in [43]. The PeRDITA is inspired by the UX (User eXperience) model

presented by [13] in which the interaction is explained in terms of:"a consequence of a
participant’s internal state, the characteristics of the designed system and the context (of
the environment) within which the interaction occurs." The user’s internal state includes

predisposition, expectations, needs, motivation, and mood of the user, while the context of

the environment includes social setting, the meaningfulness of the activity, voluntariness

of use, and collaboration intention.

Dimension Question Items

Interaction In your opinion, generally, the inter-
action was:

Negative/Positive
Complicated/Simple

Not practical/Practical
Unpredictable/Predictable

Ambiguous/Clear

Robot Perception In your opinion, the robot is rather:

Machinelike/Humanlike
Artificial/Living
Inert/Animated

Apathetic/Responsive
Unpleasant/Pleasant

Disagreeable/Agreeable
Stupid/Intelligent

Incompetent/Competent

Collaboration In your opinion, the collaboration
with the robot to perform the task
was:

Restrictive/Adaptive
Useless/Useful

Unsettling/Satisfactory
Annoying/Acceptable

Insecure/Secure

Verbal In your opinion, robot verbal inter-
ventions were:

Incomprehensible/Clear
Insufficient/Sufficient
Superfluous/Pertinent

Acting In your opinion, the robot actions
were:

Inappropriate/Appropriate
Useless/Useful

Unpredictable/Predictable

Table 4.1: PeRDITA Questionnaire: Questions describing each dimension. Items are
evaluated in a scale of 100

The PeRDITA questionnaire assesses several aspects of interaction as shown in Table

4.1 which form part of the five dimensions of interaction. The Interaction dimension

quantifies the participants’ behavioral intention, and this dimension is based on the

AttrakDiff questionnaire proposed by [91]. The Robot Perception dimension evaluates

102



4.3. RESULTS

how participants perceive the robot and is based on the Godspeed questionnaire as

presented in [13]. The other dimensions provide insights into how participants perceive

joint actions in the robot assistive task and include the Acting, Verbal and Collaboration
dimensions. Acting is a measure of the human perception of the decisions taken by the

robot. Collaboration quantifies the cooperation with the robot in terms of acceptability,

usability, and security. No verbal communication is used in this experiment. During

dressing, people do not tend to use clear verbal communication and instruction can be

ambiguous as shown in [34].

4.3 Results

Figure 4.4: Dressing failure and mistakes count in the different parts of the HRI exper-
iment. Sub-figure A shows the dressing failure in Part One. Sub-figure B shows the
dressing failures that occurred in Part Three. Sub-figure C shows the dressing failures
and mistakes that occurred during the cognitive overloading in Part Two.

Figure 4.4 shows a breakdown of the dressing failures and mistakes during the 180

dressing iterations for each part of the experiment. In Part One, we recorded two failed
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dressing iterations. In Part Two, there were 41 failed dressing iterations, whereas in

Part Three there were nine dressing failures. In addition to the dressing failures in

Part Two some participants failed to memorize the four consecutive letters appearing

(and disappearing) from the monitor correctly. This means that a total of 22 mistakes

occurred during the rest of the 139 collaborative dressing iterations in Part Two. Three

out of the 41 dressing iterations were both mistakes in recalling the letters as well as

dressing failures. From the failures that occurred in Part three, five were attributed to

the fire alarm and four to the random questioning. The term dressing failure means

that participants missed the opportunity to synchronize their movement with that of

the robot to enable the insertion of the right arm or left arm in the jacket. This suggests

that the cognitive overloading might have hindered the participant’s ability to adapt and

collaborate with the robot.

4.3.1 Evaluation of User Experience and Work Load

As described in Section 4.2, the qualitative data collection aims to understand the

participants’ experiences of the disruptions in collaboration during the dressing task.

Participants were asked to answer the PeRDITA questionnaire, explained in Table

4.1 by marking from 0 to 100 each item in the dimensions of the interaction. The

PeRDITA questionnaire aims in getting feedback about how participants perceive their

collaboration with the robot during the dressing task. The PeRDITA results obtained

from our controlled HRI experiment is shown in Figure 4.5 and Figure 4.6.

Sub-figure 4.5A shows the box-plots for the dimension of the interaction of Acting.

Participants were asked to rate the interaction in terms of appropriateness, usefulness

and predictability. Overall, the participants describe the collaborative task as useful,
predictable and appropriate. The score of the item Predictable in the Acting Dimension of

Interaction suggests that participants perceived the robot’s trajectory to be predictable

in the context of the collaborative task. Such a score was recorded even though the

participants failed to maintain a collaboration behavior during unexpected events. Sub-

figure 4.5B shows the box-plots for the Robot Perception dimension. The Baxter Research

robot was described as machine-like instead of human-like and artificial instead of living.

An average score between 50 and 60 was given to the items of animated, responsive
and pleasant. The majority of the 18 participants described the robot as agreeable and

competent.
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A B

Appropraite Useful Predictable

Inaappropriate

Useless

Unpredictable

Human-like

Living

Animated

Responsive Agreeable

Intelligent

Competent

Pleasant

Machine-like

Artificial

Inert

Apathetic

Unpleasant

Disagreeable

Stupid

Incompetent

Figure 4.5: Results of the PeRDITA questionnaire for the Acting and Robot Perception
dimensions. Sub-figure A shows the item ratings forming part of the Acting dimension,
and sub-figure B shows the item ratings for the Robot Perception dimension.

BA
Positive Simple Practical Predictable Clear Adaptive Useful Satisfactory Acceptable Secure

Negative

Complicated

Not Practical

Unpredictable

Ambiguous Restrictive Useless Unsettling Annoying Insecure

Figure 4.6: Results of the PeRDITA questionnaire for the Interaction and Collabora-
tion dimensions. Sub-figure A shows the item ratings forming part of the Interaction
dimension, and sub-figure B shows the item ratings for the Collaboration dimension.
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On the other hand, the item of intelligence during the collaborative task had the largest

variance from all items. A few participants did perceive the robot as human-like, re-
sponsive and not competent. The robot was classified as appropriate to carry out the

collaborative task even though the robot did not adapt to the participants’ changing

behavior.

Figure 4.6 shows results from the rating of the Interaction and Collaboration dimen-

sions of interaction. Overall, the Interaction dimension results shown in sub-figure 4.6A

is described as positive, simple, practical, predictable and clear. Although the verbal

dimension was non-existent in the experiment, the interaction dimension achieved a high

score. This suggests that verbal interaction was not considered as important in being

able to achieve this physically assistive interaction. The trajectory executed by the robot

was implemented in such a way as to mimic humans helping each other to get dressed.

The participant’s ratings of the Collaboration dimension are shown in sub-figure 4.6B.

The collaboration dimensions in the controlled HRI experiment were highly regarded

as secure, acceptable, and useful. A lower average and higher variance are recorded in

the Satisfactory/Unsettling item. This significant variance might be due to the mistakes

and dressing failures during the collaborative task. An even higher variance and a lower

average are seen in the Adaptive/Restrictive item. These low ratings can be attributed

to the lack of adaptation from the robot side. The uncertainty in participants’ ratings

could be attributed to the fact that they might think they have failed in collaboration

due to unexpected events. The highest rating in the Adaptive item is from one of the

participants who did not have any dressing failures in Part Two. The participants who did

not let the cognitive overloading affect their collaborative behavior might have gotten the

impression that the overall collaboration was more adaptive. As such, these participants

might perceive the robot as more adaptive when compared to the other participants’

experience. The lowest rating of the Adaptive item is given by the participants who failed

both the dressing task and gave the wrong answers to the cognitive overloading task.

Hence, the variance in rating the Adaptive item in the PeRDITA questionnaire could

be linked to the varied effect of the cognitive overloading on different participants. It is

essential to note that the PeRDITA questionnaire was evaluated after Part One, Two and

Three were finished. We can only argue that these results are an overall evaluation that

includes the cases with no cognitive overloading and distractions. Any observation of

these items can indirectly be an effect of the cognitive overloading or distraction because

these were still part of the overall interaction. Still, a direct conclusion cannot be made

with respect to the individual parts of the experiment.
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In order to evaluate the participant’s perceived mental effort during the different

parts of the controlled HRI experiment, the NASA was used. After ten dressing tasks,

meaning after each part of the experiment, the participants were asked to evaluate their

mental, physical, temporal demand, effort, frustration, and performance in collaborating

with the robot for the assistive dressing task. Figures 4.7 shows the results obtained

from participants after performing ten dressing iterations in Part One of the experiment

compared to the task load demanded during Part Two of the experiment. Figure 4.8

shows the participants perceived load during Part Three compared to load perceived

during Part Two of the controlled HRI experiment.

Overall, participants described Part Two of the controlled HRI experiment as the

highest in terms of workload, particularly in mental, temporal demand and effort in

executing the collaborative task. Initially, participants struggled to balance their atten-

tion between collaborating to perform the physically assistive task and the cognitive
overloading. This cognitive overload caused the participants to focus less on when and

how to move to maintain a collaborative behavior with the robot. The occurrences of the

failures and mistakes in Part Two suggest that when participants could not manage the

intrinsic cognitive load, they seem to prioritize either the collaborative tasks or memorize

the letters on the monitor. The controlled HRI experiment in Part Two required partici-

pants to balance their attention between the temporal requirements of the unexpected

events and the collaborative task. The only two participants who managed to carry out

Part Two of the experiment without dressing failures gave the most wrong answers in

comparison with all the other participants, indicating that their priority was on the

dressing task. Furthermore, the highest measure of frustration is observed among the

participants with the highest combined dressing failures and wrong answers count. The

participants who both made errors in the dressing task and gave a wrong answer at

different instances were also the ones who rated the temporal demand the highest. In

Part Three, the distractions reduced control over the intrinsic cognitive load and caused

participants to deviate from the plan of performing the assistive task.
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Mental Physical Effort Temporal Frustration Performance Mental Physical Effort Temporal Frustration Performance

Figure 4.7: Box-plots showing the NASA TLX data collection from participants. Sub-
figure A shows the workload in Part One compared to sub-figure B which represents the
increased workload due to cognitive distractions.

Mental Physical Effort Temporal Frustration Performance Mental Physical Effort Temporal Frustration Performance

Figure 4.8: Box-plots showing the NASA TLX data collection from participants. Sub-
figureA shows the workload in Part Three compared to sub-figure B which shows the
workload from participants during from Part Two.

The overall increase in the workload described by participants from the NASA

supports our hypotheses for the design of the controlled HRI experiment. The results

suggest that controlling the occurrence of the cognitive overloading and distractions
during the collaborative task managed to trigger the unbalancing in the cognitive loads.

The general overview of these results shows that no matter how familiar the participants

were with the task, the cognitive overloading and distractions in Part Two and Part Three
caused disruption to the participants’ movements. Therefore, this controlled experiment

shows that in spite of an already known interaction, unexpected events may lead to

variations in the performance of experienced users interacting with a robot, ending with
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non-collaborative partners. Such disruptions in human movement will be critical in

collaborations that require synchronicity. Consequently, this highlights the importance

of analysing and evaluating the changes in human collaborative behaviors and human

movement, particularly during assistive tasks.

4.3.2 Evaluation of Collaborative Human Movement
Disruptions

Through the controlled HRI experiments we were able to evaluate the effect of action

cognition on motor control to assess how the change in the human collaborative state

disrupts the human movement under cognitive overloading and distractions. As shown

in Figure 4.3, there is a clear difference in disrupted human movement between the

different parts of the experiment. From each part of the experiment, the movement of

both arm poses was extracted from the recorded data. The data points are the joints

marked as collar bones, shoulders, elbows and hands in Figure 4.3. Overall, 753,910 arm

poses have been recorded from a total of 23 joints from the entire human posture. Each

joint comprises seven features (position and orientation) as described in Section 4.2.3.

Figure 4.9: The 2-D latent space representation of the 9-D right and left arm posture
data for all participants, produced with GP-LVM. The different colored projections
denote arm movements during cognitive overload.

The human arm movement data were projected into a 2-D latent space using the

GP-LVM [57]. The 2-D latent space reveals differences in human movements between

different parts of the experiment. Figure 4.9 shows a map of the right and left arm poses

in 2D space with three sub-spaces in different colors, indicating three different parts of
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the experiment. Figures 4.10 and 4.11 show right and left arm latent space, respectively,

for each part of the experiment (sub-figures A, B and C). The latent spaced projection for

ten individual participants can be seen in sub-figures D, E and F of Figures 4.10 and 4.11.

From Part Two in Figures, 4.10 and 4.11, the variation in the right arm movement is

greater than the variation in the left arm movement. During this part of the experiment,

the cognitive overloading was overwhelming the participants because they could not

process the information presented to them while also simultaneously participating in

the assistive task.

Figure 4.10: Separated Latent Space representation of the right arm movements for
Part One (A,D), Part Two (B,E) and Part Three (C,F). Sub-Figures A,B,C show the
2-D latent space representation for all the participants. Sub-figures D,E,F shows the
representation of ten individual participants. The participants marked with a red dot in
the legend had dressing failures in their dressing iterations.

It was observed that during the initial part of the dressing task (until marker two

in Figure 4.1), participants got agitated by quickly trying to move the right arm first

but failing to synchronize their movement as they did in Part One. It was observed that

participants who failed to insert the right arm in the jacket gave up trying to insert

the left arm in the jacket, hence the fewer variations in the latent space. The overall

representation of the projection indicates that participants used similar movements,

somewhat restricted to a particular subspace shown in the central part of the graphs.
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Figure 4.11: Separated Latent Space representation of the left arm movements for Part
One (A,D), Part Two (B,E) and Part Three (C,F). Sub-Figures A,B,C show the 2-D latent
space representation for all the participants. Sub-figures D,E,F shows the representation
of ten individual participants. The participants marked with a red dot in the legend had
dressing failures in their dressing iterations.

This subspace can be assumed to show fundamental arm poses during collaborative

behavior. Figure 4.12 shows density distribution of the projected latent space from

Figure 4.9. The lighter colors represent higher densities of human movement during

the whole experiment. Figure 4.12 shows how the majority of the movement is centered

on the latent space, meaning that most of the movement during the assistive task was

consistent. Figure 4.4 shows that overall the success count of collaborative tasks was

higher than the failed dressing task. This higher success rate suggests that a higher

density can be attributed to a collaborative region rather than the non-collaborative

states. Hence the lower density range areas on Figure 4.12 should be the regions where

a significant difference between Part One, Two and Three should be observed, as seen in

Figure 4.10.

A timeline of latent space changes is shown in Figure 4.13, demonstrating variations

in the right arm movement during all three parts of the experiment. The latent space is

divided into quadrants for ease of analysis and comparison of the different parts of the

experiment. The first column shows the latent space projection of the Part One of the
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experiment. There is a broader distribution at the first iterations of the controlled HRI

experiment. At this stage, participants were starting to learn how to collaborate and

build a plan for the collaborative task with the robot. In the second and third columns,

the distribution of the projected points is less spread because over time, presumably as

the participants were able to learn the task and so undertake it in a more controlled

and automated learned manner. However, this automated or learned motion is disrupted

by cognitive overloading in Part Two depicted by projections in column two. The main

difference from the projected movement in column one is the top right corner. The

projected movement in this quadrant is associated with the timestamp when dressing

failures occurred during the collaborative task. In column three, the same can be seen

in all the top right quadrants. Additionally, there is a variation in the bottom row of

column three compared to columns two and one. These outliers in the latent space in

Part Three are related to the nature of the unexpected events. For example, the fire

alarm sound caused some participants to move away from the collaborative task; the

random questioning provoked some participants to stop collaborating and move back to

the starting position. These type of movements are relatively different from the ones

shown in columns one and two.

Figure 4.12: Plot of the probability distribution function using a Gaussian 2D KDE.
Sub-figure A shows the density surface for the right arm of the participants. Sub-figure
B shows the density surface for the left arm of the participants. Figure changed to 2D
plot with color gradient instead of 3D.
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Figure 4.13: Comparison of latent space projections during different parts of the experi-
ments along the progression in the dressing sequence. The progression of Part One is
represented by the LHS column, Part Two by middle columns and Part Three by the RHS
column.
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4.4 General Discussion

The main goal of the work presented in this chapter was to evaluate whether and to

what extent environmental factors can affect the human behaviour (HF and HS) and

how these factors can impact the input modality of human movement in physically aHRI

that requires CPCI.

4.4.1 Findings

In literature related to close-proximity robot-assistive tasks, consistent human movement

during physical collaboration is always assumed. This assumption of a continuous

commitment to the collaborative task from the human side can pose a safety risk in a

real dynamic environment. The case-study presented in this chapter is an important step

towards recognizing and characterizing the breakdown in collaborations that can occur

during cognitive overloading and distractions while performing assistive tasks.The main

contribution of CS2 is the analysis and quantification of disrupted human movements

during a physical HRI task. The effects of the disruptions were further confirmed through

the qualitative evaluation of the user experience. The timeline (see Figure 4.1) and

temporal layout (see Figure 4.2) of the HRI experiment devised for this study are based

on the literature on human behavior, action cognition and motor control. Consequently,

these frameworks can serve as valuable resources for other researchers conducting

similar studies aiming to induce cognitive overloading in collaborative tasks. Results

collected through the NASA and PeRDITA questionnaire further help validate the HRI

experiment’s methodology. The dressing failures, mistakes (see Figure 4.4), and the

qualitative feedback from the participants were found to correspond to the quantitative

human motion data. These results address RQ3a:, since the dynamic nature caused by

cognitive overloading and distractions leads to unusual variations in human movement.

These variations in human movement ultimately result in failed dressing tasks.

Parts Two and Three of the experiment were specifically designed to disrupt the

way participants initially learned to perform the collaborative task. The results shown

in Figures 4.7 and 4.8 suggest that the cognitive overloading in Part Two can lead to

unmanageable intrinsic cognitive load and large extrinsic cognitive loads. In Part Three of

the experiment, the recorded data shows slightly less movement than in Part Two which

demonstrates that participants managed the new information in the environment slightly

better than the first time (in Part Two). The participants learned how to collaborate in

Part One, but the unexpected events continuously challenged the germane load during
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the experiment. The NASA TLX (see Figure 4.7) for Part One shows a higher temporal

demand than Part Three. The difference is most likely associated with the fact that during

these initial ten iterations of the experiment participants were still trying to understand

the dynamics of the collaboration, and build their own approach to performing the task.

The breakdown of collaborative behavior is also represented in the PeRDITA results.

Although participants overall described the Interaction as simple, predictable and clear,

there was uncertainty in describing the Collaboration as adaptive. The participants

collaborating with the robot, particularly in the Part Two, had the impression that they

failed to adapt - they learned to carry out the task in Part One but failed to maintain

synchronicity during cognitive overloading. All participants either made a mistake or a

dressing failure during the cognitive overloading. The participants who did not fail in

the dressing task answered most questions incorrectly during the cognitive overloading.

These findings directly answer RQ3d as they demonstrate that some participants were

able to become familiar with the assistive task despite the cognitive distraction. However,

it is important to note that even though participants may become familiar with the

task, it cannot be guaranteed that new distractions will not cause failed tasks again,

emphasizing the ongoing potential for safety risks in physically aHRI. Furthermore,

the results also confirm that even when participants were familiar with the task, they

still lost concentration when unexpected events occurred, leading to a loss of interaction

synchronicity. These findings directly answer RQ3e, as they indicate that even though

participants had time to familiarized with the assistive task, humans still failed to adapt

and collaborate in Part Two and Part Three. The successfully completion of tasks in

Part One shows that movement synchronization was present, but it can no longer be

guaranteed if the HS is affected when environmental factor. These results validate both

hypotheses H1 and H2. The collaborative task was significantly affected, primarily due

to variations in human movement that led to a loss of synchronization between the

human and the robot, resulting in a non-collaborative state.

The failures and mistakes in Part Two and Three were caused by the changes in the

human’s collaborative state. The projection of the human movement on the latent space

shows the learning process across all three parts of the experiment. Despite minimal

dressing failures in Part One, there is a greater dispersion of points in the latent space,

indicating that participants were still learning how to execute the task. The germane

cognitive load, which involves constructing a mental model of the task was likely high in

Part One as participants were still building their mental model. This learning process is

reflected in the high variance of the temporal effort from the NASA (see Figure 4.7).
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The high temporal effort indicates that participants were learning how to synchronize

their movements with the robot. The projections for Part Two and Part Three show that

disrupted movements moved away from the center of the 2D latent space, which was not

the case with non-disrupted movements. The projections show that when the cognitive

loads are unbalanced (as in Part Two and Three), the ability to retrieve the knowledge

of how to perform the task is affected, impacting human motor control. The projected

2-D latent space captures movements performed during the learning phase, movements

performed in synchronicity with the robot, and movements disrupted due to unexpected

events. To answer RQ3b, the findings in this chapter indicate that participants’ cognitive

load can be easily affected. Therefore, approaches like CPCI and prediction methodologies

observed in literature cannot assume physical safety when their prior knowledge only

includes optimal behavior of human movement. The findings emphasize that human

movement cannot always be assumed to be fully willing to collaborate, suggesting

that the answer to RQ3b is no. Such arguments also echo and verify the answer that

was give to RQ2b, in Chapters 3, that human movement prediction cannot guarantee

enough physical safety unless knowledge about the cognitive load of the participants is

monitored.

In context like CS2, the projections on the 2D latent space suggest that a more

complex stat-action pairing needs to be used to guarantee physically safety. This means

that some projection on the 2d latent space represented the human movement during

the collaborative state of the participants, while others did not. These findings indicate

that the answer to RQ3c is no, and to guarantee safety this latent space of human

movement needs to be mapped to robot action desired when the human is not in the

collaborative state. Conducting research to evaluate assistive robots in these context

prior to the deployment will strengthen assistive robots by providing prior knowledge

about what human movement is intended for collaboration and what human movement

is not intended for collaboration. These evaluation can be done using 2D latent spaces if

a proper latent spaces analyses can show differences between the different parts in the

experiment. Therefore these argument partially address RQ4. Furthermore, Chapter

6 extends the answer to this research question by exploring ways of creating complex

state-action paring that can measure collaboration through the modality of human

movement.

Additionally, the collaborative state of each participant requires some form of person-

alization. By looking at the user experience and mistakes presented in Section 4.3, it

is evident that every participant can react entirely differently to external disturbances.
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The impact of cognitive overloading and distraction on human motor control is distinc-

tive due to its complex form. Therefore the collaborative and non-collaborative state of

the assistive robot would still require some form of personalization to cater for these

differences based on the specific end-user. The need of personalization exposed in this

chapter is also reiterate and emphasized by the caring professional in the next Chapter

5.

4.4.2 Lessons learnt

The results presented in this chapter highlight the importance of considering the mental

model that end-users will have in aHRI. The following key lessons can be drawn from

the fact that the human state is affected:

- Human movement cannot always be solely based on prior knowledge that only

considers the optimal behavior of humans. If fully autonomous assistive robots are

to be deployed, physical safety cannot be guaranteed without using experimental

methodologies similar to the one applied in CS2 for testing.

- Human movement, as an input modality, has the potential to provide insights

about the human state if the dataset includes the knowledge that CS2 provided.

This can offer a unique solution, especially considering that some older adults

might not be able to use other input modalities.

- The qualitative data from participants clearly demonstrate that environmental

and external factors impact the attention of humans when interacting in assistive

tasks that require some form of collaboration between the robot and the human.

4.5 Summary

In this chapter, we presented a physically aHRI case study to evaluate a more complex

interaction and what it entails to maintain physical safety through the evaluation of

human movement as an input modality. Firstly, the temporal design of the experiment

revolved around the research question and the hypothesis made. It was crucial to

demonstrate a change in the human state, as the hypothesis stated that this would lead

to task failures and therefore put physical safety at risk. The temporal layout of the

experiment helped create this context. The changes in the human state were planned

through the use of cognitive overloading and distractions while the participants carried
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out the physically aHRI task of jacket dressing. Results showed that: i) Participants

experienced difficulty in successfully completing the collaborative task when cognitive

overloading and distractions were introduced into their environment during the assistive

task. This suggests that these factors had a negative impact on their ability to collaborate

effectively with the robot; ii) Participants reported a higher perceived task load when

distractions and cognitive overloading were present during Part Two and Part Three of

the experiment. This indicates that these factors increased the cognitive demands and

mental effort required from the participants to perform the task; iii) Despite the potential

for learning and familiarization with the collaborative task, the findings suggest that it

cannot be guaranteed that the collaboration intent of the users will never be disrupted

in such a complex assistive task. This implies that even with prior experience and

knowledge of the task, external factors can still interfere with the collaborative state

and lead to failures in task execution. and finally iv) The study demonstrated that failed

collaboration in physically assistive tasks can be examined and understood through

a proper evaluation of human movement. The data collected on human movement in

the case study revealed that an increase in participants’ cognitive loads resulted in

variations in their movement patterns. These variations were reflected in the 2D latent

space extracted from the human movement data.

By analyzing the patterns and dispersion of human movement in the latent space, it

becomes possible to gain insights into the impact of cognitive loads on collaboration. The

variations observed in movement patterns can provide valuable information about the

disruptions and challenges faced by participants during the task. This analysis helps to

uncover the relationship between cognitive load, human movement, and the collaborative

state. Therefore, by evaluating and analyzing human movement data, researchers can

gain a deeper understanding of the dynamics of collaboration in physically assistive

tasks. This knowledge can inform the design of future systems and interventions aimed

at improving collaboration and ensuring physical safety in human-robot interactions.

The limitation in the work presented here is that the analysis and projection on the 2D

latent spaces required a more extensive analysis to extract specific differences between

the different parts of the experiment. Additional, CS2 exposed some major challenges

when it comes to providing physically assistance.

Therefore, the remaining work presented in this thesis aims to address these limita-

tions. The primary objective is to investigate how the challenges identified in the CS2

case study can be addressed in the context of an actual care home. This exploration in-

volves evaluating how assistive tasks are approached from a safety perspective and how
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hazards are assessed by caring professionals. This investigation leads to the formulation

of the OS3 research question and is discussed in detail in Chapter 5.

Furthermore, the thesis aims to leverage the experience and expertise of caring

professionals in order to analyze the dataset acquired from CS2. By incorporating

their approaches and insights, a safety measure or methodology can be developed. This

approach acknowledges the valuable knowledge and practices that professionals adapt

during assistive tasks and seeks to integrate these findings into the analysis of the CS2

dataset.

By combining insights from the care home context, evaluating safety considerations,

and leveraging professional expertise, the thesis aims to contribute to the development

of effective safety measures and methodologies in the field of physically assistive robotics

through the contributions made in Chapter 6.
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5
A STUDY WITH PROFESSIONAL

CARERS ON PHYSICAL SAFETY FOR

PHYSICALLY AHRI IN CARE HOMES.

L

Physical assistance to humans by humans is integral in environments such as care

homes and hospitals. The tasks carried out are elaborate and successfully adapted

to the different needs of assisted adults in uncontrolled environments, making

such interactions highly complex. As seen in the previous chapters, the interaction

requirements in terms of task complexity and safety for physically aHRI (see Chapter 4)

increase extensively compared to socially aHRI (see Chapter 3). Therefore, it is necessary

to understand how professional caregivers provide this assistance.

This chapter presents the third case study in the form of an observation study OS3, to

uncover insights directly from professional caregivers and understand their interaction

style, cues and guidelines used to execute assistive tasks. In other words, we pose the

what-if questions to professional caregivers. Undeniably, this knowledge is essential to

identify gaps in hazard analysis and define interaction and hardware design standards
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in aHRI.

OS3 utilizes a focus group methodology, allowing for an inductive analysis to generate

models of the functional and non-functional characteristics that assistive robots will

require. These findings contribute to the development and assurance of assistive robots

by highlighting a detailed set of issues and concerns that impact user acceptance, but also

safety and should thus be considered when designing such technology. These issues and

concerns represent the unseen data and hazards that robotics researchers often overlook.

While there are existing hazard analysis and risk assessment methodologies for robot

safety, these standard approaches fail to address the complexities and uncertainties

involved in the interaction and its environments. Physical assistive tasks in a care

scenario often require direct contact with the user and require a multi-modal perception

of the situation and the user. This close proximity interaction demands a comprehensive

hazard model that takes into account the issues arising from interacting with a frail or ill

end-user. This observation study focuses on identifying the shortcomings in the current

standard methodologies when investigating physical assistive tasks. The findings provide

a more precise overview of the formulation of metrics derived from these requirements.

Metrics-oriented case studies are crucial for developing and designing future approaches

and standards in pHRI, in conjunction with further studies and literature in this field.

Aspects raised by carers indicate that irrespective of the degree of vulnerability of

the older adults, carers can evaluate trust and the older adults’ ability and willingness

to collaborate by multiple modalities. The carers’ ability to access this guarantees safe,

ethical, viable and dignified assistance. These modalities include tactile, visual and

verbal cues, which the carers use to determine the level of collaboration and adapt their

assistance accordingly. Understanding these shortcomings in terms of hazards directly

influences the design of assistive robots. Conversely, understanding the modalities of

interaction used for effective collaboration is vital for developing a safe interaction and

addressing the problems and limitations uncovered in CS1 and CS2 (see Chapter 3

and 4).

Parts of this chapter are presented in the publication:

A. Camilleri, S. Dogramadzi, and P. Caleb-Solly, Learning from Carers to inform
the Design of Safe Physically Assistive Robots - Insights from a Focus Group
Study, in Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot
Interaction, Sapporo, Hokkaido, Japan, 2022, IEEE Press,p. 703-707.
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5.1 Introduction

The growing research in assistive robotics reflects the increasing staff nursing/care

shortage and rising costs of daily assistance [130]. Nearly 80% of the residents in care

homes need some form of assisted living support [106]. Despite significant research in

this area, there is still much to be done to ensure the safety and effective interaction

required for deploying these technologies in care homes.

Physically assistive procedures, such as sit-to-stand or dressing, are successful be-

cause carers can perform complex motion control using feedback from the environment

and making informed decisions based on tactile and visual cues and verbal communi-

cation. These modalities, combined with knowledge about the patient’s physical and

cognitive conditions, dictate the decision-making process regarding when to start, stop,

or modify an assistive task. Carers continuously assess the situation and adapt their

assistance to keep patients safe, relying on their intuition and reasoning from various

modalities to match the patient’s ability to collaborate. Before addressing these issues,

researchers need to analyse these interactions and precisely define the tasks and frailty

levels of technologies so assistive robots, can realistically and ethically address them.

Previous work evaluating the hazards in assistive tasks has highlighted the limited

research in real-world contexts (see chapter 2), leading to the inability to apply traditional

hazard identification methods in these settings. Standards and regulations literature

[25] also emphasise the need for assistive robots to support personal autonomy, which

requires an accurate user model to maintain safe collaboration. Additionally, both [25]

and [69] question the ability of physically assistive robots to interact and collaborate

when changes occur in the physical and cognitive abilities of older adults, which results

in added complexities. Literature on socially assistive robots [149], emphasizes the

importance of measures to gauge the interaction. However, most physically assistive robot

technologies lack adequate detail in experimental and clinical evaluations, suggesting

the need for new measures[149]. This knowledge gap in assistive robots materialises the

need to evaluate the interaction in a care home context and validate it from the point of

view of healthcare professionals and end-users. In work presented in [160], focus groups

are used to inform to design and use of a robot in a socially assistive context. Measuring

trust [92], acceptance [127], and persuasion [161] are all aspects aimed at validating HRI

by ensuring effectiveness, suitability and safety. Furthermore, there is an increase in the

use of learning actions to control assistive robots [98]. However, for physically assistive

robots in real-world contexts, these actions can only be deemed adequate, suitable and
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safe when all the hazards in every interaction context are considered. Otherwise, like

the Challenger tragedy and as exposed in Chapter 3 and Chapter 4 we are imposing the

wrong questions.

5.1.1 Research Questions

Based on evidence from the literature, the main goal of the work presented in this

chapter is to expose the real requirements that carers impose to deliver safe and efficient

physically assistive tasks. Within the breadth of this chapter, the aim is to address the

following research questions:

RQ5a: How do carers physically assist older people in order to guarantee physical safety?

RQ5b: What do carers think that the requirements and guidelines for physically assistive

tools or robots should be?

RQ5c: Do carers think physical safety can be guaranteed by only looking at the optimal

behaviour of humans?

5.1.2 Contributions

In addressing the above-mentioned research questions, the following contributions are

made:

- The presentation of opinions of professional carers on how they use various interac-

tion modalities to acquire, maintain, and provide safe assistive tasks while aware

of the safety hazards in the surrounding context.

- A comparison of safety hazard analysis with respect to the requirements specified

by the professional carers.

These insights from professionals show that robotics researchers need to go beyond

understanding the actual hazards experienced during a physically assistive task and

derive a suitable measure/type of collaboration to fulfil the needs of the person being

assisted. After accessing these hazards, we highlight the modalities care professionals

use to identify hazards and what actions they take to ensure that collaboration is

maintained.
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5.2 Methods

Safety standards and procedures have been recognised and accepted for many years in

well-established safety-critical systems industry sectors, such as transportation (auto-

motive and aviation) and infrastructure. However, in emerging fields such as aHRI, the

field still lacks appropriate methodologies and standards for safety design and assurance

while considering the operational complexities of these applications. Most of the (inter-

national) safety regulations for robotics published to date have been for the industrial

environment, where a robot is restricted from operating behind barriers (e.g. in a cage)

with no physical contact present during the procedure. Such regulations cannot apply

to physical assistance robots, which involve close pxHRI. In these applications, direct

contact with users in a home environment is essential to achieve the goal of the assistive

task. Therefore, regulations that require physical barriers are no longer appropriate.

pHRI is being addressed through industrial robotics standards such as ISO TS

15066:2016. The latter provides regulation for some collaborative operations in manu-

facturing tasks. For service robotics, standard ISO 13482:2014 has been introduced as

a first-generation standard specifying safety requirements and guidelines for robots in

"personal care" (however, that term is defined in a general sense and not intended to

include healthcare, social care or medical care tasks). Hence in both cases, these stan-

dards are lacking in consideration of contextual issues for health/social care domains,

including the vulnerability of the end-user. There is still a lack of procedures, operating

rules or significant bench-marking for the environment on how these assistive robots are

required to operate compared to an industrial environment.

When the requirements vary depending on the cognitive, physical and sensory ability

or impairments of the end-users, it can be even more challenging to identify hazards

correctly. Additionally, assistive robot interaction needs to abide by clinical regulations

and guidelines from a safety perspective. Dangerous situations and risks to the end-

users well-being are highly likely due to their lack of experience with technology or

robot interactions. Although the communication between the end-user and robot can

be a valuable modality for completing the task, it can be inconsistent and variable,

resulting in an additional level of uncertainty. Therefore, having an effective safety-

critical assistive solution requires taking into account the user preferences for predictive

and safe human-robot interaction and the uncertainties in the surrounding environment

that affect human behaviour and robot performance.

Nursing and care staff are the individuals that have the necessary experience and
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knowledge in making assistive tasks safe, identifying hazards and encouraging people to

collaborate and interact to their best ability while achieving the assistive task. Under-

standing the users and environment, in which these assistive robots operate provides an

invaluable contribution to the safety and hazard identification process. They can help

identify the appropriate requirements which can lead to establishing metrics that help

to achieve repeatable and consistent performance and aid in evaluating using pHRI

methodologies. This chapter intends to expand the existing literature concerning safety

standards and metrics in pHRI. Additionally, it aims to provide insights into forming

new safety guidelines for physical assistive robots, drawing from the perspectives of

professionals well-versed in assistive care. Traditional hazard identification methods

will be utilized to identify hazards in physically assistive tasks. These identified hazards

will then be compared with those identified by nursing and care staff, emphasizing the

need to reevaluate metrics in assistive pHRI. Furthermore, we access such metrics and

how these can be applied to human movement in aHRI and expand on the results from

Chapter 4 CS2 to the ones presented in Chapter 6.

5.2.1 Safety Analysis Processes

The most widely used safety analysis techniques are Failure Mode, Effects and Criticality

Analysis (FMECA), functional hazard analysis (which includes Hazard Operability Anal-

ysis (HAZOP), Preliminary Hazard Analysis (PHA) and software-oriented techniques

such as Software Hazard Analysis and Resolution in Design (SHARD)[122], and Fault

Tree Analysis (FTA). Systems Theoretic Hazard Analysis (STPA) is a relatively new

technique and is still not widely practised in industry, although its popularity appears

to be growing [5]. Safety analysis processes are usually performed as an adjunct to the

general system development process, typically in the following order:

1. Preliminary hazard analysis is applied at the very earliest stages of requirements

analysis, to capture the key hazards associated with the essential functional re-

quirements of the system. PHA is often performed by review of the early functional

requirements in natural language, with minimal use or availability of the models

that are available in subsequent development stages.

2. Functional hazard analysis techniques (for example, HAZOP, SHARD, Functional

Hazard Assessment (FHA) [44, 64, 159]) are generally applied to a system model

(specification), to achieve a systematic and exhaustive identification of potentially
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hazardous functional failures. HAZOP is now a standard by [44], and it considers

possible alternatives to the main parameters of the procedure.

3. FTA and FMECA are usually used at the detailed design stage rather than re-

quirements specification and are aimed at developing causal models showing how

internal faults or errors may contribute to the occurrence of a functional hazard.

These techniques are not usually considered to be hazard identification or analysis

methods unless by chance a system-level hazard is revealed as the cause or con-

sequence of an internal failure, which had been missed in earlier stages of safety

assessment.

5.2.2 Overview of Hazard Analysis Methods

A number of variations of hazard analysis methods exist. The following paragraphs

provide an overview of some of the most widely used methods, as well as some that are

novel or have features of interest to this chapter.

5.2.2.1 Aviation Sector FHA

FHA as practised in the aerospace sector and codified in the ARP 4761 standard [1], was

one of the earliest variants of this class of analysis to come into use. FHA identifies three

generic types of functional hazard (dysfunctional mode):

• Failure to operate as/when intended

• Unintended or inadvertent operation

• Malfunction (a.k.a. misleading function)

The method proceeds by positing each of these three hazard types against each functional

requirement of the system. Hypothetical conditions that are implausible can be ignored,

but for all others, a precise description of the failure condition is defined. Then, for

each failure condition, the consequences of the condition are identified. Since the nature

of the system’s environment often varies throughout the operational use of a system,

the consequences are assessed over different partitions of the system mission (in an

aircraft these are its flight phases such as take-off, landing, cruise, etc.) in order to

identify different consequences of the same failure condition if it was to occur in different

environmental circumstances. The severity of the harm of each distinct consequence is

determined, usually in terms of the number and degree of injuries caused to persons
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(crew, passengers or third parties). These hazard identification results are then used as

the basis of a risk assessment, where the severity assessment of each potential hazard is

used to determine a design target for the rate/probability of its occurrence, as specified by

aviation industry standards and regulations. Additional regulations also specify further

safety requirements as a function of the severity level, particularly for fault tolerance

within the system architecture design. The results of the FHA are usually presented in a

tabular format.

5.2.2.2 HAZard and OPerability Studies HAZOP

This method, originally developed in the chemical process control industry, has become

one of the most widely known hazard analysis methods. The official reference is the IEC

61882 standard [51]. HAZOP proceeds by a systematic analysis of failure conditions

in the flow parameters across the boundary interface of the system. In general, flows

are any information (data, signals), energy (electrical or mechanical power), fluid flow

(chemical reagents, fuel), or mechanical force (structural loads and stresses, mechanical

actions) that pass across the system boundary.

HAZOP identifies a number of guide-words which have the same role as the generic

failure conditions of Aviation FHA. Guide-words are generally tailored to the technolog-

ical domain of the system being analysed, i.e. different keyword sets for electrical/hy-

draulic/pneumatic/mechanical machines, fluid dynamical interfaces or mechanisms,

analogue or digital electronics, or software. However, the general concept of guide-words

is that they relate to flows of energy, force, information, or physical material across the

system boundary interface, and generally identify deviations in the value, timing, or

provision those flows. The guide-words that were originally identified for the original

HAZOP version and are specified in IEC 61882 [51].

The method proceeds by developing an interpretation table for the flow parameters

of the system, where the guide-words are applied to the parameter types present in the

system, and specific definitions of the failure conditions are defined (if the combination

is plausible). Then the relevant interpretations are applied to the actual parameters

of the boundary interface and the effects on system functions and consequences on its

interaction with the environment are assessed. The results are tabulated in a similar

manner to Aviation FHA.
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5.2.2.3 Software Hazard Analysis and Resolution in Design (SHARD)

Since HAZOP was originally developed for industrial process control systems, variants of

HAZOP have been proposed for computer systems and software, which follow the same

general methodology but propose guide-words that are more appropriate for flows of data

and electronic signals than fluid and mechanical forces. Two variants of note are defined

in the UK Defence Standard 00-58 and the SHARDmethod, developed at the University

of York [122] is notable in that it proposes a different set of guide-words developed from

a survey of computer/software failure cases. The new guide-words are related to the

functional service that is provided through a given flow parameter:

i Service provision failures

• Omission: Functional service not provided when intended

• Commission: Functional service provided when not intended

ii Service timing failures

• Early : Functional service provided earlier than intended

• Late: Functional service provided later than intended

iii Service value failures

• Coarse Error: Value of input parameters to the functional service is coarsely

incorrect (illegal value)

• Subtle Error: Value of input parameters to the functional service is subtly

incorrect (value is legal but incorrect)

The SHARD guide-word set was derived from earlier studies and surveys of real incidents

of computer-related failures [122].

5.2.2.4 System-Theoretic Process Analysis (STPA)

STPA comprises a more comprehensive analysis of the development process, while

also considering potentially unsafe behaviours. In [20], verifies that the STPA method

can provide better results than standard hazard assessments because it allows multi-

interaction expansion in the early stage of development, but also includes alternative

interaction states. STPA has been implemented on autonomous vehicles changing lane

action in [3] with improved analyses because it could tackle and generate various types
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of interaction requirements. Correspondingly, in [17] STPA is applied to an autonomous

multi-robot system inferring that the capability of taking into consideration a more

extensive set of potential scenarios can make it a more effective hazard analysis technique

because unsafe and unintended interaction can be accounted for.

5.2.3 Issues of Model Dependency, Sufficiency and
Completeness in Functional Hazard Analysis

The goal of many functional hazard analysis exercises is to be as systematic and complete
in the process of identifying hazards as is reasonably practicable. The rationale behind

this approach is often based on the need to support safety arguments that claim "all

reasonably foreseeable risks have been identified". Logically, such arguments cannot be

made without providing evidence to demonstrate that all conceivable or plausible types

of failure or dysfunction have been considered. This consideration should occur at some

level of design abstraction within the system for all elements of a system.

For this reason, many hazard identification analysis techniques are model oriented,

relying on a functional model written in a suitable graphical or textual language. The

use of system models, particularly graphical models, is highly valuable as it makes the

estimation of the effort and duration for conducting a hazard analysis more predictable

compared to relying solely on free-form design information. System functional models,

such as functional block diagrams, signal flow graphs, state transition models, and control

flow models, typically consist of symbolic elements representing flows, transformation

processes, interfaces and other functional components of a system. The size of the model

is usually finite, although certain models (e.g. railway networks) can be very large and

the number and type(s) of model elements to consider can be unknown.

Additionally, many system models are hierarchically organised, into major subsys-

tems, which contain minor sub-assemblies, which themselves can contain individual

components. One of the major issues of functional hazard analysis is the combinatorial

expansion of the number of failure conditions when analysing deeper levels of the design

indenture levels of a system, it is also possible to approach the problem in the opposite

direction. By moving higher in the design hierarchy and identifying larger subsets of

the system, the number of elements to consider decreases, simplifying the analysis of

failure/dysfunctional conditions. The art of safety engineering lies in balancing the effort

required for hazard analysis with that of safety analyses at later stages in the system

development process.
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In the field of robotics, popular choices of graphical modelling languages are UML and

the related language SysML [65, 73, 123, 124]. These languages, represented by dynamic

or static diagrams, include use cases, sequence and state machine representations. The

use case diagram is one of the basic diagram types of UML and is used to capture general

aspects of user interactions and high-level objectives of a system.

Table 5.2 shows a subset of the use case diagram used in a sit-to-stand assistive

task analysis conducted in a previous study [65]. The study employed a variant of

the HAZOP technique. One drawback of the HAZOP is the identification of system

parameters. To overcome this shortcoming, [64] proposed an approach called HAZOP-

UML, implemented for physical human-robot interaction. The HAZOP-UML analysis of

a sit-to-stand assistive task was implemented, and hazard identification through PHA

and HAZOP-UML is presented in Table 5.3. However, it is worth noting that identifying

of hazards and risk in complex interaction conditions, as emphasized by the guidelines

in HAZOP [44], can be challenging Physically assistive robots for older adults operate in

highly dynamic environments with unpredictable human needs and behaviour. These

interaction requirements may not be appropriate through hazard analyses such as

HAZOP.

5.2.4 Review of Previous Work in Hazard Analysis of Robots

For attempting to standardise collaborative robotics design, specifically for personal care

robotics, the last review of the ISO 13482:2014 [22] includes some relevant guidance,

however, this is quite generic and does not include specific issues relating to frail and

vulnerable users, and the likelihood of change in their condition. To strengthen the ISO

15066:2016, several research projects have contributed to hazard analysis in physically

assistive human-robot interaction. Some of these European projects are PHRIENDS

2006-2009, followed by its successor SAPHARI, 2011-2015. In PHRIENDS, the focus

was on collision avoidance through reactive control and compliance design [81], [67]. The

SAPHARI project [14] modelled to avoid collision between humans and robots rather

than shape a coupled collaboration with the user. Physical assistive interaction would

require uninterrupted physical contact and support from the robotic system. These are

not tackled in SAPHARI or PHRIENDS.

Additionally, this interrupted physical contact and interaction would require an

understanding of the users’ needs and behaviour to highlight the interaction constraints

subject to different scenarios. Older adults may present a variety of impairments, which

can constrain the parameters of interaction. Hence, this is why general design require-

131



CHAPTER 5. A STUDY WITH PROFESSIONAL CARERS ON PHYSICAL SAFETY FOR
PHYSICALLY AHRI IN CARE HOMES.

ments cannot fully cover the high variance in the limitations between the target users

of assistive robotics. Therefore, given this significant gap, standard risk assessment

methods in the literature such as HAZOP-UML will fail to assess the complexity
emerging from different user needs and behaviour. The research in this area lacks a

user-centred design perspective.

5.3 Finding from the Focus Group Studies for Safety
in Physically Assistive Tasks

5.3.1 Participants and Care Homes

As part of OS3, focus groups were conducted in two different care homes in Bristol in

the United Kingdom, with seven professional participants. The total years of experience

working in care homes ranged from 8 to 23 years. The specific job roles involved were a

manager of one of the nursing homes, nurses, physiotherapists, senior carers, carers and

occupational therapists. These care professionals describe their experience as:

• Working closely with NHS and international equipment trust for care homes;
• Years of working with people with dementia, physical and cognitive disabilities;
• Years of training assisting older adults with mobility;
• Managing of care staff;
• Support of resident on rehabilitation programs and follow-up of work from physio-

therapist;
• Motivating people with dementia to carry on with their daily activities.

The focus groups aimed to understand the hazards and risks identified by the profes-

sionals and how hazards are dealt with when assisting older frail people. Ultimately, we

want to incorporate this knowledge into deriving an approach to assessing the situation

after a hazard is detected and continue to assist safely. The assistive tasks of supporting

standing up, sitting down and walking were used as examples to determine the concerns

that require attention when assisting frail older people. The discussion focused on under-

standing the complexities a physically assistive robot needs to address by setting out any

requirements for the system design to maintain safe adaptation to potentially changing

user needs.

Nursing and care staff can provide a more hands-on approach to the problem and

elaborate on hazard analysis with their years of experience. The aim is to uncover what
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the conventional hazard assessment methods are not seeing in the overall picture of

physical assistive robots by questioning these experienced personnel. Correspondingly,

our discussion highlights the gaps in the existing literature by posing important what-
if questions specific to the care home scenario. We aim to shed light on the lack of

understanding that arises when safety guidelines are formulated without considering

the knowledge and procedures employed by professional carers. The methods described

in [66] suggest that hazard identification techniques should be incorporated early in

the design process and specifically address human interaction as a potential source of

hazards. Developers can proactively design solutions that prioritize safety and mitigate

potential hazards by considering and anticipating these risks. This simplified approach

helps understand all the hazards and obtain further in-depth information about the

assistive task. This interpretation of hazards is limited to the people designing the

assistive technology. It is indeed a significant challenge for engineers and technical

professionals to identify all the potential complications that may arise when interacting

with vulnerable older adults in unfamiliar environments. In light of this challenge,

nursing and care staff play a crucial role in providing a hands-on approach and leveraging

their extensive experience to contribute to hazard analysis. In order to gather valuable

insights, we engaged care-home professionals in critical discussions and analyses, seeking

their perspectives on the following key aspects:

- Different scenarios of stand, walk and sit supports.
- Variations involved in the physically assistive tasks.
- Concerns and reflections on assistive technologies.
- Safety issues involved in performing the physically assistive tasks (the pre-condition,

normal flow and post-conditioning of the task).
- Hazards and alternative ways to adapt the assistive task.

As a preliminary step, prior to the focus group sessions, professional carers were

presented with a short video clip illustrating potential solutions involving physically

assistive robots for sitting, standing, and dressing. Subsequently, the key aspects forming

the basis of the discussion were introduced to all attendees in the room. Throughout the

focus group sessions, the professional carers actively engaged in comprehensive discus-

sions on each highlighted aspect, drawing from their substantial expertise and insights.

To capture their thoughts and contributions, these were documented on sticky notes

during the discussions. These written comments were then meticulously arranged and

affixed onto large boards within the discussion room. Specifically, comments related to
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various tasks underwent further categorization into pre, during, and post-task segments,

enabling a structured examination of considerations at each phase. The visible placement

of these comments served as starting points for discussions, leading to the discovery of

additional observations and crucial details essential in performing physically assistive

tasks.

In all cases, the participants reported no contradicting opinions. Some of the hazards

identified and variations in the task were different between care homes, but the overall

approach and critical analysis of the assistive task were unanimous.

5.3.2 Interpretations of the Purpose of Assistive Tasks

In this section, an interpretation of the purposes of assistive tasks as seen by the caring

professionals is provided. Three discrete situations for assistance emerged from the

questions to the participants. Firstly, there is a psychological aspect related to the

individual’s motivation or mental state influencing their need for physical assistance in

standing and walking. Acquiring independence by walking can help the individual keep

a daily routine in the care home environment. Secondly, a physical aspect - moving is

beneficial for the health of the musculoskeletal system, skin and overall well-being. It

also relieves pressure and reduces tissue damage that results from prolonged immobility.

Thirdly, a social aspect of the care home is attending dinner, getting dressed, visiting the

health centre or dentist, or even going to social events and places in and outside the care

home. Caring professionals argued that being unable to stand is closely associated with a

cognitive and physical decline experienced by older adults. They noted that this decline is

often noticeable not only to the individuals themselves but also to their family members

and caregivers. The inability to stand can be an indication of various underlying health

issues and can significantly impact the overall well-being and quality of life of older

adults.

Furthermore, it was suggested that the level of physical ability does not always

accurately reflect the amount of assistance an individual requires to perform a particular

task. In this situation, it can be hard to accept the impact of ageing and the need for

physical assistance from relatives and older adults. It is important to recognize that older

adults may have limitations in certain areas but still maintain a level of independence

in performing other daily activities, such as walking or completing tasks around the

home. Providing physical assistance in these cases can help sustain their independence

and overall well-being even if they require support for specific aspects of a task. This

highlights the importance of having access to both physical assistance from caregivers
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and the assistance of technology that alleviate the burden on carers, particularly when

considering the increasing elderly population. However, it is important to acknowledge

that the complexities involved in these tasks often surpass the capabilities of any current

technology. Therefore, it is critical to evaluate and identify any hazards arising from these

complexities. Understanding the variations in assistive tasks is essential in developing

appropriate technology and continually quantifying whether the technology and person

can collaborate effectively and safely.

5.3.3 Interpretations of the Variations of Assistive Tasks

The insights provided by the nursing and care staff indicated that variations in assistive

tasks primarily stem from the specific user’s behaviour and needs at a given interaction

time. Such variations are inevitable in real-world contexts. In all cases, participants

emphasized that these variations depend on the type of impairments individuals have,

as different cognitive and physical necessitate different approaches to the assistive task.

It was further explained that an individual’s capabilities can vary frequently. For

example, the balance may worsen in the evening due to fatigue, and medication cycles can

affect the users’ physical abilities and interaction capabilities. Additionally, it was noted

that a person’s physical abilities can be non-symmetric and change over time, particularly

in cases of stroke patients where one side of the body is affected to different severity

levels. Communication difficulties were identified as a common reason for altering the

typical flow of physically assistive tasks in individuals with cognitive or stroke-related

impairments.

People with cognitive issues may struggle to comprehend instructions provided by

carers or nurses. To facilitate the movement of individuals with dementia, different

preparations may be necessary. For example, when a person with dementia needs to go

to the bathroom, switching the light in the target room can serve as a subtle indication

of their destination, rather than just using verbal communication. On the other hand,

people who have had a stroke may face challenges in expressing their needs. Another

variation was changing moods, which can fluctuate from one day to another or even

within a single day. An individual’s likelihood to collaborate may vary depending on their

mood and it was noted that people with dementia tend to experience mood swings more

frequently.

Furthermore, a lack of willingness to cooperate can be triggered by random objects

in people’s environments, leading to a diminished sense of security. For example, the

presence of a chair facing the older adult while being assisted into standing might be
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perceived as an obstruction. Attempts from carers to remove obstructions can result

in objections or a lack of collaboration. Trust issues were also raised as a significant

variation in the assistive task. Some residents may trust only specific carers because

they feel safer with them. Not having access to these trusted carers can trigger a refusal

to collaborate or cooperate.

In summary, these variations can apply to any assistive task. Changing ability, balance,
fatigue, weight, and mood swings require an adaptive interaction approach. The

successful execution of this adaptation heavily relies on the carer’s ability to identify the
patient’s current willingness to collaborate, understand the reason for the lack of
collaboration and act accordingly to ensure the task is not disrupted and can be

completed.

5.3.4 How Caring Professionals Identify and Deal with Hazards

Table 5.1 presents a list of the main hazards identified by the carers and nurses. These

examples of hazards emphasize the importance of identifying and addressing them when

implementing a fully autonomous assistive robot. Figure 5.1 illustrates the modalities,

tools and abilities as told by the caring and nursing professionals to assist, interact and

collaborate safely when encountering these hazards (see Table 5.1).

Visual observation and inspection of the surrounding environment, older adults, and

potential distractions are the primary methods for identifying most hazards. Tactile cues

serve as feedback to help carers adapt to the physical interaction and determine the

appropriate level of physical assistance. The expertise of carers in evaluating the current

situation through tactile cues and comparing it with past experiences enables them to

identify potential hazards and take timely action. Verbal interaction is another modality

used to provide continuous instructions to the older adult and gauge their response, if

any. This aids in identifying potential hazards before executing the assistive task and

being prepared to address hazards specific to the user’s condition.

A prominent theme emerging from the identified hazards is the complexity and

influence of older adults’ conditions and behaviour on physical actions. Accomplishing

the task in such instances would require the assistive robot to possess sophisticated

motion control capabilities. However, as discussed in section 5.3.3, irrespective of the

degree of vulnerability of the older adults, carers consistently find ways to engage, assess

willingness to collaborate, and provide appropriate assistance.
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These observations suggest that the assistive robot’s ability and ability to manage
these complexities dictate which level of frailty and other conditions can be assisted by
the assistive robot or be left entirely dependent on the carer. The variations described in

Section 5.3.3 show that a fixed user model is insufficient in reflecting a person’s needs,

as these needs can change within the same day for the same assistive tasks. Figure 5.1

shows the importance of measuring and reflecting the older adult’s ability to collaborate

during the task. Each hazard identified in Table 5.1 and marked in column five of Figure

5.1 requires a measure of collaboration from the carer to be overcome and provide the

necessary assistance safely. Once hazards are identified, carers can achieve the goal of

the assistive task by acting accordingly and selecting an action that suits the patient’s

need at that moment. The capability to assess the older adult’s ability to collaborate

helps the carer to make real-time adaptations to the assistance provided and control the

motion while ensuring the safety of the assistive task.
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Table 5.1: A set of hazards identified by Nursing and Care Professionals

Hazards Identified by Health Care Professionals
1 Failure to adapt speed of the task for patients with low blood pressure.
2 Patient commands not interpreted correctly.
3 Failure to adapt to patients’ different abilities on both sides of the body.
4 The patient does not have appropriate support.
5 Failure of communicating continuous sub-goal of assistance
6 Failure to check for stability.
7 Failure of communicating which leg to use.
8 Disturbances from the environment.
9 Non-even floor levels.
10 Patient sudden changes of speed.
11 Patients might need to stop for catching their breath.
12 Failure to ask the patient to stop.
13 Patients with cognitive impairments are triggered to sit wherever even when there

is no seating area around.
14 Patients with cognitive impairment might think that darker areas of the floor are

non-levelled.
15 Patient can change their mind during the task.
16 Patient crash lands on the chair or in an inappropriate posture.
17 Inappropriate footwear and clothing for the assistive task.
18 Patient not turning appropriately to conclude the task.
19 Patient not placing hands for support in the right place.
20 Sitting chair is not appropriately set for the body shape and height of the patient.
21 Fall of the patient.
22 Patient reluctant to do the assistive task without holding a valuable item. This

will cause instability if the equipment requires holding or using both hands.
23 The patient has a swollen foot - requires a change of footwear.
24 Patient with a lack of control of the lower knee requires more assistance.
25 The patient’s standing chair does not have the brakes on.
26 The patient is not wearing his glasses - obstructed vision (user-model not valid).
27 The patient is currently in the medication cycle, which leaves them not able to

collaborate (user-model not valid).
28 Patient’s feet not in the right positions during pre-condition and post-conditioning.
29 Patient is still lying in bed requiring pre-conditioning.
30 Patient can have sudden sharp pains during assistance.
31 Patient shape and posture.
32 Patients with bent postures tend to hit the equipment with their head.
33 Patients distracted by their phone or surrounding environment - might stop to

pick their item up while walking.
34 Patients keep hold of the assistive equipment while landing.
35 Patients hurt shoulders by pulling up with the assistive equipment.
36 Patients’ ability and fatigue changes. (user-model changes)
37 Patients’ posture on the chair requires more elaborate help as pre-conditioning.
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66% 89%24% 55% 87%Figure 5.1: A graphic showing how the hazards (Table 5.1) are identified by the caring
professionals and whether or not it is possible to adapt their interaction based on a
collaboration intuition.
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5.3.5 Feedback on a Prototype Robotic Solution for Assistive
Tasks

The participants were shown a video of a prototype ceiling-mounted physical assistive

robotic that would help frail patients with sit-to-stand and walk around a care home and

asked to comment on their first impression, concerns, queries and enthusiasm about the

assistive technology.

Immediately, participants highlighted that preparation needs to be considered before

the task actually starts. Participants strongly emphasised that the assistive robot would

need to adapt to a particular patient’s profile and start with the correct preparation

for the task and eventually, execution of the task, for the individual. Some of these

preconditions are listed in the hazard list shown in Table 5.3.

One carer argued that the assistive device needs to be smaller to move around the

furniture and environment. Some felt that such a device did not show ways in which

it would be possible to adapt to different body types and respond to changes in the

end-users changing ability throughout the day. Additionally, participants stated that

continuous verbal communication and provision of instructions for the patient help them

understand and enhance collaboration. More technical comments from the participants

included: whether such technology could be charged anywhere in the home and whether a

daily report could be generated about the decline or change in the ability of the patients.

It was acknowledged that having such an assistive robot could help patients and

make them feel more confident and independent, even in their home environment. It was

suggested that some patients, such as those with Parkinson’s are still able to walk but

not for long. These types of patients usually require the surveillance of a carer. Having

such assistive devices can help free the time of a carer. The majority of participants

agreed that such a device would help to increase the number of times patients can move

around the care home since they will be no longer entirely dependent on the carers’

presence. Participants also remarked that such technology could help provide a daily

report of the patient’s decline or improvement.

The main concerns raised were the lack of correct ergonomic support from the

assistive equipment when performing the tasks. For sit-to-stand assistance in some

patients, pulling up and putting pressure on the shoulders could be an incorrect way of

accomplishing this task. Participants also raised concerns about older adults misusing

this assistive device in their homes. One participant described the scene when a patient

could be going around the home, holding onto the device while picking up stuff around
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the house.

User Case Name Standing up Operation
Abstract The patient stands up with the help of the robot

Pre-condition

The patient is sitting down
The robot is waiting for the standing up operation
Battery charge is sufficient to do this task to help
the patient to sit down
The robot is in front of the patient

Post-condition The patient is standing up
The robot is in admittance mode

Invariant
The patient holds both handles of the robot
The robot is in standing up mode
Physiological parameters are acceptable

Table 5.2: Use case described by UML hazard analysis method [66].

Hazard
No.

Description of Hazard through PHA
and HAZOP-UML in MIRAS

Hazard
identified
by Carers

HNI Incorrect posture of the patient during robot use Yes
HN2 Fall of a patient due to imbalance not caused by the robot Yes
HN3 Robot shutdown during its use No
HN4 Patient falls without alarm or with a late alarm Yes

HN5
Physiological problem of the patient without alarm or with
a late alarm. Yes

HN6 Fall of the patient due to imbalance caused by the robot Yes

HN7
Failure to switch to safe mode when a problem is detected.
The robot keeps on moving. No

HN8 Robot parts catching patient or clothes. Yes
HN9 Collision between robot (or robot part) and patient. No
HN10 Collision between robot and a person (not patient). No
HN11 Disturbance of medical staff during an intervention. Yes
HN12 Patients lose their balance due to the robot (no falling). Yes
HN13 Robot manipulation cause patient fatigue. Yes

HN14
Injuries of the patient due to robot sudden movements
while carrying the patient on its seat Yes

HN15 Fall of the patient from the robot seat Yes
HN16 Frequent false positive alarms (false alarm) No

Table 5.3: List of hazards not identified in the hazard analysis methods[66] (PHA and
HAZOP-UML) but identified by Nursing/Care Staff
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5.3.6 Comparison of hazards identified by professional staff
and the standard HAZOP-UML

When considering altogether the individual hazard analysis and alternative flows of

interactions, a total of 17% of these listed are related to interaction constraints, 28% were

classified as technical systems requirements, and around 55% were classified to be user

needs and behaviour dependent. Additionally, categorising the hazards collected from the

focus group in terms of use case description, the majority of hazards were listed to occur

either as a precondition or as alternative flow or exceptions of the assistive interaction.

Preconditions, user needs and behaviours were highly interlinked when participants

were commenting about the assistive task. Participants suggested that depending on

the patient’s needs, the precondition can change drastically. Furthermore depending on

whether the patient has a condition such as Parkinson’s or dementia, the alternative

flow of the interaction can somewhat be predicted or reduced to result in fewer hazards.

The use cases described by the UML approach shown in Table 5.2 describe the task

of standing very superficially when compared with the safety assessment provided by

the carers (see Table 5.1). This strengthens the original hypotheses that such methods

are not capable of eliciting and analysing the complexity of such physically assistive

tasks. Table 5.3shows the hazard analysis for the HAZOP-UML approach applied to

the sit-to-stand task identified by a combination of PHA and HAZOP-UML. A more

comprehensive overview of the hazards and requirements specified by the carers and

nurses can be seen in Table 5.1. When comparing the hazard list from the PHA and

HAZOP-UML [66] with the requirements and hazards identified directly by the care and

nursing participants (see Table 5.2), a significant difference in the number and nature of

hazards becomes evident.

Carers identified user needs and behaviour that can significantly change the interaction
flow, revealing hazards that are completely overlooked in the HAZOP-UML (see Table
5.3). These observations emphasize the inadequate understanding of the patient’s
complexity in the interaction with physically assistive robots. Such findings underscore
the limitations of current safety standards methods and emphasize the necessity of a
user-centred design approach that incorporates input from all stakeholders in the
application of physically assistive robots.

Ensuring the safety of physically assistive robots requires explicitly considering the

insight and experience of care professionals. Consequently, a reevaluation of the HRI

metrics and their determination becomes crucial. The identified shortcomings represent
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the ’unseen data’ in the field of physically assistive robots, shedding light on the impor-

tance of addressing these issues for the development and implementation of safe and

effective assistive technologies.

5.3.7 Potential Extension of Metrics in pHRI

The authors, Murphy et al.[109], presented a review of the 42 applied metrics for HRI.

The taxonomy presented here does not cover all the requirements as highlighted during

the focus groups for physically assistive tasks. The safety and reliability metrics do not

include the required adaptivity of the system in response to the complex and changing

needs of the end-user. The variations in the physically assistive task described by the

participants required continuous adaptions to a changing set of human model metrics,

even over the same day. These variations require reliable metrics which can determine

the current state of the human model. In order to define these reliable metrics, clinically

qualified people such as psychologists, physiotherapists and occupational therapists,

need to identify measures that can enable an adaptive interaction. The psychological
conditions of the user can highly affect the safety of the human in the interaction, partic-

ularly in the context of pHRI. From the evaluation of Tables 5.1 these measures can be

described as panic, intent, distraction, illness, pain level, anxiety, preparedness, alertness

and need for reassurance. In human-human interaction described by the participants,

these were all conditions to which carers and professionals recognised and responded,

in order to safely assist the older adults. Furthermore, physiological measures of the

human such as fatigue level, blood pressure, medication cycles, physical conditions

and impairments are also subject to variations. The psychological and physiological
metrics together with the human model should be able to define a level of assistance
required by the human. Ensuring measurable and representative measures for these

requirements will endorse the metrics of human, safety, co-activity and reliability as

presented in [109] from a more practical approach for pHRI.

Furthermore, the complexities that arise from assistive tasks have uncovered mea-

sures that require further discussion with professionals in order to identify if possible

thresholds on psychological and physiological can, or should be defined to limit

the use of the physical assistive robot for a particular subset of older adults. These

restrictions are due to the fact that the complexity of the task is highly affected by the

psychological and physiological state of the user and it is realistic to have an added

metric of eligibility of the end-user so that the pHRI can take place safely and reliably.

In this way, the complexity of the human model can be bounded within measures from
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which the user requirements could be classified as either being eligible for the assistive

interaction or not, or even to what extent. The taxonomy for pHRI presented in [32] is

based on the fact that the robot behaviour adaption is defined through a user model and

is stated to not require any other adaptive behaviour once the user model is selected. The

physically assistive task presented by the carers suggests that in some cases the user

profile might also change during the day and hence adaptivity in response to specific

psychological and physiological measures is critical to maintaining safe interaction.

Henceforth, the metrics for safety in pHRI should be expanded and underpinned by
specific dimensions of the task complexity, together with a user-centred design approach
that enables structured metric-orientated studies to be carried out with professionals and

end-users.

5.4 General Discussion

5.4.1 Findings

In this OS3, the participants consisted of caring and nursing professionals. The primary

objective of this chapter was to identify the requirements and conduct a hazard analysis

related to physically assisting older adults. This work was conducted to address the

limitations highlighted in the previous chapters which emphasized the importance of

integrating HF, HS and environmental factors in evaluating the input modality through

the robot factors. By conducting this study in a real-context environment through the

lens of professional carers, the significance of establishing these connections becomes

evident and provides insight for future directions.

The use of physical assistive robots aims to establish valuable support for the growing

ageing population. Dealing with a range of different types of impairment, physical

and cognitive needs, imposes the necessity of safe, close-proximity interaction. These

observations have described the safety analysis techniques that nursing and care staff

follow when assisting patients. The main contribution of OS3 has been to highlight that

several complexities that arise from the needs and behaviour of the patients are not

adequately taken into account when model-based safety analysis techniques are applied.

This analysis mainly evaluates the assistive task based on the robot’s ability to detect

or avoid these hazards. Furthermore, we have seen that the current metrics of safety,

reliability and human model are not sufficient to capture this complexity and hence fail

in creating safe and usable HRI. Therefore, we identify the complex requirements of
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physically assistive tasks and show how metric-oriented studies that seek to understand

and model the human element of HRI can lead to more comprehensive metrics which

create repeatable and effective HRI. The argument made here and findings from the

observation study address RQ5a and RQ5b highlight the limitations in the current

approach to physically assistive robots.

When considering the various patients’ needs and behaviours, and analysing how they

would actually use this assistive technology in real-world environments, then further

hazards start to be identified. The evaluation of the nursing and care staff created

several new use cases not considered by the standard methods currently used. This

hazard identification from the patient’s point of view would require adequate adaption

and additional sensing capability from the assistive robot. The current regulation shows

a superficial assessment of physical assistive interaction with robotic systems. The

model-based safety analysis technique is mostly inapplicable without incorporating the

ability to adaption to the user needs and behaviours. The feedback and points raised by

the care and nursing staff show the importance of evaluation of the human-in-the-loop

in the aspects of interaction and technical design. The inclusion of these aspects together
with the acquisition of new skill sets from professionals to define these requirements will
make the research of physical assistive robots safer. These arguments continue to further

answer RQ5b.

One prominent finding from the hazards and requirements identified in this study

is that carers consistently assess the state of the individual and do not assume that

an older adult will exhibit optimal behaviour, even within the same day. The dynamic

nature of the older adults’ capabilities and behaviour necessitates ongoing evaluation and

adaptation by the carers. This highlights the importance of recognizing and responding

to the individual’s current condition and needs rather than relying on assumptions or

generalizations. The findings presented in this study directly address research question

RQ5c, as they demonstrate that carers never assume optimal behaviours when providing

physical assistance to older adults. The evidence provided indicates that carers recog-

nize the dynamic nature of the individuals they care for and continuously assess their

current state and needs. Furthermore, these findings also support the answer provided

to research question RQ2b, which was discussed in Chapter 3 and Chapter 4. Carers

emphasize the importance of considering the contextual factors in the environment

when providing physical assistance, as these factors continuously change and require

meticulous hazard analysis to ensure safe task execution, particularly in close proximity

interactions.
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5.4.2 Lessons learnt

One concept that continuously emerged from this observational study was the following:

- That irrespective of the degree of vulnerability of the older adults, carers always

try to create ways to engage and measure collaboration while assisting.

Collaboration in the context of physically assistive tasks is a complex aspect that plays

a crucial role in determining safety. While evaluating collaboration can be challenging,

quantifying it can serve as a key determinant of safety in these tasks. The next chapter

(Chapter 6 of this research focuses on developing a methodological approach to designing

human-robot experiments specifically tailored to quantify this measure of collaboration.

By conducting more realistic human-robot experiments, such as CS2, it is possible to

infer and construct this measure using the modalities employed in each task.

Incorporating these insights into future studies will not only contribute to a better

understanding of user experience during human-robot interaction but also advance

research in safety. To ensure the safe deployment of assistive robots, it is crucial to

carefully consider the input and feedback from nursing and care professionals who

possess experiential knowledge in these tasks. Adopting a co-design approach that

involves their expertise and incorporates their insights will help address the complexities

involved and shape the development of technology in this field.

5.5 Summary

In this chapter, we asked: What-if assistive robots can learn and adapt the metrics carers

use to achieve a safe and successful interaction? (see Figure 1.1). Firstly, we examined

the perspectives of caring professionals on the importance of physical assistance in

providing humane care for older adults. Their insights shed light on these tasks’ laborious

and complex nature, emphasizing that they are multifaceted due to the numerous

variants that can arise for a single older adult during an assistive task. Carers stated

that changing ability, balance, fatigue, weight, and mood swings require an adaptive

interaction approach. The successful execution of this adaptation heavily relies on the

carer’s ability to identify the patient’s current willingness to collaborate, understand

the reason for the lack of collaboration and act accordingly to ensure the task is not

disrupted and can be completed.

Secondly, carers identified a long list of hazards that can occur in real-world environ-

ments, specifically in care homes. These hazards encompass a wide range of potential
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risks and dangers that carers need to be aware of and address to ensure the safety

and well-being of older adults. These observations suggest that the assistive robot’s

ability and ability to manage these complexities dictate which level of frailty and other

conditions can be assisted by the assistive robot or be left entirely dependent on the

carer. These observations also emphasize the inadequate understanding of the patient’s

complexity in the interaction with physically assistive robots. Such findings underscore

the limitations of current safety standards methods and emphasize the necessity of

a user-centred design approach that incorporates input from all stakeholders in the

application of physically assistive robots.

Carers have the ability to overcome these limitations by constantly evaluating the

situation and examining whether their perceived level of collaboration and the current

frailty of the older adult actually align. They actively assess and reassess the individual’s

needs and capabilities, making adjustments as necessary to ensure a safe and successful

interaction. As seen in Figure 5.1 it is depicted that carers are able to overcome many

hazards by measuring and assessing their perceived level of collaboration. This measure

of collaboration serves as a crucial indicator for carers to gauge the older adult’s willing-

ness and ability to engage in the assistive task. Cares use input modalities to assess this.

For Chapter 6, the input modality of human movement is specifically examined in this

context.
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The work presented in this chapter aims at achieving the ultimate goal of the thesis:

to use the input modality of human movement as a measure of collaboration during a

physically aHRI for a CPCI. To do so, the dataset from CS2 is further analysed to provide

knowledge about the human state. This can be done since Chapter 4 has demonstrated

that cognitive overloading and distractions can result in dressing failure due to a non-

collaborative approach from the human. Therefore, the human movement dataset of

CS2 contains both collaborative and non-collaborative human movements for a dressing

task. By performing feature extraction on this dataset, it becomes possible to distinguish

between these collaborative states. Consequently, we utilize feature extraction on the

dataset to illustrate that these collaborative states can be identified through a projection

onto a latent space. Latent spaces have recently been employed in physically aHRI and

human movement evaluation algorithms to provide insights into the state of humans.

The taxonomy that defined the interaction safety at the level of complexity of CS2, is

149



CHAPTER 6. HUMAN MOVEMENT AS A ’COLLABORATION MEASURE’ IN
COMPLEX PHYSICALLY AHRI

the following:

CS2 :
{
Tr

}∩{
Th

} 6= ; and D = F(R,H)E(.). (6.1)

The aforementioned taxonomy was validated in Chapter 4 and Chapter 5, where

we gained insights into handling complex tasks. The risk to physical safety stems from

unidentified environmental factors. The findings presented in Chapter 5 concluded that

the risk to physical safety arises from environmental factors that remain unknown.

This was further supported by the taxonomy derived from the observation study, OS3:{
Trcarer

}∩{
Th

} 6= ; and D = F(Rcarer,H)E(.), indicating that professional carers are

essential in ensuring physical safety as they can consistently identify risks in the

environment that may impact the physical safety of older adults, whether directly or

indirectly. During physically assistive tasks, the robot must synchronize and adapt to

the human arm’s position. Consequently, any element in the surrounding environment

can affect human cognition and movement (see to Chapter 4). The results from the last

two chapters clearly indicate that the complexity of interaction outlined in Chapter 3,

as represented by its taxonomy, CS1:
{
Th

}ª {
Tr

} = {
T

}
and D = F(R)E(k)+F(H)E(.),

cannot ensure the necessary physical safety in complex physically aHRI. Consequently,

if older adults are to utilize such physically assistive tasks, research should focus on

quantifying the collaborative state through multiple input modalities to ensure physical

safety. This thesis primarily focuses on human movement and its impact on safety, and

this collaborative knowledge can be presented through latent spaces. Feature extraction

was initially applied to the human movement dataset to achieve such knowledge in a

latent space. It was necessary to differentiate between smooth movements in Part One of

the experiment and the fidgety and shaky movements during Part Two and Part Three.

This approach enables us to ensure that if we obtain a good projection on the latent space

then it can actually represent movement in these different parts of the experiments and,

therefore, in different collaborative states.

Parts of this work presented in this chapter are in the following publications:

A. Camilleri, J. Hong, S. Dogramadzi, and P. Caleb-Solly, Towards establishing
a ’collaboration’ Measure for Coupled Movement in Close-Proximity Human-
Robot Interaction, in Integrating Multidisciplinary Approaches to Advanced Physical
Human-Robot Interaction, ICRA 2020, Virtual Conference, 2020.

A. Camilleri, S. Dogramadzi, and P. Caleb-Solly, A Study on the Effects of Cogni-
tive Overloading and Distractions on Human Movement During Robot-Assisted
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Dressing, Frontiers in Robotics and AI - Human Movement Understanding for Intelli-

gent Robots and Systems, (2022).

6.1 Introduction

To ensure safe physical pxHRI in physically assistive tasks, robot motion planning

should adapt to changes in human behaviour. Probabilistic confidence-awareness models

can predict human movement with confidence while learning the variance in human

movement is crucial for safe trajectory planning. External distractions and cognitive

overloading can alter human skill and interaction, necessitating evaluation for long-term

safety.

For robust long-term prediction and adaptation of human movement, motion planners

must ensure collision-free trajectories and proper coupling between robot and human

movements. In the context of CPCI, collaboration measures in trajectory comparison

enhance overall safety. Synchronizing movement is key to successful interaction, but

knowing if the human wants to collaborate is a requirement for physical safety in

assistive tasks (see Chapter 5)

The presented collaboration measure captures the coupling between robot and human

movements and acts as an additional safety metric for trajectory planning. Controlled

experiments in an assistive dressing scenario demonstrate its usefulness, especially

in detecting the lack of collaboration caused by one-off events. This measure provides

insights beyond variance in learned movement skills.

Safe close-proximity human-robot interaction depends on recognizing and adapting

to changes in human behaviour. Collaboration-based trajectory prediction, facilitated by

a measure of coupling, enhances intelligence in motion control. Understanding humans’

behavioural responses to disturbances are crucial for achieving robustness and safety.

The presented work utilizes a human-robot interaction experiment to study changes in

behaviour and collaboration, showcasing the representation of collaborative and non-

collaborative movements in a Latent Variable Model. This model captures the changes

in collaboration during physically assistive interactions, contributing to safer and more

efficient pxHRI.

The development of autonomous systems that assist humans in various tasks, includ-

ing elderly care and hospitality, requires safe controllers capable of effectively interacting

with humans. Close-proximity interactions pose challenges in accurately predicting

human movements and behaviours. In order to ensure safety in such interactions, robot
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motion planning needs to adapt to real-time and long-term changes in human behaviour.

This chapter considers the long-term aspect and focuses specifically on the assistive task

of dressing (CS2), which involves close-proximity and physical contact with humans.

In close-proximity interactions, physical contact-based adaptation relies on minimiz-

ing feedback parameters such as force and garment entanglement [82, 83]. However, in

situations where force feedback is unavailable, synchronization of movements becomes

crucial. To achieve safe close-proximity interaction, it is beneficial to have a measure

of collaborative behaviour based on realistic human behaviour. Collaboration-based

trajectory prediction has been explored in literature [80], utilizing simulation-based

approaches and collaboration criteria. Interaction primitives have previously been used

to correlate human and robot’s movement [16], however, non-collaborative behaviour has

not been extensively studied in these scenarios.

In order to ensure safety in close-proximity human-robot interaction, robot motion

planning needs to recognize and adapt to the human movement, both in real-time and

long-term. These characteristics, need to be applicable in all contexts and situations to

be certified as a safe interaction. The focus of this chapter is on the assistive interaction

of dressing which by nature takes place in close-proximity and eventually in physical

contact with the human. In the context of physical contact, adaption will be implemented

by searching for a minimum in a space that is parameterized by feedback that character-

izes physical contact; such as force or garment entanglement as presented in [82, 83].

In close-proximity, force feedback is not available and adaption can only be achieved

through inferred synchronization of the movement. In this context, movement adaption

can only be certified safe if prior observations of the human’s motion can somehow be

modelled in situations that hinder synchronization. Hence, in close proximity interaction

having a measure of collaborative behaviour is extremely beneficial in the context of

assistive robots. A similar approach can be seen in other literature where collaborative

behaviour estimation between pedestrians and vehicles was implemented by the authors

of [80]. In order to model the collaboration-based trajectory prediction simulation was

used to extract trajectories that go along or against a set of collaboration criteria. Sim-

ilarly, in close-proximity assistive robotics this collaboration behaviour would also be

beneficial but needs to be based on a realistic human behaviour. Interaction primitives

have previously been used to correlate human and robot’s movement [16], however

non-collaborative behaviour has never been examined in these scenarios. To be able to

acquire such knowledge we need to create a context in which human movement data is

collected during close proximity interactions while collaboration is impeded. This context
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would enable us to define the criteria of collaborative and non-collaborative behaviour.

Our aim is to be able to detect changes in human behaviour and hence human

motion. As seen in Chapter 4, neuroscience research has provided frameworks that link

human behaviour and movement, such as the free-energy principle. These frameworks

emphasize the active role of the human brain in minimizing differences between their

model of the world and sensory perceptions. Distractions and cognitive overloading

can affect motor control and, consequently, human movement. The presented work

verifies these effects through experiments conducted in the dressing task, as explained in

previous chapters. One principle is that of the free-energy principle which can be linked

to information theory, optimal control theory and game theory [56]. These models state

that the human brain actively makes observations and tries to minimise the free-energy

of their model of the world . This means that if a surprise occurs their reaction is the

effect of trying to minimize the differences between their model of the world and their

senses and associated perception. Subsequently, if these surprises in interaction can

be a result of distractions and cognitive overloading then we can state that their motor

control and hence movement will be affected. This effect of movement will enable us to

observe human through the collaborative and non-collaborative behaviour aspect, this in

fact was verified both in Chapter 4 and Chapter 5.

This chapter continues to analyse the dataset presented in Chapter 4. The hypothesis

on which this human movement dataset was created is that behaviour changes occur

between distracted and non-distracted instances of the dressing task. This change in

behaviour is reflected in human motor control and arm movement in relation to the

robot’s end effectors. By modeling the latent variables in this high-dimensional dataset,

it becomes possible to distinguish between collaborative and non-collaborative behaviour.

This energy-based model can be used as part of a forward model in the context of CPCI

to ensure collaborative adaptation. This is ideal because this interaction model will

be based on a self-supervised approach that measures the compatibility of the input

to the energy function. The low-energy areas will represent the points, which show

collaboration, and high-energy points will represent the non-collaborative observations.

Consecutively, if this hypothesis is verified predictive forward models can be easily built

on these self-supervised predictive world models [95].

6.1.1 Research Questions

In summary, three research question will be investigate in this chapter through the

human movement dataset CS2:
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- Can we create a measure of collaboration between the human and robot while
performing a close-proximity interaction?

- Can we measure in any form these similarities in the collaborative and non-
collaborative instances during the task?

- Can we couple the robot and human movement?

The research questions in this chapter aim to address the research question RQ6
whereas RQ7 will be discussed in the chapter 7 based on the findings in this chapter.

RQ6: Following from RQ4 and RQ5, how can such prior knowledge be used to couple the

human movement and robot’s motion planning to guarantee safety in the context

of disturbance?

RQ6a: How can the variations in human movement be modelled as a prior knowl-

edge?

RQ6b: Can a measure of collaboration be created from this prior knowledge

to indicate a lack of synchronisation and hence a possible failure in the

interaction?

RQ7 Ultimately can such collaboration measure be embedded and modelled in the

robot’s motion planning?

6.1.2 Contributions

In answering the above-mentioned research question, the following contributions are

made:

- A similarity evaluation between the robot and human movement during an assis-

tive dressing task CS2.

- A latent space visualization that shows that the human movement modality can

incorporate the human collaborative and non-collaborative state.

6.1.3 Methods

This section will explain the approach and take on the human movement dataset from

CS2 in order to do the similarity evaluation and the latent space projection. Initially,

a summary of the case study will be repeated, followed by a technical take on the
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human movement dataset, the feature engineering extracted and the approach for the

similarity and latent spaces. The assistive task in CS2 is that of being dressed with an

outer layer of clothing. The human movement is recorded through the use of a motion

capture Xsens Suit [132]. The environment in which the interaction takes place was

controlled. This allowed us to generate a dataset of human movements and observe

change in behaviour due to the changes in the surrounding environment. These changes

were due to cognitive overloading and distractions. The change in behaviour also led

to a lack of synchronisation between the human and the assistive robot. The cognitive

overloading and distractions also led to failures in the assistive task. For safety, it is

critical to be able to predict these failures and have a better understanding of what

variations in movements are due to reduced human attention. Figure 4.2 shows the

overall experimental layout. A total of 13 participants took part in the experiment,

with 30 dressing iterations each. The experiment had three parts, with 10 iterations

in each part. Part One consisted only of the dressing task while Part Two and Three
consisted of cognitive overloading and distraction respectively. Part two of the experiment

had the cognitive overloading timed to coincide with the initial phase of the dressing

iteration. At this initial phase, only close-proximity movement took place and hence

no physical contact. The cognitive overloading was introduced in Part Two with the

purpose of distributing the participants’ model of the world previously built in Part One.

Therefore the cognitive overloading would result in a ’surprise’ in the interaction. Hence

the majority of the dressing iterations in Part Two resulted in a failed assistive task even

though the participants were fully able to collaborate in Part One. The results of the

experiment, in terms of failures and users’ responses to the dressing task, are explained

further in our previous work [29].

The observations of failed collaboration after participants were already familiar with

the task indicate that collaborative and non-collaborative behaviour identification is

a synonyms for safety. Hence to ensure safety, having prior knowledge of how coupled

movement can vary is critical. Such knowledge should be a representation of coupled

movement, which is minimized when collaborative behaviour is present and maximized

when non-collaborative behaviour is adapted. The dataset collected from the experiment

represents a time-series data of the robots’ end effector and human movement. Figure 4.2

shows the timeline of one dressing iteration. The close-proximity collaborative behaviour

is the evaluation of movement of the right arm until it is restricted in the garment, as

shown in Figure 4.2.
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6.1.3.1 Human Movement Trajectory Dataset

For each dressing iteration, the dataset consists of the right and left robot end-effector

trajectories TR which is represented as a set of quaternions from time t = 0 . . .T and

human pose JN
1 where N is the number of joints recorded from the motion capture.

For the human trajectory TH , Each joint n is respectively represented by [THn]T
0 as a

series of position pn = (xn, yn, zn) and a quaternion representation of the frame rotation

at each joint as a series of qn = (an,bn, cn,dn) for every trajectory TH . For simplicity,

only the right end-effector and the right arm of the participant are used to evaluate the

collaborative and non-collaborative movement.

Features were extracted from the trajectories of the human pose (THn) using a

sliding window of size w along the time-series creating wi windows, where i < T. We are

interested in highlighting the difference in the right arm movement of the human while

collaborating with the robot’s right end-effector movement. The feature engineering

focuses on statistical features of the movement of the joints JN
1 alone or with respect to

the robot’s movement during the close-proximity interaction. The features extracted over

each wi for every element of JN
1 are:

• Mean: the average value of the joints JN
1 over the wi,

• Median: is the middle value, in wi for each joint, when the data is arranged

numerically, (averages if even number in wi),

• Standard deviation: a measure of how spread the movement is over wi,

• Variance: a measure of variation in joint angles or positions for the values of the

movement in wi,

• Interquartile Range: a measure of statistical dispersion over wi.

• Skewness: the distortion of the movement over wi,

• Kurtoisis: the peakness of movement over wi,

• Median Crossing: the total number of movement changes below or above the overall

median in the whole iteration,

• Mean Crossing: the total number of movement changes below or above the mean in

wi,

• Wasserstein distance: measure between human-robot movement,
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• Pair-Wise Correlation: the measure of correlation in between the three joint (arm,

hand and elbow) of the right arm over wi.

• Relative Entropy: measure between of by how much the distribution of the human

movement differs from that of the robots trajectory.

The relative entropy KL between robot and human arm trajectories is generated from

the probability distribution using the sliding window approach. The use of KL divergence

has been previously used to minimize the difference between the learned trajectory and

the currently executed trajectory as presented in [45]. This requires the generation of

two probability distribution, one for the right end-effector trajectory representation p(Tr)

and another for the right human arm trajectory representation p(Th). The mean and

co-variance of each dimension of a trajectory p(T )= p(x1, . . . , xT) are used to create the

probability distributions p(xr) and q(xh) respectively. Hence the KL, can be represented

as:

KL(p(xr), q(xh))

and

KL(q(xh), p(xr))

Therefore, the KL divergences is calculated as

KL((p(xr)||q(xh))=
∫

p(xr) log
p(xr)
q(xh)

dx (6.2)

The rest of the features were chosen based on previous research as presented in the

literature [168] and [145] who used similar features to recognise activity from human

motion and to differentiate between motor skills. The hypothesis behind creating this

feature space is that there are different patterns in the style of arm movement during the

different parts of the experiment. Such feature engineering increases the dimensionality

of the space representing the collaborative task. This resolution helps to create a distinc-

tion between the primitive skill used for the same collaborative task at different levels

of collaboration by the user. A latent space representation of such features would allow

to verify this hypothesis by being able to discriminate between the dressing iteration

in each part of the experiment and hence between collaborative and non-collaborative

behaviour.

The objective is to create a ’Collaboration Measure’ policy φcm that needs to be

maintained at a minimum during CPCI in physically aHRI when the user is fully

collaborating with the robot. This policy will act as a state-action pairing checking; hence
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this would comprise an energy function f that provides information based on its current

value on the collaboration state (cs) of the human HS.

φcm = arg mincs f (cs) (6.3)

where f(cs), represents an energy function that compares the robot’s trajectory state with

the human movements observed at any state during the assistive task.

φcm = arg mincs f (TR ,THobs,THcm) (6.4)

where TR represents the robot’s predicted trajectory, THobs represents the observed

human arm trajectory and THcm represents the predicted human arm trajectory based

on the ideal cooperative interaction. THcm is represented by the trajectories recorded in

Part 1 of the experiment.

TR and THobs is information gathered from cases studies similar to CS2. THcm is the

future prediction of human movement as shown in case study CS1. Therefore, the state

of TR with respect to THobs is the direct relationship to the policy φcm . This implies that

the robot’s state (represented by its trajectory TR) during different phases of the assistive

task and the corresponding human reactions through movements (represented by THobs )

determine whether an ideal cooperation occurs or not. In CS2, the ideal cooperation refers

to the human movements observed during Part One and the non-ideally cooperation is

those movement observed in Part Two and Part Three. Equation 6.4 is the policy that sets

the rule for physical safety in the assistive tasks. To guarantee this the energy function

which gathers the information from the observed trajectories at the current state of the

robot and human movement need to be at a minimum. This is as required by the equation

6.1, that suggest that in order to ensure physical safety, incorporation of the observed

human trajectory need to also include knowledge about non-optimal behaviour. In this

chapter, we evaluate two approaches for such function f (TR ,THobs,THcm) designed to

represent the predominant trajectory matching, considering how human movement is

affected by distraction and cognitive overloading. This indicates that the energy function

will yield a lower value when the state-action pairing from the observed trajectory THobs

is similar to Part 2 when compared to a successfully dressing trajectory THcm from Part
1. These approaches are explained in Sections 6.1.3.2 and 6.1.3.3.

6.1.3.2 Similarity Measure Modelling

The f (TR ,THobs,THcm) will represent the attribute of the collaboration measure men-

tioned above to measure synchronization between the THobs human arm trajectory and
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the TR robot, and a measure of how the THobs human arm trajectory is compared to a

known skill THcm. The similarity measures need to be defined as either distance mea-

sures or the KL divergence. For example, if the KL divergence results are the prominent

way of distinguishing the collaborative nature between the human ideal skill and the

observed skill then Equation (6.4) can be represented as:

φcm = arg mincs f (THobs,THcm) (6.5)

φcm = arg mincs (KL(p(THobs)||p(THcm))) (6.6)

The results from this task will inform the selection of similarity measures between

the trajectories. The most appropriate results will be selected to be included in the

’collaboration measure’ policy φcm.

6.1.3.3 Latent Space Modelling

The features extracted above represent a dataset which is high-dimension and non-linear

required to describe human behaviour. The Gaussian Process Latent Variable Model

(GP-LVM) [147] can efficiently project human behaviour onto a 2-D latent space while

preserving most information in the high-dimensional data. These features make the

GP-LVM suitable for projecting these cooperative and non-cooperative movements for

close-proximity movement evaluation.

Firstly, a Gaussian Process (GP) is created which maps the high-dimensional dataset

Y = [y1, ..., yI]T to a low dimensional latent space X = [x1, ..., xI]T , such that:

yj = g(x j)+ε, ε∼N (0,β−1I) (6.7)

where yj ∈RM , x j ∈RN , M and N are the dimensions of the respective datasets, M is

the number of samples representing the feature dataset and g denotes the GP mapping.

The latent variable is optimized by calculating the marginal likelihood for the observed

data and is defined by:

p(Y |X ,θ)= 1√
(2π)IM |K |M

e−
1
2 tr(K−1Y Y T ) (6.8)

where θ is the RBF kernel hyperparameter, K is the kernel matrix constructed from X
and θ. Consecutively, the GP-LVM maximizes the likelihood of the predictions of the

model given the dataset Y by finding the values of the kernel K . For the cooperative

and non-cooperative projection onto the 2-D latent space our dataset Y is the features

engineered from the human movement and robot’s trajectories.
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Figure 6.1: Feature engineering human movement before and after GP-LVM training.
Sub-Figure B (the figure on the right) is showing the possibility of an energy-based
function based on the projection of the data points on the latent space. The central part
shows the desired movement whereas the other part shows the distracted and cognitive
overloading part.

6.2 Results

6.2.1 Latent Variable Space Modelling

Figures 6.2, 6.3 and 6.4 show the visualisation of the CS2 dataset after the feature ex-

traction using a sliding window approach previously explained. Each subplot represents

the feature space of each participant. The three different colours show the projections of

each iteration during the different parts of the experiment. The Gaussian process latent

variable model (GP-LVM) projection provides an appropriate distinction of the movement

features. The projection on the latent space suggests that the feature engineering from

the data captures differences in the elemental movement. Furthermore, it also suggests

that in fact the collaborative and non-collaborative behaviour in performing the assistive

task can be distinguished. The cognitive overloading or distraction change in behaviour

is reflected in a difference in movement.

Such latent space can be used to further create an energy-based policy based on the

aggregated data points on this space. This means that creating an energy function φR

that is minimized to maintain a collaborative behaviour allows us to base adaption on

the observation that takes into consideration lack of collaboration behaviour which can
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be critical for safety in close-proximity interactions. Henceforth in order to allow for a

forward predictive model based on this self-supervised approach, the energy-function

needs to have a minimum in the points which represent Part One of the experiment.

These points are the points that represent a highly collaborative behaviour while the

remain point on the latent variable represent a less collaborative behaviour. Figure

6.1, shows the space before and after training. In the sub-figure 6.1B, examples of how

the minimum and maximum energy values for an energy function f can be applied is

shown on the latent space itself. Such results validate a complete experimental cycle,

from experimental design to data collection and feature extraction, that can be used to

address the unknowns in the environment and long-term interaction for future physically

assistive human-robot interaction (aHRI). The results shown here do not demonstrate the

energy function itself, but they illustrate a space where each projected human movement

can be assigned a value based on the collaborative state of the human. It shows that this

approach can provide valuable insights into the collaborative human-robot interaction

through the input model of human movement.

These results also demonstrate a potential solution for equation 6.1 because the

robot can receive information about the human state during the assistance. Moreover,

professional carers in OS3 have emphasized the importance of ensuring physical safety

by ensuring the willingness and active collaboration of older adults. The approach of

CS2 and the use of feature engineering highlight how this can be achieved through

input modalities that capture human movement. This approach holds significant value,

especially considering that many older adults may experience difficulties in using verbal

communication as an easier modality.

6.2.2 Similarity Measure as KL divergence between Human and
Robot in CS2

The evaluation of f (TR ,TH) was implemented using the KL divergence between the

robot end effector trajectory and the human movement in the right arm. These results

provide an indication on whether the coupling of movement between the robot and

human trajectories can contribute to the ’collaboration measure’ and hence lead to an

overall indicator of safer interaction.

Figure 6.5 shows the relative entropy between the robot trajectory and the human

arm. The KL(p(xr), q(xh)) and KL(q(xh), p(xr)) were calculated for two joints of the right

arm of four participants with respect to the robot’s right end-effector. Each subplot in
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Figure 6.2: An Latent Variable Model of cooperative and non-cooperative movement
created from the human and robot movement dataset based on features explained in
section 6.1.3.1. The feature spaces represent the movements of four participants using
GP-LVM representation.
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Figure 6.3: An Latent Variable Model of cooperative and non-cooperative movement
created from the human and robot movement dataset based on features explained in
section 6.1.3.1. The feature spaces represent the movements of four participants using
GP-LVM representation.
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Figure 6.4: An Latent Variable Model of cooperative and non-cooperative movement
created from the human and robot movement dataset based on features explained in
section 6.1.3.1. The feature spaces represent the movements of four participants using
GP-LVM representation.
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Figure 6.5 is a measure of relative synchronicity between the robot and the human arm.

The four sub-figures (A, B, C and D), show a lower measure for a more synchronous

movement between the robot and the participants. In sub-figure 6.5 A, the biggest lack of

synchronicity is found in the middle box-plots associated with Part Two of the experiment.

These low synchronicity measures (highest divergence) can be seen in all the middle box-

plots of each sub-figure in 6.5. The box-plots of Part Three (the third column in sub-figure

6.5 A) shows an average of a more synchronous movement when compared to the first

column showing movement from Part One. This suggests that participants over time are

improving their ability to have an automated plan of performing the task as mentioned

in Sections 2.3.2 and 4.2.2. The high variance in the third column of sub-figure 6.5A is

due to the distractions in Part Three. Similarly, this can also be seen in sub-figure 6.5B

and sub-figure 6.5D. On the other hand, the third column in sub-figure 6.5C, shows the

most synchronous movement out of all the 12 sets of plots. This is because the participant

performing the collaborative task did not have any dressing failures in Part Three of the

experiment whilst already having the experience of performing more than 20 dressing

iterations in Part One and Part Two.

These results suggest that the representation of f (TR ,TH) in the form of KL di-

vergence can be applied as part of the policy φcm. Additionally, the current state of

interaction in the assistive task can also be derived from the measure between these

deviations in movement. This current state would be equivalent to lack of collaboration

when a high KL divergence is recorded when it is also used as a similarity measure.

6.3 General Discussion

6.3.1 Findings

In this chapter, we have presented a way forward of how to tackle the challenges

highlighted in Chapter 4 and Chapter 5 for physical safety in physical aHRI. The

previous results showed the significance of having a ’collaboration’ measure for capturing

the correlations between human-robot movement in an assistive task.

A good ’collaboration’ measure should identify the level of collaboration between

the human and the robot in the task. This measure quantifies how synchronous the

movement is and infers collaboration between the human and the robot through the

movement. The dataset created and used in this study allows us to compare an ideally

learned skill to changes that impact the attention of the human that can hinder safety,
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Figure 6.5: KL divergence is presented as a measure of deviation between the robot end-
effector and the hand (first two box plots in each subplot) and elbow of four participants
in the assistive task.

particularly in long-term movement prediction for close-proximity assistive tasks. The

possibility for future work was presented through two approaches. Firstly, we showed

that differences in collaborative state of the human through movement can be captured

by a projection on a latent space. The features extracted from the dataset enable us

to distinguish between the iterations in the experiment where the participants were

cognitively overloaded and distracted to when they weren’t. The projection on the latent

space can be further developed to represent a function that captures the state-action

pairing of these instances. By utilizing the latent space as a representation of the under-

lying dynamics and patterns in the data, it becomes possible to model the relationship

between the states and corresponding actions. This function can then be used to guide

decision-making and control in the context of physically aHRI such as CS2. Secondly,

the similarity measure between the robot end-effector and human arm movement again

showed higher variations during the part of experiment, which consisted of cognitive

overloading and distractions. Consequently, we showed the deviation in the pattern of

movement for the same participants during the different iterations. The in-between

participant comparison shows that an already learnt skill of collaboration can be affected

by these unexpected events. Based on these arguments the RQ6 is satisfied. The results
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indicate that human movement, both in collaborative and non-collaborative states, can

be utilized as prior knowledge to enhance safety precautions in physically assistive

tasks. By incorporating information about collaboration and considering the impact of

disturbances, the use of human movement as an input modality provides a means to

ensure physical safety and improve the efficiency of human-robot interactions.

Creating such policy φcm would provide prior knowledge on what type of coupled

human-robot movement is performed, based on the level of attention of the user. The

collaboration measure can also be used as part of a method that modulates the robot

movement primitive, which is based on a coupling term derived from the collaboration

measure energy function.

Overall, the results show that the KL divergence manages to capture a higher vari-

ance in the movements when cognitive overloading takes place. Some of the participants

adapt well to the learned skill so that the distraction in Part Three does not lead to

any failure in the dressing task. This aspect of learning over time, how to synchronise

movement with that of the robot, is shown in the third subplot for each participant. The

participant’s improvement of skill over time with the robot trajectory can be mostly seen

on the KL box plots of the top right and bottom left where the KL similarity measure

scores are the lowest in the last part of the experiment while still having Part two

depicting the highest variance due to cognitive overloading.

6.3.2 Limitations

Despite our results showing that human movement can be used to infer collaboration

states as prior knowledge, further work is still needed to fully develop and test the policy

φcm by using either utilizes the latent space model as an energy function or employs the

KL divergence measure.

6.3.3 Summary

This chapter has addressed the ultimate objective of this thesis, which is to use human

movement as an input modality that can infer knowledge about the collaboration state

in a complex physically aHRI.

The dataset from CS2 was used to perform further feature extraction on the human

movement data. The methodology applied involved using statistical methods to uncover

more fidgety and shaky movement during cognitive overloading and distraction. The
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purpose was to demonstrate that human behaviour is indeed affected in these instances

and that this is also reflected in their movement.

The first approach implemented was the GP-LVM, which revealed that collaborative

and non-collaborative movements can be distinguished in a space based on the HS. This

showed the feasibility of creating a personalized space for each participant to tailor their

future interactions with assistive robots. Through the integration of such findings in

a policy function, a measure of the willingness to collaborate or state of collaboration

can be valued based on the observed state-action of the interaction. Additionally, the

second approach utilized similarity measures, specifically KL divergence, to quantify the

synchronization between the human arm and the robot’s end-effector. As future work, it

is essential to validate this approach by additional studies and evaluations.

These results, together with the other chapter, contribute to addressing the research

gaps of state-of-the art by evaluating: (i) the same input modality safety requirements

in different interaction complexities and, (ii) the risk associated with changing human

state and factors, (iii) through methodologies based on experimental designs that allow

data collecting in real-world contexts and (iv) feedback from caring professionals.
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7
CONCLUSIONS AND FUTURE WORK

The overall objective of this work was to demonstrate the importance of ensuring the

safety of physically assistive human-robot interaction (aHRI) through a comprehensive

evaluation of an input modality. This evaluation was conducted by examining the impact

of changing environmental factors, as well as human state HS and human factors HF,

on the interaction. The connotation of the work presented in this thesis extends to both

scientific and societal domains. From a societal perspective, designing assistive robots can

help alleviate the burden on the care sector, particularly in light of ageing populations.

By collaborating with care professionals, our aim is to work towards increasing the

effectiveness of designing physically assistive robots and aligning our efforts with the

needs of care professionals. From a scientific perspective, we propose a collaboration

measure from human movement, that can provided added safety to complex physically

assistive tasks. This measure aims to address the existing research gaps identified in

the state of the art by evaluating: (i) the same input modality safety requirements in

different interaction complexities (ii) and the risk associated with changing human state

and factors, (iii) through experimental designs that allow data collecting in real-world

contexts (iv) and feedback from caring professionals.
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To achieve this objective, valuable insights and feedback were gathered from care pro-

fessionals, which served as inspiration for the development of the proposed collaboration

measure. In Chapter 6, the human movement dataset from CS2 was utilized to extract

relevant features that distinguish between the collaborative and non-collaborative states

of the human. This measure of the state was deemed crucial, as highlighted in Chapter 4,

where the potential failures resulting from distractions in the surrounding environment

were discussed. It was concluded that while human movement prediction can effec-

tively anticipate different movements even with slight variations (Chapter 3), ensuring

physical safety through human movement is heavily influenced by the complexities of

the interaction. The importance of such a measure was even reinforced in OS3, which

exposed major issues in hazard analysis when it comes to assistive robots (see Chapter 5

Each chapter of this thesis focuses on addressing a set of specific research questions

aimed at making a contribution to the gaps in the literature. In the next section, the

most relevant findings from each chapter are summarised, aiming to address the more

general research questions presented in Chapter 1 (see Section 7.1 ). Next, a discussion

of the main limitations and the possible directions for future work (see Section 7.2 ).

Furthermore, given that the target end-users for such robotics systems are older adults,

ethical aspects are briefly discussed following the opinion obtained from OS3 in Chapter

5 (see Section 7.3). Finally the chapter is concluded by stating the main achievements

and key contributions of the thesis (see Section 7.4).

7.1 Requirements for using Human Movement to
design Safe Physically Assistive Human-Robot
Interaction

Based on various reviews and methodologies discussed in Chapter 2, the requirements

for ensuring physical safety were outlined based on the levels of complexities initially

explained in Section 2.1.2.1. A set of research questions were formulated to assess the

extent to which physical safety could be ensured in different interaction complexities.

The case studies presented in this thesis address the various levels of complexities (see

Figure 2.2). The proposed research questions aimed to verify the taxonomies presented

in 2.1.2.1, which suggested that when the task of the humans heavily intersects with

those of the robots, the collective interaction becomes highly dependent on the unknown

environmental conditions, directly affecting the output decision function in the interac-

170



7.1. REQUIREMENTS FOR USING HUMAN MOVEMENT TO DESIGN SAFE
PHYSICALLY ASSISTIVE HUMAN-ROBOT INTERACTION

tion [108]. These claims are supported by other works that argue against approaches

in aHRI that do not consider unknown environmental conditions and eventually hinder

the full deployability of cHRI [18, 63, 72, 111, 142]. By defining the universal function D
in these taxonomies as dependent on physical safety, we evaluate the impact of human

movement as input modalities in different levels of collaboration and how output decision

F(.). The taxonomies for each case study are:

[RQ1, RQ2 ] ← CS1 :
{
Th

}ª{
Tr

}= {
T

}
and D = F(R)E(k)+F(H)E(.)

[RQ3, RQ6, RQ7] ← CS2 :
{
Tr

}∩{
Th

} 6= ; and D = F(R,H)E(.).
[RQ4, RQ5] ← OS3 :

{
Trcarer

}∩{
Th

} 6= ; and D = F(Rcarer,H)E(.)

RQ1: In a socially assistive robot interaction context, is human movement prediction

enough to guarantee physical safety?

This research question investigates to what extent human movement prediction
can provide information about the collaboration intent of the human and keep
physical safety. The taxonomy describing the level of complexities here indicates
that physical safety can be independent of the unknown conditions in the environ-
ment. In the context of a socially assistive robot, variations in the human movement
are hand related and therefore, a reaching action is to be predicted as per these
sub-research questions:

RQ1a: What is the most appropriate methodology to predict human reaching

movements such that variations within the same reaching goal can be repre-

sented and still distinguished between different reaching goals?

RQ1b: Can the human reaching movement be represented in the form of prior

knowledge?

RQ1c: Can the human reaching movement prior knowledge be generalised over

different humans?

RQ2: In a socially assistive robot interaction context, does the state-action pairing for

safe robot manipulation need to change when the collaborative state of the human

changes?

A set of sub-research questions to address if the assistive robot can decide on the
human’s physical safety based only on the known environmental factors.
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RQ2a: What is the smallest time window possible that allows a high-accuracy

prediction of the human reaching movement? Is it small enough to guarantee

safety?

RQ2b: Can this human-reaching movement prediction guarantee the same de-

gree of physical safety when changing the context from a socially to a physi-

cally assistive robot?

The results obtained from the collected dataset in case study CS1 provide strong

evidence that human movement prediction using appropriate parameters in the ProMPs

can achieve high accuracy. By utilizing prior knowledge about human reaching movement

within the socially aHRI framework, the trained ProMPs enable the robot to differentiate

between very close reaching targets even before the human physically touches the target

cell. This capability enhances the robot’s ability to anticipate and respond to human

intentions.

Furthermore, the results demonstrate that even subtle variations in human move-

ment can be detected, even when the reaching goal differs by as little as 8cm. The

accuracy of the prediction extends up to 16cm on the cognitive game board when only a

small initial part of the executed trajectory is observed. This means that the assistive

robot can approach as close as 16cm while still monitoring the user, allowing it to provide

effective guidance and assistance during the cognitive game. Importantly, these findings

generalize across multiple participants, indicating the robustness of the approach.

The observed trajectories in the dataset consisted of approximately 50 time samples

recorded by the Xsens suit at a frequency of 50Hz. This means that a trajectory observa-

tion of 10% corresponds to around 100ms. Based on the results, it is clear that the correct

region on the board can be predicted within 100ms of the older adult changing hand

posture and moving toward the board. The actual target cell can be predicted within

the first 450ms, allowing the robot to accurately determine the closest 8cm where the

reaching movement will end. This demonstrates that within a very short time frame of

100ms, the robot can acquire knowledge about the user’s intention through the modality

of human movement prediction.

However, it is important to note that the guarantee of physical safety within this

time window of 450ms depends on the specific context of the aHRI. In the presented

case study, CS1, physical safety from the socially assistive robot can be ensured up

to 16cm away from the human’s arm reach. This safety requirement is based on the
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proximity to the common workspace, which is the cognitive board game. However, in

the context of a physically assistive robot where the robot’s workspace is the human

body itself, the adequacy of this 450ms time window for ensuring physical safety needs

further analysis. Therefore, while the answer to RQ2a is affirmative, addressing RQ2b
necessitates additional investigation and examination. Furthermore, the above findings

indicate that the taxonomy in this interaction complexity can be valid since physical

safety can be maintained irrespective of the unknown environmental conditions that can

affect the HS, and HF

After analysing physical safety in the complexity levels of CS1, in CS2, the complexity

levels are increased, and once again, the taxonomy at this level is tested through the

research questions. In CS2, it was important to create an unknown environment and

analyse if human behaviour is affected. Ultimately, the goal is to demonstrate that

if human behaviour is affected, physical safety would depend on the robot making

decisions based on this knowledge. Provided these claims are valid, it is necessary

to transmit this knowledge through the modality of human movement. From CS2, it

was observed that the synchronisation of human movement with the robot is hindered.

These findings suggest that predicting human movement without the knowledge of the

human’s collaborative state can impact physical safety. With CS2, there is evidence

highlighting the significance of environmental factors, HS and HF consideration in

ensuring physical safety. Additionally, the qualitative human movement data shows that

such knowledge can be seen through the input modality to provide knowledge about the

human’s collaborative state. These arguments are explored further in the final chapter

of this thesis. The research questions to these findings were:

RQ3: In a physically assistive robot interaction context, can human behaviour impact

their physical safety?

RQ3a: Can disturbances in a dynamic environment lead to unusual variations in

human movement and, therefore a failed collaboration task?

RQ3b: Can prediction of human movement still guarantee safety during such

known disturbances?

RQ3c: In such context, can the state-action pairing remain non-adaptive to guar-

antee safety during such disturbances?

RQ3d: Can some humans become familiar with some of the disturbances in the

environment?
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RQ3e: Can movement synchronization fail even though the human learned how

to adapt and collaborate in the task?

RQ4: Can collaboration intent be gauged from the variations in human movement and

guarantee physical safety from a more complex state-action pairing?

This question investigates if variations in human movement due to disturbance in
the environment indicate an intent to the collaborate the human during the physical
interaction.

The main contribution of CS2 is the analysis and quantification of disrupted human

movements during a physical human-robot interaction task. The effects of these disrup-

tions were further confirmed through qualitative evaluations of the user experience. The

timeline (see Figure 4.1) and temporal layout (see Figure 4.2) of the HRI experiment

devised for this study show how by using the literature on human behaviour, action cog-

nition and motor control, the effect of unknown environments can be tested. The findings

from these results and the possibility to evaluate input modalities in these contexts show

how such approach can be extremely useful for other researchers conducting similar

studies and for the goal of having fully deployable physically assistive robots.

The results obtained from the NASA and PeRDITA questionnaire provides additional

validation for HRI experiment. The occurrence of dressing failures and mistakes (see

Figure 4.4), as well as the qualitative feedback from the participants, align with the

quantitative data collected on human motion data. These findings address RQ3a, as they

demonstrate that the dynamic nature of cognitive overloading and distractions leads to

atypical variations in human movement, which ultimately lead to unsuccessful dressing

tasks. Parts Two and Three of the experiment were specifically designed to disrupt the

way participants initially learned to perform the collaborative task. The findings depicted

in Figures 4.7 and 4.8 indicate that the cognitive overloading in Part Two can result in

overwhelming intrinsic cognitive load and significant extrinsic cognitive loads. However,

in Part Three of the experiment, the recorded data shows slightly less movement than

in Part Two, suggesting that participants were able to handle the new environmental

information slightly better on their second attempt. Despite the participants learning

how to collaborate in Part One, the occurrence of unexpected events consistently posed

challenges to the germane load during the experiment, thereby validating the taxonomy

at this level of complexity. The NASA showing a higher temporal demand in Part Three
is also associated with an unknown environmental context since participants were still

trying to understand the dynamics of the collaboration and build their own approach
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to performing the task. From the PeRDITA results, participants show uncertainty in

describing the Collaboration as adaptive showing an impression of failed adaption

since the synchronicity was not as present as in Part One during cognitive overloading.

All participants either made a mistake or a dressing failure during the cognitive over-
loading. The participants who did not fail in the dressing task answered most questions

incorrectly during the cognitive overloading. These findings that answer RQ3d were due

to the fact participants were able to become familiar with the assistive task despite the

cognitive distraction, but this cannot guarantee physical safety if new distractions are en-

countered in the future, emphasizing the ongoing potential for safety risks in physically

aHRI. Furthermore, the results provide compelling evidence that even when participants

had become familiar with the task, their concentration was still susceptible to disrup-

tion when unexpected events occurred. This loss of concentration led to a breakdown

in interaction synchronicity. These findings directly address research question RQ3e,

demonstrating that despite participants having sufficient time to familiarize themselves

with the assistive task, they still struggled to adapt and collaborate effectively in Part
Two and Part Three. While the successful completion of tasks in Part One indicated the

presence of movement synchronization, it cannot be guaranteed that the HS remains

synchronized with the robot when environmental factors come into play. These results

effectively validate hypotheses H1 and H2, confirming that the collaborative task was

significantly affected by variations in human movement, resulting in a loss of synchro-

nization between the human and the robot and ultimately leading to a non-collaborative

state.

The failures and mistakes in Part Two and Three can be attributed to changes in

the participants’ collaborative state. By analyzing the projection of human movement

onto the latent space, we gain insights into the learning process throughout all three

parts of the experiment. Despite encountering only minimal dressing failures in Part
One, there is a wider dispersion of points in the latent space, indicating that participants

were still in the process of mastering the task execution. The germane cognitive load,

which involves constructing a mental model of the task, was likely high in Part One,

as participants were still in the early stages of developing their mental models. This

learning process is reflected in the significant variance of temporal effort, as measured

by the NASA questionnaire (see Figure 4.7).

The high temporal effort observed in the experiment indicates that participants were

actively learning and synchronizing their movements with the robot. The projections in

Part Two and Part Three reveal that disrupted movements deviate from the centre of
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the 2D latent space, unlike non-disrupted movements. This suggests that imbalanced

cognitive loads, as experienced in Part Two and Part Three, hinder the retrieval of task

knowledge, thus affecting human motor control. The 2D latent space projections cap-

ture various types of movements, including those performed during the learning phase,

movements in synchronicity with the robot, and movements disrupted by unexpected

events. Addressing RQ3b, the findings highlight that participants’ cognitive load is

susceptible to influence, challenging assumptions made by approaches like CPCI and

prediction methodologies that solely consider optimal human movement for ensuring

physical safety. The results emphasize that human movement cannot always be pre-

sumed to be consistently collaborative, indicating a negative answer to RQ3b. Therefore,

approaches like CPCI and prediction methodologies observed in literature cannot assume

physical safety when their prior knowledge only includes optimal behaviour of human

movement. This corroborates the answer provided in Chapter 3 regarding RQ2b, that

human movement prediction alone cannot guarantee sufficient physical safety without

monitoring the participants’ cognitive load. An assistive robot cannot continue to adapt

when the older adult is not interested or willing to collaborate.

In a context like CS2, the projections on the 2D latent space suggest the need

for a more complex state-action pairing to ensure physical safety. Some projections

represent human movement during the collaborative state, while others do not. These

findings indicate that the answer to RQ3c is no, and mapping the latent space of

human movement to robot actions is necessary when the human is not in a collaborative

state. The state-action pairing should only remain non-adaptive in instances where the

human behaviour is optimal. Considering that assistive interactions often involve older

adults, ensuring physical safety requires a shift from adaptation to re-establishing a

collaborative behaviour before proceeding with task adaptation. The need for such a

requirement is also emphasised in Chapter 5. Conducting research to evaluate assistive

robots in such contexts prior to deployment can provide valuable knowledge about which

human movements are intended for collaboration and which are not. Latent space

analyses, such as the one conducted in this experiment, can assist in differentiating

between different parts of the experiment. These arguments partially address RQ4.

Furthermore, Chapter 6 extends the answer to this research question by exploring

methods for creating complex state-action pairings that measure collaboration through

human movement.

Furthermore, personalisation is crucial for accommodating the unique collaborative

states of each participant. The user experience and mistakes highlighted in the results
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section demonstrate that individuals can react differently to external disturbances. The

complex nature of cognitive overloading and distraction’s impact on human motor control

underscores the need for personalisation tailored to the specific end-user. The necessity

for personalisation, as revealed in Chapter 4, is further emphasized by the insights

provided by the caring professional in the subsequent Chapter 5.

Based on the lessons learnt (see Section 4.4.2), CS2, proceeds on to validate the

complexity level taxonomy of physically aHRI that requires CPCI. These findings support

the notion that in order to maintain physical safety, it is essential to somehow measure

the collaborative state of the human through the input modalities of the robot. The

taxonomy of CS2 and OS3 are identical; however, in the context of OS3 the carer replaces

the robot and is able to guarantee a safe and effective physically aHRI. To evaluate how

carers handle these high levels of complexity and measure the user’s collaborative state,

the following questions were posed:

RQ5: What are the requirements for physically assistive robots to deliver physically

assistive tasks?

In order to properly answer this research question, the following sub-research
questions are posed to carers in care-homes:

RQ5a: How do carers physically assist older people in order to guarantee physical

safety?

RQ5b: What do carers think the requirements and guidelines for physically assis-

tive tools or robots should be?

RQ5c: Do carers think physical safety can be guaranteed by only looking at the

optimal behaviour of humans?

In this OS3, conducted with caring and nursing professionals in a real-context

environment, the aim was to identify the requirements and conduct a hazards analysis

related to physically assisting older adults. The integration of HF, HS and environmental

factors highlighted in previous chapters become evident through this study, providing

valuable insights for future directions.

The use of physical assistive robots holds great potential in supporting the ageing

population with various impairments and needs. However, the safety analysis techniques

currently employed often overlook the complexities arising from patients’ specific require-

ments and behaviours. As shown through OS3 in Chapter 5, these model-based safety
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analyses primarily focus on the robot’s ability to detect or avoid hazards, but they fail to

capture the complexity inherent in these tasks. The limitations of current safety metrics,

reliability assessments, and human models become apparent, highlighting the need for

more comprehensive metrics that consider the human element in HRI. By addressing

these limitations, this argument and the findings from the observational study contribute

to answering RQ5a and RQ5b shedding light on the shortcomings of current approaches

to physically assistive robots.

Considering patients’ diverse needs and behaviours and analyzing how they interact

with assistive technology in real-world environments reveals additional hazards. Eval-

uation by nursing and care professionals uncovers use cases that are often overlooked

by standard methods. Assistive robots would require adaptation and additional sensing

capabilities to address these hazards. The current regulations offer only a superficial

assessment of physical assistive interaction with robotic systems, rendering model-based

safety analysis techniques inadequate without incorporating user adaptation. The feed-

back and insights from care professionals emphasize the importance of evaluating the

human-in-the-loop aspects of interaction and technical design. By including these as-

pects and leveraging the expertise of professionals to define requirements, the research

on physical assistive robots can be made safer. These arguments further contribute to

answering RQ5b.

A key finding from the hazards and requirements identified in this study is that

carers consistently assess the state of older adults, never assuming optimal behavior

even within a single day. The dynamic nature of older adults’ capabilities and behaviour

necessitates continuous evaluation and adaptation by carers. This emphasizes the im-

portance of recognizing and responding to individuals’ current conditions and needs

rather than relying on assumptions or generalizations. These findings directly address

RQ5c, demonstrating that carers understand the dynamic nature of older adults and

continually assess their state and needs when providing physical assistance. These

findings align with the answer provided to RQ2b, which was discussed in Chapter 3 and

Chapter 4, highlighting the importance of considering contextual factors in providing

physical assistance and conducting meticulous hazard analysis for safe task execution,

particularly in close proximity interactions.

Carers emphasize the importance of considering the contextual factors in the en-

vironment when providing physical assistance, as these factors continuously change

and require meticulous hazard analysis to ensure safe task execution, particularly in

close proximity interactions. One recurring concept from this observational study is
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that carers always strive to engage and measure collaboration while assisting older

adults, regardless of their degree of vulnerability. Collaboration plays a critical role in

determining safety in physically assistive tasks, and while evaluating it can be chal-

lenging, quantifying collaboration can serve as a key safety measure. The next chapter

(Chapter6) focuses on developing a methodological approach to quantify collaboration in

human-robot experiments tailored to the specific tasks, such as CS2. By conducting more

realistic experiments and leveraging different modalities, this measure of collaboration

can be inferred and constructed. Chapter 6 aims to make use of the taxonomy at the

higher levels of complexity and base robot actions with knowledge about the HS in the

unknown environmental factors not avoid hindering the physical safety.

Incorporating these insights into future studies will not only contribute to a better

understanding of user experience during human-robot interaction but also advance

research in safety. To ensure the safe deployment of assistive robots, it is crucial to

carefully consider the input and feedback from nursing and care professionals who

possess experiential knowledge in these tasks. Adopting a co-design approach that

involves their expertise and incorporates their insights will help address the complexities

involved and shape the development of technology in this field. Based on these arguments

and findings, we aim to assess whether we can quantify collaboration from human

movement as an input modality. The following research questions were posed to explore

this topic:

RQ6: Following from RQ4 and RQ5, how can such prior knowledge be used to couple the

human movement and robot’s motion planning to guarantee safety in the context

of disturbance?

RQ6a: How can the variations in human movement be modelled as prior knowl-

edge?

RQ6b: Can a measure of collaboration be created from this prior knowledge

to indicate a lack of synchronisation and hence a possible failure in the

interaction?

RQ7 Ultimately can such collaboration measure be embedded and modelled in the

robot’s motion planning?

In Chapter 6, we present a way forward for addressing the challenges highlighted in

Chapter 4 and Chapter 5 regarding physical safety in physical aHRI. While answering the

previous research questions, arguments lead to the importance of having a ’collaboration’
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measure that captures the correlations between human-robot movement in an assistive

task.

As per the requirements from Chapter 5, a reliable ’collaboration’ measure should

accurately assess the level of collaboration between the human and the robot during

the task. It should quantify the synchronicity of their movements and infer the degree

of collaboration based on these movements. The dataset created and utilized in CS2

enables us to compare an ideally learned skill with changes that impact the attention

of the human, which can potentially hinder safety, especially in long-term movement

prediction for close-proximity assistive tasks. In Chapter 6, two potential approaches

were presented as a means for comparing the collaboration knowledge within the human

movement dataset.

Firstly, we demonstrated that the deviation in human movement could be captured

by projecting it onto a latent space. By extracting features from the dataset, we can

differentiate between iterations where participants were cognitively overloaded and

distracted from those where they were not. This latent space projection can be further

developed to represent a function that captures the state-action pairing in these instances.

By utilizing the latent space as a representation of the underlying dynamics and patterns

in the data, we can model the relationship between states and corresponding actions.

This function can then guide decision-making and control in physically aHRI contexts

such as CS2.

Secondly, the similarity measure between the robot end-effector and human arm

movement revealed higher variations during the experiment’s cognitive overloading and

distraction phases. Consequently, we observed deviations in the movement patterns of

the same participants across different iterations. Comparisons between participants

showed that even an already learned collaboration skill could be affected by unexpected

events. Based on these findings and arguments, RQ6 is satisfied. The results indicate

that human movement can be utilized as prior knowledge to enhance safety precautions

in physically assistive tasks in both collaborative and non-collaborative states. By in-

corporating information about collaboration and considering the impact of disturbances,

using human movement as an input modality provides a means to ensure physical safety

and improve the efficiency of human-robot interactions. Our results demonstrate that the

KL divergence effectively captures higher movement variance during cognitive overload-

ing. While some participants adapt well to the learned skill, ensuring that distractions

in Part Three do not lead to failures in the dressing task, others show improvements

in synchronizing their movements with the robot trajectory over time. These aspects of
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skill acquisition and improvement can be observed in the KL box plots, with lower scores

indicating improved synchronization in the last part of the experiment, while Part Two
still depicts the highest variance due to cognitive overloading.

Creating a policy φcm based on these insights would provide prior knowledge about

the type of coupled human-robot movement performed, taking into account the user’s

attention level. The collaboration measure can also be integrated into a method that

modulates the robot’s movement primitive, incorporating a coupling term derived from

the collaboration measure’s cost function. In previous literature, latent spaces have

been utilized to encode information about different human motions and movements.

The dataset from CS2 demonstrated that if a learning phase is conducted together

with the carer, the assistive robot can gather information about the collaborative and

non-collaborative states of the human. These states should be verified by the carers

and then provided to the assistive robot to create a personalized approach for the

assistive task. The results shown in Chapter 6 indicate that the learn latent spaces

can now hold knowledge about the collaborative state and be applied to robot motion

planning as shown in [61, 74, 98, 152]. Additionally, the similarity measure obtained

in Chapter 6 can offer valuable insights for model-based learning approaches, such

as the work by Englert et al. [46]. While Englert et al. utilize probabilistic trajectory

matching to adapt the robot, their method does not consider estimating collaboration. In

contrast, CS2 and the results presented in Chapter 6 demonstrate that KL divergence

can effectively estimate collaboration at specific instances. Therefore, instead of solely

aiming to minimize KL divergence for trajectory matching purposes, it can be leveraged

as a measure of collaboration, providing a more comprehensive understanding of the

human-robot interaction.

7.2 Limitations, Open Challenges and Future Work

An open challenge and a limitation in our research is to consider acquiring human

movement data through a camera instead of relying solely on the Xsens suit. While the

Xsens suit has served our purpose of analyzing human movement in different interaction

complexities, it may not be practical or feasible for every older adult to wear such a suit

and undergo calibration. While significant progress has been made in 3D human joint

tracking from 2D cameras, there are still challenges to overcome when it comes to tasks

involving occlusion and real-context environments such as care homes. Additionally, It

is also worth noting that in recent literature there are other methods that are you to
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predict human movement [38, 39, 135] .

A limitation with respect to the collaborative measure is the need for a framework.

The proposed measure of collaboration can be further evaluated in different robotic

frameworks, and its principles apply to various other input modalities. In recent lit-

erature, new physical interaction frameworks utilize latent space as prior knowledge

derived to influence actions. These findings suggest that the approach taken in Chap-

ter 6 and the methodology for creating the collaboration measure can be integrated

into similar frameworks. In this thesis, our focus was on analyzing human behaviour

within complex interaction contexts and identifying safety measures that would enable

safer physical interactions through the evaluation of human movement. Ultimately,

we wanted to analyse if collaboration and non-collaborative instances can be identified

through the input modality of human movement. While we thoroughly analysed human

movement and its impact on physical safety, we acknowledge that a comprehensive

framework incorporating robotic factors would provide a more holistic understanding.

Such a framework could include the evaluation of input modalities, the influence of

changing environmental factors, and the assessment of the human state and human fac-

tors as feedback to the robot. By analyzing these measures within a complete framework,

we could better understand the interplay between different elements and their impact

on overall safety in physically aHRI. This comprehensive analysis would enhance the

validity and applicability of our findings and provide a more robust basis for designing

and implementing safety measures in real-world scenarios. Recognizing this limitation,

future research should strive to develop and employ a comprehensive framework that

considers all relevant factors and provides a more thorough evaluation of safety mea-

sures in physically assistive interactions. This would contribute to advancing the field

and ensuring the effectiveness and reliability of physically assistive robots in various

contexts and settings.

The human movement prediction methodology adopted in Chapter 3 could have been

further analyzed and compared to different methodologies. However, the scope of the

chapter was to determine whether human movement methodologies can differentiate

between very close-reaching targets and if this can be achieved through the appropriate

consideration of time and space within the context of socially aHRI. The comparison of

such methodologies is a future task that can be extrapolated from the dataset of CS1.
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7.2.1 Discovered Research Gaps

Several research gaps were originally specified in Chapter 2 and were addressed through

the original research questions. However, some gaps in the research were discovered

when the case studies were evaluated.

Firstly, there is a lack of hazard analysis and safety standards specifically concerning

physically assistive robots. While there is an ageing population and a growing demand

for assistive tasks, there is still a need for a proactive approach to addressing the safety

aspects of physically assistive robots. The analysis of information from OS3 revealed

that the current safety standards are insufficient in identifying more than half of the

risks faced by older adults when using assistive technology. This significant shortcom-

ing highlights the need for a more inclusive approach involving various professionals’

expertise in developing comprehensive solutions.

Secondly, the limitations arising from assumptions about optimal human behaviour

can impact methodologies in physically assistive human-robot interaction (aHRI). From

CS2 and OS3, it became evident that safety risks can easily arise due to the dynamic

environment in which assistive tasks are likely to occur. Many human movement predic-

tion and robot adaptation algorithms are tested solely within laboratory environments

without considering real-world scenarios. While directly involving end-users and the envi-

ronments in which the technology is intended to be used can expose major shortcomings,

it can also guide research in the right direction.

Finally, there is a need to plan the temporal layout of experiments carefully. The

knowledge gained from the literature regarding the mental models of humans and

their collaborative behaviour enabled us to test the case study’s hypotheses through

the appropriate experimental methodology design. This consideration highlights the

importance of properly structuring experiments to capture relevant data and validate

the proposed measures effectively. To our knowledge, literature does not highlight the

need for accessing physical safety in assistive tasks through the approaches provided in

CS2.

7.3 Ethical Aspects

With the increasing demand for caregivers in care homes, researchers are exploring

the use of robots to assist with repetitive non-ergonomic tasks. However, it is crucial

to recognize that certain tasks require precision, dexterity, flexibility, and cognitive

decision-making, which may currently be lacking in robots. While assistive tasks aim
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to fulfil specific needs, it is important to ensure that the robot’s cognitive capabilities

align with the requirements for safeguarding the physical safety of older adults. Without

sufficient cognitive decision-making abilities, physically assistive robots may not be able

to ensure the safety of individuals effectively. This ethical consideration underscores the

need for a thorough assessment of the capabilities and limitations of assistive robots. It

highlights the importance of understanding the tasks that can be safely and effectively

carried out by robots and those that still require human intervention or more advanced

robotic capabilities. Addressing this ethical implication requires ongoing research and

development in robotics, with a focus on enhancing the cognitive abilities of assistive

robots. It also calls for collaboration among researchers, care providers, and policymakers

to establish clear guidelines and regulations regarding the use of robots in care homes.

This collaborative effort aims to ensure the well-being and safety of older adults while

maintaining a human-centred approach to care.

Another ethical implication of relying on assistive tools or robots for older adults is the

potential impact on their emotional well-being. The use of physically assistive robots in

tasks raises questions about loneliness and emotional attachment. Increased dependence

on robots may lead to feelings of isolation and loneliness, as human interaction and

companionship are fundamental human needs. Individuals may also develop emotional

attachments to these robots, considering them companions or even forming emotional

bonds with them.

These aspects require attention and consideration from governments and institutions.

It is crucial to address the potential consequences of increased reliance on robots for

older adults and develop strategies to mitigate any negative impacts. This may involve

incorporating social interaction and companionship elements into the design and deploy-

ment of assistive robots, ensuring that they are not solely seen as functional tools but

also as facilitators of human connection and well-being.

Indeed, an ethical threshold is necessary when considering the cognitive and physical

abilities of older adults in relation to the capabilities of assistive robots. It is important

to assess whether the robot’s assistance aligns with the cognitive and physical abilities

of the individual and that the older adults’ needs are dignifiedly considered. This assess-

ment involves considering factors such as the complexity of the task, the individual’s

capacity to understand and interact with the robot, and the potential risks associated

with the interaction.

The cognitive ability threshold determines whether the older adult can effectively

engage with and comprehend the robot’s instructions or assistance. This assessment en-
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sures that the individual can make informed decisions, understand the limitations of the

robot, and maintain control over the assistance provided. Similarly, the physical ability

threshold considers whether the older adult is physically capable of safely interacting

with the assistive robot in a given task. It evaluates whether the individual possesses the

necessary strength, coordination, and mobility to engage with the robot without putting

themselves at risk of harm.

By establishing these ethical thresholds, we can ensure that assistive robots are

appropriate and safe for older adults. It helps strike a balance between the capabilities of

the individual and the capabilities of the robot, ensuring that the interaction is beneficial

and promotes the well-being of the older adult.

7.4 Key Contributions

The work was done with the aim of developing a collaborative measure for physical aHRI

and CPCI. The work done to achieve this goal results in several contributions to the

field of physically assistive robotics and HRI in general. This work contributes to the

field of physically assistive robots by combining knowledge from various domains such

as mental models, human behaviour, human state, human factors, and environmental

factors. Integrating these factors with AI techniques used in robotic frameworks enables

a comprehensive understanding of the complex interaction between humans and robots.

This approach provides a way for developing more effective and context-aware physically

assistive robots.

From this interdisciplinary approach toward the various factors, the main contribu-

tions are as follows:

- Human reaching movement dataset collected from 30 participants in the context of

a socially aHRI (Chapter 3).

- Human reaching movement prediction methodology based on probabilistic ap-

proach as a means of physical safety in the context of socially aHRI (Chapter

3).

- Design of an experimental HRI methodology with timed interruptions to expose

changes in the collaborative interaction during a physically aHRI dressing task

(Chapter 4, [29]).
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- Qualitative evaluation of the user experience showing how cognitive overloading
and distractions increased the cognitive workload in physically aHRI (Chapter 4,

[29]).

- Quantitative analysis of human movement to evaluate the collaborative behavior

change during unexpected events in robot-assisted dressing task (Chapter 4, [29]).

- A focus group from professional carers on how to use various interaction modalities

to acquire, maintain, and provide safe assistive tasks while aware of the safety

hazards in the surrounding context (Chapter 5, [31]).

- A comparison of safety hazard analysis with respect to the requirements specified

by the professional carers (Chapter 5, [31]).

- A synchronicity measure between collaborative and non-collaborative human move-

ment (Chapter 6, [31],[28]).

- A latent space that projects human movement in a collaborative and non-collaborative

state (Chapter6, [31],[28]).
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A.1 CS1 Ethical Approval and Additional
Sheets/Forms

The ethical forms and sheets used for CS1 are presented in this section. These documents

were required in Spanish since experiments were carried out as part of secondment at

Institut de Robotica i Informatica Industrial (IRI) in Barcelona, Spain.

A.1.1 CS1 Ethical Form Application
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A.1. CS1 ETHICAL APPROVAL AND ADDITIONAL SHEETS/FORMS

A.1.2 CS1 Participants Information Sheet
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Institut de Robòtica i Informàtica Industrial, IRI (CSIC-UPC) 
Parc Tecnològic de Barcelona, C/ Llorens i Artigas, 4-6, 08028 Barcelona 
Tel: 93 401 57 51  Fax: 93 401 57 50   www.iri.upc.edu   info@iri.upc.edu 
 

HOJA DE INFORMACIÓN AL PARTICIPANTE 
 

TÍTULO DEL ESTUDIO: Predicción de la intención de movimiento en el contexto de una interacción 
robot-humano cognitiva asistencial 

TÍTULO DEL PROYECTO: SOCRATES – Social Cognitive Robotics in The European Society 
TIPO DE PROYECTO Y ENTIDAD 

PROMOTORA/FINANCIADORA: 
MSCA-ITN-2016 – Innovative Training Networks, financiado por la Comisión Europea 
mediante el acuerdo de subvención nº 721619 

INVESTIGADOR PRINCIPAL: Guillem Alenyà Ribas 
INVESTIGADOR/ES RESPONSABLE/S: Antonella Camilleri 

CENTRO DE ADSCRIPCIÓN: University of the West of England, Bristol (UK) 
LUGAR DONDE SE REALIZARÁ EL ESTUDIO: Instituto de Robótica e Informática Industrial, CSIC-UPC 

TELÉFONO: 93 401 1901 
E-MAIL: galenya@iri.upc.edu, Antonella.Camilleri@uwe.ac.uk 

 
 
(1) INTRODUCCIÓN Y PROCEDIMIENTOS 
Nos dirigimos a usted mediante este documento para informarle sobre un estudio de investigación aprobado por el Comité de 
Ética del CSIC, en el que se le invita a participar de forma voluntaria. Para ello le rogamos que lea esta hoja informativa con 
atención y nos consulte cualquier mínima duda al respecto. 
 
Descripción de la actividad 

- Objetivos: 
Esta investigación se lleva a cabo en el marco del proyecto SOCRATES, Innovative Training Networks, financiado por la 
CE mediante el acuerdo de subvención nº 721619.   
 
Su objetivo es el de evaluar varios aspectos de la interacción entre un usuario y un robot, cuando éste último actúa como 
tutor en un escenario de juegos de mesa. Más concretamente, el estudio se centra en los diferentes movimientos de 
alcance (movimientos del brazo derecho) que el usuario realiza para alcanzar las diferentes fichas en el tablero. 
 
El juego consiste en clasificar las "n" fichas colocadas aleatoriamente en un tablero. El usuario no tiene información previa 
excepto el número de fichas para ordenar. El propósito general es tener un robot que asista al usuario proporcionándole 
diferentes niveles de soporte: animándole, sugiriéndole un subconjunto de posibles soluciones, sugiriéndole la solución y 
eventualmente como último recurso proporcionándole la ficha correcta para moverse. La asistencia puede prestarse 
utilizando el habla y/o los gestos.  
 
El objetivo principal de este experimento es evaluar los movimientos de alcance que realizan los usuarios, de manera que 
podamos ser capaces de predecir la intención del movimiento de alcance del usuario en un espacio de trabajo compartido 
con el robot, garantizando una navegación segura del mismo.  
 
Es importante destacar que todos los experimentos se realizarán con individuos sanos de cualquier edad entre 18 y 65 
años. Registramos el movimiento del usuario para recoger y colocar fichas del tablero. El usuario tiene que repetir cada 
movimiento 30 veces. El estudio incluye la recopilación de información sobre la edad y el género de los participantes. En 
total, se prevé hacer experimentos con hasta 30 usuarios diferentes. 
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Tel: 93 401 57 51  Fax: 93 401 57 50   www.iri.upc.edu   info@iri.upc.edu 
 

 
- Metodología de investigación: 

 
Los experimentos se realizarán en el IRI. No se pedirá a los participantes que completen el juego entero, sino que solo se 
utilizará el tablero de juego para registrar los “movimientos de selección” que realice el usuario con él. La recopilación de 
datos se utilizará en otro experimento posterior, para la integración en un marco utilizando el robot.  
 
Los participantes serán registrados cogiendo fichas de cada casilla (espacio amarillo) del tablero mostrado en la figura 1. 
Este movimiento a una misma casilla del tablero se repetirá 30 veces. En algunas ocasiones, se requerirá que el usuario 
haga “movimientos intermedios” hacia una casilla partiendo de otra casilla diferente del tablero. Esto nos permitirá tener un 
conjunto de datos en el que se puede modelar la predicción de alcance en función de la varianza de todos los movimientos 
recogidos de estos participantes. 
 
Un movimiento de selección es un movimiento desde una posición de descanso a una de las casillas. La posición de 
descanso puede ser que el usuario coloque la mano al final de la mesa, en el reposabrazos de la silla o en su regazo. Un 
movimiento intermedio es un movimiento que tiene lugar después del movimiento de selección para colocarse en una de 
las otras casillas del tablero. 
 

 
Figura 1 - Ejemplo de tablero 

 
La metodología para recopilar datos de los movimientos del usuario será mediante el uso de una cámara simple. No se 
almacenará ninguna grabación de video para las personas que realizan los experimentos. Solo se almacenará la posición 
del brazo en cada referencia temporal. Como validación cruzada, también se utilizará un sistema de captura de movimientos 
(traje X-Sens) para recopilar datos sobre el movimiento. Esto requeriría que los participantes usen un traje especial en la 
parte superior del cuerpo y con el que se envolverá un conjunto de tres sensores en el brazo del usuario para registrar los 
movimientos al recoger y colocar fichas del tablero. 
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Parc Tecnològic de Barcelona, C/ Llorens i Artigas, 4-6, 08028 Barcelona 
Tel: 93 401 57 51  Fax: 93 401 57 50   www.iri.upc.edu   info@iri.upc.edu 
 

 

(2) NATURALEZA DE LA PARTICIPACIÓN 

Su participación en este estudio es totalmente voluntaria. Usted puede decidir participar o no en este proyecto. De igual modo 
puede abandonar el estudio en cualquier momento revocando el consentimiento informado sin que esto le afecte de ningún 
modo. Usted tiene la posibilidad de elegir el destino de sus datos en caso de retirarse del estudio, incluyendo su destrucción. 
 
 
Beneficios 
El participante en este estudio podrá conocer la investigación que se lleva a cabo en nuestro centro sobre robótica social.  
 
Riesgos 
Los riesgos de seguridad son mínimos. No se utilizará ningún robot para esta recopilación de datos. 
 
Diseminación de los resultados 
La única información personal que se recogerá de cada participante es su sexo y su franja de edad para tratamiento estadístico. 
Dicha información será almacenada en los servidores del centro, y será encriptada. Sólo el investigador que realiza el 
experimento y su supervisor tendrán acceso a estos datos. El uso de los datos por otros investigadores requerirá la aprobación 
escrita del supervisor (correo electrónico). Los resultados que se publicarán en forma de artículo científico serán anónimos. 
 
 
(3) PARA MÁS INFORMACIÓN 
 
Usted tiene derecho a clarificar todas las dudas que se le presentes en cualquier momento, pudiendo solicitar información más 
detallada sobre la investigación. Para ello puede comunicarse con el investigador principal o el investigador responsable cuyos 
datos de contacto están al principio de este documento.  
 
Si considera que todas las dudas han sido aclaradas y que tiene la convicción de participar en este estudio, a continuación, 
puede firmar la hoja de consentimiento informado. 
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HOJA DE CONSENTIMIENTO INFORMADO 
 

TÍTULO DEL ESTUDIO: Predicción de la intención de movimiento en el contexto de una interacción 
robot-humano cognitiva asistencial 

TÍTULO DEL PROYECTO: SOCRATES – Social Cognitive Robotics in The European Society 
TIPO DE PROYECTO Y ENTIDAD 

PROMOTORA/FINANCIADORA: 
MSCA-ITN-2016 – Innovative Training Networks, financiado por la Comisión Europea 
mediante el acuerdo de subvención nº 721619 

INVESTIGADOR PRINCIPAL: Guillem Alenyà Ribas 
INVESTIGADOR/ES RESPONSABLE/S: Antonella Camilleri 

CENTRO DE ADSCRIPCIÓN: University of the West of England, Bristol (UK) 

LUGAR DONDE SE REALIZARÁ EL ESTUDIO: Instituto de Robótica e Informática Industrial, CSIC-UPC 

TELÉFONO: 93 401 1901 

E-MAIL: galenya@iri.upc.edu, Antonella.Camilleri@uwe.ac.uk 

 
Nombre del participante: 
Contacto: 
 
Título del estudio: Predicción de la intención de movimiento en el contexto de una interacción robot-humano cognitiva asistencial 

DECLARO que he leído la Hoja informativa del Participante y que se me ha entregado una copia, que he tenido tiempo suficiente 
y se me ha dado la oportunidad de hacer preguntas.  

DECLARO que todas mis preguntas sobre mi participación en este estudio de usuarios han sido respondidas satisfactoriamente. 

DECLARO que entendí completamente el propósito del estudio del usuario y mi participación en él. 

DECLARO que he entendido que mis datos se utilizarán para publicaciones científicas en forma seudónima y doy mi 
consentimiento informado para este uso. 

DECLARO que entiendo que cualquier información personal que autorice proporcionar será tratada como confidencial y nunca se 
pondrá a disposición del público. 

DECLARO además que entiendo que mi participación es voluntaria por lo que puedo retirarme de la investigación libremente, en 
cualquier momento y por cualquier razón, y asimismo DOY MI CONSENTIMIENTO para participar en la investigación que se me 
ha propuesto, únicamente bajo mi propia responsabilidad.  

 
Firma y fecha del participante: 

 
Declaración del investigador responsable 
 

La información contenida en esta solicitud, incluyendo cualquier información que la acompañe, es completa y correcta. Se han intentado 
identificar todos los riesgos relacionados con la investigación que pueden surgir en la realización de esta investigación 
 
 
 
 
Investigador principal: Guillem Alenyà      Investigador supervisor: Antonella Camilleri  
Firma y fecha:      Firma y fecha:  
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A.2 CS1: Human Reaching Movement Data Analysis
and Results

A.2.1 ProMPs Training Detailed Results

A.2.1.1 User 1019 Prediction for Cell 15

Prediction of User 1019 for Cell 15 at 10% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

3 1 4 1 3 1 1 9 9 3 3 3 3 1 9 3 1 1 1 1
8 3 8 1 3 9 3 9 9 9 5 3 3 9 9 3 1 3 3 3
8 3 9 8 3 9 13 13 9 9 8 8 8 9 9 3 1 3 3 9
9 8 9 9 8 9 13 13 9 9 12 9 9 9 9 8 1 9 8 9
9 9 9 11 9 9 13 14 9 9 13 9 9 9 12 9 5 9 9 9
9 9 13 12 9 9 14 14 9 9 14 11 13 12 13 9 8 9 9 9
9 9 13 13 13 13 15 15 14 12 14 13 14 13 13 9 9 13 13 13
9 13 14 13 13 14 15 15 14 14 15 14 14 14 13 9 14 14 14 13
9 13 15 14 14 14 15 15 15 14 15 14 15 15 15 9 14 14 14 14
13 13 15 14 15 15 15 15 15 14 15 15 15 15 15 14 15 15 15 14
13 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
13 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 30% 45% 60% 40% 55% 55% 70% 70% 60% 50% 65% 55% 60% 60% 60% 50% 55% 55% 55% 50%
Exact + Neighbour Cells 70% 65% 80% 65% 70% 90% 75% 90% 100% 90% 75% 75% 80% 85% 80% 80% 70% 80% 75% 80%
Correct Board Region 70% 65% 85% 65% 70% 90% 75% 90% 100% 90% 80% 75% 80% 85% 80% 80% 75% 80% 75% 80%
Middle Board Region 30% 30% 15% 15% 30% 5% 20% 10% 0% 5% 15% 20% 20% 5% 15% 20% 5% 15% 20% 15%
Incorrect Board Region 0% 5% 0% 20% 0% 5% 5% 0% 0% 5% 5% 5% 0% 10% 5% 0% 20% 5% 5% 5%

Table A.1: ProMps Training Parameters and Results for Trajectory observations of 10%
for User 1019 while training for Cell 15.
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A.2. CS1: HUMAN REACHING MOVEMENT DATA ANALYSIS AND RESULTS

Prediction of User 1019 for Cell 15 at 15% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

1 3 3 1 1 3 3 5 1 3 9 3 3 3 1 3 3 3 3 8
1 3 3 8 3 3 5 8 8 5 9 3 5 3 1 5 3 8 8 9
3 3 8 8 8 8 8 9 9 8 13 8 8 8 1 8 3 9 8 9
9 4 11 9 9 8 8 9 9 8 14 8 8 8 8 11 5 9 8 11
9 5 13 9 11 9 8 13 13 9 14 8 9 8 8 11 8 11 8 13
9 8 14 9 11 13 11 14 14 9 14 8 9 9 8 13 8 11 9 14
11 8 14 11 13 14 11 14 14 9 15 9 9 9 9 13 15 11 13 14
11 8 14 11 14 15 14 14 14 13 15 9 9 9 9 14 15 14 13 14
14 9 14 15 14 15 15 14 14 13 15 9 13 14 9 14 15 15 13 14
15 9 15 15 14 15 15 14 15 14 15 11 14 14 11 14 15 15 13 14
15 9 15 15 14 15 15 14 15 15 15 13 14 14 13 14 15 15 14 15
15 9 15 15 15 15 15 15 15 15 15 13 15 14 14 14 15 15 14 15
15 14 15 15 15 15 15 15 15 15 15 13 15 14 15 15 15 15 14 15
15 14 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15
15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 55% 20% 55% 60% 45% 65% 60% 45% 55% 50% 70% 30% 45% 35% 40% 40% 70% 60% 35% 50%
Exact + Neighbour Cells 75% 60% 75% 75% 70% 75% 65% 85% 85% 70% 95% 50% 75% 75% 60% 65% 70% 75% 55% 85%
Correct Board Region 75% 70% 75% 75% 70% 75% 70% 90% 85% 75% 95% 50% 80% 75% 60% 70% 75% 75% 55% 85%
Middle Board Region 5% 30% 20% 10% 15% 25% 20% 10% 10% 25% 5% 45% 20% 25% 20% 20% 25% 10% 45% 10%
Incorrect Board Region 20% 0% 5% 15% 15% 0% 10% 0% 5% 0% 0% 5% 0% 0% 20% 10% 0% 15% 0% 5%

Table A.2: ProMps Training Parameters and Results for Trajectory observations of 15%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 20% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

1 2 1 2 1 8 3 5 1 1 1 1 5 5 1 5 3 3 1 8
13 11 2 3 1 9 3 5 1 3 2 8 8 8 8 6 3 8 3 8
13 13 3 5 1 9 8 5 2 5 3 8 8 8 9 6 8 8 5 11
14 13 8 5 2 13 8 8 3 8 3 8 8 11 9 8 13 8 6 13
14 14 8 6 3 14 8 9 9 8 3 8 9 13 13 9 13 9 8 15
14 14 11 8 5 14 13 9 14 9 5 9 11 13 14 13 13 13 13 15
15 14 11 11 11 14 13 9 14 11 9 11 11 14 14 13 14 14 13 15
15 15 13 13 14 15 13 11 14 13 9 14 13 14 14 13 14 14 13 15
15 15 14 13 15 15 14 13 15 13 13 14 14 15 14 15 15 15 14 15
15 15 14 14 15 15 14 14 15 13 14 15 14 15 14 15 15 15 14 15
15 15 14 15 15 15 14 14 15 14 15 15 14 15 15 15 15 15 14 15
15 15 15 15 15 15 15 14 15 14 15 15 14 15 15 15 15 15 14 15
15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 14 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 70% 65% 45% 50% 60% 65% 45% 35% 60% 40% 50% 55% 40% 60% 50% 60% 60% 60% 35% 80%
Exact + Neighbour Cells 85% 80% 60% 55% 65% 90% 60% 70% 80% 55% 65% 70% 65% 70% 85% 65% 70% 75% 60% 80%
Correct Board Region 85% 80% 60% 65% 70% 90% 60% 85% 80% 60% 70% 70% 70% 75% 85% 70% 70% 75% 65% 80%
Middle Board Region 10% 10% 20% 20% 5% 10% 40% 10% 5% 30% 20% 20% 20% 20% 10% 20% 30% 25% 25% 15%
Incorrect Board Region 5% 10% 20% 15% 25% 0% 0% 5% 15% 10% 10% 10% 10% 5% 5% 10% 0% 0% 10% 5%

Table A.3: ProMps Training Parameters and Results for Trajectory observations of 20%
for User 1019 while training for Cell 15.
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Prediction of User 1019 for Cell 15 at 25% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

1 1 2 11 2 4 1 7 1 1 2 1 1 1 4 4 2 14 4 2
1 4 11 11 4 5 1 10 2 4 11 10 2 11 4 5 2 14 10 2
4 8 11 14 11 11 1 11 10 10 11 10 10 11 10 8 2 14 10 10
11 10 11 14 14 11 2 11 11 11 14 10 11 11 11 12 11 14 11 11
11 11 14 14 14 11 4 11 11 11 14 14 11 11 11 14 14 14 11 11
14 11 14 14 14 14 4 11 13 11 14 14 11 11 11 14 14 14 11 11
14 11 14 14 14 14 10 11 14 11 14 14 11 11 11 14 14 14 11 11
14 11 14 14 14 14 11 14 14 11 14 14 14 14 11 14 14 14 14 14
14 14 14 14 14 14 11 14 14 11 14 14 14 14 12 14 14 15 14 14
14 14 14 14 14 14 11 14 14 14 14 14 14 14 12 14 14 15 14 14
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14
14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 15 14 14
14 14 14 14 15 14 14 14 14 14 15 15 14 14 14 14 15 15 14 14
15 14 14 15 15 14 14 14 14 14 15 15 14 14 14 14 15 15 14 14
15 14 15 15 15 14 14 14 14 15 15 15 15 14 14 15 15 15 14 14
15 14 15 15 15 14 14 14 14 15 15 15 15 14 15 15 15 15 14 14
15 15 15 15 15 14 14 15 14 15 15 15 15 14 15 15 15 15 15 14
15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 35% 20% 30% 35% 40% 15% 10% 20% 15% 30% 40% 45% 30% 15% 25% 30% 40% 60% 20% 15%
Exact + Neighbour Cells 75% 65% 80% 90% 85% 75% 55% 70% 75% 60% 85% 95% 70% 65% 55% 80% 80% 100% 75% 70%
Correct Board Region 80% 70% 80% 90% 90% 85% 65% 70% 75% 65% 85% 95% 70% 65% 65% 90% 80% 100% 80% 70%
Middle Board Region 0% 5% 0% 0% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 5% 0% 0% 0% 0%
Incorrect Board Region 20% 25% 20% 10% 10% 15% 35% 30% 20% 35% 15% 5% 30% 35% 35% 5% 20% 0% 20% 30%

Table A.4: ProMps Training Parameters and Results for Trajectory observations of 25%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 30% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

3 3 3 2 3 2 3 8 5 2 1 2 2 3 9 3 2 2 3 2
5 5 3 5 3 3 8 9 5 3 3 5 2 3 9 3 3 8 3 3
9 8 8 5 9 3 9 9 9 9 9 5 5 5 9 3 8 9 5 9
9 8 9 5 9 5 9 9 9 9 9 8 8 9 9 8 8 9 10 9
9 9 9 9 9 8 9 9 9 9 9 8 8 9 9 9 9 9 14 9
10 9 9 9 9 8 9 10 9 9 9 9 8 13 14 9 9 9 14 14
13 9 9 9 9 9 9 11 9 10 9 10 8 14 14 9 13 9 14 14
14 9 9 9 9 9 9 14 9 13 10 10 9 15 14 9 13 9 14 14
14 9 13 14 14 9 9 14 9 14 10 14 9 15 14 9 14 9 14 14
14 14 13 14 14 14 10 14 9 14 10 14 14 15 14 9 14 13 14 14
14 14 14 14 14 14 14 14 10 14 14 14 14 15 14 9 14 14 14 14
14 15 14 14 14 14 14 14 14 14 15 14 14 15 14 9 14 14 14 14
15 15 14 14 15 14 14 15 14 14 15 14 15 15 15 9 14 14 15 14
15 15 15 15 15 15 14 15 15 14 15 14 15 15 15 14 15 14 15 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 14 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 40% 45% 35% 35% 40% 35% 30% 40% 35% 30% 45% 30% 40% 65% 40% 20% 35% 25% 40% 30%
Exact + Neighbour Cells 85% 80% 75% 80% 90% 70% 90% 90% 90% 85% 90% 75% 65% 80% 100% 80% 70% 85% 85% 90%
Correct Board Region 90% 85% 75% 95% 90% 75% 90% 90% 100% 85% 90% 85% 70% 85% 100% 80% 70% 85% 90% 90%
Middle Board Region 10% 15% 25% 0% 10% 20% 10% 5% 0% 10% 5% 10% 20% 15% 0% 20% 25% 10% 10% 5%
Incorrect Board Region 0% 0% 0% 5% 0% 5% 0% 5% 0% 5% 5% 5% 10% 0% 0% 0% 5% 5% 0% 5%

Table A.5: ProMps Training Parameters and Results for Trajectory observations of 30%
for User 1019 while training for Cell 15.
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A.2. CS1: HUMAN REACHING MOVEMENT DATA ANALYSIS AND RESULTS

Prediction of User 1019 for Cell 15 at 35% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

2 3 1 2 2 3 5 3 5 2 8 5 3 3 5 9 5 3 5 9
5 3 5 9 3 5 9 3 5 3 8 5 3 5 5 9 9 5 5 9
5 5 9 9 3 9 9 3 5 3 9 5 5 5 5 9 9 8 9 9
9 5 9 9 9 9 9 3 5 5 9 5 5 5 5 9 9 9 9 9
9 5 9 9 9 9 9 5 9 9 9 9 9 9 5 9 9 9 9 9
9 5 9 9 9 9 9 5 9 9 9 9 9 9 9 9 9 9 10 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 9 14 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 9 14 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 14 9 14 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 13 14 9 14 14
10 9 10 9 9 9 10 10 9 9 9 9 9 14 10 14 14 9 15 14
10 10 13 9 9 14 14 10 9 9 9 14 10 14 10 14 14 9 15 14
14 14 14 13 10 14 14 14 9 14 9 14 14 14 10 14 14 14 15 14
14 14 14 14 10 15 14 14 10 14 10 14 14 14 14 15 14 14 15 14
15 15 14 14 14 15 14 14 14 15 14 14 14 14 14 15 14 14 15 14
15 15 14 14 14 15 14 14 14 15 14 14 14 15 14 15 14 14 15 14
15 15 15 15 14 15 15 15 15 15 15 14 15 15 15 15 14 14 15 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 30% 30% 20% 20% 15% 35% 20% 20% 20% 30% 20% 15% 20% 25% 20% 35% 10% 10% 50% 15%
Exact + Neighbour Cells 85% 70% 85% 90% 85% 90% 95% 70% 80% 80% 90% 80% 80% 80% 75% 95% 95% 85% 90% 100%
Correct Board Region 95% 90% 90% 90% 85% 95% 100% 80% 100% 85% 90% 100% 90% 95% 100% 95% 100% 90% 100% 100%
Middle Board Region 0% 10% 5% 5% 10% 5% 0% 20% 0% 10% 10% 0% 10% 5% 0% 5% 0% 10% 0% 0%
Incorrect Board Region 5% 0% 5% 5% 5% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.6: ProMps Training Parameters and Results for Trajectory observations of 35%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 40% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

3 5 5 3 5 9 3 5 3 3 3 5 5 5 4 5 3 2 5 3
5 9 5 5 5 9 5 5 5 5 5 5 9 5 5 5 3 3 5 3
9 9 9 5 9 9 9 9 5 9 5 5 9 5 5 5 5 5 5 5
9 9 9 9 9 9 9 9 5 9 5 9 9 5 5 5 9 5 9 5
9 9 9 9 9 9 9 9 5 9 5 9 9 9 5 9 9 5 9 9
9 9 9 9 9 9 9 9 5 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 14 9 9 9 9 9 9 9
9 9 9 9 10 9 10 9 9 9 9 9 14 9 9 9 9 9 9 9
9 14 9 9 14 9 10 9 9 9 9 9 14 9 9 9 10 9 9 9
9 14 9 9 14 9 10 9 9 9 14 9 14 9 9 9 14 9 9 9
9 14 9 14 14 10 10 9 9 9 14 9 14 10 9 9 14 10 10 10
9 14 9 14 14 10 10 9 9 9 14 10 15 10 9 9 14 14 10 14
10 14 9 14 14 14 14 14 14 9 14 14 15 14 10 10 14 14 14 14
10 14 9 14 14 15 14 14 14 9 14 14 15 14 14 10 14 15 14 15
10 15 9 14 14 15 14 14 14 10 14 14 15 14 14 14 14 15 14 15
14 15 9 14 15 15 14 14 14 14 14 14 15 14 14 14 14 15 14 15
14 15 14 14 15 15 14 14 14 14 15 15 15 15 14 14 14 15 14 15
15 15 14 15 15 15 15 14 15 14 15 15 15 15 14 14 15 15 14 15
15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 15% 30% 10% 15% 25% 35% 15% 5% 15% 10% 20% 20% 45% 20% 10% 10% 15% 35% 10% 35%
Exact + Neighbour Cells 90% 95% 90% 85% 90% 100% 90% 90% 70% 90% 75% 85% 95% 80% 75% 80% 85% 75% 85% 80%
Correct Board Region 95% 100% 100% 95% 100% 100% 95% 100% 95% 95% 95% 100% 100% 100% 100% 100% 90% 90% 100% 90%
Middle Board Region 5% 0% 0% 5% 0% 0% 5% 0% 5% 5% 5% 0% 0% 0% 0% 0% 10% 5% 0% 10%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0% 0%

Table A.7: ProMps Training Parameters and Results for Trajectory observations of 40%
for User 1019 while training for Cell 15.
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APPENDIX A. APPENDIX A

Prediction of User 1019 for Cell 15 at 45% observed trajectory
Basis Functions M1 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

5 5 5 9 5 9 5 5 3 5 5 5 5 5 5 5 3 3 3 5
5 9 5 9 9 9 5 5 3 5 9 5 5 9 9 5 5 5 5 9
9 9 9 9 9 9 5 9 4 5 9 5 5 9 9 5 9 5 5 9
9 9 9 9 9 9 9 9 5 9 9 9 5 9 9 9 9 9 5 9
9 9 9 9 9 9 9 9 9 9 9 9 5 9 10 9 9 9 5 9
9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9
9 9 9 9 9 10 9 9 9 9 9 10 9 9 10 9 9 9 9 9
9 9 9 9 9 14 9 9 9 14 9 10 9 10 10 9 9 9 9 9
9 10 9 9 10 14 10 9 9 15 10 10 9 10 14 9 9 9 9 10
10 10 9 9 10 15 10 9 10 15 10 10 10 10 14 9 9 10 9 10
10 10 9 9 14 15 10 9 14 15 14 10 10 14 14 9 10 10 9 10
10 14 10 9 15 15 10 9 14 15 14 10 10 14 14 9 10 14 9 10
10 14 14 10 15 15 10 9 14 15 14 14 14 14 15 10 14 14 10 10
10 14 15 10 15 15 14 14 14 15 14 14 14 14 15 10 14 14 14 14
14 14 15 10 15 15 15 14 14 15 14 15 14 14 15 10 14 14 15 15
15 14 15 10 15 15 15 14 15 15 15 15 15 15 15 14 15 15 15 15
15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15
15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 25% 15% 35% 10% 45% 55% 30% 20% 25% 60% 25% 30% 25% 25% 40% 15% 25% 25% 30% 30%
Exact + Neighbour Cells 90% 95% 90% 100% 95% 100% 85% 90% 80% 85% 95% 85% 75% 95% 95% 85% 90% 85% 75% 95%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 90% 100% 100% 100% 100% 100% 100% 100% 95% 95% 95% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 10% 0% 0% 0% 0% 0% 0% 0% 5% 5% 5% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.8: ProMps Training Parameters and Results for Trajectory observations of 45%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 50% observed trajectory
Basis Functions M1 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

4 9 5 4 5 4 5 4 5 4 9 4 4 5 4 5 5 9 4 5
5 9 5 5 9 5 9 5 5 5 9 5 9 5 5 5 9 9 5 5
9 9 9 9 9 5 9 5 5 5 9 5 9 9 5 5 9 9 5 5
9 10 9 9 9 9 10 5 5 9 9 9 9 9 5 5 9 9 5 9
9 10 9 9 9 9 10 5 9 9 9 9 9 9 9 5 9 9 5 9
9 10 9 9 9 9 10 5 9 9 9 9 9 9 9 9 9 9 5 9
9 10 9 9 9 9 10 9 9 9 9 9 9 9 9 9 9 9 9 9
9 15 9 9 9 9 14 9 9 9 10 9 9 9 9 9 9 9 9 9
9 15 9 9 9 9 14 9 9 9 10 9 9 9 10 9 10 14 9 9
10 15 9 10 9 9 14 9 10 9 10 9 10 9 10 10 10 15 10 9
10 15 10 10 10 9 15 9 14 10 15 10 15 9 14 10 10 15 15 9
10 15 10 10 15 9 15 9 15 10 15 14 15 9 14 15 14 15 15 9
10 15 15 10 15 10 15 9 15 10 15 15 15 9 15 15 15 15 15 9
14 15 15 10 15 14 15 15 15 14 15 15 15 14 15 15 15 15 15 10
15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 30% 65% 40% 25% 45% 30% 50% 35% 45% 30% 50% 40% 50% 30% 40% 45% 40% 55% 50% 30%
Exact + Neighbour Cells 90% 100% 90% 90% 95% 85% 95% 70% 80% 85% 100% 85% 95% 90% 80% 75% 95% 100% 70% 85%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.9: ProMps Training Parameters and Results for Trajectory observations of 50%
for User 1019 while training for Cell 15.

204



A.2. CS1: HUMAN REACHING MOVEMENT DATA ANALYSIS AND RESULTS

Prediction of User 1019 for Cell 15 at 55% observed trajectory
Basis Functions M1 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

9 9 9 9 5 9 9 9 9 4 9 9 9 9 9 9 9 5 9 9
9 9 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 9 9
9 9 9 9 9 9 9 10 9 9 9 9 10 9 9 9 9 9 9 9
9 9 9 9 9 9 9 10 9 9 9 9 10 9 9 9 10 9 9 9
9 9 10 10 9 10 9 10 9 9 10 9 15 9 9 9 10 9 10 10
9 9 10 10 9 10 9 10 9 9 10 9 15 9 10 9 10 10 10 10
9 10 14 10 9 10 9 10 10 9 14 10 15 10 10 9 14 10 10 14
9 10 14 10 10 10 14 10 14 9 15 10 15 10 10 10 15 10 10 14
10 10 15 10 10 14 14 14 14 9 15 10 15 10 10 14 15 14 10 15
14 10 15 15 10 14 14 14 14 10 15 15 15 14 14 14 15 14 10 15
15 14 15 15 15 15 14 14 14 10 15 15 15 15 15 14 15 15 14 15
15 15 15 15 15 15 14 14 14 10 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 14 14 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 45% 40% 55% 50% 45% 45% 35% 35% 30% 20% 60% 50% 75% 45% 45% 40% 60% 45% 40% 55%
Exact + Neighbour Cells 100% 100% 100% 100% 95% 100% 100% 100% 100% 95% 100% 100% 100% 100% 100% 100% 100% 95% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.10: ProMps Training Parameters and Results for Trajectory observations of 55%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 60% observed trajectory
Basis Functions M1 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

9 9 9 9 9 9 9 9 9 9 9 9 5 10 9 9 9 5 9 9
9 10 9 9 9 9 9 9 10 9 9 9 9 10 10 9 9 9 9 10
9 10 9 10 9 9 9 9 15 9 9 9 9 10 10 10 9 9 9 10
9 10 9 10 10 9 9 9 15 10 9 9 9 15 10 10 9 9 9 10
9 10 9 10 10 10 9 9 15 10 9 10 9 15 15 10 9 9 10 15
10 15 10 10 10 10 9 10 15 10 10 10 9 15 15 10 9 9 10 15
10 15 10 10 10 10 10 10 15 10 10 10 9 15 15 15 10 10 10 15
10 15 14 10 15 10 10 10 15 15 10 10 10 15 15 15 10 10 10 15
15 15 15 10 15 10 15 10 15 15 15 15 10 15 15 15 10 15 10 15
15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 10 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 60% 75% 60% 55% 65% 55% 60% 55% 90% 65% 60% 60% 35% 85% 80% 70% 50% 60% 55% 80%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 95% 100% 100% 100% 100% 95% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.11: ProMps Training Parameters and Results for Trajectory observations of 60%
for User 1019 while training for Cell 15.
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Prediction of User 1019 for Cell 15 at 65% observed trajectory
Basis Functions M1 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

10 9 15 9 9 9 10 10 9 10 9 9 9 9 9 10 9 10 10 9
10 10 15 10 10 10 10 10 10 10 10 9 9 10 10 10 10 10 15 10
10 10 15 10 10 15 10 10 10 10 10 10 9 10 10 10 10 10 15 10
10 10 15 10 10 15 15 10 10 10 10 10 10 10 15 10 10 15 15 10
15 10 15 10 10 15 15 15 10 15 15 15 10 10 15 10 15 15 15 15
15 10 15 15 15 15 15 15 10 15 15 15 15 10 15 10 15 15 15 15
15 10 15 15 15 15 15 15 10 15 15 15 15 10 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 80% 65% 100% 75% 75% 90% 85% 80% 65% 80% 80% 80% 75% 60% 85% 70% 80% 85% 95% 80%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.12: ProMps Training Parameters and Results for Trajectory observations of 65%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 70% observed trajectory
Basis Functions M1 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 9 9
10 15 10 10 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10
14 15 10 10 10 10 10 15 10 10 15 10 15 10 10 10 10 15 10 10
15 15 10 10 10 10 10 15 15 15 15 15 15 10 10 10 10 15 15 10
15 15 10 10 15 15 10 15 15 15 15 15 15 10 10 10 15 15 15 10
15 15 10 15 15 15 10 15 15 15 15 15 15 10 15 10 15 15 15 10
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 85% 95% 70% 75% 80% 80% 70% 95% 85% 85% 90% 85% 90% 70% 75% 65% 80% 90% 85% 70%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.13: ProMps Training Parameters and Results for Trajectory observations of 70%
for User 1019 while training for Cell 15.
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A.2. CS1: HUMAN REACHING MOVEMENT DATA ANALYSIS AND RESULTS

Prediction of User 1019 for Cell 15 at 75% observed trajectory
Basis Functions M1 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

9 9 9 9 15 10 10 9 9 15 9 10 9 9 9 9 9 15 15 10
10 10 10 9 15 10 15 10 10 15 10 15 9 10 9 9 10 15 15 10
10 10 10 10 15 10 15 10 10 15 10 15 10 10 10 15 10 15 15 10
10 15 15 10 15 10 15 10 15 15 10 15 10 15 10 15 10 15 15 15
10 15 15 15 15 10 15 10 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 75% 85% 85% 80% 100% 75% 95% 65% 85% 100% 80% 95% 80% 85% 80% 90% 80% 100% 100% 85%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.14: ProMps Training Parameters and Results for Trajectory observations of 75%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 80% observed trajectory
Basis Functions M1 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

9 9 9 9 15 10 10 9 9 15 9 10 9 9 9 9 9 15 15 10
10 10 10 9 15 10 15 10 10 15 10 15 9 10 9 9 10 15 15 10
10 10 10 10 15 10 15 10 10 15 10 15 10 10 10 15 10 15 15 10
10 15 15 10 15 10 15 10 15 15 10 15 10 15 10 15 10 15 15 15
10 15 15 15 15 10 15 10 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 75% 85% 85% 80% 100% 75% 95% 65% 85% 100% 80% 95% 80% 85% 80% 90% 80% 100% 100% 85%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.15: ProMps Training Parameters and Results for Trajectory observations of 80%
for User 1019 while training for Cell 15.
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Prediction of User 1019 for Cell 15 at 85% observed trajectory
Basis Functions M1 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 14 14 10 10 10 10 10 15 10 10 10 10 14 10 10 10 10
10 10 10 15 14 15 10 10 10 10 15 15 15 14 10 15 10 10 10 10
10 14 14 15 14 15 10 10 10 15 15 15 15 14 10 15 14 10 14 10
15 14 15 15 15 15 15 10 10 15 15 15 15 15 15 15 15 14 15 10
15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 14 15 10
15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 14 15 14
15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 80% 75% 80% 90% 80% 90% 80% 75% 60% 85% 95% 90% 90% 80% 80% 90% 80% 65% 80% 65%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.16: ProMps Training Parameters and Results for Trajectory observations of 85%
for User 1019 while training for Cell 15.

Prediction of User 1019 for Cell 15 at 90% observed trajectory
Basis Functions M1 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28

M2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
Exp Noise 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

15 9 14 9 10 14 10 15 14 9 14 9 9 14 9 10 10 14 10 10
15 9 15 14 10 15 14 15 15 10 14 10 10 15 10 10 14 15 14 14
15 14 15 15 15 15 15 15 15 15 14 15 14 15 14 14 14 15 14 14
15 14 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 15 15 14
15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14
15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Exact Prediction 100% 70% 95% 90% 90% 95% 90% 100% 95% 90% 85% 90% 85% 95% 80% 80% 80% 95% 85% 75%
Exact + Neighbour Cells 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Correct Board Region 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Middle Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Incorrect Board Region 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table A.17: ProMps Training Parameters and Results for Trajectory observations of 90%
for User 1019 while training for Cell 15.
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A.2. CS1: HUMAN REACHING MOVEMENT DATA ANALYSIS AND RESULTS

A.2.1.2 CS1 Additional ProMps Results
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10% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2
4 1 1 1 1 4 1 2 1 2 2 1 1 1 1 1 1 1 1 5
5 1 1 1 1 4 1 2 2 2 2 1 1 2 1 1 1 1 1 5
5 1 1 1 1 4 2 5 2 4 4 2 5 2 2 1 1 1 1 5
5 1 1 4 1 5 2 5 2 5 5 2 5 5 4 2 2 2 1 5

11 1 1 5 2 5 2 5 2 5 11 2 5 5 5 2 2 2 2 6
11 5 2 5 5 5 2 5 2 11 11 4 5 5 5 2 5 4 4 11
11 5 5 11 6 5 4 11 5 11 11 11 5 5 11 4 11 5 5 11
11 5 5 11 11 11 11 11 11 11 11 11 11 5 11 4 11 5 5 11
11 5 11 11 11 11 11 11 11 11 11 11 11 11 11 6 11 5 5 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 6 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

15% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 4
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 4 1 1 4
2 1 1 1 2 1 1 1 1 1 4 4 2 4 2 1 5 1 1 5
5 1 1 2 5 1 1 1 2 1 5 4 5 4 4 1 5 1 1 5
5 2 1 5 6 4 1 1 2 1 5 5 5 4 5 4 5 2 6 5
5 2 2 5 11 5 5 1 4 1 5 5 5 5 5 5 11 2 11 11
5 5 2 5 11 5 5 2 4 2 5 5 5 5 5 5 11 5 11 11
5 5 5 5 11 5 11 2 5 5 11 11 5 5 5 11 11 11 11 11

11 5 5 5 11 5 11 4 5 6 11 11 5 9 5 11 11 11 11 11
11 11 11 6 11 11 11 5 5 11 11 11 11 11 9 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Actual Cell 1 7 9 10 8 7 9 10 11 8 11 7 6 5 6 6 9 6 9 9 2
Neighouring Cells 6,7,3 1 2 2 2 2 0 0 2 2 2 0 1 3 1 2 0 0 2 1 3
Neighouring Cells 11,12,13,8,3 7 6 6 5 10 6 8 5 5 6 8 8 6 6 5 8 10 8 10 10
Neighouring Cells 4,9,14 0 0 0 0 0 1 0 1 2 0 1 2 0 4 2 1 1 0 0 2
Neighouring Cells 5,10,15 5 3 2 5 1 4 2 1 3 1 4 3 6 3 5 2 3 1 0 3

USER 1019 Cell 1
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20% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 2 1 1
1 1 1 4 1 1 1 1 1 1 1 1 1 5 1 1 1 4 1 1
1 1 2 4 1 1 1 4 2 4 2 2 2 11 1 4 1 4 1 1
2 1 4 5 2 1 2 4 2 4 4 4 5 11 1 5 1 5 1 1
2 2 4 9 4 2 4 5 4 5 5 4 5 11 2 5 1 5 5 1
2 2 5 11 5 4 5 5 4 5 5 5 5 11 5 11 1 5 5 4
4 4 5 11 5 5 5 9 5 5 5 5 5 11 5 11 2 9 5 4
4 5 5 11 5 5 5 9 5 5 5 5 5 11 5 11 2 11 5 5
5 5 11 11 5 6 5 11 5 11 11 5 11 11 5 11 4 11 5 5
5 5 11 11 5 11 5 11 11 11 11 5 11 11 5 11 5 11 11 5
5 5 11 11 11 11 11 11 11 11 11 11 11 11 5 11 5 11 11 5

11 5 11 11 11 11 11 11 11 11 11 11 11 11 5 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Actual Cell 1 7 8 6 5 7 8 7 6 6 6 6 6 6 4 8 6 10 4 8 9
Neighouring Cells 6,7,3 3 2 1 0 1 2 1 0 2 0 1 1 1 0 1 0 2 1 0 0
Neighouring Cells 11,12,13,8,3 5 4 8 11 6 7 6 8 7 8 8 6 8 14 4 11 5 9 7 5
Neighouring Cells 4,9,14 2 1 2 3 1 1 1 4 2 2 1 2 0 1 0 1 1 3 0 2
Neighouring Cells 5,10,15 3 5 3 1 5 2 5 2 3 4 4 5 5 1 7 2 2 3 5 4

25% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 2 1
4 4 1 1 1 1 2 1 2 1 1 1 1 1 1 5 1 1 2 1
5 5 2 1 5 1 4 1 4 1 1 1 1 1 1 5 2 1 4 1
5 5 4 4 5 1 5 1 4 2 1 1 1 1 2 5 4 1 4 1
5 5 4 4 5 4 5 4 4 4 2 2 4 2 4 5 4 5 4 4
5 11 5 4 5 4 5 5 5 4 5 4 4 4 4 11 4 5 5 4
5 11 5 5 5 4 5 5 5 4 5 4 4 5 5 11 4 11 5 4
5 11 11 11 11 5 11 5 11 5 5 5 5 5 5 11 5 11 5 4
5 11 11 11 11 5 11 6 11 5 6 5 5 11 11 11 5 11 5 11

11 11 11 11 11 5 11 11 11 6 11 5 5 11 11 11 5 11 11 11
11 11 11 11 11 9 11 11 11 11 11 11 6 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Actual Cell 1 5 6 7 8 7 9 6 9 6 8 9 9 9 9 8 2 7 9 5 9
Neighouring Cells 6,7,3 0 0 1 0 0 0 1 1 1 2 2 1 1 1 1 0 1 0 2 0
Neighouring Cells 11,12,13,8,3 6 10 8 8 8 4 8 6 8 5 6 5 4 7 7 10 5 9 6 7
Neighouring Cells 4,9,14 2 1 2 3 0 4 1 1 3 3 0 2 3 1 2 4 4 0 3 4
Neighouring Cells 5,10,15 7 3 2 1 5 3 4 3 2 2 3 3 3 2 2 4 3 2 4 0
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30% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 11 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1
1 1 1 4 4 1 1 1 4 4 1 4 1 1 1 1 1 1 1 1
2 1 1 4 4 1 1 4 4 4 1 4 1 1 1 1 1 2 1 1
4 2 1 4 4 1 1 4 5 4 1 4 1 2 1 1 1 5 4 2
4 4 1 4 4 4 1 4 5 5 4 4 1 4 1 1 2 5 4 4
4 4 2 4 4 4 4 4 5 5 4 4 1 4 1 1 2 5 4 4
4 4 4 4 4 4 4 4 5 5 4 5 2 5 2 1 4 5 4 4
5 5 4 5 5 5 4 4 5 5 4 5 2 5 4 2 4 11 5 4
5 5 4 6 5 5 4 5 5 5 5 5 4 5 4 2 5 11 5 4
5 5 4 6 5 11 5 5 5 5 5 5 4 5 4 4 5 11 5 5
5 5 5 11 5 11 5 5 5 5 6 11 5 11 4 5 11 11 11 5

11 5 5 11 5 11 5 5 11 5 11 11 5 11 11 11 11 11 11 5
11 5 5 11 5 11 5 6 11 5 11 11 5 11 11 11 11 11 11 5
11 5 5 11 5 11 5 11 11 5 11 11 11 11 11 11 11 11 11 11
11 6 5 11 11 11 11 11 11 5 11 11 11 11 11 11 11 11 11 11
11 11 9 11 11 11 11 11 11 5 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11 11
11 11 11 12 12 11 11 12 12 11 11 11 11 11 11 12 11 12 11 11

Actual Cell 1 3 4 6 2 2 5 6 3 2 1 5 2 7 4 7 8 5 3 4 4
Neighouring Cells 6,7,3 1 2 1 2 0 0 0 1 0 0 1 0 2 1 1 2 2 1 0 1
Neighouring Cells 11,12,13,8,3 8 4 3 9 5 10 5 6 8 3 8 9 6 9 8 8 9 12 9 6
Neighouring Cells 4,9,14 4 3 5 6 6 3 4 6 2 4 4 5 2 2 4 1 2 0 4 5
Neighouring Cells 5,10,15 4 7 5 1 7 2 5 4 8 12 2 4 3 4 0 1 2 4 3 4

40% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 4 1 1 2
1 2 1 1 1 1 4 2 1 4 2 1 1 2 1 2 4 1 4 2
1 4 1 4 4 1 4 2 1 4 4 2 1 4 4 4 5 1 4 4
1 4 2 4 4 4 4 4 4 4 4 2 1 4 4 4 5 2 4 4
2 4 2 4 5 4 4 4 4 4 4 4 1 4 4 5 5 2 4 4
4 4 2 4 5 4 4 4 4 4 4 4 1 5 5 5 9 4 4 5
4 4 4 4 9 4 4 5 4 4 5 4 1 5 5 5 11 4 4 5
4 5 4 5 11 5 5 5 4 5 5 4 4 5 5 5 11 4 5 9
4 5 4 5 11 5 5 5 5 5 5 4 5 5 9 11 11 4 5 9
4 5 5 5 11 9 5 5 5 5 5 4 5 11 9 11 11 4 5 11
4 5 5 5 11 11 11 5 5 11 11 5 5 11 11 11 11 4 5 11
4 5 5 5 11 11 11 11 11 11 11 5 9 11 11 11 11 11 5 11
5 11 9 5 11 11 11 11 11 11 11 5 11 11 11 11 11 11 11 11
5 11 11 11 11 11 11 11 11 11 11 5 11 11 11 11 11 11 11 11
9 11 11 11 11 11 11 11 11 11 11 5 11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Actual Cell 1 6 3 5 4 4 5 2 3 5 3 2 4 9 3 4 3 2 5 3 2
Neighouring Cells 6,7,3 1 1 3 0 0 0 1 2 0 0 2 2 0 1 0 1 0 2 0 2
Neighouring Cells 11,12,13,8,3 3 6 5 5 11 8 8 7 7 8 8 3 6 9 8 10 12 7 6 9
Neighouring Cells 4,9,14 8 5 4 5 3 5 6 3 5 6 4 6 2 3 5 2 3 6 6 5
Neighouring Cells 5,10,15 2 5 3 6 2 2 3 5 3 3 4 5 3 4 3 4 3 0 5 2

50% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 1 1 1 1 1 1 1 4 1 1 1 1 1 2 1 4 4
1 4 4 1 1 1 1 1 1 1 4 2 1 1 1 4 4 4 4 4
2 4 4 2 1 1 1 2 1 4 4 2 1 1 1 4 4 4 4 4
4 4 4 4 1 1 1 2 4 4 4 4 4 4 1 4 4 4 4 4
4 4 4 4 4 2 4 4 4 4 4 4 4 4 1 4 4 4 4 4
4 5 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4
5 11 4 4 5 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4
5 11 4 4 5 4 5 5 4 4 5 4 4 4 4 5 4 4 4 4
5 11 4 4 5 4 5 5 5 4 11 4 4 4 4 9 5 5 5 4
9 11 4 5 5 4 5 5 6 4 11 5 5 5 4 11 5 5 5 4

11 11 4 11 11 4 9 5 11 4 11 11 9 9 4 11 5 11 5 5
11 11 4 11 11 4 11 9 11 5 11 11 9 9 5 11 6 11 5 5
11 11 9 11 11 5 11 11 11 11 11 11 9 11 5 11 9 11 9 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

45% 1 2 3 4 5 45%
30 M1 6 7 8 9 10 30
20 M2 11 12 13 14 15 20

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 1
2 1 1 1 4 4 1 2 1 4 0 0 0 0 0 0 0 0 0 0 1
4 4 1 4 4 4 1 4 2 4 0 0 0 0 0 0 0 0 0 0 1
4 4 1 4 4 4 4 4 2 4 0 0 0 0 0 0 0 0 0 0 4
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4 4 3 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 4
4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 5
4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 5
4 4 4 5 4 4 5 5 5 4 0 0 0 0 0 0 0 0 0 0 5
4 4 4 5 4 5 6 5 5 4 0 0 0 0 0 0 0 0 0 0 5
4 5 5 5 4 5 9 6 5 4 0 0 0 0 0 0 0 0 0 0 9
5 5 5 6 5 5 11 6 9 5 0 0 0 0 0 0 0 0 0 0 9
6 5 5 11 6 6 11 11 11 9 0 0 0 0 0 0 0 0 0 0 11
9 5 9 11 6 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11
9 6 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11

11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11
11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11
11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11
11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11
11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 11
11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0

50% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1
2 1 1 2 1 1 1 1 4 2 1 1 1 1 4 4 1 1 4 1
4 1 1 4 1 1 1 4 4 4 1 4 1 4 4 4 1 1 4 4
4 1 1 4 1 1 2 4 4 4 1 4 2 4 4 4 1 1 4 4
4 1 1 4 1 1 4 4 4 4 4 4 4 4 4 4 1 1 4 4
4 2 1 4 1 4 4 11 4 4 4 4 4 4 4 4 1 1 4 5
4 4 1 4 2 4 4 11 4 4 4 5 4 4 5 5 4 4 5 6
5 4 4 4 2 4 4 11 5 4 4 5 4 5 6 5 4 4 5 11
9 4 4 5 4 4 4 11 5 4 4 5 4 5 9 11 4 4 9 11

11 4 4 5 4 5 11 11 9 9 4 5 4 11 11 11 4 4 9 11
11 4 4 11 4 5 11 11 11 11 4 5 5 11 11 11 5 4 11 11
11 5 4 11 4 5 11 11 11 11 5 6 5 11 11 11 9 4 11 11
11 9 5 11 5 11 11 11 11 11 11 11 5 11 11 11 11 5 11 11
11 11 11 11 9 11 11 11 11 11 11 11 5 11 11 11 11 6 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

55% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1
4 2 2 4 2 1 2 1 2 1 4 1 1 2 1 1 1 1 1 1
4 4 4 4 4 1 4 1 4 1 4 1 4 2 2 1 1 2 1 1
5 4 4 4 4 2 4 1 4 1 4 1 4 2 2 1 2 4 1 1
6 4 5 4 4 4 4 1 4 1 4 1 4 2 4 1 3 4 2 4
6 4 11 4 4 4 4 1 4 2 4 1 4 2 4 1 4 4 4 4
9 6 11 4 4 4 4 4 4 2 9 1 4 4 4 1 4 4 4 11

11 6 11 4 4 4 4 4 4 4 11 1 4 4 4 4 4 4 4 11
11 11 11 4 4 4 4 4 6 4 11 2 6 5 4 4 4 4 6 11
11 11 11 4 9 6 4 4 6 11 11 4 9 11 4 4 4 11 11 11
11 11 11 4 11 11 9 4 11 11 11 4 11 11 4 4 4 11 11 11
11 11 11 6 11 11 11 6 11 11 11 11 11 11 11 6 11 11 11 11
11 11 11 6 11 11 11 6 11 11 11 11 11 11 11 6 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 6 11 11 11 11
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11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

60% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 1 1 4 1 1 1 2 1 1 1 1 2 1
1 4 1 1 4 2 2 1 1 4 4 4 1 2 1 1 1 1 4 1
1 4 1 1 4 4 2 1 1 4 4 4 1 4 1 2 1 4 4 4
1 4 2 4 4 4 4 4 2 11 4 4 4 4 4 4 1 4 4 4
1 4 4 4 4 4 4 4 4 11 4 4 4 4 4 4 1 4 4 4
1 4 4 4 4 4 4 4 4 11 4 9 4 4 4 4 2 4 4 4
2 6 4 4 11 4 4 4 4 11 4 11 9 4 4 11 2 4 4 4
4 11 4 4 11 4 4 4 11 11 4 11 9 11 4 11 4 11 4 4
4 11 9 4 11 4 4 9 11 11 4 11 11 11 4 11 4 11 9 4
4 11 11 4 11 11 4 11 11 11 9 11 11 11 4 11 4 11 11 11
4 11 11 11 11 11 11 11 11 11 11 11 11 11 6 11 4 11 11 11

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 4 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

65% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 1 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 1 1 2 3 2 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 1 1 2 4 2 2 2 1 1 4 1 1 1 1 4
3 1 2 2 2 1 4 2 4 4 2 4 1 1 4 1 2 1 1 4
4 1 2 4 4 2 4 4 4 4 4 4 1 1 6 1 2 1 4 4
4 2 4 4 4 4 4 4 4 4 4 4 1 2 11 2 2 1 4 4
4 4 4 4 4 4 4 4 4 4 4 4 1 4 11 4 2 1 4 4
4 4 4 4 4 6 4 4 4 4 4 4 1 4 11 4 4 1 4 4
4 4 4 11 4 6 6 4 4 4 4 6 1 4 11 4 4 2 4 4
6 4 4 11 11 11 11 6 6 4 6 6 2 6 11 6 11 2 4 6
6 4 4 11 11 11 11 11 6 4 6 6 4 8 11 11 11 2 4 6
9 4 4 11 11 11 11 11 11 6 11 6 4 8 11 11 11 4 9 6
9 9 4 11 11 11 11 11 11 6 11 11 4 11 11 11 11 4 11 9

11 11 4 11 11 11 11 11 11 11 11 11 4 11 11 11 11 4 11 11
11 11 8 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 14 11 11 11 11 11 11 11 11 14 11 11 11 11 11 11 11

70% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1
4 1 2 4 1 1 2 1 1 1 1 1 1 1 2 1 4 1 4 1
4 1 4 4 1 4 4 2 1 1 1 1 1 1 4 1 4 2 4 1
4 1 4 4 2 4 4 2 2 1 2 2 2 1 4 1 4 3 4 2
4 2 4 4 4 4 4 4 2 1 4 2 2 2 4 4 4 3 4 4
4 4 4 4 4 4 4 4 4 1 4 2 4 2 6 4 4 4 4 4
4 4 4 4 4 4 4 6 4 1 4 4 4 4 9 4 4 4 8 4
4 4 4 4 4 6 4 11 4 2 4 4 11 4 11 4 4 4 8 6
6 4 4 4 9 11 4 11 6 4 6 11 11 4 11 4 6 4 9 6

11 6 4 4 11 11 4 11 6 4 11 11 11 4 11 4 11 4 9 9
11 6 11 11 11 11 6 11 11 11 11 11 11 4 11 8 11 6 11 11
11 11 11 11 11 11 8 11 11 11 11 11 11 11 11 11 11 6 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 9 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

75% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 4 2 2 1 1 2 3 1 1 1 1 1 2 2 1
4 1 1 1 1 4 3 2 2 1 4 4 1 1 1 1 1 4 2 1
4 1 2 1 1 4 4 4 4 1 4 4 4 1 1 1 3 4 2 1
4 1 2 4 1 4 4 4 4 1 4 4 4 1 1 2 4 4 4 4
4 1 2 4 1 11 4 4 4 1 4 4 4 1 1 2 4 4 4 8

11 1 4 4 1 11 8 4 4 1 4 4 11 2 2 4 4 4 4 11
11 1 4 8 2 11 8 11 4 4 4 11 11 4 2 4 6 6 4 11
11 6 11 11 4 11 11 11 11 4 8 11 11 4 4 4 11 9 11 11
11 11 11 11 4 11 11 11 11 4 11 11 11 4 4 4 11 11 11 11
11 11 11 11 4 11 11 11 11 11 11 11 11 4 4 4 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 4 4 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

80% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
1 4 1 2 1 1 4 1 1 1 1 1 1 4 1 1 2 1 1 1
1 4 1 4 1 1 4 1 1 3 1 1 1 8 1 3 4 2 1 1
1 4 1 4 1 1 4 1 1 4 1 4 1 8 1 4 4 4 1 4
1 4 1 4 1 1 4 1 2 4 1 4 1 11 1 4 4 4 1 4
2 11 1 4 1 2 4 2 4 4 4 4 2 11 1 4 4 4 1 4
4 11 4 4 4 2 4 2 4 4 4 4 4 11 2 4 8 4 4 4
4 11 8 4 4 2 11 4 4 4 4 4 4 11 4 4 11 8 4 4
4 11 11 11 4 4 11 4 8 4 4 4 4 11 4 4 11 11 4 8
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11 11 11 11 4 4 11 4 11 11 11 4 4 11 4 8 11 11 11 11
11 11 11 11 11 4 11 4 11 11 11 4 4 11 8 11 11 11 11 11
11 11 11 11 11 4 11 4 11 11 11 4 4 11 8 11 11 11 11 11
11 11 11 11 11 8 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

85% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1 1 1 2 1 1 1 4 1 1 1 1 1 1 4 1 1 4 1 1
3 1 2 2 2 1 1 4 1 1 1 1 1 1 4 1 1 4 1 1
4 1 2 3 3 1 1 4 1 4 1 1 1 1 4 1 4 4 4 1
4 1 2 4 4 4 4 4 1 4 1 2 1 1 4 2 4 4 4 1
8 2 4 8 4 4 4 4 1 4 1 4 4 4 11 4 4 4 4 4
8 4 4 11 4 4 4 4 2 4 4 4 4 4 11 4 4 4 8 8

11 4 4 11 4 4 4 4 2 11 4 4 11 4 11 4 11 4 8 11
11 4 4 11 4 4 8 4 4 11 4 4 11 11 11 8 11 11 11 11
11 4 4 11 11 8 11 4 4 11 4 4 11 11 11 8 11 11 11 11
11 8 4 11 11 11 11 8 4 11 4 8 11 11 11 11 11 11 11 11
11 11 8 11 11 11 11 11 4 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 8 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

90% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 4 1 1 1 1
1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 4 1 1 1 1
1 1 1 1 1 1 4 1 2 1 1 1 1 4 1 4 1 1 2 1
1 1 2 1 1 1 4 1 4 2 1 1 1 4 4 4 4 2 4 1
1 1 4 1 1 4 4 1 4 2 1 1 1 4 4 4 4 4 4 1
1 1 4 1 1 4 4 2 4 4 1 2 1 8 4 4 4 4 4 4
3 4 4 4 1 4 4 4 4 4 4 4 2 8 4 8 4 4 4 8
4 4 8 4 4 4 4 4 4 4 4 4 4 11 4 11 4 8 4 11
4 8 8 4 8 4 11 4 4 4 4 11 4 11 4 11 4 8 4 11
4 8 8 4 8 8 11 8 4 4 8 11 11 11 4 11 4 11 8 11

11 11 11 4 11 11 11 11 8 8 8 11 11 11 4 11 11 11 8 11
11 11 11 8 11 11 11 11 8 8 11 11 11 11 8 11 11 11 11 11
11 11 11 8 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
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10% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1
1 1 4 2 2 1 1 1 2 1 1 1 1 1 1 4 5 2 1 1
2 1 4 4 2 5 1 2 2 2 1 1 1 1 1 4 7 3 1 1
2 1 5 4 4 5 2 5 4 2 1 2 2 2 1 5 7 4 1 4
4 2 5 5 4 5 4 5 4 2 2 4 4 2 1 5 8 4 2 4
5 2 5 5 5 5 4 5 4 4 2 4 4 5 1 5 9 4 2 4
5 5 5 5 5 5 5 5 4 5 4 5 4 5 2 5 10 4 4 5
5 5 5 6 5 5 5 6 5 5 4 5 5 6 4 5 10 5 5 5

10 5 5 6 5 5 5 6 5 5 5 5 10 6 5 10 11 5 5 6
10 5 9 6 5 5 5 6 5 5 5 5 11 6 5 10 11 9 5 6
10 5 10 6 6 5 5 6 5 6 5 6 11 8 5 10 11 9 5 9
10 5 10 6 10 6 5 9 6 7 7 10 11 11 5 11 11 10 9 9
11 5 10 7 10 10 5 11 6 9 10 11 11 11 5 11 11 10 10 10
11 11 11 10 11 11 6 11 6 10 11 11 11 11 5 11 11 11 10 11
11 11 11 10 11 11 10 11 10 10 11 11 11 11 5 11 11 11 10 11
11 11 11 10 11 11 10 11 11 11 11 11 11 12 6 11 11 11 11 11
11 11 11 10 11 11 11 11 11 11 11 14 11 14 10 11 11 11 11 11
11 11 11 11 11 11 11 11 11 14 11 14 11 14 11 11 12 11 11 11
14 11 11 11 11 11 11 14 11 14 14 14 13 14 11 13 14 12 11 14
14 11 14 14 11 15 12 14 11 14 14 14 14 14 14 14 14 14 11 14

Same Row 0 0 1 1 0 0 0 1 0 2 1 0 0 1 0 0 4 2 1 2
Top Row 3 2 2 3 4 0 3 1 6 4 4 3 4 2 2 2 0 6 3 3
Bottom Row 2 0 1 1 0 0 1 2 0 3 2 4 2 5 1 2 3 2 0 2

X 5 2 4 5 4 0 4 4 6 9 7 7 6 8 3 4 7 10 4 7

15 18 15 15 15 20 16 16 14 11 13 13 14 12 17 16 12 10 16 13

15 18 15 15 15 20 16 16 14 11 13 13 14 12 17 16 12 10 16 13

Y 20 20 19 20 19 20 20 20 20 20 20 20 20 20 20 20 19 20 20 20

15% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

User 1019 cell 8 Predicitons
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4 1 1 1 2 4 4 2 2 1 1 1 4 1 2 1 1 2 1 2
4 2 1 2 4 4 4 4 2 2 2 2 4 4 4 1 1 2 2 4
5 4 1 4 4 4 5 4 4 2 2 2 5 5 4 2 1 2 2 4
5 5 1 4 4 5 5 4 4 4 2 4 5 5 4 2 2 5 4 5
5 5 2 4 5 5 5 4 5 5 2 5 5 5 4 2 2 5 5 5
5 6 4 4 5 5 5 5 6 5 4 5 6 5 5 5 2 5 5 6
5 6 4 4 5 5 9 5 10 5 5 5 6 5 5 6 2 5 5 6
6 10 5 5 5 6 10 5 10 8 5 6 6 5 5 10 5 6 5 7

10 11 5 5 9 6 11 5 10 9 5 6 7 5 6 10 6 6 5 7
10 11 6 6 9 6 11 9 11 9 5 6 10 6 6 11 6 6 5 8
11 11 6 7 9 8 11 9 11 10 5 8 10 10 7 11 10 8 5 10
11 11 10 9 10 9 11 9 11 11 6 9 11 10 9 11 10 10 6 10
11 11 10 10 10 10 11 10 11 11 10 11 11 10 10 11 10 10 6 10
11 11 10 10 10 10 11 10 11 11 10 11 11 10 11 11 11 11 10 11
11 11 11 11 11 10 11 11 11 11 10 11 11 11 11 14 11 11 11 11
11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 14 11 11 11 11
11 13 14 11 11 11 12 14 11 14 11 11 14 11 11 14 13 11 11 11
15 14 14 14 14 11 14 14 11 14 11 12 14 11 14 14 14 12 14 11

Same Row 0 0 0 2 3 2 1 3 0 3 0 2 1 0 2 0 0 1 0 3
Top Row 3 2 3 6 4 3 2 5 4 3 5 3 2 1 5 3 4 4 3 3
Bottom Row 0 3 2 1 1 0 2 2 0 2 0 1 2 0 1 4 2 1 1 0

X 3 5 5 9 8 5 5 10 4 8 5 6 5 1 8 7 6 6 4 6

17 15 15 11 12 15 15 10 16 12 15 14 15 19 12 13 14 14 16 14

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

20% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
1 4 1 4 1 1 2 1 1 1 1 1 2 2 1 1 1 1 2 2
4 4 2 4 1 4 4 2 2 2 2 1 2 2 4 1 1 1 4 4
5 5 2 4 4 4 5 4 4 2 4 2 5 2 5 2 1 1 5 5
5 5 5 5 4 5 5 5 4 4 5 2 5 4 5 2 1 1 5 5
6 6 9 5 5 5 5 5 5 4 5 9 5 4 5 5 1 2 6 6
6 6 9 5 5 5 5 5 5 4 5 10 6 5 5 6 2 4 9 8
6 6 10 5 6 9 5 5 6 5 5 10 6 5 5 8 4 4 10 9
8 6 11 5 6 10 6 10 6 5 6 11 9 6 6 8 4 5 11 11

10 9 11 5 10 11 6 10 6 5 8 11 9 9 10 9 6 5 11 11
10 9 11 6 11 11 10 10 9 9 8 11 10 9 10 10 6 5 11 11
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11 10 11 6 11 11 10 10 10 10 9 11 10 9 11 10 8 8 11 11
11 11 11 7 11 11 11 11 11 10 10 11 11 10 11 11 8 10 11 11
11 11 11 10 11 11 11 11 11 11 10 11 11 10 11 11 10 10 11 11
11 11 11 10 11 11 11 11 11 11 11 12 11 11 11 11 11 10 11 11
11 11 11 11 11 11 11 11 11 11 11 13 11 11 11 11 11 10 11 11
11 11 11 11 12 11 11 14 11 11 11 14 11 11 11 11 11 11 11 11
12 11 12 11 12 12 11 14 11 11 14 14 13 11 11 11 12 11 11 11
14 14 14 11 12 14 14 14 11 14 14 14 14 14 14 13 14 12 12 11

1 2 2 1 0 1 0 0 1 1 3 1 2 3 0 3 2 1 1 2
1 2 2 3 2 2 2 2 3 5 2 2 2 5 1 2 3 3 3 3
2 1 2 0 3 2 1 3 0 1 2 5 2 1 1 1 2 1 1 0

X 4 5 6 4 5 5 3 5 4 7 7 8 6 9 2 6 7 5 5 5

16 15 14 16 15 15 17 15 16 13 13 12 14 11 18 14 13 15 14 15

16 15 14 16 15 15 17 15 16 13 13 12 14 11 18 14 13 15 14 15

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 19 20

25% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1
5 1 1 1 1 2 1 4 1 1 1 1 1 1 1 5 1 1 1 1
6 2 1 1 2 2 1 5 1 1 2 1 1 3 1 5 1 4 1 1
6 3 1 2 5 4 1 5 1 1 3 5 1 4 2 5 2 4 1 1
6 5 2 2 5 5 1 5 4 1 5 5 1 5 5 5 2 4 1 1
9 5 3 2 5 5 1 5 5 5 5 5 4 5 5 5 6 4 1 4
9 9 5 5 6 5 2 5 5 5 6 5 4 6 5 6 9 5 1 4
9 9 5 5 6 6 5 5 5 9 8 5 5 6 5 9 10 5 2 5
9 9 9 5 10 6 5 6 6 9 9 7 5 6 9 9 10 5 4 6

10 10 10 5 10 9 5 7 6 9 10 9 5 10 9 9 11 6 4 6
11 10 10 5 10 10 9 8 10 10 11 10 6 10 10 10 11 9 5 8
11 10 10 6 10 10 9 9 11 11 11 10 6 10 10 10 11 10 5 9
11 10 10 7 11 10 9 10 11 11 11 10 8 11 11 10 11 10 5 9
11 10 10 10 11 11 10 11 11 11 11 10 9 11 11 11 11 10 9 10
11 10 11 11 11 11 11 11 11 11 11 11 10 11 11 11 11 11 10 11
11 10 11 11 11 11 11 11 11 11 11 11 10 11 11 11 11 11 11 11
14 11 11 11 11 11 11 14 11 12 11 11 11 11 11 11 11 11 11 11
14 11 11 14 11 12 12 14 14 12 12 11 11 14 11 11 11 11 11 11
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14 12 11 14 11 14 14 15 14 12 13 14 11 15 15 11 12 14 12 11

4 3 1 1 0 1 3 3 0 3 2 2 2 0 2 3 1 1 1 3
0 2 2 3 1 3 1 2 1 0 2 0 2 2 1 1 2 4 3 2
3 1 0 2 0 2 2 2 2 3 2 1 0 1 0 0 1 1 1 0

X 7 6 3 6 1 6 6 7 3 6 6 3 4 3 3 4 4 6 5 5

13 14 17 14 19 14 14 13 17 14 14 17 16 17 17 16 16 14 15 15

13 14 17 14 19 14 14 13 17 14 14 17 16 17 17 16 16 14 15 15

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

30% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 2 2 1 1 5 2 2 1 1 2 2 1 2 1 1
1 1 1 1 2 5 2 4 2 5 4 2 2 1 2 2 1 2 1 2
2 1 2 2 2 5 2 4 4 5 5 2 2 1 4 5 2 4 1 2
5 4 4 4 4 5 2 5 5 8 5 5 3 2 5 5 2 5 1 5
5 5 5 4 5 5 5 5 5 9 6 5 5 4 5 5 2 5 2 5
5 5 5 5 5 5 8 5 5 9 9 7 5 5 5 5 4 5 2 5
6 6 5 5 6 5 9 5 5 11 10 8 6 5 5 7 5 6 6 5
6 9 5 5 6 6 9 5 5 11 11 9 7 5 6 8 5 9 9 9
7 9 5 5 7 7 9 5 9 11 11 9 8 5 9 9 5 9 9 9
7 11 9 5 9 9 11 8 9 11 11 9 9 6 9 10 6 10 9 10
8 11 9 5 9 10 11 9 9 11 11 10 9 7 9 10 10 11 10 10
9 11 9 8 11 10 11 9 11 11 11 11 9 9 11 10 11 11 11 10

10 11 10 9 11 11 11 9 11 11 11 11 9 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 13 11 11 11 10 11 11 11 11 11 11
13 12 11 11 12 11 11 11 11 14 12 12 11 11 11 11 11 12 11 12
14 14 11 12 14 11 11 11 12 14 15 14 11 11 11 12 11 13 13 12

4 2 3 2 3 2 4 4 3 3 1 5 6 4 3 3 0 2 3 2
1 1 2 3 3 1 4 2 2 0 2 3 3 2 3 3 4 3 2 2
2 2 0 1 2 0 0 0 1 3 1 2 0 0 0 1 0 2 1 2

X 7 5 5 6 8 3 8 6 6 6 4 10 9 6 6 7 4 7 6 6
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13 15 15 14 12 17 12 14 14 13 16 10 11 14 14 13 16 13 14 14

13 15 15 14 12 17 12 14 14 13 16 10 11 14 14 13 16 13 14 14

Y 20 20 20 20 20 20 20 20 20 19 20 20 20 20 20 20 20 20 20 20

30% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 2 2 1 1 5 2 2 1 1 2 2 1 2 1 1
1 1 1 1 2 5 2 4 2 5 4 2 2 1 2 2 1 2 1 2
2 1 2 2 2 5 2 4 4 5 5 2 2 1 4 5 2 4 1 2
5 4 4 4 4 5 2 5 5 8 5 5 3 2 5 5 2 5 1 5
5 5 5 4 5 5 5 5 5 9 6 5 5 4 5 5 2 5 2 5
5 5 5 5 5 5 8 5 5 9 9 7 5 5 5 5 4 5 2 5
6 6 5 5 6 5 9 5 5 11 10 8 6 5 5 7 5 6 6 5
6 9 5 5 6 6 9 5 5 11 11 9 7 5 6 8 5 9 9 9
7 9 5 5 7 7 9 5 9 11 11 9 8 5 9 9 5 9 9 9
7 11 9 5 9 9 11 8 9 11 11 9 9 6 9 10 6 10 9 10
8 11 9 5 9 10 11 9 9 11 11 10 9 7 9 10 10 11 10 10
9 11 9 8 11 10 11 9 11 11 11 11 9 9 11 10 11 11 11 10

10 11 10 9 11 11 11 9 11 11 11 11 9 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 13 11 11 11 10 11 11 11 11 11 11
13 12 11 11 12 11 11 11 11 14 12 12 11 11 11 11 11 12 11 12
14 14 11 12 14 11 11 11 12 14 15 14 11 11 11 12 11 13 13 12

4 2 3 2 3 2 4 4 3 3 1 5 6 4 3 3 0 2 3 2
1 1 2 3 3 1 4 2 2 0 2 3 3 2 3 3 4 3 2 2
2 2 0 1 2 0 0 0 1 3 1 2 0 0 0 1 0 2 1 2

X 7 5 5 6 8 3 8 6 6 6 4 10 9 6 6 7 4 7 6 6

13 15 15 14 12 17 12 14 14 13 16 10 11 14 14 13 16 13 14 14

13 15 15 14 12 17 12 14 14 13 16 10 11 14 14 13 16 13 14 14

Y 20 20 20 20 20 20 20 20 20 19 20 20 20 20 20 20 20 20 20 20
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35% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2
1 2 1 1 1 1 1 2 2 1 2 1 1 2 3 5 1 1 2 2
2 2 1 1 2 1 1 2 2 5 2 1 5 2 3 5 5 1 5 5
2 5 2 2 2 2 1 2 2 5 5 1 5 2 5 5 5 2 5 5
2 5 2 2 5 2 1 2 5 5 6 5 5 5 5 5 5 2 8 5
5 5 2 5 5 4 2 5 5 7 8 5 5 5 5 5 5 4 8 5
5 5 5 5 5 5 2 5 5 8 9 5 5 5 5 5 5 5 9 8
5 6 5 5 8 5 2 5 5 9 9 5 5 5 5 5 5 6 9 9
5 9 5 7 8 5 2 5 5 9 9 5 8 5 6 8 5 6 9 9
5 9 7 9 9 5 2 5 7 9 9 8 9 5 7 8 6 8 11 10
5 9 9 9 9 5 5 7 7 9 10 9 9 5 7 9 9 9 11 11
5 10 10 9 9 9 5 7 8 9 11 9 9 8 8 9 9 11 11 11
8 11 11 10 9 11 8 7 8 9 11 9 9 8 8 10 9 11 11 11
8 11 11 11 10 11 11 9 8 9 11 10 11 8 9 11 11 11 11 11
9 11 11 11 11 11 11 11 8 9 11 11 11 8 11 11 11 11 11 11

11 11 11 11 11 11 11 11 9 11 11 11 11 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 12 11 11 11 14 11 11 15 11 11 11 13 11 11 15 11 11

3 3 2 4 6 1 1 4 7 10 5 4 5 5 5 4 3 2 5 3
3 2 3 2 2 3 5 5 3 0 2 0 0 3 2 1 0 3 1 3
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

X 6 5 5 7 8 4 6 10 10 10 7 4 5 8 8 5 3 5 6 6

14 15 15 13 12 16 14 10 10 10 13 16 15 12 12 15 17 15 14 13

14 15 15 13 12 16 14 10 10 10 13 16 15 12 12 15 17 15 14 13

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 19

40% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1
1 1 2 1 1 1 5 1 1 1 1 4 1 1 1 1 2 1 1 1
1 1 2 1 1 1 5 1 4 1 1 4 1 1 1 5 5 1 1 1
1 1 3 1 1 1 5 1 5 1 5 5 1 1 2 5 5 1 1 1
4 1 5 2 1 1 5 1 5 1 5 7 1 2 2 5 5 1 1 1
5 2 5 5 2 2 7 2 7 1 5 8 2 4 5 5 5 2 5 1
5 5 5 5 4 5 7 2 8 2 5 9 2 5 5 5 5 4 5 2
5 5 5 5 5 5 7 5 8 5 5 9 5 5 5 5 5 5 5 3
5 7 5 5 5 5 8 5 9 5 5 9 5 5 5 5 5 5 5 4
5 8 5 6 5 5 8 5 9 5 7 10 5 5 7 6 9 6 7 5
5 8 8 6 5 5 8 8 9 5 8 10 5 5 8 7 9 7 7 5
8 8 8 7 6 5 9 9 11 5 9 11 5 7 9 7 9 7 9 5
8 9 9 8 7 5 9 10 11 9 9 11 7 7 9 8 9 7 9 5

11 9 9 9 7 5 9 11 11 9 9 11 8 7 9 9 11 8 11 5
11 11 9 9 8 7 9 11 11 10 9 11 8 8 9 9 11 9 11 7
11 11 11 9 8 7 9 11 11 11 9 11 8 11 9 9 11 9 11 8
11 11 11 11 9 9 11 11 11 11 11 11 9 11 10 11 11 11 11 9
11 11 11 11 11 9 11 11 11 11 11 11 9 11 11 11 11 11 11 9
11 12 11 11 11 11 11 11 11 12 11 13 11 12 11 11 11 11 12 11

2 6 5 5 5 4 11 2 6 2 7 5 6 4 7 6 4 6 4 4
1 1 3 1 2 1 1 2 1 1 0 2 2 2 2 0 2 2 0 3
0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0

X 3 8 8 6 7 5 12 4 7 4 7 8 8 7 9 6 6 8 5 7

17 12 12 14 13 15 8 16 13 16 13 12 12 13 11 14 14 12 15 13

17 12 12 14 13 15 8 16 13 16 13 12 12 13 11 14 14 12 15 13

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

45% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1
1 2 1 1 1 1 2 2 1 1 1 1 1 5 1 1 1 5 3 1
1 2 1 2 1 1 2 2 1 1 1 2 1 5 2 1 1 5 4 2
2 5 2 5 1 1 2 2 1 1 1 2 2 5 5 1 2 5 5 2
4 5 2 5 2 2 3 4 2 2 1 5 2 7 5 4 2 5 5 2
5 7 3 5 5 2 4 5 5 5 1 5 2 8 5 4 4 5 5 5
5 7 4 5 5 5 5 5 5 5 2 5 4 8 7 4 4 7 5 5
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5 7 5 5 5 5 5 5 5 5 2 5 5 8 7 5 5 7 5 5
7 8 5 5 5 5 5 5 5 5 5 5 5 9 8 5 5 7 5 5
7 8 5 5 5 5 5 7 7 7 5 5 5 9 8 5 5 7 7 5
8 8 5 7 7 5 5 7 7 8 5 5 5 9 9 6 5 9 8 5
8 9 6 7 8 8 6 9 8 9 5 7 5 9 9 7 5 9 9 7
8 9 7 7 9 8 8 11 9 9 7 7 5 11 9 7 5 11 9 7
9 9 7 9 10 8 8 11 9 9 7 7 8 11 9 8 5 11 9 8

11 10 7 9 11 8 9 11 9 9 7 7 8 11 9 8 7 11 9 8
11 11 8 9 11 9 9 11 10 11 7 9 11 11 11 8 9 11 11 8
11 11 9 11 11 10 9 11 10 11 8 11 11 11 11 9 11 11 11 11
11 12 11 11 11 11 11 11 11 13 9 11 11 11 11 9 11 11 11 11
11 13 11 11 11 11 12 13 11 13 12 11 11 13 13 12 11 11 11 11

6 9 5 6 3 5 5 3 6 6 6 5 2 8 9 7 2 6 6 5
2 2 4 1 1 2 6 4 1 1 2 2 4 1 1 3 4 0 3 3
0 2 0 0 0 0 1 1 0 2 1 0 0 1 1 1 0 0 0 0

X 8 13 9 7 4 7 12 8 7 9 9 7 6 10 11 11 6 6 9 8

12 7 11 13 16 13 8 12 13 11 11 13 14 10 9 9 14 14 11 12

12 7 11 13 16 13 8 12 13 11 11 13 14 10 9 9 14 14 11 12

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

50% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1
1 2 1 1 5 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1
2 2 2 1 5 1 2 1 2 1 2 2 2 2 1 2 2 2 2 1
5 2 2 1 5 4 2 4 5 1 4 5 5 4 1 2 2 5 2 2
5 4 2 1 5 5 5 5 5 4 4 5 5 5 2 5 5 5 2 4
5 4 2 1 5 5 5 5 5 4 5 5 5 5 5 5 5 5 2 5
5 4 4 1 5 5 5 5 5 5 5 7 5 5 5 6 5 5 5 5
5 4 5 2 5 5 5 5 5 5 5 7 5 5 5 7 7 5 5 5
5 5 5 5 7 5 5 7 5 5 7 7 5 5 5 7 7 6 7 5
7 5 5 5 7 5 5 7 7 5 7 7 7 5 7 8 7 7 7 5
7 5 5 7 7 7 7 7 7 5 7 7 7 5 7 9 7 7 7 5
7 5 7 7 7 7 8 7 8 5 7 7 7 7 7 9 7 7 7 5
7 7 7 7 8 7 8 9 9 7 7 7 7 7 7 9 7 7 7 9
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7 7 8 7 8 7 9 11 9 7 8 7 7 7 8 11 11 9 7 9
8 7 9 9 9 9 9 11 9 8 11 8 9 7 11 11 11 9 8 9
9 9 11 11 11 11 11 11 9 9 11 11 9 9 11 11 11 9 8 11

11 11 11 12 11 11 11 11 11 9 11 11 11 11 11 11 11 11 11 11
13 11 12 13 11 11 11 11 11 9 15 11 11 11 12 11 11 11 11 11

7 4 4 5 7 5 5 5 7 6 6 9 7 5 5 6 6 7 8 3
1 7 5 1 1 1 2 1 2 2 3 3 3 3 1 2 2 3 4 2
1 0 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

X 9 11 10 8 8 6 7 6 9 8 9 12 10 8 7 8 8 10 12 5

11 9 10 12 12 14 13 14 11 12 11 8 10 12 13 12 12 10 8 15

11 9 10 12 12 14 13 14 11 12 11 8 10 12 13 12 12 10 8 15

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

55% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 2
1 1 2 1 1 5 2 2 1 1 1 2 1 2 1 1 2 2 1 2
1 1 2 1 2 5 2 2 1 4 1 2 2 2 1 1 2 2 1 5
2 2 5 1 5 5 2 2 2 5 1 5 2 2 1 2 2 2 1 5
2 5 7 2 5 5 5 5 2 5 1 5 5 4 2 2 5 5 1 5
5 5 7 2 5 7 5 5 2 5 2 5 5 5 2 2 5 5 2 7
5 5 7 5 5 7 5 5 2 5 2 7 5 5 2 2 5 5 2 7
5 6 7 5 5 7 5 5 5 7 5 7 5 5 5 5 5 5 2 7
5 7 7 5 5 7 7 5 5 7 7 7 7 5 5 5 7 5 5 7
7 7 7 5 7 7 7 5 5 7 7 9 7 7 5 5 7 7 5 7
7 7 9 5 7 7 7 5 5 7 7 9 7 7 5 7 7 7 5 7
7 7 9 7 7 9 7 5 7 7 9 9 8 7 7 7 7 7 7 7
7 9 9 7 7 9 7 7 7 7 9 9 9 9 7 7 7 9 7 9
7 9 9 7 9 9 7 7 7 7 9 9 9 9 9 7 7 9 9 9
7 9 9 9 9 9 7 7 7 11 9 9 9 11 9 9 9 9 9 9
9 11 11 9 11 9 9 7 9 11 11 11 9 11 9 9 9 9 11 9

11 11 11 11 11 11 11 11 11 11 13 11 9 11 9 9 11 11 11 9
11 11 13 11 11 13 11 11 11 15 13 11 13 11 11 11 15 11 11 11
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7 7 11 5 6 11 8 4 5 7 7 9 9 5 6 7 8 7 4 12
2 1 2 2 1 0 3 4 4 1 2 3 2 4 3 4 3 4 3 2
0 0 1 0 0 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0

X 9 8 14 7 7 12 11 8 9 8 11 12 12 9 9 11 11 11 7 14

11 12 6 13 13 8 9 12 11 12 9 8 8 11 11 9 9 9 13 6

11 12 6 13 13 8 9 12 11 12 9 8 8 11 11 9 9 9 13 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

60% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1
2 2 2 2 1 2 1 1 2 2 2 1 2 2 1 1 1 1 2 2
5 2 2 2 2 5 1 1 2 2 2 1 2 2 1 1 1 1 2 2
5 5 2 2 2 5 1 1 5 5 5 1 5 2 1 1 1 2 5 2
5 5 5 5 5 5 1 2 5 5 5 1 5 2 2 1 1 2 5 5
7 7 5 5 5 5 2 2 7 5 5 2 5 5 2 2 2 2 5 5
7 7 5 5 5 5 2 7 7 5 5 2 7 5 5 2 5 2 5 6
7 7 7 5 7 5 2 7 7 5 5 5 7 5 5 2 5 5 5 7
7 7 9 5 7 5 2 7 7 7 7 5 7 5 7 5 7 5 5 7
7 9 9 5 7 7 2 7 9 7 7 5 7 7 7 5 7 5 7 9
7 9 9 5 7 7 5 7 9 7 9 5 7 7 7 7 7 5 7 9
9 9 11 5 9 9 5 7 9 9 9 7 7 7 7 7 7 7 7 9
9 9 11 5 9 9 5 7 11 9 9 7 9 7 9 7 7 7 9 9
9 11 11 7 9 11 7 9 11 9 11 7 11 9 11 7 7 7 9 9
9 11 11 7 10 11 7 9 11 9 11 7 11 9 11 7 9 9 9 11

11 11 11 7 11 11 9 11 11 9 11 11 11 9 11 9 9 9 9 11
11 14 11 9 12 11 9 13 11 9 11 11 11 11 11 9 11 9 11 11
12 14 12 9 14 14 11 14 14 11 14 14 11 13 15 9 14 10 11 12

10 8 4 5 7 4 4 9 7 9 5 4 7 7 5 8 8 6 7 7
2 2 3 4 2 2 5 2 2 3 2 2 2 4 2 3 1 4 4 3
1 2 1 0 2 1 0 2 1 0 1 1 0 1 0 0 1 0 0 1

X 13 12 8 9 11 7 9 13 10 12 8 7 9 12 7 11 10 10 11 11

7 8 12 11 9 13 11 7 10 8 12 13 11 8 13 9 10 10 9 9
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7 8 12 11 9 13 11 7 10 8 12 13 11 8 13 9 10 10 9 9

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

65% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1
1 2 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 2
1 2 1 1 1 1 2 2 2 1 1 1 2 2 5 1 1 1 1 2
1 2 1 2 1 2 2 5 2 2 1 2 2 2 5 1 1 1 2 2
1 2 1 5 1 2 5 5 2 5 2 2 5 5 5 2 2 2 5 2
2 2 2 5 2 5 5 5 2 5 5 2 5 7 5 2 2 2 5 2
5 5 2 5 2 5 7 5 5 5 5 5 5 7 5 2 2 5 5 5
7 5 5 5 2 6 7 5 5 5 5 5 5 7 5 2 5 5 7 5
7 5 5 5 2 7 7 7 5 5 5 7 7 7 7 5 5 7 7 7
7 7 7 5 2 7 7 7 7 7 7 7 7 7 7 5 5 7 7 7
7 9 9 7 2 7 7 7 7 7 7 7 7 7 7 7 5 7 7 7
7 9 9 9 5 7 7 7 7 7 7 7 7 9 7 7 7 7 7 7
7 9 9 9 5 11 7 7 7 9 7 7 7 9 9 7 7 7 9 9
9 9 11 9 7 11 9 7 11 11 9 9 7 9 9 9 9 9 9 11
9 9 11 11 9 11 9 9 11 11 9 9 9 9 11 9 9 11 9 11
9 11 11 11 9 11 9 9 11 11 9 10 9 9 11 11 9 11 9 11

11 11 11 11 11 11 9 9 11 11 9 11 9 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 15 11 15
15 15 11 15 15 15 11 15 12 12 11 15 11 11 11 12 15 15 11 15

9 6 4 4 3 4 11 9 4 4 8 7 9 11 6 5 5 6 9 5
1 5 2 1 6 2 4 1 4 1 1 3 2 4 2 4 3 2 1 5
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0

X 10 11 6 5 9 6 15 10 9 6 9 10 11 15 8 10 8 8 10 10

10 9 14 15 11 14 5 10 11 14 11 10 9 5 12 10 12 12 10 10

10 9 14 15 11 14 5 10 11 14 11 10 9 5 12 10 12 12 10 10

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

70% 1 2 3 4 5

35 M1 6 7 8 9 10
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20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1
2 2 1 2 1 1 1 5 2 1 2 2 1 1 1 2 1 2 2 1
5 2 5 2 1 1 2 5 2 2 2 2 1 1 1 2 1 2 5 1
5 2 5 5 1 1 2 6 5 2 2 2 1 2 1 2 1 2 5 2
5 2 5 5 2 2 2 7 5 5 2 5 2 2 2 2 2 2 5 2
7 5 5 6 2 2 5 7 7 5 5 5 7 2 2 2 2 2 5 2
7 5 7 7 5 2 5 7 7 7 5 5 7 5 2 7 2 5 7 5
7 7 7 7 7 2 5 7 7 7 7 7 7 5 5 7 7 5 7 5
9 7 7 7 7 2 7 7 7 9 7 7 9 5 5 9 7 5 7 5
9 9 7 9 7 5 7 7 7 9 7 7 9 7 7 9 7 7 7 9
9 9 7 9 9 5 9 7 7 9 9 9 9 7 9 9 7 7 9 9

11 9 9 9 9 7 9 9 7 9 11 9 9 7 9 10 9 9 9 9
11 9 9 9 9 7 9 9 11 9 11 9 9 9 9 11 9 10 9 11
11 11 9 9 9 7 9 11 11 9 11 9 11 9 11 11 9 11 9 11
11 11 9 11 11 9 11 11 11 11 11 11 11 9 11 11 9 11 9 11
11 11 9 11 11 9 11 11 11 11 11 11 11 11 11 11 9 11 11 11
11 11 11 11 15 11 11 11 11 11 11 11 11 11 15 11 11 11 11 11
11 15 11 11 15 11 11 11 11 11 11 11 11 15 15 11 11 15 11 15
15 15 15 15 15 15 15 11 15 15 15 15 11 15 15 15 15 15 11 15

6 6 10 8 7 5 6 9 7 8 4 7 8 6 4 5 9 3 9 3
2 5 0 2 2 5 3 1 2 2 4 4 1 3 3 5 3 5 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X 8 11 10 10 9 10 9 10 9 10 8 11 9 9 7 10 12 8 11 6

12 9 10 10 11 10 11 10 11 10 12 8 11 11 13 10 8 12 9 14

12 9 10 10 11 10 11 10 11 10 12 8 11 11 13 10 8 12 9 14

Y 20 20 20 20 20 20 20 20 20 20 20 19 20 20 20 20 20 20 20 20

75% 1 2 3 4 5

35 M1 6 7 8 9 10 M1 
20 M2 11 12 13 14 15 M2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 1 1 1 2 2 2 2 1 2 1 2 1 1
2 1 1 1 1 2 2 1 1 2 2 2 2 2 1 2 1 2 2 1
2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 5 2 2 2 1
2 1 2 2 2 5 2 2 2 5 2 2 2 2 2 5 2 2 2 2
2 2 5 2 2 7 2 2 2 5 5 2 5 2 2 5 2 4 2 2
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5 2 5 2 2 7 2 5 2 5 9 5 5 2 2 5 5 5 2 2
5 2 7 2 5 7 5 5 5 7 9 5 6 2 2 5 7 5 2 2
5 2 7 6 5 9 5 7 5 7 9 5 7 2 5 5 7 5 2 2
5 2 9 7 5 9 6 7 5 7 9 7 7 2 5 5 7 5 2 5
7 2 9 7 7 9 7 7 7 7 9 7 9 5 5 5 7 5 5 5
7 5 9 7 7 9 7 7 7 9 9 8 9 7 5 7 9 7 5 5
7 6 11 7 7 9 7 9 9 9 11 9 9 7 5 7 9 7 5 5
9 7 11 7 9 9 7 9 9 9 11 9 11 7 7 7 9 7 9 7
9 7 11 9 11 9 9 9 9 9 11 9 11 9 7 7 11 7 9 9
9 9 11 9 11 11 9 9 11 11 11 9 11 9 9 9 11 9 11 9
9 9 12 9 11 11 9 11 11 11 11 11 11 11 9 11 11 9 11 9

11 11 15 11 15 11 11 11 11 11 11 11 11 11 9 11 11 9 11 11
11 11 15 11 15 11 11 11 15 12 15 15 11 15 11 11 11 11 11 11
11 11 15 15 15 11 15 15 15 15 15 15 11 15 11 15 11 15 11 15

7 4 5 8 4 10 7 8 5 8 6 7 5 5 5 5 7 7 2 4
5 6 2 4 4 3 6 3 4 2 4 5 4 9 4 2 3 5 8 5
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X 12 10 8 12 8 13 13 11 9 11 10 12 9 14 9 7 10 12 10 9

8 10 12 8 12 7 7 9 11 9 10 8 11 6 11 13 10 8 10 11

8 10 12 8 12 7 7 9 11 9 10 8 11 6 11 13 10 8 10 11

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

80% 1 2 3 4 5

35 M1 6 7 8 9 10 M1 
20 M2 11 12 13 14 15 M2

1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1
1 1 1 1 2 2 2 2 2 1 1 1 2 1 2 1 2 2 1 1
1 2 1 1 5 2 2 2 2 1 1 2 2 2 5 1 2 2 2 2
5 2 3 2 5 2 2 2 2 2 2 2 2 4 5 2 7 2 2 2
5 2 5 2 5 5 2 2 2 2 2 2 2 5 5 2 7 5 2 2
7 2 5 2 7 5 2 2 2 2 5 2 2 5 5 2 7 5 4 7
7 2 7 2 7 5 2 5 5 2 5 2 2 5 7 2 7 7 5 7
7 2 7 2 7 7 5 5 5 2 5 2 5 7 7 2 9 7 5 7
7 4 7 2 7 7 5 5 5 7 7 5 5 7 7 5 9 7 5 7
7 5 7 7 7 7 5 7 5 7 7 7 5 7 7 7 9 7 7 7
7 5 7 7 8 7 5 7 7 7 7 7 5 7 7 7 9 7 7 7
7 7 8 8 9 7 5 7 7 7 7 7 7 7 7 7 9 7 7 8
7 7 9 8 9 7 5 7 7 7 7 7 7 8 8 7 9 9 7 9
9 7 9 9 9 7 7 7 7 7 9 9 7 8 9 7 9 9 7 9
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9 9 9 9 11 7 7 8 7 9 9 9 7 9 9 9 9 9 7 9
11 9 10 9 11 8 7 9 9 9 9 9 9 9 9 9 11 9 9 9
11 9 11 11 14 9 9 9 9 10 9 9 11 11 11 14 11 11 9 9
13 10 11 11 15 9 9 9 10 11 11 11 14 11 11 14 11 11 10 9
15 11 14 14 15 14 11 9 14 15 15 11 15 14 11 15 11 14 11 14
15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 15 11 15 14 15

10 6 9 7 9 11 5 10 7 8 9 8 5 9 10 7 12 10 8 13
0 7 1 6 1 3 6 5 5 5 2 6 6 2 1 5 2 3 4 3
1 0 1 1 1 1 0 0 1 0 0 0 1 2 1 2 0 1 1 1

X 11 13 11 14 11 15 11 15 13 13 11 14 12 13 12 14 14 14 13 17

9 7 9 6 8 5 9 5 7 7 9 6 8 7 8 6 5 5 7 3

9 7 9 6 8 5 9 5 7 7 9 6 8 7 8 6 5 5 7 3

Y 20 20 20 20 19 20 20 20 20 20 20 20 20 20 20 20 19 19 20 20

85% 1 2 3 4 5

35 M1 6 7 8 9 10 M1 
20 M2 11 12 13 14 15 M2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 1 2
2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 1 5
2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 7
2 2 2 2 5 2 2 2 5 2 2 2 4 2 2 2 2 2 2 7
4 2 2 2 7 4 2 2 5 5 4 2 5 2 2 2 2 2 5 7
5 2 2 5 7 7 4 7 5 5 7 2 5 2 5 2 2 4 7 7
7 2 7 5 7 7 4 7 7 7 7 4 5 4 5 2 2 7 7 7
7 2 7 7 7 7 5 7 7 7 7 4 7 5 5 5 2 7 7 7
7 2 7 7 7 7 7 7 7 7 7 5 7 7 7 5 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 7 7 7 9
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 7 7 7 9
7 7 7 7 7 9 7 9 9 7 7 7 7 9 7 7 7 7 7 9
9 7 7 7 7 9 9 9 9 9 9 7 9 9 7 7 9 7 9 9
9 7 9 7 9 9 9 9 9 9 9 7 9 9 7 9 11 9 9 9

10 9 9 9 9 9 9 9 9 9 9 9 9 11 7 9 11 9 9 11
10 11 9 9 9 9 11 11 10 9 11 9 9 11 9 9 11 9 9 15
15 11 9 11 9 10 15 15 15 11 11 15 9 15 10 9 15 9 9 15
15 15 10 15 15 11 15 15 15 15 15 15 11 15 11 11 15 11 15 15

8 6 11 9 12 11 7 10 9 10 10 7 10 6 8 6 5 11 12 9
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0 3 0 0 0 0 1 0 0 0 0 2 0 1 0 1 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X 8 9 11 9 12 11 8 10 9 10 10 9 10 7 8 7 7 11 12 9

5 3 1 4 1 2 4 3 4 3 3 3 3 5 5 5 5 1 1 4

5 3 1 4 1 2 4 3 4 3 3 3 3 5 5 5 5 1 1 4

Y 13 12 12 13 13 13 12 13 13 13 13 12 13 12 13 12 12 12 13 13

90% 1 2 3 4 5

35 M1 6 7 8 9 10 M1 
20 M2 11 12 13 14 15 M2

1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 2 1 2 1 1 1 1 1 2 1 2 1 1 1 2
2 2 1 2 2 2 1 2 1 1 2 2 1 2 2 2 1 1 1 2
2 2 1 4 2 2 2 4 2 2 2 2 1 2 2 2 2 1 2 2
2 2 2 5 2 5 4 4 2 2 2 2 1 2 5 2 2 2 2 2
2 2 2 7 2 5 4 5 2 2 2 5 1 2 5 5 2 2 4 2
2 4 2 7 4 5 5 7 5 2 2 7 2 2 7 7 2 2 4 5
4 5 2 7 5 7 7 7 7 2 2 7 2 5 7 7 7 2 7 7
7 7 7 7 7 7 7 7 7 4 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 4 7 7 7 7 7 7 7 7 7 9
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9
7 7 7 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 10
7 7 7 7 7 9 7 7 7 9 7 7 7 7 7 7 7 7 9 10
7 9 7 7 7 9 9 9 7 9 7 9 7 7 7 7 9 7 9 15
9 9 7 7 7 10 9 9 7 9 7 9 7 9 7 7 9 9 15 15

15 9 9 7 7 10 9 9 9 9 7 15 9 9 9 7 9 10 15 15
15 9 9 7 15 15 9 9 10 10 15 15 9 9 9 9 9 15 15 15
15 15 15 7 15 15 15 10 15 15 15 15 9 9 10 15 9 15 15 15
15 15 15 9 15 15 15 15 15 15 15 15 10 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

7 9 9 12 8 7 10 10 9 6 8 8 10 10 10 10 11 7 7 4
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X 7 9 9 12 8 7 10 10 9 8 8 8 10 10 10 10 11 7 7 4

5 4 3 1 5 6 3 3 4 4 4 5 2 3 3 3 2 5 6 9

5 4 3 1 5 6 3 3 4 4 4 5 2 3 3 3 2 5 6 9
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APPENDIX A. APPENDIX A

A.2.1.4 CS1 Additional ProMps Results
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10% 1 2 3 4 5

35 M1 6 7 8 9 10

20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 5 1 1
1 5 1 1 1 2 1 1 1 1 1 5 1 1 1 1 1 5 1 1
5 5 4 1 1 5 1 1 1 1 2 5 4 2 5 5 1 5 1 2
5 5 5 2 1 5 1 5 2 1 4 5 5 4 5 5 1 5 1 5
5 5 5 4 1 5 2 5 4 5 5 5 5 5 6 6 2 6 1 5
8 5 5 4 2 8 4 5 5 5 5 6 5 5 6 8 2 9 1 10

11 5 5 5 5 8 5 5 5 6 9 8 5 8 8 11 5 10 2 10
11 5 5 5 5 10 9 6 5 8 11 10 6 8 10 11 5 10 5 10
11 6 6 5 5 10 9 10 9 10 11 11 8 8 11 11 6 11 10 11
11 10 10 7 10 10 11 11 11 11 11 11 10 10 11 11 10 11 10 11
11 11 10 8 11 11 11 11 11 11 11 11 10 10 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 14 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 14 11 11 11 11 11 12 11 11 11
11 11 13 11 11 11 11 12 11 11 14 11 11 11 11 11 14 11 11 14
11 11 14 11 11 12 11 14 14 13 14 14 11 11 14 12 14 11 11 14
14 11 14 11 14 13 14 14 14 14 14 14 11 14 14 13 14 11 14 14
14 14 14 14 14 14 14 15 14 14 14 14 14 14 15 14 14 14 14 14

1 1 2 1 1 5 2 1 1 2 1 2 3 5 2 1 1 3 2 3
3 7 6 5 3 3 2 4 4 2 3 4 5 3 2 2 2 4 1 2
2 1 4 1 2 2 2 3 3 3 6 3 1 2 3 2 4 1 2 4

X 6 9 12 7 6 10 6 8 8 7 10 9 9 10 7 5 7 8 5 9

14 11 8 13 14 10 14 12 12 13 10 11 11 10 13 15 13 12 15 11

14 11 8 13 14 10 14 12 12 13 10 11 11 10 13 15 13 12 15 11

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

15% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 5 1 1 1
5 1 1 1 1 1 1 1 1 2 1 1 5 1 2 4 5 1 1 2
5 5 5 1 1 1 1 1 2 2 4 5 5 1 5 5 5 1 5 5
5 5 5 2 1 1 1 1 5 4 5 5 5 1 6 6 5 1 5 5
8 5 6 5 1 5 1 4 5 5 5 5 5 1 8 6 5 2 6 6
9 6 6 5 5 5 5 4 6 5 5 5 5 4 8 8 6 5 6 6

10 7 8 5 5 5 5 5 6 5 5 5 6 5 9 9 9 5 8 9
11 9 9 9 5 6 5 6 6 5 5 5 9 5 9 10 9 5 8 11
11 11 10 11 5 8 8 8 6 5 6 8 9 6 10 11 9 6 9 11
11 11 10 11 5 11 10 11 9 6 6 9 10 6 11 11 10 8 9 11
11 11 10 11 6 11 10 11 10 6 8 9 11 6 11 11 11 9 10 11
11 11 11 11 6 11 11 11 11 8 8 11 11 7 11 11 11 10 11 11
11 11 11 11 9 12 11 11 11 9 11 11 11 7 11 11 11 11 11 11
11 11 11 11 11 12 11 11 11 11 11 11 11 10 11 11 11 11 11 12
11 11 11 11 11 12 11 12 11 11 12 11 11 11 11 11 11 11 12 13
11 11 11 11 11 14 11 13 11 11 14 11 12 11 12 11 11 12 14 14
14 12 12 11 12 14 12 14 11 11 14 11 12 11 12 12 11 14 14 14
14 14 12 12 12 14 13 14 14 12 14 12 12 11 14 14 12 14 14 14
15 14 14 13 14 14 14 14 14 14 15 15 14 15 14 14 14 14 14 14

3 1 5 1 1 1 3 1 2 2 2 3 3 1 5 3 4 3 5 1
3 3 2 3 5 3 3 3 2 6 6 6 6 3 1 2 5 3 2 2
3 2 1 1 1 4 2 4 2 1 4 1 1 1 2 2 1 3 4 5

X 9 6 8 5 7 8 8 8 6 9 12 10 10 5 8 7 10 9 11 8

11 14 12 15 13 12 12 12 14 11 8 10 10 15 12 13 10 11 9 12

11 14 12 15 13 12 12 12 14 11 8 10 10 15 12 13 10 11 9 12

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

User 1019 Cell 10 Predictions

Same Row 
Top Row

Bottom Row

Same Row 
Top Row

Bottom Row
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20% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
1 1 1 5 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 5
5 1 2 5 2 2 1 1 1 2 5 1 2 1 5 5 1 5 1 5
5 1 5 5 5 5 1 1 1 5 5 1 5 5 5 6 2 5 1 5
5 1 5 6 5 5 2 2 5 5 5 1 5 5 5 7 6 5 1 8
5 1 5 8 6 5 5 5 5 5 6 5 6 5 5 8 6 6 5 8
5 1 5 8 6 5 5 6 6 5 6 5 7 6 6 11 8 6 5 8
5 1 5 9 6 6 5 8 8 6 8 5 8 6 6 11 8 8 5 9
9 5 9 10 8 6 5 10 11 6 9 6 9 6 8 11 8 11 9 9

11 5 9 11 8 7 7 11 11 9 10 9 10 8 8 11 9 11 10 9
11 5 9 11 10 9 8 11 11 9 10 9 11 8 9 11 11 11 11 10
11 6 10 11 10 9 9 11 11 10 11 9 11 9 9 11 11 11 11 10
11 6 10 11 11 10 11 11 11 11 11 11 11 9 9 11 11 11 11 11
11 6 10 11 11 11 11 11 11 11 11 11 11 11 9 11 11 11 11 11
11 9 11 11 11 11 11 11 11 11 11 11 11 11 10 11 11 11 14 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 14 14 11
14 11 11 14 11 11 11 14 11 14 11 11 11 11 11 11 11 14 14 11
14 14 14 14 11 13 14 14 11 14 11 14 14 13 11 14 11 14 14 14
14 14 14 14 14 14 14 14 11 14 14 15 14 15 11 14 14 14 14 14

1 1 6 4 4 3 2 2 1 3 4 3 3 4 7 1 4 1 2 8
6 3 5 3 2 4 4 1 2 4 3 3 2 3 4 1 0 3 3 4
3 2 2 3 1 2 2 3 0 3 1 2 2 2 0 2 1 4 5 2

X 10 6 13 10 7 9 8 6 3 10 8 8 7 9 11 4 5 8 10 14

10 14 7 10 13 11 12 14 17 10 12 12 13 11 9 16 15 12 10 6

10 14 7 10 13 11 12 14 17 10 12 12 13 11 9 16 15 12 10 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

25% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1
1 1 1 1 1 1 1 5 5 1 1 5 1 5 5 1 1 3 2 1
1 1 1 1 1 1 1 5 5 5 1 6 1 5 6 5 2 5 4 1
1 4 1 1 1 5 5 5 6 5 1 6 1 5 8 5 2 5 4 4
1 5 2 1 5 6 6 5 6 5 1 8 1 6 8 6 5 8 5 5
1 5 6 5 8 6 6 5 6 6 1 8 1 7 9 9 5 8 6 5
1 5 6 5 8 8 8 6 6 8 5 9 1 9 9 9 5 9 8 6
5 5 6 6 9 8 8 6 9 8 6 9 5 9 10 11 7 9 8 6
5 6 8 6 9 8 9 8 10 8 8 9 5 11 11 11 9 10 8 6
5 6 9 9 9 9 11 9 10 8 9 11 5 11 11 11 9 10 9 8
6 6 9 11 11 11 11 9 11 8 9 11 10 11 11 11 9 11 9 8
9 8 11 11 11 11 11 9 11 9 10 11 11 11 11 11 9 11 10 8
9 9 11 11 11 11 11 11 11 9 11 11 11 11 11 11 10 11 11 9

11 9 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 9 11 11 11 11 11 14 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 14 14 11 11 11 14 11 11 11 14 12 14 11 11
11 14 11 12 12 13 14 15 14 14 11 14 11 14 13 14 14 14 11 11
11 14 13 14 13 15 14 15 15 14 14 14 14 14 14 15 15 15 14 14

2 4 3 1 5 4 3 4 3 7 4 5 1 2 5 2 5 6 6 4
3 5 0 2 1 1 1 5 2 3 1 1 3 4 1 2 3 3 3 3
0 2 1 1 1 2 3 4 2 2 1 3 1 2 2 3 2 3 1 1

X 5 11 4 4 7 7 7 13 7 12 6 9 5 8 8 7 10 12 10 8

15 9 16 16 13 13 13 7 13 8 14 11 15 12 12 13 10 8 10 12

15 9 16 16 13 13 13 7 13 8 14 11 15 12 12 13 10 8 10 12

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

30% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1 1
1 1 2 1 1 1 1 4 1 1 1 1 1 6 1 1 1 1 1 1
1 1 4 5 1 1 4 5 1 1 1 1 2 8 1 1 5 1 1 1
2 5 5 5 1 1 5 5 5 1 4 4 2 8 4 1 5 5 1 1
2 5 5 5 5 2 5 5 5 5 4 5 4 8 4 5 5 5 5 1
4 8 5 5 5 5 5 6 5 5 5 8 5 8 4 8 5 5 5 1
5 9 8 5 5 7 8 7 5 5 5 8 5 8 5 8 5 5 5 2
6 9 8 5 6 8 8 8 6 8 6 8 5 9 5 8 5 5 5 5
8 9 8 8 6 8 8 8 8 8 9 8 6 9 5 8 8 6 5 5
8 9 8 8 8 8 8 8 8 9 9 8 8 9 5 8 8 8 5 5
9 9 8 8 8 8 9 9 9 9 9 8 8 9 5 8 8 8 8 8
9 9 9 9 9 8 9 9 9 9 9 8 8 9 8 8 9 11 9 8
9 9 11 9 9 9 11 9 11 11 11 9 8 11 8 9 9 11 9 8
9 11 11 11 9 9 11 9 11 11 11 9 11 11 9 11 11 11 10 11

11 11 11 11 11 9 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 14 14 11 11 14 11 11 11 11 11 12 11 14 11 11 11 11
11 11 13 14 14 11 14 15 11 14 11 13 14 13 13 14 14 14 11 11
12 11 14 15 15 14 15 15 11 15 14 15 14 14 14 15 14 14 13 11

6 8 6 5 5 8 6 7 4 5 4 9 4 10 3 8 5 2 4 3
2 2 4 6 3 1 4 5 4 3 4 2 4 1 8 1 6 5 6 3
0 0 2 3 3 1 2 3 0 2 1 2 2 2 2 3 2 2 1 0

X 8 10 12 14 11 10 12 15 8 10 9 13 10 13 13 12 13 9 11 6

12 10 8 6 9 10 8 5 12 10 11 7 10 7 7 8 7 11 9 14

12 10 8 6 9 10 8 5 12 10 11 7 10 7 7 8 7 11 9 14

Same Row 
Top Row

Bottom Row

Same Row 
Top Row

Bottom Row

Same Row 
Top Row

Bottom Row
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Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

35% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1
1 4 1 1 4 1 1 4 5 4 1 1 1 5 1 4 2 1 1 1
4 4 1 1 5 2 1 5 5 5 1 4 1 5 1 4 4 1 4 4
5 5 2 1 5 2 4 5 5 5 5 4 1 5 1 4 5 1 5 4
6 5 4 4 5 5 4 6 5 5 5 5 5 5 1 8 5 5 5 5
7 5 4 5 5 8 4 6 6 6 5 8 5 5 1 8 5 5 6 5
7 5 5 5 6 8 5 8 6 6 7 8 5 5 5 8 5 5 7 5
8 8 6 5 7 8 5 8 8 8 8 8 8 6 5 8 7 5 8 5
8 8 6 6 8 8 5 9 8 8 8 8 8 8 5 8 8 8 8 6
8 8 7 8 8 8 5 9 8 8 8 8 8 8 5 8 8 8 8 6
9 8 8 8 8 8 8 10 8 8 8 9 8 8 6 8 8 8 8 6
9 8 8 8 9 9 10 11 8 9 8 9 8 8 8 9 8 8 8 8
9 8 9 9 9 11 10 11 8 9 8 11 8 8 9 9 8 9 9 8

11 8 10 11 9 11 11 11 9 9 8 11 8 8 9 9 8 9 9 9
11 8 10 11 9 11 11 11 9 10 8 11 9 11 10 11 8 11 9 9
11 8 11 11 9 11 11 11 11 11 9 15 9 11 11 11 9 11 11 11
11 9 11 11 10 11 11 13 11 12 9 15 11 11 11 11 9 11 11 12
11 15 12 13 14 14 11 15 11 15 11 15 15 11 12 15 9 15 14 15

6 10 5 4 9 7 3 5 8 8 10 7 9 6 4 10 10 6 8 4
2 6 3 4 5 1 7 3 5 4 3 3 3 6 4 3 5 4 3 6
0 1 0 1 1 1 0 2 0 1 0 3 1 0 0 1 0 1 1 1

X 8 17 8 9 15 9 10 10 13 13 13 13 13 12 8 14 15 11 12 11

12 3 12 11 5 11 10 10 7 7 7 7 7 8 12 6 5 9 8 9

12 3 12 11 5 11 10 10 7 7 7 7 7 8 12 6 5 9 8 9

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

40% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 5 4 4 5 1 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 5 4 5 5 1 1 1 1 2 5 5 2 1 1 1
1 5 1 1 1 5 5 5 5 1 5 5 1 6 5 5 4 4 1 4
5 5 1 2 4 5 5 5 5 5 5 5 1 6 5 5 4 4 5 5
5 5 5 4 5 5 5 5 5 5 5 5 1 6 5 5 5 5 5 5
5 5 6 5 5 8 5 5 5 5 5 5 1 6 5 5 5 5 5 5
5 6 8 5 5 8 8 6 7 8 5 8 5 8 5 7 5 5 5 5
5 7 8 5 5 9 8 8 8 8 5 8 5 8 8 8 5 5 5 7
9 7 8 5 8 9 8 8 8 8 5 8 5 8 8 8 6 8 6 8
9 8 9 5 8 9 8 8 8 8 5 9 6 8 8 8 8 8 8 8
9 8 9 8 8 9 9 9 9 8 8 9 8 8 8 8 8 8 8 8
9 9 9 8 8 10 9 11 9 8 8 9 8 8 8 9 8 8 8 8

10 9 10 8 8 11 9 11 10 9 8 9 8 9 8 9 8 8 9 9
11 9 11 8 8 11 9 11 11 9 8 9 9 9 8 11 9 10 9 9
11 11 11 8 9 11 9 12 11 9 9 9 11 11 8 11 10 11 11 10
11 11 11 11 11 11 10 14 13 10 11 9 11 11 10 11 11 11 11 11
11 11 11 14 11 14 14 14 14 11 11 11 13 12 11 11 14 15 11 11

5 5 7 5 7 7 10 4 6 10 5 10 4 8 9 6 6 6 5 7
5 4 1 6 5 5 6 7 8 3 8 4 3 0 7 5 6 6 5 5
0 0 0 1 0 1 1 2 2 0 0 0 1 0 0 0 1 1 0 0

X 10 9 8 12 12 13 17 13 16 13 13 14 8 8 16 11 13 13 10 12

10 11 12 8 8 7 3 7 4 7 7 6 12 12 4 9 7 7 10 8

10 11 12 8 8 7 3 7 4 7 7 6 12 12 4 9 7 7 10 8

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

45% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 5 5 1 1 1 1 1 4 1 1 1 1 3
1 5 1 5 1 5 1 5 5 1 5 2 1 1 5 4 1 1 1 4
2 5 2 5 1 5 1 5 8 1 5 5 2 2 5 5 1 2 1 4
5 5 4 5 1 5 2 5 8 5 5 5 5 5 5 5 1 5 2 4
5 6 4 5 5 5 4 5 8 5 5 5 5 6 5 5 1 5 4 5
5 7 4 8 8 5 5 8 8 5 6 5 8 8 5 5 1 6 5 5
5 8 5 8 8 8 8 8 8 5 8 5 8 8 7 5 4 8 5 5
5 8 5 8 8 8 8 8 8 7 8 5 8 8 8 5 5 8 5 5
6 8 6 8 9 9 10 9 9 8 8 5 8 8 8 6 5 8 8 5
8 9 8 9 9 9 10 9 9 8 8 6 9 8 9 8 6 8 8 5
8 9 8 10 9 10 10 9 9 8 8 6 9 8 10 8 8 10 8 8
8 10 9 10 10 10 11 9 10 8 8 8 10 9 11 9 8 11 9 9
8 11 10 11 10 10 11 9 10 9 8 8 11 9 11 9 8 11 9 10
8 14 11 11 10 10 11 9 10 9 10 8 11 11 11 9 8 11 10 10
8 14 11 11 11 11 11 9 10 11 11 8 11 11 14 10 9 11 11 10
9 14 11 11 11 11 11 10 11 11 11 8 11 11 14 10 11 14 11 10

11 14 14 11 13 11 11 11 14 11 11 8 13 13 14 11 11 14 14 10
11 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14

7 6 4 7 9 8 5 11 13 6 8 6 7 8 4 7 5 5 6 7
5 3 5 4 1 5 2 5 2 4 4 7 2 1 6 7 3 2 4 10
0 5 2 1 2 1 1 1 2 1 1 1 2 2 4 1 1 3 2 1

X 12 14 11 12 12 14 8 17 17 11 13 14 11 11 14 15 9 10 12 18

8 6 9 8 8 6 12 3 3 9 7 6 9 9 6 5 11 10 8 2

Top Row
Same Row 

Bottom Row

Same Row 
Top Row

Bottom Row

Same Row 
Top Row

Bottom Row
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8 6 9 8 8 6 12 3 3 9 7 6 9 9 6 5 11 10 8 2

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

50% 1 2 3 4 5

35,20 M1 6 7 8 9 10 M1 
M2 11 12 13 14 15 M2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 3 5 1
1 1 1 1 1 1 1 1 1 2 3 3 2 5 1 1 1 3 5 1
5 1 3 3 1 1 1 3 1 5 3 4 3 5 1 2 1 5 5 1
5 1 5 5 1 4 1 3 1 5 4 4 5 5 3 2 1 5 6 4
5 1 6 5 2 5 5 3 2 6 4 4 5 5 3 2 5 5 6 5
5 1 6 5 5 5 5 4 5 6 5 5 5 5 4 5 5 6 8 5
5 5 6 5 5 6 5 4 5 6 6 5 5 5 5 5 5 6 9 6
6 5 6 5 6 6 5 5 5 10 6 5 5 6 6 5 6 6 9 8
6 5 9 5 6 6 5 5 5 10 9 5 6 6 8 5 6 6 10 8
8 5 10 6 9 8 6 6 8 10 9 6 6 8 9 6 6 6 10 9
9 6 11 6 9 9 6 6 10 10 9 6 6 9 10 6 9 6 11 9
9 6 11 9 9 9 6 8 10 11 10 9 9 9 10 6 11 9 11 9

11 9 11 9 9 11 6 10 13 11 10 11 10 10 12 6 11 10 11 9
11 10 11 9 9 11 6 10 13 11 11 13 10 10 12 8 13 13 11 9
13 10 12 10 10 11 9 11 13 11 12 13 11 10 13 8 13 13 12 10
13 13 13 11 13 13 10 13 13 11 13 13 11 11 13 11 13 13 13 11
13 13 13 11 13 13 11 13 13 11 13 13 11 13 13 13 13 13 13 11
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 11
13 13 15 13 13 13 13 13 15 13 13 13 13 13 13 15 15 15 13 13

3 3 2 4 6 3 2 3 3 4 5 1 3 6 4 2 1 2 5 8
5 4 2 7 2 3 5 7 4 2 5 9 6 7 4 4 3 5 3 3
5 4 4 2 4 4 2 4 7 2 4 6 2 3 5 3 6 6 4 1

X 13 11 8 13 12 10 9 14 14 8 14 16 11 16 13 9 10 13 12 12

7 9 12 7 8 10 11 6 6 12 6 4 9 4 7 11 10 7 8 8

7 9 12 7 8 10 11 6 6 12 6 4 9 4 7 11 10 7 8 8

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

55% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
3 1 1 1 1 1 1 1 3 1 3 1 1 1 2 1 1 2 1 1
3 3 3 1 1 3 3 1 3 1 3 1 1 1 3 1 3 3 1 1
3 3 3 2 2 3 3 1 3 2 3 3 1 1 3 3 3 3 3 2
3 3 3 3 3 3 5 2 5 3 5 3 3 1 5 6 3 3 3 3
3 3 3 3 3 3 5 3 5 3 5 3 3 3 5 6 5 3 3 3
3 3 3 3 3 3 5 5 5 5 5 3 3 3 5 8 5 3 3 3
5 5 5 3 3 3 9 5 6 5 5 3 5 5 5 8 5 3 3 3
6 5 5 5 3 3 9 5 6 5 5 3 5 5 5 10 5 5 5 5
6 5 5 5 3 3 9 5 6 5 6 5 5 5 5 10 5 5 6 5
9 5 5 5 5 3 10 5 8 5 6 5 5 6 5 10 6 6 6 8
9 5 5 5 5 3 10 5 9 5 10 5 5 9 6 10 6 6 9 9
9 5 6 5 5 3 10 5 9 6 10 5 5 10 8 10 9 6 9 10
9 9 6 5 6 5 10 6 9 9 10 5 5 10 9 10 9 9 10 12
9 10 8 6 6 5 10 9 9 10 10 9 6 10 9 13 9 10 10 13
9 10 9 6 10 5 10 10 9 10 10 9 9 12 9 13 10 10 10 13

10 10 10 10 10 5 13 12 11 10 12 10 9 13 13 13 10 12 13 13
10 13 10 11 10 5 13 12 13 10 13 10 9 13 13 13 10 13 13 13
10 13 10 12 10 10 13 13 13 10 13 13 9 13 13 13 10 13 13 13
13 13 13 13 13 10 13 13 13 13 13 13 13 13 13 13 12 13 13 13
13 13 13 13 13 11 13 13 13 13 13 13 15 15 13 13 13 15 15 13

9 4 5 1 4 2 9 2 6 6 5 4 4 4 4 8 7 3 5 3
6 11 10 10 9 16 5 8 5 8 7 11 10 5 9 1 8 8 6 6
2 4 2 2 2 0 5 3 4 2 4 3 2 5 5 7 1 4 5 7

X 17 19 17 13 15 18 19 13 15 16 16 18 16 14 18 16 16 15 16 16

2 1 3 7 5 2 1 7 4 4 3 2 4 6 2 4 4 5 4 4

2 1 3 7 5 2 1 7 4 4 3 2 4 6 2 4 4 5 4 4

Y 19 20 20 20 20 20 20 20 19 20 19 20 20 20 20 20 20 20 20 20

60% 1 2 3 4 5

32 M1 6 7 8 9 10
18 M2 11 12 13 14 15

1 1 2 1 1 2 2 2 1 2 1 1 2 2 2 2 1 1 3 2
1 2 3 2 2 2 2 3 2 2 2 1 5 2 2 2 2 3 4 2
2 3 3 2 2 3 2 4 3 2 3 1 5 2 3 2 2 4 5 2
2 3 5 2 2 4 3 5 4 2 3 2 5 2 3 2 3 5 5 2
2 3 6 3 2 5 3 5 4 2 4 3 5 3 3 2 3 5 5 2
2 4 6 5 2 5 3 5 5 2 5 5 5 3 3 3 3 5 5 3
3 4 9 5 3 5 4 5 5 3 5 5 5 3 5 3 3 5 5 3
3 5 9 5 5 5 5 5 9 5 5 5 9 4 5 3 5 5 9 3
3 5 10 9 5 6 5 5 9 5 6 6 10 5 9 5 5 9 9 4
3 5 10 9 5 10 5 5 9 5 6 9 10 5 9 5 5 9 9 5
5 5 10 9 5 10 5 6 10 5 9 9 10 9 9 6 5 10 10 5
5 5 10 9 9 10 9 9 10 5 9 9 10 10 10 10 9 10 10 5
5 5 13 10 9 13 10 10 10 9 10 9 13 10 10 10 9 10 10 5
5 6 13 10 10 13 10 10 10 9 10 10 13 10 10 13 9 10 10 6

10 9 13 10 13 13 10 10 10 9 10 10 13 15 13 13 10 10 10 9
10 13 13 13 13 13 13 10 10 10 10 13 13 15 13 13 10 13 13 9
13 15 15 13 13 13 13 10 13 10 10 13 13 15 15 13 13 13 13 9
13 15 15 13 15 15 15 10 13 10 13 13 15 15 15 13 15 15 15 10
15 15 15 13 15 15 15 10 13 13 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 13 15 15 15 15 15 15 15 15 15 15 15 15

2 1 6 7 3 3 4 8 9 6 7 6 5 4 6 2 5 7 8 4
8 11 3 4 5 6 8 9 5 6 6 4 6 6 6 5 8 7 7 8
4 5 8 5 6 8 5 1 4 2 3 5 8 6 6 7 4 5 5 2

X 14 17 17 16 14 17 17 18 18 14 16 15 19 16 18 14 17 19 20 14

Top Row

Same Row 
Top Row

Bottom Row

Same Row 

Bottom Row

Same Row 
Top Row

Bottom Row
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6 3 3 4 6 3 3 2 2 6 4 5 1 4 2 6 3 1 0 6

6 3 3 4 6 3 3 2 2 6 4 5 1 4 2 6 3 1 0 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

65% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 3 3 2 2 2 3 2 3 2 3 2 2 2 2 2 2 3 2
3 3 3 3 2 2 3 4 3 3 3 3 2 3 2 3 2 2 3 2
3 3 3 3 3 3 3 4 3 3 3 3 2 3 3 3 3 2 3 3
4 3 4 4 3 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3
5 3 5 5 3 3 5 4 5 5 5 5 3 3 3 3 3 3 3 3
5 5 5 5 3 3 5 4 5 5 5 5 3 3 4 3 3 3 5 3
9 5 5 5 3 3 5 5 5 9 5 5 3 4 4 3 3 3 5 5
9 5 5 9 3 3 5 5 6 9 5 5 3 5 5 5 5 3 5 5

10 6 5 9 3 3 5 5 9 9 5 5 3 6 5 5 5 3 9 5
10 9 5 9 5 3 6 5 10 9 5 6 5 10 5 5 5 6 10 5
10 10 5 9 9 3 9 6 10 10 10 6 5 10 5 5 5 6 10 5
10 10 6 9 9 3 10 9 10 10 10 9 9 10 5 9 5 9 10 6
10 10 9 10 10 3 10 9 10 10 10 9 10 10 6 10 5 9 10 10
10 10 9 10 10 3 10 9 10 10 10 10 10 10 9 10 5 9 13 10
10 10 10 10 10 5 13 10 13 15 10 10 10 10 10 10 9 10 13 10
13 10 13 10 10 9 13 10 13 15 13 10 10 10 10 13 9 10 13 10
13 13 13 13 10 9 13 13 13 15 13 13 10 13 10 13 10 10 13 13
14 13 13 13 13 10 13 13 13 15 14 15 13 13 10 14 10 13 13 13
15 15 14 13 15 13 15 15 15 15 15 15 13 15 13 15 10 13 15 14
15 15 15 15 15 13 15 15 15 15 15 15 13 15 13 15 10 15 15 15

9 7 3 9 7 3 4 5 6 8 5 5 6 7 5 4 6 6 5 4
5 7 11 7 8 13 8 10 6 6 9 9 8 7 10 10 12 6 8 9
5 4 5 4 3 2 6 4 6 6 5 4 3 4 2 5 0 3 7 4

X 19 18 19 20 18 18 18 19 18 20 19 18 17 18 17 19 18 15 20 17

1 2 1 0 2 2 2 1 2 0 1 2 3 2 3 1 2 5 0 3

1 2 1 0 2 2 2 1 2 0 1 2 3 2 3 1 2 5 0 3

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

70% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 3 3 3 3 3 2 3 3 2 3 3 3 3 4 2 2 3 2 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 4
3 3 3 3 3 3 4 4 3 3 3 5 3 4 5 5 3 3 3 5
3 3 3 3 4 5 4 5 3 3 3 5 4 4 5 5 3 3 3 5
3 4 4 3 4 5 5 5 4 3 4 5 5 4 5 9 5 3 4 5
4 4 5 3 5 5 5 5 4 5 5 5 5 5 5 9 9 5 5 5
5 5 5 4 5 6 5 5 5 6 5 5 5 5 9 9 9 5 5 10
5 9 5 5 5 9 5 9 5 9 5 10 5 5 10 10 10 9 5 10
5 9 9 5 5 10 5 9 5 9 5 10 9 5 10 10 10 9 5 10
9 10 10 6 5 10 5 10 5 10 5 10 10 5 10 10 10 10 5 10
9 10 10 10 6 10 9 10 9 10 9 10 10 5 10 10 13 10 9 10

10 10 10 10 9 13 10 10 10 10 10 10 10 9 13 10 13 10 10 10
10 10 10 10 9 13 10 10 10 10 10 10 10 10 13 10 13 13 10 10
10 10 10 10 9 13 10 13 10 13 10 10 10 10 13 10 13 13 13 10
10 10 13 13 10 13 10 14 13 13 10 13 10 10 15 13 13 13 13 10
13 13 15 13 13 15 13 15 13 13 10 13 13 10 15 13 15 13 13 10
13 15 15 13 13 15 13 15 15 15 14 15 13 13 15 13 15 15 15 15
15 15 15 15 15 15 13 15 15 15 15 15 13 14 15 15 15 15 15 15
15 15 15 15 15 15 13 15 15 15 15 15 13 15 15 15 15 15 15 15

6 8 6 4 4 4 5 6 4 6 6 7 7 5 5 10 5 5 3 10
10 8 9 10 11 7 10 8 11 6 11 8 9 12 7 4 5 8 10 7

4 4 5 5 4 8 4 6 5 6 3 5 4 3 8 5 9 7 6 3

X 20 20 20 19 19 19 19 20 20 18 20 20 20 20 20 19 19 20 19 20

0 0 0 1 1 1 1 0 0 2 0 0 0 0 0 1 1 0 1 0

0 0 0 1 1 1 1 0 0 2 0 0 0 0 0 1 1 0 1 0

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

75% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 5
3 3 3 3 3 3 5 3 5 3 5 3 3 3 3 3 4 3 4 5
4 3 3 3 5 3 5 3 9 3 6 3 3 5 4 3 5 3 5 5
4 3 5 3 5 3 5 3 9 5 6 3 5 5 4 4 9 3 5 9
4 4 5 3 5 4 9 5 10 9 9 3 5 5 5 4 9 3 5 9
5 4 5 5 10 5 9 5 10 9 10 5 5 9 5 5 9 3 5 10
5 5 5 5 10 5 10 5 10 9 10 5 6 10 5 5 10 5 5 10
5 5 6 5 10 5 10 5 10 10 10 5 10 10 5 5 10 5 5 10

10 5 9 5 10 5 10 9 10 10 10 5 10 10 9 10 10 5 5 10
10 5 10 6 10 5 10 10 10 10 10 5 10 10 9 10 10 5 9 10
10 9 10 9 10 10 10 10 13 10 10 5 10 10 10 10 10 9 10 10
10 10 10 10 10 10 10 10 13 10 10 9 10 10 10 10 10 10 10 10
13 10 10 10 10 10 10 10 14 10 10 10 10 13 10 10 10 10 10 10
13 10 10 10 10 10 10 10 15 10 10 10 10 14 10 10 10 10 13 10
13 10 10 10 13 10 13 10 15 10 13 10 13 15 10 10 10 10 13 13
13 13 10 14 13 10 13 13 15 14 13 10 13 15 10 13 10 10 13 13
14 13 13 14 14 10 13 13 15 14 13 10 14 15 13 15 13 14 15 14
14 15 14 15 15 10 13 13 15 14 15 14 15 15 15 15 13 14 15 15
15 15 14 15 15 13 15 15 15 15 15 15 15 15 15 15 13 15 15 15

4 5 8 5 9 8 10 7 8 11 10 6 7 7 8 7 13 6 4 11
9 11 8 10 6 11 5 9 3 5 3 12 7 6 9 9 4 11 10 4
7 4 3 4 5 1 5 4 9 4 5 2 5 7 3 4 3 3 6 5

Top Row

Same Row 
Top Row

Bottom Row

Same Row 
Top Row

Bottom Row

Same Row 

Bottom Row
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X 20 20 19 19 20 20 20 20 20 20 18 20 19 20 20 20 20 20 20 20

0 0 1 1 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

80% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 3 3 5 3 3 3 3 5 3 3 5 3 3 3 3 3 3 3 3
5 4 3 5 3 3 5 4 5 3 3 5 3 3 3 3 3 3 3 5
5 5 3 5 4 3 5 5 5 3 5 5 3 4 3 3 3 5 5 5
5 5 5 9 5 4 5 5 5 3 5 5 3 5 3 5 3 5 5 5
5 9 5 9 5 5 5 5 5 4 5 5 3 5 3 5 3 5 5 5
5 10 5 10 5 5 5 9 5 4 5 9 5 5 3 9 3 5 5 5
5 10 5 10 9 9 5 9 10 5 5 10 5 5 4 10 5 5 10 5
5 10 9 10 10 10 9 10 10 5 9 10 9 5 5 10 5 5 10 5
5 10 9 10 10 10 10 10 10 5 10 10 10 5 9 10 5 5 10 5
9 10 10 10 10 10 10 10 10 9 10 10 10 9 10 10 5 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 9 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 13 10 10 10 10 10 13 10 10 10 10 13 10 13 10 10 10 10 10
10 13 10 10 13 10 13 13 10 10 10 10 13 10 13 13 10 10 10 10
10 13 13 13 13 10 13 14 13 11 10 13 13 13 14 13 13 13 13 13
10 14 15 14 15 13 14 15 13 13 13 13 14 15 14 13 14 15 13 13
10 15 15 14 15 15 15 15 14 13 15 14 14 15 14 13 14 15 15 15

10 9 9 13 9 11 8 9 10 7 10 11 7 7 6 10 6 7 10 7
10 5 8 4 7 7 8 6 7 10 8 6 8 10 9 6 11 10 7 10

0 6 3 3 4 2 4 5 3 2 2 3 5 3 5 4 3 3 3 3

X 20 20 20 20 20 20 20 20 20 19 20 20 20 20 20 20 20 20 20 20

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

85% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 3 3 3 3 4 5 3 3 3 3 3 3 5 3 5 5 3 5 3
5 3 3 5 4 5 10 5 5 3 5 5 3 5 3 5 5 3 5 3
5 3 3 9 5 5 10 5 5 3 5 5 3 9 5 9 5 3 5 3
5 3 3 9 5 5 10 5 5 5 5 5 5 9 5 10 9 3 5 3
9 3 3 10 5 5 10 5 5 5 9 5 5 9 9 10 9 3 9 4
9 4 5 10 5 9 10 5 9 5 10 9 5 9 9 10 9 5 9 5
9 5 5 10 5 9 10 9 9 9 10 9 5 9 9 10 9 5 10 5

10 5 5 10 9 10 10 9 9 9 10 10 10 10 10 10 9 5 10 5
10 5 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 9 10 5
10 5 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 9 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 13 10 13 10 10 10 10 13 10 10 10 10 10 10 10 11 10
10 10 10 13 10 13 13 10 10 10 13 11 10 10 10 13 10 10 13 10
13 10 10 13 13 13 13 13 10 10 14 13 13 10 10 13 10 10 13 10
13 10 11 13 14 13 14 13 10 13 14 13 13 11 13 13 10 10 13 13
13 13 13 14 14 14 14 13 10 13 14 14 14 13 14 14 13 13 13 13
14 13 13 15 15 14 15 13 13 14 15 15 14 13 15 15 13 14 14 14

12 8 9 9 9 9 14 10 14 11 10 10 9 15 13 13 15 10 10 8
4 10 8 2 7 5 1 6 5 6 4 5 7 2 4 2 3 8 4 9
4 2 2 9 4 6 5 4 1 3 6 4 4 2 3 5 2 2 5 3

X 20 20 19 20 20 20 20 20 20 20 20 19 20 19 20 20 20 20 19 20

0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

90% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 5 3 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3
5 5 3 3 5 5 5 3 3 3 3 5 3 3 5 3 3 5 3 5
5 5 5 3 5 5 5 5 3 3 3 5 5 5 5 3 5 5 3 5
5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 3 5 5 4 5

10 9 5 5 5 9 10 5 5 5 5 5 9 5 5 5 9 9 5 5
10 10 9 5 5 10 10 9 5 5 5 5 10 5 9 5 9 9 5 5
10 10 9 5 5 10 10 9 5 5 5 5 10 5 9 9 9 10 10 5
10 10 9 5 9 10 10 10 5 5 5 9 10 10 10 9 10 10 10 9
10 10 10 9 9 10 10 10 5 9 5 10 10 10 10 10 10 10 10 10
10 10 10 10 9 10 10 10 5 10 9 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 9 10 9 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 13 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 13 10 10
13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 13 10 10
13 10 10 10 10 10 10 10 10 10 10 10 10 13 10 13 10 13 10 10
13 10 10 10 10 10 10 10 10 10 10 13 10 13 10 13 10 13 10 13
13 10 10 10 13 10 10 10 10 10 10 13 13 13 10 13 10 15 10 13
13 13 13 13 14 10 13 13 13 13 13 14 13 13 13 13 13 15 13 13
15 13 14 13 15 13 15 15 13 13 15 15 13 15 15 13 15 15 13 13

9 13 12 9 9 14 13 12 7 9 8 8 12 7 12 8 13 7 11 8
5 5 6 9 8 5 5 6 11 9 10 8 5 8 6 7 5 5 7 8

Bottom Row

Same Row 
Top Row

Same Row 
Top Row

Bottom Row

Same Row 
Top Row
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6 2 2 2 3 1 2 2 2 2 2 4 3 5 2 5 2 8 2 4

X 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Bottom Row
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APPENDIX A. APPENDIX A

A.2.1.5 CS1 Additional ProMps Results
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10% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 5 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1
1 1 5 1 1 2 1 1 1 1 1 2 1 1 4 1 1 2 1 1
1 1 5 1 2 4 4 1 1 2 1 2 2 1 5 1 1 4 1 1
1 1 5 2 5 5 4 1 1 4 1 5 2 1 5 1 1 5 1 1
1 5 5 2 5 6 5 1 4 4 1 5 2 1 5 1 4 5 1 1
1 5 5 4 11 8 5 4 4 5 5 5 5 1 5 4 4 5 1 4
1 5 6 4 11 8 5 4 5 5 5 8 5 2 5 4 5 6 2 5
2 5 6 5 11 8 5 5 5 5 5 8 5 5 5 4 5 8 5 5
4 8 8 5 11 9 5 5 5 5 5 8 6 5 5 5 8 11 5 5
5 11 9 5 11 11 6 5 5 8 8 8 8 5 11 5 11 11 5 5
8 11 11 11 11 11 8 5 5 9 11 8 11 5 11 5 11 11 5 11
8 11 11 11 11 11 11 11 8 11 11 11 11 8 11 11 11 11 5 11

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 5 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 14 11 11 11 11 11 11 11 11 11
11 14 11 11 11 11 11 11 11 11 14 11 11 11 14 11 11 11 11 11
14 14 14 14 11 14 11 14 11 14 14 11 11 11 14 11 11 11 11 11

2 4 7 5 2 2 7 6 7 6 4 3 3 4 8 6 4 4 6 5
2 1 2 0 0 4 1 0 1 2 1 5 1 1 0 0 1 1 0 0
1 2 1 1 0 1 0 1 0 1 3 0 0 0 2 0 0 0 0 0

X 5 7 10 6 2 7 8 7 8 9 8 8 4 5 10 6 5 5 6 5

5 7 7 7 13 8 7 6 6 6 5 7 8 6 7 7 9 10 5 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 7 7 7 13 8 7 6 6 6 5 7 8 6 7 7 9 10 5 8

Y 10 14 17 13 15 15 15 13 14 15 13 15 12 11 17 13 14 15 11 13

15% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1

User 1019 Cell 4 Predictions
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1 1 1 3 1 1 1 1 4 1 1 1 1 1 1 1 1 2 1 1
1 1 2 3 2 1 1 1 5 1 1 1 1 1 1 1 1 2 2 2
1 1 4 5 2 1 2 2 5 2 1 1 1 2 1 1 1 3 2 4
1 4 4 5 5 1 2 3 5 5 1 1 1 4 1 1 2 5 3 5
2 5 5 5 5 2 4 5 5 5 2 4 1 4 2 5 4 5 5 5
4 5 5 6 5 2 5 5 5 5 2 5 3 4 5 5 5 5 5 5
4 5 5 11 5 2 5 5 8 5 3 5 4 4 6 5 5 5 5 5
5 5 11 11 5 3 5 6 9 5 4 5 5 4 6 5 8 8 5 11
5 5 11 11 5 5 5 11 11 5 5 5 5 5 8 5 11 11 5 11
5 5 11 11 8 5 6 11 11 6 5 5 6 5 8 5 11 11 6 11
5 8 11 11 8 6 8 11 11 6 11 5 8 5 11 6 11 11 11 11
5 11 11 11 11 9 8 11 11 8 11 5 9 11 11 11 11 11 11 11
8 11 11 11 11 11 8 11 11 11 11 6 11 11 11 11 11 11 11 11

11 11 14 11 11 11 11 11 11 11 11 6 11 11 11 11 11 11 11 11
11 11 14 11 11 11 11 11 11 11 11 8 11 11 11 11 11 11 11 11
11 11 14 11 11 11 11 11 11 14 11 11 11 11 11 11 11 11 11 11
14 11 14 14 11 14 11 11 14 14 11 11 11 14 14 11 11 11 11 11

7 7 5 5 6 3 5 4 7 6 4 8 4 8 1 6 3 5 6 5
1 1 0 0 2 1 3 0 2 1 0 1 2 0 2 0 1 1 0 0
1 0 4 1 0 1 0 0 1 2 0 0 0 1 1 0 0 0 0 0

X 9 8 9 6 8 5 8 4 10 9 4 9 6 9 4 6 4 6 6 5

3 6 6 10 6 4 4 9 8 3 7 2 5 5 6 6 9 9 7 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 6 6 10 6 4 4 9 8 3 7 2 5 5 6 6 9 9 7 10

Y 12 14 15 16 14 9 12 13 18 12 11 11 11 14 10 12 13 15 13 15

20% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 2 5 5 1 1 1 5 1 5 2 1 1
1 1 5 1 2 1 4 1 5 5 5 2 1 2 5 3 5 4 1 1
2 1 5 5 5 1 5 1 5 6 5 4 5 2 5 4 5 5 1 1
2 2 6 5 5 2 5 4 5 8 8 5 5 5 5 5 5 5 1 5
2 2 8 5 5 2 5 5 5 11 11 5 5 5 5 5 5 5 2 5
2 4 8 11 8 2 5 5 5 11 11 5 5 5 5 5 5 8 4 5
4 5 9 11 8 2 6 5 5 11 11 5 8 6 5 8 8 11 5 5
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5 5 11 11 9 5 6 5 5 11 11 5 8 11 5 8 8 11 5 5
5 5 11 11 11 8 11 6 11 11 11 9 9 11 5 9 11 11 5 5

11 5 11 11 11 11 11 9 11 11 11 11 9 11 8 11 11 11 5 8
11 5 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 5 11
11 8 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 6 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 14 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 14 14 11 14 11 11 11 11 11 11 11 11 11 11 11
11 14 11 11 11 14 14 11 14 11 11 14 14 11 11 14 11 14 11 11

3 6 2 3 3 1 5 5 7 2 4 6 4 3 9 5 6 4 6 6
0 1 3 0 3 1 0 1 0 1 1 1 4 0 1 3 2 1 0 1
0 1 0 0 0 2 2 0 3 0 0 1 1 0 0 1 0 1 0 0

X 3 8 5 3 6 4 7 6 10 3 5 8 9 3 10 9 8 6 6 7

7 3 9 11 8 5 6 6 5 12 12 6 5 9 6 6 8 9 4 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 3 9 11 8 5 6 6 5 12 12 6 5 9 6 6 8 9 4 6

Y 10 11 14 14 14 9 13 12 15 15 17 14 14 12 16 15 16 15 10 13

25% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1
5 1 2 2 1 1 1 5 6 1 5 1 1 1 1 2 2 1 1 1
5 1 2 2 1 2 1 5 9 2 5 4 2 1 1 5 5 1 1 1
5 2 5 5 5 5 1 5 9 2 5 5 2 1 1 5 5 2 1 2
5 2 5 5 5 5 2 5 11 5 5 5 4 2 5 5 5 2 1 5

11 5 5 5 9 5 5 11 11 5 5 5 5 5 5 5 5 5 4 5
11 5 5 5 9 6 5 11 11 5 9 5 6 5 5 5 5 5 5 5
11 5 6 5 11 6 6 11 11 5 11 5 6 5 5 5 5 5 5 5
11 11 11 5 11 6 11 11 11 6 11 5 11 5 5 11 9 5 5 5
11 11 11 5 11 9 11 11 11 9 11 9 11 5 9 11 9 11 9 11
11 11 11 9 11 9 11 11 11 9 11 11 11 6 11 11 9 11 9 11
11 11 11 9 11 11 11 11 11 11 11 11 11 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 14 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 14 11 14 11 11 11 11 11 11 11 11 11
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11 11 14 11 11 14 14 14 14 11 15 14 14 11 14 14 14 11 11 14

4 3 4 7 2 3 2 5 1 4 5 7 2 5 5 6 6 4 4 5
0 0 0 2 2 2 0 0 2 2 1 1 0 1 1 0 3 0 2 0
0 0 1 0 0 1 1 1 2 0 3 1 1 0 1 1 1 0 0 1

X 4 3 5 9 4 6 3 6 5 6 9 9 3 6 7 7 10 4 6 6

11 8 7 4 9 4 7 10 10 5 6 5 7 4 5 7 4 7 5 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 8 7 4 9 4 7 10 10 5 6 5 7 4 5 7 4 7 5 6

Y 15 11 12 13 13 10 10 16 15 11 15 14 10 10 12 14 14 11 11 12

30% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1
5 1 1 5 1 2 1 1 1 2 1 5 1 1 1 1 1 2 1 1
5 1 1 5 1 5 1 1 1 5 4 5 1 1 1 1 1 5 2 1
5 1 1 5 1 5 2 2 1 5 5 5 2 1 2 1 1 5 5 5
5 2 1 5 1 5 5 5 1 5 5 9 2 2 5 1 5 5 5 5
5 5 5 5 5 5 5 5 5 5 6 9 5 5 5 1 5 9 5 6
5 5 5 5 5 5 5 5 5 5 9 9 5 5 5 1 5 11 5 6

11 5 5 5 5 5 5 9 5 6 9 11 9 5 5 2 5 11 6 11
11 5 6 5 5 9 9 9 5 9 9 11 11 5 5 5 9 11 9 11
11 5 6 5 5 9 11 11 5 9 11 11 11 5 9 6 9 11 11 11
11 9 9 5 5 11 11 11 5 11 11 11 11 9 11 9 11 11 11 11
11 9 11 5 9 11 11 11 5 11 11 11 11 9 11 9 11 11 11 11
11 9 11 5 11 11 11 11 9 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 11 11 9 11 11 11 11 11 11 11 11 14 11 11
11 11 11 11 11 11 11 11 9 11 12 11 11 11 11 11 11 14 11 11
11 11 11 11 11 11 14 11 11 12 14 12 11 11 11 11 14 14 14 11
11 11 11 12 11 14 14 11 14 14 14 14 11 14 11 11 14 15 14 14

7 5 3 12 6 6 4 3 7 5 3 4 2 5 5 1 4 3 4 2
0 3 1 0 1 2 1 2 3 2 3 3 1 2 1 2 2 1 1 0
0 0 0 0 0 1 2 0 1 1 2 1 0 1 0 0 2 4 2 1

X 7 8 4 12 7 9 7 5 11 8 8 8 3 8 6 3 8 8 7 3
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10 4 6 3 5 6 6 8 1 5 5 8 9 4 7 5 5 7 6 9
0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

10 4 6 4 5 6 6 8 1 6 6 9 9 4 7 5 5 7 6 9

Y 17 12 10 16 12 15 13 13 12 14 14 17 12 12 13 8 13 15 13 12

35% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 4 1 1 2 1 1 1 2 1 1
1 1 1 4 4 1 1 2 1 1 5 1 1 2 1 1 1 4 1 1
1 1 2 4 4 1 4 2 2 1 5 4 2 4 4 1 1 5 4 1
4 4 4 5 5 1 4 4 5 1 5 5 5 5 4 1 1 5 5 2
5 4 5 5 5 2 5 5 5 4 5 5 5 5 5 1 2 5 5 2
5 4 5 5 5 5 5 5 5 4 5 5 5 5 5 4 2 5 5 4
5 4 5 5 5 5 5 5 5 5 5 6 5 5 5 5 4 6 5 5
5 5 5 9 5 5 5 5 5 5 6 9 5 5 5 5 5 11 5 5
9 9 5 9 9 5 5 5 9 5 11 9 5 5 11 5 5 11 9 5
9 9 5 11 9 5 9 5 9 9 11 9 9 9 11 6 5 11 11 9
9 11 5 11 9 9 11 9 9 9 11 9 11 9 11 9 9 11 11 9

11 11 9 11 11 11 11 11 11 9 11 11 11 9 11 9 11 11 11 11
11 11 9 11 11 11 11 11 11 9 11 11 11 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 12 11 11 11 11 11 12 11 11 11 11 11 11 11
11 11 11 11 11 11 13 11 11 11 12 11 12 12 11 11 11 12 11 11
12 11 11 11 11 12 13 13 11 11 12 13 12 12 12 12 14 12 11 11

5 5 8 6 7 5 7 7 5 5 8 4 6 7 6 4 4 5 6 4
3 2 2 2 3 1 1 1 3 4 0 4 1 4 0 2 1 0 1 2
0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 0 1 0 0 0

X 8 7 10 8 10 6 10 9 8 9 8 9 7 11 6 6 6 5 7 6

6 8 5 9 7 6 4 6 7 5 8 6 5 3 9 5 6 9 9 7
1 0 0 0 0 1 2 0 0 0 2 0 3 2 1 1 0 2 0 0

7 8 5 9 7 7 6 6 7 5 10 6 8 5 10 6 6 11 9 7

Y 15 15 15 17 17 13 16 15 15 14 18 15 15 16 16 12 12 16 16 13
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40% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 4 1 1 2 1 1 1 2 1 1
1 1 1 4 4 1 1 2 1 1 5 1 1 2 1 1 1 4 1 1
1 1 2 4 4 1 4 2 2 1 5 4 2 4 4 1 1 5 4 1
4 4 4 5 5 1 4 4 5 1 5 5 5 5 4 1 1 5 5 2
5 4 5 5 5 2 5 5 5 4 5 5 5 5 5 1 2 5 5 2
5 4 5 5 5 5 5 5 5 4 5 5 5 5 5 4 2 5 5 4
5 4 5 5 5 5 5 5 5 5 5 6 5 5 5 5 4 6 5 5
5 5 5 9 5 5 5 5 5 5 6 9 5 5 5 5 5 11 5 5
9 9 5 9 9 5 5 5 9 5 11 9 5 5 11 5 5 11 9 5
9 9 5 11 9 5 9 5 9 9 11 9 9 9 11 6 5 11 11 9
9 11 5 11 9 9 11 9 9 9 11 9 11 9 11 9 9 11 11 9

11 11 9 11 11 11 11 11 11 9 11 11 11 9 11 9 11 11 11 11
11 11 9 11 11 11 11 11 11 9 11 11 11 9 11 11 11 11 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 11 11 11 11 12 11 11 11 11 11 12 11 11 11 11 11 11 11
11 11 11 11 11 11 13 11 11 11 12 11 12 12 11 11 11 12 11 11
12 11 11 11 11 12 13 13 11 11 12 13 12 12 12 12 14 12 11 11

5 5 8 6 7 5 7 7 5 5 8 4 6 7 6 4 4 5 6 4
3 2 2 2 3 1 1 1 3 4 0 4 1 4 0 2 1 0 1 2
0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 0 1 0 0 0

X 8 7 10 8 10 6 10 9 8 9 8 9 7 11 6 6 6 5 7 6

6 8 5 9 7 6 4 6 7 5 8 6 5 3 9 5 6 9 9 7
1 0 0 0 0 1 2 0 0 0 2 0 3 2 1 1 0 2 0 0

7 8 5 9 7 7 6 6 7 5 10 6 8 5 10 6 6 11 9 7

Y 15 15 15 17 17 13 16 15 15 14 18 15 15 16 16 12 12 16 16 13
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45% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 1 4 4 1 4 1 2 1 3 2 2 2 4 4 1 2 2
4 2 4 2 4 4 4 4 2 4 2 4 2 4 4 4 4 2 2 2
4 4 5 2 4 4 4 4 3 4 2 4 2 4 4 4 4 4 4 4
4 4 5 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4
4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 4 5 4 4 4
4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 4 5 4 4 5
4 4 5 4 5 5 5 5 4 4 4 4 4 4 5 4 5 4 4 5
5 5 5 4 5 5 5 5 5 4 4 5 4 4 5 5 5 5 4 5
5 5 5 4 5 5 5 5 5 5 4 5 4 5 5 5 5 5 4 5
5 5 5 4 5 7 5 5 5 5 5 5 5 5 5 5 5 5 4 5
5 7 5 5 5 7 9 5 5 5 5 5 5 5 5 5 5 5 5 5
5 7 5 5 5 7 9 6 9 5 5 5 5 5 5 5 6 5 5 5
5 9 7 5 9 9 9 7 11 5 5 7 5 5 6 5 7 5 9 7
6 9 7 5 9 9 9 7 11 5 7 7 9 5 7 6 9 5 11 9
9 11 9 5 11 11 11 9 11 7 9 9 11 9 9 6 9 7 11 9
9 11 11 5 11 11 11 11 11 9 9 9 11 9 9 7 11 9 11 9

11 11 11 7 11 11 11 11 11 11 9 11 11 11 11 7 11 11 11 11
11 11 12 11 11 11 11 11 11 11 11 11 11 11 11 7 11 11 11 11
13 11 13 11 11 11 11 13 11 11 13 13 11 11 11 11 13 11 13 13
13 13 13 13 13 13 13 13 11 13 13 13 13 12 13 11 13 12 13 13

12 8 11 13 12 9 9 11 9 13 10 12 9 13 11 13 11 12 10 10
2 2 1 0 2 2 4 1 1 1 3 2 1 2 2 0 2 1 1 3
2 1 2 1 1 1 1 2 0 1 2 2 1 0 1 0 2 0 2 2

X 16 11 14 14 15 12 14 14 10 15 15 16 11 15 14 13 15 13 13 15

2 5 2 2 5 5 5 3 8 3 1 2 5 3 3 2 3 3 5 2
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

2 5 3 2 5 5 5 3 8 3 1 2 5 4 3 2 3 4 5 2

Y 18 16 17 16 20 17 19 17 18 18 16 18 16 19 17 15 18 17 18 17

50% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15
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2 2 2 2 4 4 2 2 3 2 2 2 1 2 1 2 1 2 2 1
2 2 4 2 4 4 3 2 4 4 2 2 2 2 2 2 2 2 2 2
2 2 4 4 4 4 4 2 4 4 2 4 2 2 2 4 4 3 2 4
2 4 4 4 4 5 4 2 4 4 4 4 4 2 2 4 4 4 4 4
4 4 4 4 5 5 4 2 4 4 4 4 4 2 4 4 4 4 4 4
4 4 5 5 5 5 5 2 4 4 4 4 4 4 4 4 4 4 4 4
4 4 5 5 5 5 5 4 4 5 4 4 4 4 4 5 4 4 4 4
5 4 5 5 5 5 5 4 4 5 4 4 4 4 4 5 4 4 5 4
5 4 5 5 5 5 5 5 4 5 5 5 4 4 4 5 5 4 5 5
5 4 5 5 5 7 5 5 5 5 5 5 5 4 5 5 5 4 5 5
5 5 5 7 7 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 7 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 9 11 11 7 5 5 5 5 7 5 5 5 5 5 5 7 5
5 5 7 9 11 11 7 5 5 5 7 7 5 5 5 7 5 5 7 5
7 5 9 11 11 11 9 7 5 7 11 9 5 5 5 9 5 5 9 5

11 11 11 13 13 12 11 7 5 9 11 9 5 9 7 9 9 5 9 7
11 11 11 13 13 13 11 11 7 11 11 9 7 9 9 9 11 5 9 9
13 12 11 13 13 13 11 11 9 11 12 11 7 11 9 11 11 7 11 9
13 12 12 13 14 14 13 12 11 13 12 12 9 11 11 13 12 11 11 11
13 12 13 13 14 14 13 13 13 14 13 12 11 14 11 14 14 11 13 11

10 12 12 8 10 9 11 8 16 13 10 10 13 10 11 11 13 15 9 13
0 0 1 2 1 2 1 0 1 1 0 3 1 2 2 3 1 0 3 2
3 0 1 5 5 4 2 1 1 2 1 0 0 1 0 2 1 0 1 0

X 13 12 14 15 16 15 14 9 18 16 11 13 14 13 13 16 15 15 13 15

2 2 3 1 3 3 3 2 1 2 3 1 1 2 2 1 2 2 2 2
0 3 1 0 0 1 0 1 0 0 2 2 0 0 0 0 1 0 0 0

2 5 4 1 3 4 3 3 1 2 5 3 1 2 2 1 3 2 2 2

Y 15 17 18 16 19 19 17 12 19 18 16 16 15 15 15 17 18 17 15 17

55% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 3 2 2 2 2 4 2 2 2 2 2 4 2 2 2 2 2 2 4
4 4 2 4 2 2 4 4 4 4 2 2 4 2 2 2 2 2 2 4
4 4 2 4 4 3 4 4 4 4 4 2 4 4 3 2 2 4 2 4
4 4 3 4 4 4 4 4 4 4 4 2 4 4 4 2 4 4 2 4
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4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 5
4 4 4 4 4 4 5 4 4 5 4 4 5 5 4 4 4 4 4 5
4 5 4 5 4 4 5 4 4 5 5 4 5 5 4 4 4 5 5 5
5 5 4 5 4 5 5 5 5 5 5 4 5 5 5 4 4 5 5 5
5 5 5 5 4 5 5 9 5 5 5 4 5 5 5 4 5 5 5 5
5 5 5 5 5 5 7 11 5 5 7 4 5 5 5 4 5 5 5 5
5 5 5 5 5 5 8 11 5 5 8 5 5 7 5 5 5 5 5 5
5 7 5 5 5 5 8 11 5 5 11 5 5 8 5 5 5 5 5 5
5 7 5 7 5 11 11 11 5 6 11 7 5 9 5 5 5 5 6 5
9 7 5 11 7 11 11 11 5 11 13 9 7 11 6 5 11 7 11 9

11 8 7 11 11 11 11 11 6 11 13 11 7 11 8 5 11 9 11 11
11 9 11 11 11 11 11 13 7 11 14 11 7 11 9 11 11 11 11 11
12 9 11 13 11 11 11 14 9 11 14 11 8 14 11 13 13 11 11 11
14 13 11 13 11 11 13 14 11 11 14 13 9 14 13 14 14 11 11 14

14 12 12 12 12 11 10 8 14 12 8 9 14 9 12 12 11 12 9 14
1 3 0 0 0 0 2 1 1 0 1 1 2 2 2 0 0 1 0 1
1 1 0 2 0 0 1 3 0 0 5 1 0 2 1 2 2 0 0 1

X 16 16 12 14 12 11 13 12 15 12 14 11 16 13 15 14 13 13 9 16

2 0 3 3 4 6 5 6 1 5 2 3 0 3 1 1 3 3 5 3
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 3 3 4 6 5 6 1 5 2 3 0 3 1 1 3 3 5 3

Y 19 16 15 17 16 17 18 18 16 17 16 14 16 16 16 15 16 16 14 19

60% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1
1 2 1 2 2 2 1 1 2 2 1 1 4 2 2 1 2 2 2 2
2 2 2 2 2 2 2 2 2 2 1 2 4 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 1 2 4 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 4 2 2 2 4 2 3 2 2 2 2 2
2 3 2 2 2 2 2 4 4 2 2 2 4 2 3 4 2 2 4 2
2 4 2 2 2 4 2 4 4 4 2 2 4 4 4 5 4 2 4 2
2 4 4 4 4 4 4 4 4 4 2 3 5 4 4 5 4 4 4 2
2 4 4 4 4 4 4 4 4 4 2 4 5 4 4 5 5 4 5 2
2 4 4 4 4 5 4 5 4 4 5 4 5 4 4 5 5 4 5 4
3 4 4 5 4 5 5 5 5 4 5 4 5 5 4 5 5 4 5 4
4 5 4 5 4 5 5 5 5 4 5 4 5 5 4 5 5 5 5 4
4 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5
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4 5 5 5 5 5 5 5 5 5 5 5 7 5 5 5 5 5 5 5
4 5 8 5 5 5 7 5 5 5 8 5 8 5 5 5 5 7 5 7
4 6 8 7 5 5 7 5 5 5 9 5 8 5 5 5 7 8 5 8
4 6 9 8 5 9 7 7 5 5 11 7 9 7 5 5 7 8 7 8
5 8 11 8 5 9 8 9 5 5 11 7 11 8 5 7 9 9 7 9
5 11 11 9 6 11 11 9 7 5 11 8 11 9 7 11 11 11 7 11
7 11 11 11 11 11 11 11 11 7 11 9 11 11 11 11 11 11 8 11

9 10 7 8 11 10 7 11 14 13 5 9 12 10 14 12 9 7 11 5
0 1 3 3 0 2 1 2 0 0 2 2 3 2 0 0 1 3 1 3

11 9 10 9 9 8 12 7 6 7 13 9 5 8 6 8 10 10 8 12

X 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

0 2 3 1 1 2 2 1 1 0 4 0 3 1 1 2 2 2 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 3 1 1 2 2 1 1 0 4 0 3 1 1 2 2 2 0 2

Y 20 22 23 21 21 22 22 21 21 20 24 20 23 21 21 22 22 22 20 22

65% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 2 2 2 2 2 1 1 1 1 2 1 2 2 2 1 1 1
2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2
2 2 4 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2
4 4 4 2 2 2 4 4 2 2 2 4 4 4 4 3 4 2 2 2
4 4 5 2 2 4 4 4 4 2 2 4 4 4 4 4 4 2 2 2
4 4 5 3 4 4 4 4 4 2 2 5 4 4 4 4 4 2 2 2
4 5 5 4 4 4 4 4 4 4 2 5 4 4 4 4 4 2 3 2
5 5 5 4 4 4 4 5 4 4 2 5 5 4 5 4 4 2 4 2
5 5 5 4 4 4 4 5 4 4 4 5 5 5 5 4 5 4 4 4
5 5 5 4 4 5 5 5 5 4 4 5 5 5 5 5 5 4 4 4
5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4
5 5 5 5 4 8 5 7 5 5 5 5 5 5 5 5 5 5 5 5
7 5 5 5 5 8 7 8 5 5 5 5 5 5 5 5 5 5 5 5
7 7 5 5 5 9 7 8 5 5 5 8 5 7 8 6 7 5 5 5
8 7 7 5 5 9 8 9 5 5 5 8 8 8 11 6 7 5 5 5
9 8 8 7 5 9 11 9 7 7 5 9 11 9 11 7 9 5 5 9
9 11 8 8 5 9 11 11 8 8 8 9 11 11 11 8 11 7 9 9
9 11 8 9 5 11 11 11 8 8 8 9 11 11 11 11 11 9 11 9

11 11 11 11 11 11 11 11 8 9 9 11 11 11 13 11 15 9 11 11
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9 10 12 10 13 7 9 8 11 9 8 10 14 10 10 10 10 8 10 7
4 1 3 2 0 6 1 4 3 3 3 5 1 2 1 1 1 2 1 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

X 13 11 15 12 13 13 10 12 14 12 11 15 15 12 12 11 12 10 11 10

1 3 1 1 1 2 4 3 0 0 0 1 4 3 4 2 2 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 3 1 1 1 2 4 3 0 0 0 1 4 3 4 2 2 0 2 1

Y 14 14 16 13 14 15 14 15 14 12 11 16 19 15 16 13 14 10 13 11

70% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2
4 2 2 2 2 4 2 3 3 2 2 3 2 2 3 2 2 2 2 2
4 2 2 4 3 4 2 4 4 2 3 4 3 2 4 2 2 2 2 4
4 4 4 4 3 4 3 4 4 3 4 4 4 3 4 3 2 4 2 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 3 4
4 4 4 4 4 5 4 4 4 4 5 4 4 4 4 4 4 4 4 4
5 4 4 4 4 5 5 5 4 4 5 4 4 4 5 4 4 4 4 4
5 4 4 5 4 5 5 5 4 4 5 4 4 5 5 4 5 5 4 4
5 4 4 5 5 5 5 5 5 5 5 5 4 5 5 4 5 5 5 5
5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 7 6 5 5 5 5 5
5 5 5 5 5 5 8 5 5 5 5 5 5 7 8 5 5 5 5 5
8 5 7 7 7 5 8 8 7 9 7 7 8 8 8 5 7 5 5 5
8 5 8 8 7 8 8 9 8 9 7 8 8 9 9 5 7 5 5 7
9 7 9 8 8 8 9 9 9 9 8 9 9 9 9 5 8 5 7 8
9 8 11 9 8 9 11 9 11 9 9 9 11 9 9 5 11 5 8 8

11 9 11 11 11 9 11 9 11 11 9 11 12 11 11 11 11 8 8 9
11 14 11 14 14 11 15 9 11 11 9 11 14 11 11 11 11 9 14 11

12 11 9 10 10 12 8 11 11 9 10 11 10 7 10 13 8 13 10 11
4 2 2 3 2 4 4 6 2 4 4 3 3 4 5 0 1 2 2 3
0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

X 16 14 11 14 13 16 13 17 13 13 14 14 14 11 15 13 9 15 13 14

2 0 3 1 1 1 2 0 3 2 0 2 1 2 2 2 3 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
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2 0 3 1 1 1 2 0 3 2 0 2 2 2 2 2 3 0 0 1

Y 18 14 14 15 14 17 15 17 16 15 14 16 16 13 17 15 12 15 13 15

75% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 4 2 2 2 2
4 2 2 4 2 2 2 2 3 4 2 2 3 2 4 4 2 2 3 2
4 2 2 4 2 2 4 2 3 4 2 4 4 2 4 4 2 2 4 2
4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 3
4 2 4 4 2 4 4 2 4 4 4 4 4 2 4 5 4 4 4 3
4 3 4 4 2 4 4 4 4 4 4 4 4 2 4 5 4 4 4 3
5 4 4 4 4 4 4 4 4 5 4 5 4 4 4 5 4 4 4 4
5 4 4 4 4 5 4 4 4 5 4 5 4 4 4 5 5 5 4 4
5 4 5 4 4 5 4 4 4 5 4 5 4 4 5 5 5 5 4 4
5 4 5 5 4 5 5 5 4 5 4 5 5 4 5 7 5 5 4 4
5 4 5 5 5 5 5 5 4 5 5 5 5 4 5 8 5 5 5 5
5 4 7 5 5 5 5 6 4 5 5 5 5 5 5 8 7 5 5 5
5 4 7 5 5 7 5 7 5 5 5 7 5 5 5 8 9 6 5 5
5 4 8 8 7 8 8 8 5 5 8 8 5 5 5 9 9 7 5 5
8 5 8 8 8 8 9 8 5 7 8 8 5 9 5 9 9 8 5 7
9 5 9 9 9 9 9 8 5 7 8 9 5 9 5 11 9 8 5 8

11 6 9 10 11 9 11 9 9 9 9 11 8 10 7 11 11 11 9 8
11 15 11 10 15 9 11 9 11 9 9 15 8 11 7 11 15 11 10 9

14 11 8 12 7 9 11 6 15 14 9 10 15 8 16 9 7 9 15 11
2 0 4 5 2 5 3 5 1 2 5 3 2 3 0 5 4 2 2 3
0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

X 16 12 12 17 10 14 14 11 16 16 14 14 17 11 16 14 12 11 17 14

2 0 1 0 1 0 2 0 1 0 0 1 0 1 0 3 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 1 0 2 0 1 0 0 1 0 1 0 3 1 2 0 0

Y 18 12 13 17 11 14 16 11 17 16 14 15 17 12 16 17 13 13 17 14

80% 1 2 3 4 5
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35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2
4 2 4 2 4 3 2 4 2 4 4 2 2 3 2 2 2 2 2 2
4 2 4 3 4 3 2 4 2 4 4 2 2 4 3 2 2 2 2 2
5 2 4 4 4 3 2 4 3 4 4 4 2 4 3 2 3 2 2 4
5 2 4 4 4 4 2 4 3 4 4 4 2 4 3 2 4 2 4 4
5 2 4 4 4 4 2 4 3 4 4 4 2 5 4 2 4 4 4 4
5 2 4 4 4 4 4 4 3 5 4 4 4 5 4 2 4 4 4 4
5 3 4 4 4 4 4 4 4 5 4 4 4 5 4 2 5 4 4 4
5 4 4 4 5 4 4 5 4 5 4 4 4 5 4 3 5 5 4 4
7 4 5 4 5 5 4 5 4 5 5 5 4 5 4 3 5 5 4 5
8 5 5 5 5 5 4 5 4 7 7 5 5 7 4 4 6 7 4 5
8 5 7 5 5 5 4 5 5 7 8 5 5 7 5 4 7 8 5 8
8 7 8 5 5 5 4 7 7 8 8 5 5 8 5 5 9 9 5 8
9 9 8 5 5 8 5 7 8 8 9 7 7 8 5 5 9 10 5 9
9 10 8 5 5 8 5 7 8 8 9 8 8 9 7 5 10 10 7 10
9 10 9 8 5 9 7 7 9 10 10 8 9 9 8 5 10 10 15 10

10 10 10 8 8 10 8 7 11 15 10 10 10 10 10 5 11 15 15 15
15 15 10 9 10 15 9 15 11 15 15 10 10 10 15 7 11 15 15 15

9 5 10 13 15 12 9 11 9 9 9 10 7 11 12 9 7 5 10 8
7 4 6 3 2 4 2 0 3 4 6 4 4 6 2 0 4 5 0 5
1 1 0 0 0 1 0 1 0 2 1 0 0 0 1 0 0 2 3 2

X 17 10 16 16 17 17 11 12 12 15 16 14 11 17 15 9 11 12 13 15

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0

Y 17 10 16 16 17 17 11 12 14 15 16 14 11 17 15 9 13 12 13 15

85% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 3 2 2 2 2 2 4 2 2 2 3 2 2 2 2 2 2 2
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4 3 4 2 2 2 2 2 4 4 3 2 4 2 4 2 2 4 2 2
4 4 4 2 2 4 2 4 4 4 4 2 4 2 4 2 2 4 2 3
4 4 5 4 2 4 2 4 4 5 4 2 4 2 4 4 2 4 2 4
4 5 5 4 2 4 3 5 5 5 4 3 5 2 4 4 2 5 4 5
4 5 5 4 4 4 5 5 5 5 4 4 5 4 4 5 2 5 4 5
5 5 5 4 4 4 5 5 5 5 4 4 5 4 5 5 3 5 4 5
5 7 5 5 4 5 5 5 5 5 5 4 5 4 5 7 4 5 4 5
5 8 5 5 4 5 5 5 5 5 5 4 5 4 5 7 4 5 5 5
5 8 5 5 5 5 5 5 5 8 7 5 5 4 5 8 4 7 5 5
5 10 5 5 5 5 5 7 5 10 7 5 7 5 5 8 4 7 5 5
7 10 7 5 5 5 8 8 5 10 8 5 7 5 8 8 4 8 5 5
8 10 7 5 5 5 8 8 5 10 8 7 8 5 8 8 4 8 5 5
8 11 7 5 7 7 8 10 7 10 10 7 8 7 8 8 5 10 8 8
8 15 8 5 8 7 8 10 7 10 10 7 9 7 9 10 5 10 10 8
8 15 8 9 8 8 10 10 8 10 11 8 10 7 9 10 10 10 11 15

10 15 10 11 10 8 10 10 8 15 15 10 10 7 15 15 10 11 15 15

12 6 11 12 8 11 7 8 13 8 8 8 10 8 10 4 9 8 9 11
5 5 3 1 3 2 6 6 2 7 4 2 5 0 5 7 2 5 2 2
0 3 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 2

X 17 14 14 13 11 13 13 14 15 16 13 10 15 8 16 12 11 13 12 15

0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0

Y 17 15 14 14 11 13 13 14 15 16 14 10 15 8 16 12 11 14 13 15

90% 1 2 3 4 5 2 2 5 8

35 M1 6 7 8 9 10 0 0 2 0 1
20 M2 11 12 13 14 15 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 4 4 4
2 4 2 2 2 3 2 2 2 4 4 2 2 2 3 4 3 4 4 4
2 5 2 3 2 4 2 2 3 4 5 3 2 2 4 4 4 4 4 4
2 5 4 4 2 4 3 2 4 4 5 4 2 4 4 4 4 4 4 4
2 5 4 4 4 4 4 2 4 4 5 4 3 4 4 4 4 4 5 4
3 5 5 4 4 4 4 2 4 4 5 4 4 4 4 4 4 5 5 4
4 5 5 4 4 5 4 4 4 5 5 4 4 5 4 4 4 5 5 4
4 5 5 5 4 5 4 4 5 5 5 5 4 5 4 5 4 5 5 5
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4 5 5 5 4 5 4 4 5 5 5 5 4 5 5 5 5 5 7 5
4 5 5 5 4 5 5 4 5 5 5 7 5 5 5 5 5 7 7 5
4 5 7 5 5 5 5 5 5 5 5 7 5 5 5 5 7 8 7 5
5 5 7 5 5 7 7 5 5 5 5 7 7 5 7 5 7 8 7 5
5 7 8 5 5 7 9 5 5 5 5 8 7 5 7 5 8 8 8 5
5 8 8 7 5 8 10 7 7 5 7 8 8 7 8 7 8 10 8 7
7 8 8 7 7 8 10 8 8 8 7 8 8 8 8 8 8 10 9 8
9 9 10 7 7 8 10 8 8 8 7 8 10 10 8 8 10 10 10 8

10 10 10 8 9 10 10 9 10 10 8 9 10 10 9 8 10 10 11 8

9 11 7 11 10 10 8 7 11 15 12 7 7 10 10 12 10 9 8 13
2 4 5 1 1 4 5 3 3 3 1 5 4 3 4 3 5 7 4 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X 11 15 12 12 11 14 13 10 14 18 13 12 11 13 14 15 15 16 12 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Y 11 15 12 12 11 14 13 10 14 18 13 12 11 13 14 15 15 16 13 16
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A.2. CS1: HUMAN REACHING MOVEMENT DATA ANALYSIS AND RESULTS

A.2.1.6 CS1 Additional ProMps Results
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10% 1 2 3 4 5

35 M1 6 7 8 9 10 Cell 15 Prediction
20 M2 11 12 13 14 15

4 4 3 3 5 3 4 9 5 8 9 5 3 4 5 3 3 3 3 3
5 4 5 3 5 5 5 10 9 10 9 5 5 4 5 3 10 5 9 4
5 5 5 5 9 9 5 10 10 10 10 5 5 5 5 5 10 9 10 10
9 9 9 5 10 10 9 10 10 10 10 9 9 5 5 10 10 9 10 10
9 9 10 5 10 10 10 10 10 10 10 9 9 9 5 10 10 9 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 9 9 12 10 10 10 10
10 10 10 10 10 10 10 12 12 10 10 10 10 9 9 12 10 10 10 12
10 10 10 10 10 10 10 12 12 12 10 10 10 10 10 12 10 10 12 12
10 10 10 10 12 10 12 12 12 12 10 10 12 10 10 12 11 10 12 12
11 12 12 10 12 10 12 12 12 12 12 10 12 10 12 12 11 10 12 12
11 12 12 10 12 10 15 14 12 12 12 12 15 10 12 15 12 11 12 12
12 12 15 12 12 10 15 15 12 12 12 12 15 11 12 15 12 11 12 12
12 12 15 12 12 12 15 15 12 15 12 15 15 12 12 15 12 12 12 15
12 12 15 12 12 15 15 15 15 15 15 15 15 12 15 15 12 12 12 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

3 3 3 5 2 2 3 0 1 0 0 3 3 4 5 3 1 2 1 2
6 6 6 6 6 10 5 6 5 7 9 7 5 7 4 2 7 8 6 4
6 6 9 6 6 7 10 10 7 8 7 8 10 6 7 10 6 2 6 8

X 15 15 18 17 14 19 18 16 13 15 16 18 18 17 16 15 14 12 13 14

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 0 0
3 5 2 3 6 1 2 4 7 5 4 2 2 2 4 5 4 6 7 6

5 5 2 3 6 1 2 4 7 5 4 2 2 3 4 5 6 8 7 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

15% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 4 3 10 9 3 3 3 5 5 3 5 3 3 3 5 5 3 5 4
5 9 3 10 10 4 5 4 9 5 5 5 5 5 3 5 9 9 5 9
9 9 3 10 10 4 9 5 9 5 10 9 5 10 3 9 10 9 10 9

10 9 5 11 10 5 9 5 9 10 10 10 9 10 4 10 10 10 10 10
10 9 5 12 10 5 10 10 10 10 10 10 9 10 5 10 11 10 10 10
10 10 9 12 10 10 10 10 10 10 10 10 9 10 5 10 11 10 10 10
10 10 9 12 10 10 10 10 11 10 10 10 10 11 10 10 12 10 10 10
10 10 10 12 12 10 12 10 12 10 10 12 10 12 12 12 12 11 10 12
10 11 10 12 12 11 12 12 12 10 10 12 12 12 12 12 12 12 12 12
10 12 10 12 12 12 12 12 12 11 10 12 12 12 12 12 12 12 12 12
11 12 12 15 12 12 12 12 12 12 10 14 12 12 12 12 12 12 12 12
11 12 12 15 12 12 15 12 12 12 12 15 12 12 12 12 12 12 12 15
12 12 12 15 12 12 15 15 15 12 12 15 14 12 12 15 12 12 12 15
12 12 12 15 15 12 15 15 15 15 12 15 15 12 14 15 15 15 12 15
12 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

2 1 5 0 0 5 2 4 1 3 2 2 3 2 6 2 1 1 2 1
8 7 5 3 7 3 5 4 5 6 9 5 5 4 1 5 3 6 6 6
4 6 5 10 7 6 9 8 8 7 6 10 8 6 7 8 7 7 6 9

X 14 14 15 13 14 14 16 16 14 16 17 17 16 12 14 15 11 14 14 16

2 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 2 1 0 0
4 5 5 6 6 5 4 4 5 3 3 3 4 7 6 5 7 5 6 4

Y 6 6 5 7 6 6 4 4 6 4 3 3 4 8 6 5 9 6 6 4

260



20% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 3 4 5 5 3 4 5 3 3 3 5 5 4 5 5 3 3 3 4
5 4 5 9 9 5 9 5 4 4 5 9 5 4 5 5 5 9 9 5
5 9 9 9 10 5 9 5 5 9 9 10 9 5 5 5 9 9 10 5
9 9 9 10 10 5 10 9 5 10 9 10 9 9 5 9 10 10 10 10
9 9 10 10 10 5 10 9 5 10 10 10 10 9 9 9 10 10 10 10

10 10 10 10 10 9 10 10 9 10 10 10 12 9 9 9 12 10 10 10
10 10 10 10 11 9 10 10 10 10 10 10 12 9 10 10 12 10 10 10
10 10 10 10 12 10 10 10 12 10 11 10 12 10 10 10 12 11 12 10
10 10 10 10 12 10 10 10 12 10 12 10 12 10 10 10 12 12 12 12
10 11 10 10 12 10 11 10 12 11 12 12 15 10 12 10 12 12 12 12
12 12 12 12 12 10 12 12 12 12 12 12 15 10 12 12 12 12 15 12
12 15 12 15 12 10 12 12 12 12 12 15 15 12 12 12 12 12 15 12
12 15 12 15 15 10 12 12 15 15 12 15 15 12 12 12 12 12 15 12
15 15 12 15 15 11 12 12 15 15 15 15 15 12 15 12 15 12 15 12
15 15 12 15 15 12 12 15 15 15 15 15 15 12 15 15 15 12 15 15
15 15 15 15 15 12 12 15 15 15 15 15 15 12 15 15 15 15 15 15
15 15 15 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

3 2 2 1 1 5 1 3 5 2 2 1 2 3 4 3 2 1 1 3
7 7 8 9 5 8 8 7 2 7 5 8 3 8 5 7 3 6 6 5
7 9 5 9 8 4 3 6 8 8 7 9 11 4 7 6 7 5 10 6

X 17 18 15 19 14 17 12 16 15 17 14 18 16 15 16 16 12 12 17 14

0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0
3 1 5 1 5 2 7 4 5 2 5 2 4 5 4 4 8 7 3 6

Y 3 2 5 1 6 3 8 4 5 3 6 2 4 5 4 4 8 8 3 6

25% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 3 3 9 3 10 5 3 3 4 5 9 5 3 3 4 3 3 3 4
5 4 9 10 9 10 5 5 5 5 10 10 5 5 3 5 3 3 3 5
5 4 10 10 9 10 5 10 5 5 10 11 9 10 5 5 3 3 9 5
5 10 10 10 9 10 5 10 10 5 10 12 10 10 5 5 5 4 9 5

10 10 10 10 10 12 10 10 10 5 10 12 10 10 10 10 5 5 9 9
11 10 10 10 10 12 10 10 10 9 10 12 10 10 10 10 5 9 10 10
12 10 12 10 10 12 10 10 10 10 10 12 10 10 12 10 10 10 10 10
12 11 12 12 10 12 10 11 10 10 12 12 12 10 12 10 10 10 10 10
12 12 12 12 10 12 10 12 10 10 12 12 12 12 12 12 10 10 10 12
15 12 12 12 10 12 12 12 11 10 12 15 12 12 12 12 12 10 10 12
15 12 12 12 11 12 12 12 12 10 12 15 12 12 12 15 12 12 10 12
15 12 12 12 12 15 12 12 12 12 12 15 12 12 12 15 12 12 10 12
15 12 12 12 12 15 12 12 12 12 12 15 12 12 12 15 12 12 10 12
15 12 15 12 12 15 12 12 15 15 15 15 12 12 15 15 12 12 12 12
15 12 15 12 12 15 15 15 15 15 15 15 12 12 15 15 12 12 12 14
15 12 15 15 15 15 15 15 15 15 15 15 12 12 15 15 15 15 12 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

4 3 1 0 1 0 4 2 3 5 1 0 2 2 4 4 6 5 2 4
1 4 5 7 9 4 5 5 6 6 6 2 5 6 2 4 3 5 11 4

11 4 7 5 5 9 6 6 7 7 7 11 4 4 7 10 5 5 4 6

X 16 11 13 12 15 13 15 13 16 18 14 13 11 12 13 18 14 15 17 14

1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
3 8 7 8 4 7 5 6 3 2 6 6 9 8 7 2 6 5 3 6
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4 9 7 8 5 7 5 7 4 2 6 7 9 8 7 2 6 5 3 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

30% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 3 3 3 4 5 4 5 4 3 4 4 3 9 4 3 4 3 3 3
3 5 4 3 9 5 5 5 5 5 5 5 5 10 5 5 4 3 3 4
3 5 5 4 9 8 10 9 10 10 10 9 10 10 5 5 9 5 4 5
9 9 5 5 10 9 10 10 10 10 10 9 10 10 5 5 9 5 5 9
9 9 9 5 10 10 10 10 12 10 10 10 10 10 10 9 10 5 5 9

10 10 9 9 10 10 10 10 12 10 10 10 10 10 12 9 10 10 5 10
10 12 10 9 10 10 10 10 12 10 12 10 10 10 12 10 10 10 9 10
10 12 10 9 10 10 10 10 12 10 12 10 12 11 12 10 10 10 9 10
10 15 10 10 10 10 10 10 12 12 15 10 12 12 12 10 10 10 10 10
10 15 10 10 10 10 12 12 12 12 15 10 12 12 12 10 12 10 10 12
12 15 12 10 11 10 12 12 12 12 15 10 12 12 12 10 12 10 10 12
12 15 12 10 12 10 12 12 15 12 15 12 12 12 12 12 12 10 10 12
12 15 12 12 12 12 12 15 15 12 15 12 12 12 14 12 12 12 10 12
12 15 12 12 12 12 15 15 15 12 15 12 12 12 15 15 12 12 12 12
12 15 12 15 12 12 15 15 15 12 15 15 12 12 15 15 15 12 12 15
12 15 15 15 14 12 15 15 15 15 15 15 12 15 15 15 15 12 12 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

3 3 4 5 1 2 2 2 2 2 2 2 2 0 4 4 2 5 6 3
7 3 6 7 9 10 7 7 2 6 4 9 5 7 1 7 7 7 7 6
4 12 5 6 5 4 7 8 9 5 12 6 4 5 8 7 6 2 4 6

X 14 18 15 18 15 16 16 17 13 13 18 17 11 12 13 18 15 14 17 15

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6 2 5 2 4 4 4 3 7 7 2 3 9 7 7 2 5 6 3 5

6 2 5 2 5 4 4 3 7 7 2 3 9 8 7 2 5 6 3 5

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

35% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 5 10 5 5 3 3 5 3 3 10 3 3 4 4 3 5 5 3 3
8 5 10 8 5 5 5 5 5 5 10 4 5 9 4 3 5 5 4 5
9 9 10 9 9 5 5 5 5 5 10 5 9 10 9 3 9 9 5 8

10 10 10 10 9 9 5 9 10 9 10 5 10 10 9 9 9 9 5 9
10 10 10 10 10 10 10 10 10 10 10 5 10 10 10 9 10 10 5 9
10 10 10 10 10 10 10 10 10 10 10 9 10 10 10 10 10 10 9 9
12 10 10 10 10 10 12 10 10 10 10 10 12 10 10 10 10 10 10 9
12 10 10 10 10 12 12 12 10 10 12 10 12 11 10 12 11 10 10 10
12 10 12 10 10 12 12 12 12 10 12 10 12 12 10 12 11 10 10 10
12 10 12 12 10 12 12 12 12 12 12 10 12 12 10 12 12 12 12 10
15 10 15 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10
15 11 15 12 11 12 15 12 12 12 12 12 12 12 12 12 12 12 12 12
15 12 15 12 12 12 15 12 12 12 12 15 15 12 12 12 12 12 12 12
15 12 15 12 12 12 15 15 12 12 12 15 15 15 12 12 15 12 12 12
15 12 15 15 12 12 15 15 15 12 15 15 15 15 12 15 15 15 12 12
15 12 15 15 15 12 15 15 15 15 15 15 15 15 12 15 15 15 12 12
15 15 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15 12 12
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

1 2 0 1 2 3 4 3 3 3 0 5 2 1 2 3 2 2 5 2
5 9 8 8 8 4 2 4 5 6 7 5 4 6 8 4 5 7 4 9

10 4 10 6 5 3 9 7 6 5 6 8 8 7 4 6 7 6 3 3

X 16 15 18 15 15 10 15 14 14 14 13 18 14 14 14 13 14 15 12 14

0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0
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4 4 2 5 3 10 5 6 6 6 7 2 6 5 6 7 4 5 8 6

4 5 2 5 5 10 5 6 6 6 7 2 6 6 6 7 6 5 8 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

40% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 3 4 3 10 3 5 3 5 3 3 3 4 4 3 9 3 4 5 5
9 3 5 5 10 4 9 5 10 5 3 5 5 9 5 10 5 5 9 10
9 10 9 10 10 5 10 9 10 5 9 10 5 10 5 10 5 10 10 10
9 10 10 10 10 9 10 10 10 9 9 10 9 10 9 10 9 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 9 10 10 10
10 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 9 11 10 10
10 12 12 10 10 10 10 10 12 10 10 10 10 10 10 10 9 12 10 10
12 12 12 10 10 10 10 10 12 10 10 10 10 12 10 11 10 12 10 11
12 12 12 10 10 12 10 10 12 10 10 11 10 12 10 12 10 12 10 11
12 15 12 10 10 12 11 10 12 11 10 11 10 12 12 12 10 12 12 11
12 15 12 11 12 12 11 11 12 12 10 12 12 14 12 12 12 12 12 12
12 15 15 11 12 12 12 12 15 12 10 12 12 15 12 12 12 15 12 12
14 15 15 12 12 15 12 12 15 12 11 12 12 15 12 12 12 15 15 12
15 15 15 12 15 15 12 12 15 15 12 12 12 15 12 14 12 15 15 12
15 15 15 12 15 15 12 12 15 15 15 15 12 15 12 15 15 15 15 15
15 15 15 12 15 15 15 12 15 15 15 15 12 15 12 15 15 15 15 15
15 15 15 12 15 15 15 12 15 15 15 15 15 15 12 15 15 15 15 15
15 15 15 12 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

1 2 2 2 0 3 1 2 1 3 2 2 3 1 3 0 3 2 1 1
6 3 3 8 10 5 8 8 5 6 10 6 7 6 6 7 7 3 8 6
8 11 9 2 7 8 5 2 9 7 6 6 4 10 3 7 6 9 8 6

X 15 16 14 12 17 16 14 12 15 16 18 14 14 17 12 14 16 14 17 13

0 0 0 2 0 0 2 1 0 1 1 2 0 0 0 1 0 1 0 3
5 4 6 6 3 4 4 7 5 3 1 4 6 3 8 5 4 5 3 4

5 4 6 8 3 4 6 8 5 4 2 6 6 3 8 6 4 6 3 7

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

45% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 5 3 3 3 4 5 4 5 3 4 3 3 4 3 5 3 3 4 5
4 5 5 4 9 5 9 5 9 4 5 5 3 9 3 5 5 3 5 10
4 9 5 4 10 9 9 5 10 5 5 9 5 10 9 9 5 3 9 10
5 9 10 5 10 9 10 5 10 9 9 9 5 10 10 10 5 9 9 10

10 10 10 5 11 9 10 5 10 10 9 9 5 10 10 10 10 9 10 10
10 10 12 9 12 10 10 9 10 10 10 10 10 10 10 10 10 10 10 11
10 10 12 9 12 10 10 9 10 10 10 10 10 10 10 10 10 10 10 11
10 10 12 10 12 10 10 10 10 12 10 10 10 10 10 10 10 10 10 12
10 11 12 10 15 10 10 10 12 12 10 10 10 10 10 10 10 12 10 12
11 12 12 10 15 10 12 10 12 12 10 10 12 10 12 12 10 12 12 12
11 12 12 10 15 12 12 10 12 12 12 12 12 10 12 12 12 12 12 12
12 12 12 10 15 12 12 10 12 12 12 12 15 12 12 12 12 12 12 15
12 12 15 12 15 15 12 10 12 12 12 15 15 12 12 12 12 12 12 15
12 12 15 12 15 15 12 12 12 14 12 15 15 12 12 15 15 14 15 15
15 15 15 14 15 15 12 12 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

4 2 3 5 1 2 1 5 1 3 3 2 5 1 2 2 4 3 2 1
5 6 2 7 3 8 8 8 7 4 7 8 4 10 7 7 6 5 7 4
6 6 8 6 12 8 5 5 6 7 6 8 9 6 6 7 7 7 7 9

X 15 14 13 18 16 18 14 18 14 14 16 18 18 17 15 16 17 15 16 14
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2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
3 5 7 2 3 2 6 2 6 6 4 2 2 3 5 4 3 5 4 4

5 6 7 2 4 2 6 2 6 6 4 2 2 3 5 4 3 5 4 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

50% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

9 3 4 5 5 10 4 5 4 3 4 5 3 3 3 9 3 3 4 4
10 3 5 10 5 10 9 5 10 5 4 9 5 10 9 10 5 9 5 5
10 5 5 10 9 10 9 10 10 9 5 9 9 10 10 10 5 10 10 10
10 9 9 10 9 10 10 10 10 10 5 9 9 10 10 10 9 10 10 10
11 9 9 10 10 10 10 10 10 10 9 10 10 10 10 10 9 10 10 10
12 10 9 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10
12 10 10 10 10 10 10 10 10 10 10 10 10 11 10 11 10 10 10 12
12 10 10 10 10 11 10 11 10 12 10 10 10 12 12 11 10 10 10 12
12 10 10 12 10 12 12 11 12 12 10 10 10 12 12 11 11 11 10 12
12 10 10 12 10 12 12 11 12 12 10 12 11 12 12 12 12 11 12 12
12 10 10 12 11 12 12 12 12 12 12 12 11 14 12 12 12 12 12 12
12 12 10 12 12 12 12 12 12 15 12 12 12 15 12 12 12 12 12 12
12 12 12 12 12 12 12 12 15 15 12 12 12 15 12 12 12 12 12 12
12 12 12 15 12 15 12 12 15 15 12 12 12 15 12 12 15 12 12 15
12 12 15 15 12 15 15 12 15 15 15 12 12 15 15 15 15 15 12 15
12 15 15 15 12 15 15 15 15 15 15 12 12 15 15 15 15 15 15 15
12 15 15 15 15 15 15 15 15 15 15 12 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

0 3 3 1 2 0 1 2 1 2 4 1 2 1 1 0 3 1 2 2
4 8 9 7 8 7 7 5 7 5 6 8 7 4 6 6 5 7 7 4
3 5 6 7 4 7 6 5 8 9 6 3 4 10 6 6 7 6 5 7

X 7 16 18 15 14 14 14 12 16 16 16 12 13 15 13 12 15 14 14 13

1 0 0 0 1 1 0 3 0 0 0 0 2 2 0 3 1 2 0 0
12 4 2 5 5 5 6 5 4 4 4 8 5 3 7 5 4 4 6 7

13 4 2 5 6 6 6 8 4 4 4 8 7 5 7 8 5 6 6 7

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

55% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 5 4 4 3 3 4 3 5 5 3 3 5 3 4 5 3 3 3 5
5 5 5 5 5 4 5 9 9 5 3 5 9 3 5 5 5 3 4 9
5 5 9 5 10 5 5 10 10 10 4 5 9 3 10 5 9 5 5 10
5 10 10 9 10 5 9 10 10 10 5 9 10 4 10 10 9 5 9 10
5 10 10 9 10 5 9 10 10 10 9 10 10 5 10 10 10 9 10 10

10 10 10 10 10 9 9 10 10 12 10 11 11 5 10 10 10 10 10 10
10 10 10 10 11 10 10 10 10 12 10 12 12 5 10 10 10 10 10 10
10 10 10 10 12 10 10 12 10 12 10 15 12 10 10 10 10 10 10 12
10 10 10 10 12 10 10 12 10 12 10 15 12 12 10 12 10 10 12 12
10 10 10 10 12 12 10 12 10 12 10 15 12 12 12 12 10 11 12 12
11 12 12 12 12 12 11 12 10 12 11 15 12 12 12 12 10 12 12 12
12 12 15 12 12 12 11 12 10 12 11 15 12 12 12 12 11 12 12 12
12 12 15 12 12 12 11 12 12 15 12 15 15 12 12 12 12 12 12 15
12 12 15 12 12 12 12 15 12 15 12 15 15 12 15 15 12 12 12 15
12 12 15 14 15 15 12 15 12 15 12 15 15 15 15 15 12 15 15 15
15 15 15 15 15 15 12 15 12 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

5 3 2 3 2 5 3 1 1 2 4 3 1 7 2 3 2 4 3 1
5 7 8 7 4 4 7 6 11 3 6 2 4 1 7 5 9 5 5 6
5 5 9 6 6 6 4 7 3 8 5 13 8 6 7 7 5 6 6 8

264



X 15 15 19 16 12 15 14 14 15 13 15 18 13 14 16 15 16 15 14 15

1 0 0 0 1 0 3 0 0 0 2 1 1 0 0 0 1 1 0 0
4 5 1 4 7 5 3 6 5 7 3 1 6 6 4 5 3 4 6 5

5 5 1 4 8 5 6 6 5 7 5 2 7 6 4 5 4 5 6 5

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

60% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 3 3 4 4 3 3 4 4 4 3 3 4 3 5 4 5 4 5 3
5 3 3 5 5 4 3 9 9 5 5 3 5 9 9 5 9 5 9 5
9 4 3 5 9 5 5 10 10 9 9 5 5 10 9 9 10 5 9 9
9 4 5 9 9 5 5 10 10 9 9 5 5 10 10 9 10 8 10 9

10 4 10 9 10 5 9 12 10 10 10 10 10 10 10 9 10 9 10 10
10 5 10 9 10 9 10 12 10 11 10 10 10 10 11 10 10 10 10 10
11 9 10 10 10 10 10 12 10 12 10 10 10 11 11 10 12 12 11 10
12 10 12 10 10 10 10 12 10 12 10 10 10 11 12 10 12 12 12 12
12 10 12 10 10 10 10 12 10 12 10 10 12 12 12 12 12 12 12 12
12 10 12 10 10 10 10 12 10 12 11 12 12 12 12 12 12 12 12 12
12 12 12 10 11 10 10 15 12 15 12 12 12 12 15 12 12 15 12 12
15 12 12 12 11 11 12 15 12 15 12 12 12 12 15 12 15 15 15 12
15 12 12 12 12 11 15 15 12 15 12 12 12 12 15 12 15 15 15 14
15 15 15 12 12 12 15 15 15 15 15 15 14 12 15 12 15 15 15 15
15 15 15 12 15 15 15 15 15 15 15 15 15 12 15 15 15 15 15 15
15 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

2 6 4 3 2 5 4 1 1 2 2 4 4 1 1 2 1 3 1 2
4 4 3 8 8 6 7 3 9 3 7 5 4 5 4 6 5 3 5 5
9 7 7 4 6 6 8 10 7 10 7 7 7 5 10 6 9 10 9 8

X 15 17 14 15 16 17 19 14 17 15 16 16 15 11 15 14 15 16 15 15

1 0 0 0 2 2 0 0 0 1 1 0 0 2 2 0 0 0 1 0
4 3 6 5 2 1 1 6 3 4 3 4 5 7 3 6 5 4 4 5

5 3 6 5 4 3 1 6 3 5 4 4 5 9 5 6 5 4 5 5

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

65% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

3 5 5 5 5 9 5 3 3 4 5 5 5 5 3 3 3 3 3 3
3 5 9 9 9 9 5 5 5 9 9 5 9 5 5 5 3 3 9 3
3 9 9 10 10 10 9 5 5 10 9 5 10 10 5 10 3 4 10 5
3 9 9 10 12 10 9 10 5 10 9 10 10 10 9 10 5 4 10 5
5 10 10 10 12 10 10 10 5 10 10 10 10 10 9 10 10 9 10 5

10 10 10 10 12 10 10 10 10 10 10 10 12 10 10 10 10 9 10 5
10 10 10 10 14 12 10 10 10 10 10 10 12 10 10 10 12 9 10 9
10 10 10 10 15 12 12 10 10 10 10 10 12 10 10 12 12 9 10 9
10 10 11 10 15 12 12 10 10 12 10 11 12 12 10 12 12 10 10 9
11 10 12 10 15 12 12 10 10 12 12 12 12 12 10 12 12 11 10 10
12 11 12 10 15 12 12 12 10 14 12 12 12 12 12 12 12 12 10 12
12 12 12 12 15 15 12 12 10 15 12 12 12 12 12 12 12 12 10 15
12 12 12 12 15 15 12 12 12 15 15 15 12 12 12 12 12 12 11 15
12 12 12 12 15 15 15 15 12 15 15 15 12 12 12 12 12 12 12 15
15 12 12 15 15 15 15 15 12 15 15 15 15 15 12 15 12 12 12 15
15 15 14 15 15 15 15 15 15 15 15 15 15 15 12 15 14 15 12 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

5 2 1 1 1 0 2 3 5 1 1 3 1 2 3 2 4 4 1 6
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4 8 7 10 2 6 5 7 7 7 8 5 4 6 7 5 2 5 11 4
6 5 5 6 14 9 7 7 5 10 8 8 6 6 3 6 5 5 4 9

X 15 15 13 17 17 15 14 17 17 18 17 16 11 14 13 13 11 14 16 19

1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
4 4 6 3 3 5 6 3 3 2 3 3 9 6 7 7 9 5 3 1

5 5 7 3 3 5 6 3 3 2 3 4 9 6 7 7 9 6 4 1

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

70% 1 2 3 4 5 70% 1 2

35 M1 6 7 8 9 10 30 M1 6 7
20 M2 11 12 13 14 15 20 M2 11 12

3 5 10 4 3 5 5 5 5 10 5 5 4 5 10 5 5 5 3 3 3 3
5 10 10 5 5 5 9 5 10 10 5 9 5 5 10 10 5 5 5 5 5 5
5 10 10 5 9 10 10 10 10 10 5 10 9 9 10 10 5 10 5 5 5 10
5 10 10 10 9 10 10 10 10 10 10 10 9 10 10 10 9 10 9 10 10 10

10 10 10 10 9 10 10 10 10 10 10 10 10 10 12 10 10 10 10 10 10 10
10 10 10 10 10 11 10 11 10 12 10 10 11 10 12 10 10 10 10 10 10 10
10 12 11 10 10 12 10 11 10 12 10 10 12 10 12 10 10 10 10 10 10 10
10 12 12 10 10 12 12 12 10 12 10 10 12 10 12 12 10 10 11 12 12 12
10 12 12 12 11 12 12 12 12 12 10 10 12 10 12 12 10 12 12 12 12 12
10 12 12 12 12 12 12 12 12 12 11 11 12 10 12 12 10 12 12 12 12 12
12 12 12 12 12 15 12 12 12 15 12 12 12 10 15 12 10 12 12 12 12 12
12 12 15 12 12 15 12 12 12 15 12 12 12 12 15 12 11 12 12 12 12 12
12 15 15 15 12 15 12 12 12 15 12 12 15 12 15 12 12 12 12 15 12 12
12 15 15 15 12 15 12 12 12 15 12 12 15 12 15 12 15 12 15 15 15 12
15 15 15 15 12 15 12 12 15 15 12 15 15 12 15 15 15 12 15 15 15 15
15 15 15 15 15 15 12 15 15 15 12 15 15 15 15 15 15 12 15 15 15 15
15 15 15 15 15 15 12 15 15 15 12 15 15 15 15 15 15 12 15 15 15 15
15 15 15 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

4 1 0 3 2 2 1 2 1 0 3 1 2 2 0 1 3 2 3 3 3 2
6 5 6 5 6 3 6 3 7 5 6 8 3 9 4 6 8 6 4 4 4 5
6 8 9 8 5 10 2 5 6 10 3 6 8 5 10 6 7 3 7 8 7 6

X 16 14 15 16 13 15 9 10 14 15 12 15 13 16 14 13 18 11 14 15 14 13

0 0 1 0 1 1 0 2 0 0 1 1 1 0 0 0 1 0 1 0 0 0
4 6 4 4 6 4 11 8 6 5 7 4 6 4 6 7 1 9 5 5 6 7

4 6 5 4 7 5 11 10 6 5 8 5 7 4 6 7 2 9 6 5 0 6 7

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0 20 20

75% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

10 4 9 4 5 10 10 4 4 4 5 4 10 4 4 4 5 5 5 4
10 4 10 10 5 10 10 5 4 4 10 4 10 4 5 5 5 10 5 5
10 5 10 10 5 10 10 10 5 5 10 10 10 5 10 10 5 10 10 10
10 5 10 10 10 10 10 10 5 5 10 10 10 5 10 10 5 10 10 10
12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5 10 10 10
12 10 10 10 10 10 10 10 10 10 12 10 10 10 10 12 10 10 12 12
12 10 10 10 10 11 10 10 10 10 12 10 12 10 11 12 10 10 12 12
12 12 10 10 10 12 12 10 10 10 12 11 12 12 12 12 10 10 12 12
12 12 12 12 11 12 12 12 12 10 12 12 12 12 12 12 10 11 12 12
12 12 12 12 12 12 12 12 12 11 12 12 12 12 12 15 11 11 12 12
12 12 12 12 12 15 12 12 12 11 12 12 15 12 12 15 12 12 12 15
15 12 12 12 12 15 12 12 12 12 15 12 15 12 15 15 12 15 12 15
15 12 12 12 12 15 12 15 12 12 15 15 15 15 15 15 12 15 15 15
15 15 12 12 12 15 12 15 12 12 15 15 15 15 15 15 15 15 15 15
15 15 15 12 12 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
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0 4 0 1 3 0 0 2 4 4 1 2 0 4 2 2 5 1 2 2
4 3 8 7 5 6 7 6 4 5 4 5 6 3 4 3 4 7 3 3
9 7 6 5 4 10 6 8 5 6 9 8 10 8 9 11 7 9 8 10

X 13 14 14 13 12 16 13 16 13 15 14 15 16 15 15 16 16 17 13 15

0 0 0 0 1 1 0 0 0 2 0 1 0 0 1 0 1 2 0 0
7 6 6 7 7 3 7 4 7 3 6 4 4 5 4 4 3 1 7 5

7 6 6 7 8 4 7 4 7 5 6 5 4 5 5 4 4 3 7 5

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

80% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 4 5 3 5 10 10 10 4 10 4 4 10 5 5 8 5 4 5 5
10 10 10 5 10 10 10 10 4 10 10 5 12 5 5 10 10 5 10 5
10 10 10 5 10 10 10 11 4 10 10 10 12 10 10 10 10 5 10 10
10 10 10 5 11 10 10 12 5 10 10 10 12 10 10 12 10 5 12 10
10 10 11 10 12 10 10 12 10 10 11 10 12 10 10 12 11 10 12 10
10 12 12 10 12 10 10 12 10 12 11 10 12 10 10 12 12 10 12 10
11 12 12 10 12 12 12 12 12 12 12 12 12 10 10 12 12 10 12 10
11 12 12 12 12 12 12 12 12 12 12 12 12 10 10 12 12 10 12 10
12 12 12 12 12 15 12 12 12 12 12 12 15 10 12 15 12 12 12 12
12 15 12 12 12 15 12 15 12 15 12 12 15 11 12 15 12 15 15 12
12 15 12 12 12 15 12 15 12 15 12 15 15 12 12 15 12 15 15 12
12 15 15 15 12 15 12 15 15 15 12 15 15 12 12 15 12 15 15 12
12 15 15 15 15 15 12 15 15 15 12 15 15 12 15 15 12 15 15 12
15 15 15 15 15 15 15 15 15 15 12 15 15 15 15 15 15 15 15 12
15 15 15 15 15 15 15 15 15 15 12 15 15 15 15 15 15 15 15 12
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

1 1 1 4 1 0 0 0 4 0 1 2 0 2 2 0 1 4 1 2
5 4 3 3 2 6 6 2 2 5 3 4 1 7 6 3 3 4 2 6
7 11 9 9 8 12 7 11 9 11 5 10 12 7 8 12 7 11 11 5

X 13 16 13 16 11 18 13 13 15 16 9 16 13 16 16 15 11 19 14 13

2 0 1 0 1 0 0 1 0 0 2 0 0 1 0 0 1 0 0 0
5 4 6 4 8 2 7 6 5 4 9 4 7 3 4 5 8 1 6 7

7 4 7 4 9 2 7 7 5 4 11 4 7 4 4 5 9 1 6 7

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

85% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

10 10 3 5 10 10 10 10 10 5 10 10 5 5 5 10 5 3 3 9
10 11 10 10 10 10 10 10 10 10 10 10 10 10 5 10 5 10 5 10
10 11 10 10 10 10 10 10 12 10 10 10 10 10 10 10 10 10 10 10
10 12 10 11 11 10 10 10 12 12 10 10 12 10 10 11 10 10 10 12
10 12 10 12 12 10 12 10 12 12 10 10 12 10 12 11 12 12 10 12
10 12 12 12 12 10 12 12 12 12 10 12 12 10 12 12 12 12 10 12
10 12 12 12 12 10 12 12 12 12 10 12 15 10 12 12 12 12 10 12
10 12 12 12 12 12 12 12 15 12 10 12 15 10 15 12 12 12 10 12
12 12 15 12 15 12 12 12 15 12 12 12 15 12 15 12 12 12 12 12
12 12 15 12 15 12 12 12 15 15 12 12 15 12 15 15 15 12 12 15
12 12 15 12 15 12 15 15 15 15 15 15 15 12 15 15 15 12 12 15
12 12 15 12 15 12 15 15 15 15 15 15 15 12 15 15 15 15 12 15
15 12 15 12 15 12 15 15 15 15 15 15 15 12 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 12 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
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15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

0 0 1 1 0 0 0 0 0 1 0 0 1 1 2 0 2 1 2 0
8 1 4 2 3 7 4 5 2 2 8 5 2 7 2 3 2 3 6 3
8 7 12 7 12 7 10 10 13 11 10 10 14 6 13 11 11 9 8 11

X 16 8 17 10 15 14 14 15 15 14 18 15 17 14 17 14 15 13 16 14

0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
4 10 3 9 4 6 6 5 5 6 2 5 3 6 3 4 5 7 4 6

4 12 3 10 5 6 6 5 5 6 2 5 3 6 3 6 5 7 4 6

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

90% 1 2 3 4 5

35 M1 6 7 8 9 10
20 M2 11 12 13 14 15

5 5 4 10 5 10 10 5 5 10 4 5 3 10 5 5 4 10 5 5
10 5 4 10 10 10 10 5 10 10 10 10 5 10 5 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 5 10 10 10 10 10
10 10 12 11 12 10 11 10 12 10 10 10 10 10 10 10 10 10 10 10
11 10 12 11 12 10 11 10 12 10 11 10 10 10 11 10 10 10 10 12
11 12 12 12 12 12 12 10 12 10 12 10 11 11 11 10 12 12 11 12
11 12 12 15 12 12 12 10 12 10 12 10 11 12 11 12 12 12 12 12
12 12 12 15 12 12 12 10 12 10 12 12 11 12 12 12 12 12 12 12
12 12 12 15 15 12 12 10 12 11 12 12 12 12 12 15 12 12 12 12
15 12 12 15 15 12 15 11 15 12 12 12 12 12 12 15 12 12 12 15
15 12 12 15 15 15 15 12 15 12 12 12 15 12 12 15 15 15 15 15
15 12 15 15 15 15 15 12 15 12 15 12 15 15 12 15 15 15 15 15
15 12 15 15 15 15 15 12 15 12 15 15 15 15 12 15 15 15 15 15
15 15 15 15 15 15 15 12 15 12 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

1 2 2 0 1 0 0 2 1 0 1 1 2 0 3 1 1 0 1 1
3 3 1 3 2 5 3 7 2 8 3 6 3 5 1 5 4 5 4 3

11 7 9 14 12 10 11 6 11 6 9 8 10 9 7 12 10 10 10 11

X 15 12 12 17 15 15 14 15 14 14 13 15 15 14 11 18 15 15 15 15

3 0 0 2 0 0 2 1 0 1 1 0 3 1 3 0 0 0 1 0
2 8 8 1 5 5 4 4 6 5 6 5 2 5 6 2 5 5 4 5

5 8 8 3 5 5 6 5 6 6 7 5 5 6 9 2 5 5 5 5

Y 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
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UREC/FREC Ethics Application Form 2/5/16                                                                               Version 2  

 
 

University Research Ethics Committee 
 

APPLICATION FOR ETHICAL REVIEW OF RESEARCH INVOLVING HUMAN PARTICIPANTS   

Guidance Notes 

These notes are intended to be read when completing the application form for ethical review of 

research involving human participants. The University’s policy and procedures on research ethics 

may be found at http://www1.uwe.ac.uk/research/researchethics/. Please address any enquiries 

which are not covered in these notes to the contact (named below) for the Faculty Research Ethics 

Committee to which you are submitting your application.  

This form may also be completed by researchers outside UWE who plan to conduct research within 

the University. (Note: Where a researcher has already obtained REC approval from another 

institution it may not be necessary to submit another application but you will need to send details of 

the research and evidence of approval to the REC chair before access may be granted to UWE staff 

and students.) 

Research Ethics Committee contacts: 

 Name Email Telephone 

University 

Research Ethics 

Committee (UREC) 

Alison Vaughton 

(Officer) 

res.admin@uwe.ac.uk 0117 32 82872 

 

Note: UREC reviews applications for ESRC-funded research, research involving surveying on a 

University-wide basis, and research conducted by staff in the Central Services. All other 

applications should be directed to the appropriate Faculty committee. 

Faculty Research Ethics Committees 

ACE  Lesley Brock 

(Officer) 

lesley.brock@uwe.ac.uk  0117 32 84222 

FBL  FBL REC Officer bbs.researchethics@uwe.ac.uk  0117 32 86890 

FET 

 

Tom Brossard 

(Officer) 

tom.brossard@uwe.ac.uk  0117 32 84250 

HLS Leigh Taylor 

(Officer) 

leigh.taylor@uwe.ac.uk 0117 32 81170 

External ethics approval 
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Where the work has already been subjected to ethical scrutiny, for example, by an NHS Research 

Ethics Committee through the National Research Ethics Service (NRES), you should indicate this on 

the form.  

If your research involves NHS patients (including tissue or organs), or NHS data, you will usually need 

to get NHS REC approval. The UWE procedures recognise the burden placed on the researcher in 

applying for NHS REC approval. In order to assist PIs in this as far as possible, you are recommended 

to apply for NHS REC ethics approval first (using the IRAS form) and submit the letter of approval to 

your FREC or to UREC (as applicable). Where UWE is the sponsor for the study your FREC Chair will 

need to see the application before it can be authorised by the sponsor representative. This approach 

has been designed to retain the right of ultimate ‘sign off’ by the University without having to go 

through a separate protracted University process. It is important that PIs conducting research in the 

NHS appreciate that both UWE and NHS Ethics clearance will be needed and are separate. 

(Achievement of the one does not guarantee success with the other). 

If you have already received ethical approval from an external Research Ethics Committee, you 

should provide evidence of this to UREC/FREC. 

Student applications 

For student applications, supervisors should ensure that all of the following are satisfied before the 

study begins: 

 The topic merits further research; 
 The student has the skills to carry out the research; 
 The participant information sheet or leaflet is appropriate; 
 The procedures for recruitment of research participants and obtaining informed consent are 

appropriate. 
 

Declaration 

This should be completed once all the following questions have been answered. Where the 

application is from a student, a counter-signature from the supervisor is also necessary. 

Applications without a supervisor signature will not be processed. 

Question 1: Details of the proposed research – aims and objectives of the research 

This should provide the reviewer of the application with sufficient detail to allow him/her to 

understand the nature of the project and its rationale, in terms which are clear to a lay reader. Do 

not assume that the reader knows you or your area of work. It may be appropriate to provide a copy 

of your research proposal. 

Question 2: Details of the proposed research – Research methodology to be used 

You should explain how you plan to undertake your research. A copy of the interview schedule/ 

questionnaire/observation schedule/focus group topic guide should be attached where applicable. 

Question 3: Participant details – Participants from vulnerable groups 
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You must indicate if any of the participants in your sample group are in the categories listed. Any 

Department of Health funded research involving participants who might not have the capacity to 

consent may need to go through the new Social Care Research Ethics Committee 

(http://www.screc.org.uk/), unless it is already being reviewed through NRES. If your research 

subjects fall into any of the specified groups, you will need to justify their inclusion in the study, and 

find out whether you will require a Disclosure and Barring Service (DBS) (formerly Criminal Records 

Bureau -CRB) check.  

Members of staff requiring DBS checks should contact Human Resources hr@uwe.ac.uk. DBS checks 

for students will usually be organised through the student's faculty, but students in faculties without 

a DBS countersignatory should contact Leigh Taylor (Leigh.Taylor@uwe.ac.uk).  

Please note: Evidence of a DBS check should take the form of an email from the relevant 

countersignatory confirming the researcher has a valid DBS check for working with children and/or 

vulnerable adults. It will be the responsibility of the applicant to provide this confirmation. 

Question 4: Participant details – Determination of sample size, identification and recruitment of 

participants  

In this section, you should explain the rationale for your sample size and describe how you will 

identify and approach potential participants and recruit them to your study. 

Question 5: Informed consent and withdrawal 

Informed consent is an ethical requirement of the research process. Applicants should demonstrate 

that they are conversant with and have given due consideration to the need for informed consent 

and that any consent forms prepared for the study ensure that potential research participants are 

given sufficient information about a study, in a format they understand, to enable them to exercise 

their right to make an informed decision whether or not to participate in a research study. 

Consent must be freely given with sufficient detail to indicate what participating in the study will 

involve. Withdrawal from future participation in research is always at the discretion of the 

participant. There should be no penalty for withdrawing and the participant is not required to 

provide any reason. 

You should describe how you will obtain informed consent from the participants and, where this is 

written consent, include copies of participant information sheets and consent forms. Where other 

forms of consent are obtained (eg verbal, recorded) you should explain the processes you intend to 

use. See also data access, storage and security below. 

Question 6: Confidentiality/anonymity 

You should explain what measures you plan to take to ensure that the information provided by 

research participants is anonymised/pseudonymised (where appropriate) and how it will be kept 

confidential. In the event that the data are not to be anonymised/pseudonymised, please provide a 

justification.  

Personal data is defined as ‘personal information about a living person which is being, or which will 

be processed as part of a relevant filing system. This personal information includes for example, 
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opinions, photographs and voice recordings’ (UWE Data Protection Act 1998, Guidance for 

Employees). 

Question 7: Data access, storage and security 

Describe how you will store the data, who will have access to it, and what happens to it at the end of 

the project. If your research is externally funded, the research sponsors may have specific 

requirements for retention of records. You should consult the terms and conditions of grant awards 

for details.  

It may be appropriate for the research data to be offered to a data archive. If this is the case, it is 

important that consent for this is included in the participant consent form.  

UWE IT Services provides data protection and encryption facilities - see http://www.uwe.ac.uk/its-

staff/corporate/ourpolicies/intranet/encryption facilities provided by uwe itservices.shtml  

Question 8: Risk and risk management – Risks faced by participants 

Describe ethical issues related to the physical, psychological and emotional wellbeing of the 

participants, and what you will do to protect their wellbeing. If you do not envisage there being any 

risks to the participants, please make it clear that you have considered the possibility and justify 

your approach.  

Question 9: Risk and risk management – Potential risks to researchers 

Describe any health and safety issues including risks and dangers for both the participants and 

yourself (if appropriate) and what you will do about them. This might include, for instance, 

arrangements to ensure that a supervisor or co-researcher has details of your whereabouts and a 

means of contacting you when you conduct interviews away from your base; or ensuring that a 

‘chaperone’ is available if necessary for one-to-one interviews. 

Question 10: Publication and dissemination of research results 

Please indicate in which forms and formats the results of the research will be communicated. 

Question 11: Other ethical issues 

This gives the researcher the opportunity to raise any other ethical issues considered in planning the 

research or which the researcher feels need raising with the Committee. 
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APPLICATION FOR ETHICAL REVIEW 

 

This application form should be completed by members of staff and Phd/ Prof Doc students 

undertaking research which involves human participants.  U/G and M level students are required to 

complete this application form where their project has been referred for review by a supervisor to a 

Faculty Research Ethics Committee (FREC) in accordance with the policy at 

http://www1.uwe.ac.uk/research/researchethics/. For research using human tissues, please see 

separate policy, procedures and guidance linked from 

http://www1.uwe.ac.uk/research/researchethics/.  

Please note that the research should not commence until written approval has been received from 

the University Research Ethics Committee (UREC) or Faculty Research Ethics Committee (FREC). You 

should bear this in mind when setting a start date for the project. 

This form should be submitted electronically to the Officer of the Research Ethics Committee (see 

list above at page 1) together with all supporting documentation (research proposal, participant 

information sheet, consent form etc).  

Please provide all the information requested and justify where appropriate. 

For further guidance, please see http://www1.uwe.ac.uk/research/researchethics/ (applicants’ 

information) or contact the officer for UREC/your Faculty Research Ethics Committee (details at 

page 1). 

 

Project Details: 

Project title 

 

 
 Assistive interactive robotic system for support in dressing (I-DRESS) 

Is this project externally 

funded?  

  Yes  

If externally funded, 

please give details of 

project funder  

EU CHIST-ERA I-DRESS project /EPSRC EP/N021703/1 

Proposed project start 

date 

01/12/2015 Anticipated 

project end date 

30/11/2018 

 

Applicant Details: 
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Name of researcher 

(applicant) 

Dr Greg Chance 

Faculty and Department FET, Dept. Engineering Design and Mathematics 

Status  

(Staff/ PG  Student/MSc 

Student/Undergraduate) 

Staff of Bristol Robotics Laboratory (BRL) 

Email address greg.chance@uwe.ac.uk 

Contact postal address Bristol Robotics Lab, T Block 

University of the West of England 

Frenchay Campus 

Bristol 

BS16 1QY      

Contact telephone 

number 

07968968985 

Name of co-researchers 

(where applicable) 

Dr Sanja Dogramadzi (0117 32 81301), Dr Praminda Caleb-Solly 

 

(for completion by UWE REC) 

Date received:                       

UWE REC reference number:      

 

For All Applicants: 

Has external ethics approval been sought for this research?  No 

If yes, please supply details: 
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For student applicants only:  

Name of Supervisor / 

Director of Studies 

(for PG/MSc and UG 

student applicants)¹ 

 

Details of course/degree 

for which research is 

being undertaken 

 

¹For student applications, supervisors should ensure that all of the following are satisfied before 

the study begins: 

 The topic merits further research; 

 The student has the skills to carry out the research; 

 The participant information sheet or leaflet is appropriate; 

 The procedures for recruitment of research participants and obtaining informed consent are 
appropriate. 
 

Department of 

Supervisor / Director of 

Studies 

 

Supervisor’s / Director of 

Studies’ email address 

 

Supervisor’s / Director of 

Studies’ telephone 

number 

 

Supervisor’s / Director of 

Studies’ comments: 
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Details of the proposed work: 

PLEASE COMPLETE ALL SECTIONS. IF YOU THINK THE QUESTION IS NOT APPROPRIATE, PLEASE 

STATE WHY. 

1.  Aims,  objectives of and background to the research: 

This research is being carried out as part of the EPSRC funded I-Dress project. This first phase of the 

research aims to determine what verbal and non-verbal commands (gestures, eye-gaze, body 

postures (adjustments and nudges) are used between two people when one person is supporting 

another person in a dressing support task. The objective is to find a statistically significant profile 

elicited from analysing a number of real dressing assistance scenarios and use these to determine 

interactions that are most effective. This data will then be used to build an interaction profile for a 

Human-Robot Interface. 

2.  Research methodology to be used (include a copy of the interview schedule/ questionnaire/ 

observation schedule where appropriate): 

We are interested in gathering data for two dressing support tasks. The dressing support tasks will be 

(a) putting on a coat over existing clothing and (b) putting on shoes. Participants will collaborate in 

pairs.  

For each dressing support task, the experiments will be performed in two phases: 

Phase I: Capturing natural verbal and non-verbal interaction between two people as one person 

supports another in the dressing support task. 

Phase II: Capturing verbal commands only. For this experiment one of the pair will ‘act’ as the robot 

(robot-participant) to help the other participant (the dressing-participant) put on the coat or shoes. 

The dressing-participant will give verbal commands only to the robot-participant to complete the 

dressing support task.  The robot-participant will be requested to keep their eyes closed while 

following the verbal commands. Two facilitators will closely monitor the interaction and will provide 

a protocol for confirming the robot-participant’s movement to ensure the movement is carried out 

safely, halting the task immediately if there is any risk to either participant is observed. 

During the experiments participants will be recorded on video to capture the verbal and non-verbal 

commands used. We will also be using a Vicon motion capture system to record the position of body 

joints: elbow, wrist, etc. using reflective markers to understand the movement of the dressing-

participant during the task, i.e. do they assist the robot-participant by moving in a way that promotes 

successful dressing, as well as the robot-participant, to record their response to the commands and 

the dressing-participant’s movements. 

Video footage will be privy to the researchers only. Once the task is complete the dressing vocabulary 

will be reported to the project team but will not contain personal information. Video footage will then 

be encrypted and stored on a secure server for the duration of the project.  
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The body position data from the Vicon system records only the position of the body joints. This 

information will be identified by a user reference, e.g. user 01, but will not include any personal 

information. 

3.  Selection of participants: 

Will the participants be from any of the following groups?(Tick as appropriate) 

 

  Children under 18                                                                                                          

  Adults who are unable to consent for themselves² 

  Adults who are unconscious, very severely ill or have a terminal illness                                                               

  Adults in emergency situations 

  Adults with mental illness (particularly if detained under Mental Health Legislation) 

  Prisoners 

  Young Offenders 

  Healthy Volunteers (where procedures may be adverse or invasive) 

  Those who could be considered to have a particularly dependent relationship with the 

investigator, e.g. those in care homes, medical students 

  Other vulnerable groups 

  None of the above 

 

 (² Please note, the Mental Capacity Act requires all intrusive research involving adults who are 

unable to consent for themselves to be scrutinised by an NHS Local Research Ethics Committee – 

Please consult the Chair of your Faculty Research Ethics Committee, or Alison Vaughton (RBI) for 

advice) 

If any of the above applies, please justify their inclusion in this research: 
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Note: If you are proposing to undertake research which involves contact with children or 

vulnerable adults, you may need to hold a valid DBS (Disclosure and Barring Service, formerly 

Criminal Records Bureau – CRB) check.  

Where appropriate, please provide evidence of the check with your application. 

 

4.  Please explain how you will determine your sample size/recruitment strategy, and identify, 

approach and recruit your participants. Please explain arrangements made for participants who 

may not adequately understand verbal explanations or written information in English. 

We aim to recruit 20 participants for this study. This will consist of students and staff within FET.  

Participants will be recruited by word-of-mouth and by email, being mentioned that no one is 

obliged to participate and that they can leave the study at any point without giving a reason. 

All participants will be fully briefed before undertaking any activity and given opportunity to ask 

questions. 

5a. What are your arrangements for obtaining informed consent whether written, verbal or 

other? (where applicable, copies of participant information sheets and consent forms should be 

provided) 

All participants will be given a participant information sheet and a written consent form to 

complete. 

b.   What arrangements are in place for participants to withdraw from the study? 

It will be explained to all participants that they have the right to withdraw during any stage of the 

investigation. 

6.  If the research generates personal data, please describe the arrangements for maintaining 

anonymity and confidentiality or the reasons for not doing so. 

The research will be undertaken anonymously, where only the video footage and joint position is 

recorded. Any work reported or published will be done anonymously. Any video data not deleted 

will be encrypted and stored securely. 

7.  Please describe how you will store data collected in the course of your research and maintain 

data protection. 

All collected data will be kept on an encrypted computer hard drive. 

8.  What risks (eg physical, psychological, social, legal or economic), if any, do the participants face 

in taking part in this research and how will you overcome these risks? 

Comfort and Hygiene considerations:  
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New pairs of gender neural shoes (Crocs) of 9 different sizes will be purchased for the experiments so 

that correct size shoes can be provided to each participant.  

Disposable socks will also be provided to participants to ensure hygiene and similar surface friction.  

A loose fitting coat will be used over existing clothing for the jacket dressing scenario. 

The crocs will be sprayed with an antibacterial deodorant shoe spray between participants as in a 

bowling alley. 

9  Are there any potential risks to researchers and any other people impacted by this study as a 

consequence of undertaking this proposal that are greater than those encountered in normal day 

to day life? 

No 

10  How will the results of the research be reported and disseminated?  

(Select all that apply) 

 

  Peer reviewed journal 

  Conference presentation 

  Internal report 

  Dissertation/Thesis 

  Other publication 

  Written feedback to research participants 

  Presentation to participants or relevant community groups 

  Other (Please specify below) 

May be reported to project sponsors 

 

       

11 Are there any other ethical issues that have not been addressed which you would wish to bring 

to the attention of the Faculty and/or University Research Ethics Committee? 

None 
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Signature 

 

Date 29/4/16 

 

The signed form should be emailed to the Officer of the Research Ethics Committee (details at 

page 1) and email copied to the Supervisor/Director of Studies where applicable.  
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Amendment to Existing Research Ethics Approval

Please complete this form if you wish to make an alteration or amendment to a study that 
has already been scrutinised and approved by the Faculty Research Ethics Committee and 
forward it electronically to the Officer of FREC (researchethics@uwe.ac.uk)

UWE research ethics 

reference number:
FET.16.05.043

Title of project:
Assistive interactive robotic system for support in dressing 

Date of original approval: 01/01/2018
Researcher: Antonella Camilleri – Original Applicant for Ethical Form Dr. 

Greg Chance
Supervisor (if applicable) Prof. Sanja Dogramadzi 

1. Proposed amendment: Please outline the proposed amendment to the existing 
approved proposal.
In the existing ethics approval, there are two parts of the experiment. In Part 
1, participants interact with the robot to perform dressing. In Part 2,
participants interact with the robot to perform dressing task 5 times while 
being distracted in different ways (cognitive loading game and conversation 
with the researcher). Part 1 and Part2 have already been approved by the 
ethical board. 

This amendment is required to include additional interactions to the HRI 
dressing experiments. The user is to give commands to the robot while being 
dressed in order to proceed from one stage of the task to another.  

2. Reason for amendment. Please state the reason for the proposed amendment. 
The objective of this study is to evaluate alteration/changes in speech 
commands expected from the user when distractions during dressing
interactions occur.  
The proposed experiments will evaluate if this explicit interaction indicator can 
establish participants distractions. Interactions in previous experiments were 
passive (through force measurements).

3. Ethical issues. Please outline any ethical issues that arise from the amendment that 
have not already addressed in the original ethical approval. Please also state how these 
will be addressed.

General layout, equipment and measures of data collection remain unchanged 
to the original ones initially accepted.
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“Assistive interactive robotic system for support in dressing” 

 
Research participant consent form 

 
Please tick the boxes if the statements are true about yourself   

Taking Part   

I have read and understood the Information Sheet dated 09/10/2018.  
   

  

I have been given the opportunity to ask questions about the project, and have had my questions 
answered to my satisfaction.  

  

I ensure that I have no previous back injury.   

I ensure that I am not on any serious pain medication.   

I agree to take part in the project.  Taking part in the project will include completing specific 
dressing tasks and giving vocal commands. 

 

  

I understand that some portions of the activities may be filmed. 
 

  

I understand that my taking part is voluntary; I can withdraw from the study at any time (up until 
the completion of the tests) and I do not have to give any reasons for why I no longer want to 
take part. 
 

  

Use of the information I provide for this project only   

I understand my personal details such as phone number and address will not be recorded for any 
purpose or revealed to people outside the project. 
 

  

I am aware that data collected will be anonymous, kept in accordance with the data protection 
act, and will only be analysed by the research team as part of their studies. 

  

 
 

___________________________ _____________________         ______________  
Name of participant [printed] Signature               Date 
 
 
___________________________________________________________________________ 
For researcher use only 
 
Participant code:  _________ 
  
___________________________ ________________________ _____________  
Researcher  [printed] Signature                  Date 
 
Antonella Camilleri 
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Bristol Robotics Lab, T Block 
University of the West of England 
Frenchay Campus 
Bristol 
BS16 1QY 
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Information Sheet for participants 
 
Study: 
 
Assistive Interactive robotic system for support in dressing 
 
This research is being carried out as part of the EPSRC/CHIST-ERA funded I-DRESS project and 
SOCRATES project. The SOCRATES project has received funding from the European Union’s Horizon 
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 
721619. The general aim of the project is that to improve interaction quality for older adults.  
 
This research aims to determine what changes occur in verbal and non-verbal interactions (gestures, 
eye-gaze, body postures, adjustments and nudges) between a person and robot when distractions 
occur in these type of interactions. The objective is to find the common changes in used modalities 
when people are distracted while receiving a support in dressing from a robot by analysing a number 
of real dressing assistance scenarios. This data will then be used to build an interaction profile for a 
Human-Robot Interface to predict these unexpected events or distractions in an interaction.  
 
The dressing tasks will be to put on a jacket. Participants will be fully clothed during the test although 
they will be asked to wear a motion tracking suit. During the exercise the pose, video and audio of the 
participants will be recorded.  
 
We will be using an Xsens motion capture system (or similar) to record the position and motion of the 
participant. This will require the user to wear a thin bodysuit over their existing clothes. This is done 
to understand the movement of the person being dressed during the task. This motion will be 
recorded in a form or 3D coordinates (non-photographic). To record eye gaze in space, the Tobii Pro 
Glasses will be used to record. 
 
The study includes taking a Task Load Index Questionnaire and two other questionnaires about the 
participant’s level of trust and opinion of technology. This allows us to correlate our findings of robot 
interaction to user profiles in order to build more suitable robotic applications. The Task Load Index 
Questionnaire will be filled in between parts of the experiments. 
 
 
Invitation: 
 
We are researchers at the University of the West of England and are currently conducting a study into 
the interaction quality during a robotic-assisted dressing. We have developed this experiment to 
monitor what are the likely things a user might do when distracted during an assisted dressing task 
that they need. Particularly, we are interested in looking what are the dominant indicators of 
distractions in these type of close proximity interaction. The information obtained from this 
observation will be used in the development of robotic software that will give assistance in dressing 
tasks to people with mobility issues or those in rehabilitation.  
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In order to carry out the study we require participants to be recorded on video during an assisted 
dressing or a jacket. Before you decide whether you wish to accept the invitation or not, it is important 
for you to understand why the research is being conducted and what it will involve. Please take time 
to read the following information carefully and consult us if you have any queries or concerns, or if 
you would like more details. 
 
If you do decide to take part, then you will be given this information sheet to keep and be asked to 
sign a consent form. You may decide not to continue with the study at any point up until the 
completion of the tests. You may do so without giving a reason. 
 
 
Task: 
 
If you decide to take part in the study, you need to follow this procedure. Instructions will be explained 
briefly through video demonstrations for participants. 
 
The dressing experiment will be divided in 3 parts. The assistive daily living task of dressing task that 
represents a real, current need from carers and health professionals. The dressing support tasks will 
be that of putting on a jacket over existing clothing. Participants will be dressed by a robot; the robot 
will move slowly and have a limited range of motion.  Participants are requested to wear light clothing, 
not baggy or warm clothes.  
 
In part 1 and 2 of the experiment, we will aim to capture the non-verbal cues of the participant as they 
are being dressed. A researcher will be in constant attendance to assure the participant and ensure 
smooth running of the task. A lose fitting rain coat will be provided worn over existing clothing.  
 
In part 2 a cognitive loading game will be displayed on a TV screen. Participant will have to speak out 
the position of the shapes on screen as a distraction while getting dressed by the Robot. Other 
distractions such as talking to the researcher and telephone ringing will be included in the experiment. 
 
In part 3, a more active interaction will be offered to the participant. The participant need to give the 
go ahead of the robot to proceed in the dressing task. In this way the user will have more control over 
the interaction during the dressing task.  The instructions from the participants need to be: “Go 
Ahead” to continue the dressing task; “Stop” to stop at any instance during the dressing task; 
“Completed” to acknowledge one of the three stages of the dressing task.  The three stages of the 
dressing task will be: (1) dressing up to both hands, (2) dressing up to both elbows, (3) dressing up to 
both shoulders. During all the experiment parts, the dressing task will be repeated.  
 
If you have any questions about any particular task, please do not hesitate to ask. Tasks will be 
observed by a researcher. You will also be filmed undertaking tasks so that the transcript can be 
obtained. 
 
The information collected during the study will not contain any personal information about you 
beyond that provided on the consent form and information sheet. Where the experimental results are 
published, the data will be anonymised, no personal details will be included apart from your age and 
gender. If you would like access to any publications resulting from this work, then please contact us. 
 
Safety: 
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You can stop your participation in the event at any point without needing to give any explanation. If 
your arms become fatigued during the test, please stop and rest immediately, you may continue at 
any point or if you wish you can simply cease the experiment. 
 
Participants will be in close working proximity to a Baxter robot which is a collaborative robot with 
Series Elastic Actuators (SEA) that are inherently safer than standard servo driven robots. In the 
unlikely event that the robot will collide with you the elastic nature of the robot allows the limbs to 
flex instead of pushing the user. The robot will be moving slowly and will have a limited range of 
movement. If at any time there is an issue, there is an emergency stop button that can be used to stop 
the robot. 
 
Confidentiality: 
 
To ensure that participant confidentiality is maintained, all collected data will be kept on a partitioned 
encrypted hard drive. Any filming undertaken will be used to determine the vocabulary used during 
the dressing and to extract body position, stored as numbers only (non-photographic). 
 
 
Antonella Camilleri  
Bristol Robotics Lab, T Block 
University of the West of England 
Frenchay Campus 
Bristol 
BS16 1QY 

 

292



B.2. ETHICAL APPROVAL AND ADDITIONAL SHEETS/FORMS

B.2.5 CS2 NASA Task Load Sheet

293



NASA Task Load Index 
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APPENDIX C

C.1 OS3: Observational Studies in Care Homes
Ethical Approval and Additional Sheets/Forms

Due to Covid-19 Restrictions and Rules, this ethical approval was adopted for an ob-

servational study instead of hands-on experiments with older adults. The approach to

the entire thesis and contributions was heavily impacted and had to be rethought and

adjusted accordingly

C.1.1 OS3 Consent form for Carers
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   1 
 

Consent Form Carer 
 
You have been invited to take part in the SOCRATES project, as described in the Information 
Sheet, because we are interested in your views and experiences about the needs that 
people can have. This will help to shape the technology ideas being designed within the 
SOCRATE Safe Human Robot Interaction project. 
Please read the following statements and only put your initials if you agree with the 
accompanying statement. 

Only put your initials  
in each box if you agree with the accompanying statement 

I have read and understood the information sheet 
 
 

  
I have been given enough time to decide whether I would like to 
participate, and have had the opportunity to ask any questions about the 
work 

 

  
I understand that my participation is entirely voluntary and I can withdraw 
my consent and stop participating at any time during the research session 
by letting a researcher know, without giving a reason 

 
 

  

Following discussion with the researcher about the different activities 
which are currently taking place, I agree to one or more of the following (as 
described on the Information Sheet): 
 

 
 

(a) I agree to complete a screening questionnaire (attached to the 
information sheet) to ensure I can safely participate in an Assisted Daily 
Living Task study of outer layer dressing activity. 

 

  
(b) I agree to participate in an observation of an Assisted Daily Living Task 
study of outer layer dressing activity. 
 

 

(c) I agree to participate in an observation of an Assisted Daily Living Task 
study of shoe dressing. 
 
(d) I agree to wear the Xsens sensors shown in Figure 2: 
 
 

 

(e) I agree to wear the Tobii Pro Glasses Eye Tracker shown in Figure 1  
 

 
 

(f) I understand that any identifiable information about me (e.g. name, 
personal details) will remain strictly confidential and won’t be used outside 
the project, and that any research data will be anonymized 
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(g) I understand that this activity will be video recorded and will remain 
strictly confidential and won’t be used outside the project, and that any 
research data will be anonymized 
 

 

(h) I understand that I may withdraw my data from the study up to 7 days 
after I have taken part in a session by contacting the Principal Investigator 

 

  

(i) I understand that anyone with a pacemaker cannot participate in these 
experiments. I can confirm that I do not have a pacemaker.  

 

  

 
Participant signature……………………………………………………  Date…………………………………. 
 
Participant signature………………………………………………………………………………………………. 
 
 
Researcher name…………………………………………………………. Date…………………………………. 
 
Researcher signature……………………………………………………………………………………………… 
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Figure 2 - Tobii Pro Glasses Eye Tracker 

Figure 1 - Xsens Suit 

Xsens Sensors – Sensors on velcro bands attached over clothes 
(just under knees, on thighs, arms) and on a head band. 
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Consent Form - Older Adults 
 
You have been invited to take part in the SOCRATES project, as described in the Information 
Sheet, because we are interested in your views and experiences about the needs that 
people can have. This will help to shape the technology ideas being designed within the 
SOCRATE Safe Human Robot Interaction project. 
Please read the following statements and only put your initials if you agree with the 
accompanying statement. 

Only put your initials  
in each box if you agree with the accompanying statement 

I have read and understood the information sheet 
 
 

  
I have been given enough time to decide whether I would like to 
participate, and have had the opportunity to ask any questions about the 
work 

 

  
I understand that my participation is entirely voluntary and I can withdraw 
my consent and stop participating at any time during the research session 
by letting a researcher know, without giving a reason 

 
 

  

Following discussion with the researcher about the different activities 
which are currently taking place, I agree to one or more of the following (as 
described on the Information Sheet): 
 

 
 

(a) I agree to complete a screening questionnaire (attached to the 
information sheet) to ensure I can safely participate in an Assisted Daily 
Living Task study of outer layer dressing activity. 

 

  
(b) I agree to participate in an observation of an Assisted Daily Living Task 
study of outer layer dressing activity. 
 

 

(c) I agree to participate in an observation of an Assisted Daily Living Task 
study of shoe dressing. 
 
(d) I agree to wear the Xsens sensors shown in Figure 2:  
 

 

(e) I agree to wear the Tobii Pro Glasses Eye Tracker shown in Figure 1:  
 

 
 

(f) I understand that any identifiable information about me (e.g. name, 
personal details) will remain strictly confidential and won’t be used outside 
the project, and that any research data will be anonymized 
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(g) I understand that this activity will be video recorded and will remain 
strictly confidential and won’t be used outside the project, and that any 
research data will be anonymized 
 

 

(h) I understand that I may withdraw my data from the study up to 7 days 
after I have taken part in a session by contacting the Principal Investigator 

 

  
(i) I understand that anyone with a pacemaker cannot participate in these 

experiments. I can confirm that I do not have a pacemaker.  
 

  

 
Participant signature……………………………………………………  Date…………………………………. 
 
Participant signature………………………………………………………………………………………………. 
 
 
Researcher name…………………………………………………………. Date…………………………………. 
 
Researcher signature……………………………………………………………………………………………… 

Xsens Sensors – Sensors on velcro bands attached over clothes 
(just under knees, on thighs, arms) and on a head band. 
 

Figure 2 - Xsens Suit 

Figure 1 - Tobii Pro Glasses Eye Tracker 
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Describe the activity being assessed:  
Observation of Assisted Daily Living Task in Care Homes. 

Assessed by:  
 

Antonella Camilleri 

Endorsed by:  
 

Dr Sanja Dogramadzi 
 

Endorsed by (name of 
programme manager or 
designate): 

Who might be harmed: Fully informed and consenting adult (18yrs+) participants 
 
How many exposed to risk:  

Date of Assessment:  
 

5th September 2018 
 

Review date(s):  
 

 

Review date(s): 

 

Hazards Identified 
(state the potential harm) 

Existing Control Measures S L Risk 
Lev
el 

Additional Control Measures S L 
 

Risk 
Level 

By whom and 
by when 

Date 
completed 

Risks to Participant – Older Adult 
 

- Issues due to Xsens Suit 
during task observations. 
 

                 Strain [1] 
 
 
 
 
 
 
 
 
 
 

- Fatigue [2] 
 
 
 
 
 
 
 

 
 
 
 
 
1. Strain  
There is no risk for the participants to 
experience more strain than usually 
exhibited.  Participants will not be instructed 
on how to do the task. The older adults and 
carer will only be observed to do the daily 
assistive task in the typical and normal 
environment of their care home as it is 
ordinarily preformed. They will also be 
reminded of this at the start of the study.   
 
2. Fatigue 
Participants will not be instructed on how to 
do the task. The older adults and carer will 
only be observed to do the daily assistive 
task in the typical and normal environment 
of their care home. 
Participants will also be reminded that they 
can take other breaks at any time.  

 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 

 
 
 
 
 

1 
 
 
 
 
 
 
 
 
 

 
1 
 
 
 
 
 
 
 

 
 
 
 
 

1 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 

 
 

     

 
 

Ref: GENERAL RISK ASSESSMENT FORM 

All participants 
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- Physical Mobility [3] 
 
 
 
 
 
 
 
 
 
 

- Additional age related 
factors [4] 

 
 

- Other equipment in the 
room.  

 

Participants will be reminded that they are 
able to withdraw from the study at any 
point, so if they do feel fatigued and are 
unable to continue effectively, they are 
welcome to stop the observations.  
 
 
3.Physical Mobility 
All sensors will be attached in an 
appropriate manner and will not restrict 
movement in any way.  Xsens suit is 
designed to record movement so sensors 
are themselves designed to not restrict 
movement at all. If older adult feel 
uncomfortable than Xsens suit will only be 
worn by Carer.  
 
 
Typical protocols used by carers to prevent 
fatigue will not be restricted or instructed 
otherwise. 
 
The room in which the study will be 
conducted will not be altered or changed.    

 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
1 
 

 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
1 

 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
1 

Risks to Participant – Carer 
Issues due to Xsens Suit during 
task observations. 
 

- Strain [1] 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
1. Strain  
There is no risk for the participants to 
experience more strain than usually 
exhibited.  Participants will not be instructed 
on how to do the task. The older adults and 
carer will only be observed to do the daily 
assistive task in the typical and normal 
environment of their care home as it is 
ordinarily preformed. They will also be 
reminded of this at the start of the study.   
 

 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1 
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- Fatigue [2] 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Physical Mobility [3] 
 
 
 
 
 
 
 
 
 
 

- Additional age related 
factors [4] 

 
 

- Other equipment in the 
room.  

 

2. Fatigue 
Participants will not be instructed on how to 
do the task. The older adults and carer will 
only be observed to do the daily assistive 
task in the typical and normal environment 
of their care home. 
Participants will also be reminded that they 
can take other breaks at any time. 
Participants will be reminded that they are 
able to withdraw from the study at any 
point, so if they do feel fatigued and are 
unable to continue effectively, they are 
welcome to stop the observations. 
 
3.Physical Mobility 
All sensors will be attached in an 
appropriate manner and will not restrict 
movement in any way.  Xsens suit is 
designed to record movement so sensors 
are themselves designed to not restrict 
movement at all. Carer’s physical mobility 
and ability to take care of the older adult will 
not be restricted by the Xsens suit 
 
 
Typical protocols used by carers to prevent 
fatigue will not be restricted or instructed 
otherwise. 
 
The room in which the study will be 
conducted will not be altered or changed.  

1 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
1 
 
 

1 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
1 
 

1 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 
 
 
 
 
 
 
 
 

1 
 
 
 
 

1 
 
 

Risk to researchers There are no envisaged risks to the 
researchers in these studies 
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RISK MATRIX: (To generate the risk level). 
 

Very likely 

5 
5 10 15 20 25 

Likely 

4 
4 8 12 16 20 

Possible 

3 
3 6 9 12 15 

Unlikely 

2 
2 4 6 8 10 

Extremely unlikely 

1 
1 2 3 4 5 

Likelihood (L) 
 

   Severity (S) 

Minor injury – No first aid 
treatment required 

1 

Minor injury – Requires First 
Aid Treatment 

2 

Injury - requires GP treatment 
or Hospital attendance  

3 

Major Injury 
 

4 

Fatality 

 

5 
 

ACTION LEVEL: (To identify what action needs to be taken). 
 

 

POINTS: 
 

RISK LEVEL: ACTION: 

1 – 2 NEGLIGIBLE No further action is necessary. 
 

3 – 5 TOLERABLE Where possible, reduce the risk further 

6 - 12 MODERATE Additional control measures are required 

15 – 16 HIGH Immediate action is necessary 

20 - 25 INTOLERABLE Stop the activity/ do not start the activity 
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Close-Proximity Collaborative Interaction An interaction that requires a robot to

move very close to the human or vice versa. The interaction workspace is directly

around the end user and, in some cases, the user itself. The actions of the robot

and human are simultaneous, not sequential. Physically Assistive Tasks require

close-proximity collaborative interactions before a physically assistive task can

take place.. 313

Case Study 1 Evaluation of human movement during a socially assistive task. A

dataset of human movement performing actions required to interact with a socially

assistive robot is recorded. 313

Case Study 2 Evaluation of human movement during a physically assistive task. Recorded

within a dynamic environment, a dataset captures the human movement involved

in a robot-assisted dressing task. 313

Human State This term in HRI refers to a general term that describes the current

cognitive and emotional state of the human during the interaction. The human

state can vary between different persons and situations, and therefore, it can

fluctuate during the interaction. Human Factor directly impacts the human states

and the metrics of human-robot interaction, meaning that the context of interaction

and robot’s behaviour can impact the human state. Other terms used to describe the

human state in literature are: acceptance, fatigue, stress, frustration, trust, safety,

mental, exhaustion, anxiety, arousal, cognition, workload, sleep, psychological, user

state, and awareness [72]. 311, 314

NASA-Task Load Index This is a questionnaire used to provide an index about the in-

dividual’s perceived workload based on six subjective sub-scales. The questionnaire

can be found in Appendix B. 314
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Observation Study 3 Evaluation of carers’ interaction and assistance with older adults.

Observations were conducted in care homes to evaluate the approach for assistive

tasks in a real-context environment. 314

Probabilistic Movement Primitives Probabilistic Movement Primitives is the learn-

ing to model and generate movement trajectories as a distribution over trajectories.

This allows uncertainty and variant in the execution o movement to be considered.

Learning is done from observed demonstrations whereas the new generation can

take the underlying structure of the trajectories and allow for deviations and

adaptation in a real-context environment. 314

Unexpected Events The occurrence of any form of distraction from the surrounding

environment or from the user itself that can hinder the planned interaction between

the human and robot. 315

Assistive Human-Robot Interaction is an interaction with the aim of assisting peo-

ple in need by helping them finish a task by enriching the quality of life of individ-

uals with disabilities or other impairments. The assistance can be social, cognitive

or physical. Assistive robots require their designs, control and sense to support

a human-in-the-loop to provide one of the three types of assistance. Assistive

Human-Robot Interaction is a type of cHRI with a different focus since the goal is

to complete a task required by the human, not a task assigned to both the human

and the robot. 313

Collaborative Human-Robot Interaction is an interaction that aims to improve the

task’s efficiency, productivity and safety whilst collaborating with a human in an

industrial or manufacturing setting. Collaborative robots need to detect and adapt

to the actions and movements of human workers to avoid collisions and ensure

that the tasks are performed accurately and efficiently. The efficiency of the task is

achieved through the combination of the robots’ accuracy and complex processing

capabilities with human knowledge and dexterity. In literature, Human-Robot

Collaboration (HRC) is sometimes used instead of cHRI; however, in this thesis, we

want to highlight that only some interactions can have continuous collaboration

and that, in some instances, collaboration is lost during interaction. 313

Human Factors The main categories that make up Human Factor are (i) mental factors

(memory, reasoning, learning, knowledge, training, experience/s, behavio(u)r/al,

competencies, creativity, psychology, cognitive load and communication impact on
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decision making), (ii) physical factors (safety, motor skills, ergonomics, fatigue, pos-

ture, well-being, gesture, musculoskeletal disorder and training), (iii) psychology

(trust, stress, emotions, feedback, motivation, task demand, task control, team-

work, culture and acceptance) and (iv) perceptual (spatial awareness, information

processing, perception and reaction) [63, 72, 111, 142]. These factors affect how the

human sees the robot and determines if the interaction/collaboration are effective

or not. Designing HRI based on these factors will ensure that all Human State

needs to make interaction successful. 309, 310, 313

Physically Assistive Robots a device or tool capable of helping individuals through

physical interaction. PARs can sense, process sensory information, and perform

actions to support the autonomy of potential user by allowing them to carry out

the tasks by themselves without the help of a human carer in the course of their

daily living. 311, 314

Pertinence of Robot Decisions in JoinT Action This questionnaire aims to assess

the user experience by examining the consequence of a participant’s internal

sate, the characteristics of the designed system and the contextual factors of the

environment in which the interaction occurs. 311, 314

Proximate Human-Robot Interaction is a complex subspace within human-robot

interaction since it refers to social, cognitive and physical HRI that are in close

proximity to each other. pxHRI can include physical contact, such as when the

human touches the robot, and non-physical interactions, such as when the human

uses speech or gestures to interact. Research in this space involves a range of

robot systems and methods that require precisely sensing humans such that the

robot interacts in a collaborative and intuitive manner. aHRI and cHRI are both

proximate human-robot interactions. 22, 314
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aHRI Assistive Human-Robot Interaction. 18–22, 25, 27, 33, 35, 43–45, 48, 62, 87–92,

114, 115, 117, 118, 121, 122, 125, 126, 149, 150, 157, 161, 165–167, 169, 171, 172,

175, 177, 179, 180, 182, 183, 185, 186, 310, 311

cHRI Collaborative Human-Robot Interaction. 18–21, 31, 35, 44, 93, 171, 310, 311

CPCI Close-Proximity Collaborative Interaction. 3, 27, 31, 92, 114, 116, 149, 151, 153,

157, 176, 177, 185, 309

CS1 Case Study 1. 10, 11, 13, 23, 26, 43, 49, 56, 62, 67, 78, 87–89, 91, 122, 158, 171–173,

182, 309

CS2 Case Study 2. 10, 11, 13, 14, 23–27, 32–34, 37, 88, 90, 92, 96, 114, 116–119, 122,

126, 146, 149, 150, 152–155, 158, 160, 161, 166, 167, 170, 171, 173, 174, 176, 177,

179–181, 183, 309

ESR Early Stage Researcher. 47

FHA Functional Hazard Assessment. 126–128

FMECA Failure Mode, Effects and Criticality Analysis. 126, 127

FTA Fault Tree Analysis. 126, 127

HAZOP Hazard Operability Analysis. 126–129, 131

HF Human Factor. 18–20, 27, 38–40, 47, 88, 90, 92, 114, 144, 169, 173, 177

HM Human Movement. 6
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HRC Human-Robot Collaboration. 6

HRI Human-Robot Interaction. 2, 4, 6, 10–12, 14, 17, 18, 22, 23, 25–27, 31, 37, 46, 123,

142, 174, 178, 185, 309, 311

HS Human State. 4, 19–21, 27, 38–40, 47, 88, 90, 92, 114, 115, 144, 158, 168, 169, 173,

175, 177, 179, 309

I4.0 Industry 4.0. 18

I5.0 Industry 5.0. 18

NASA NASA-Task Load Index. 94, 101, 107, 108, 114, 115, 174, 175, 309

OS3 Case Study 3. 12, 14, 23–25, 27, 32, 33, 90, 121, 122, 132, 144, 161, 170, 171, 177,

183, 310

PAR Physically Assistive Robots. 17, 20, 39

PBS Persona-Behavior Simulator. 46

PD Persona Definition. 46

PeRDITA NASA-Task Load Index. 94, 102, 104, 114, 115, 174, 175

PHA Preliminary Hazard Analysis. 126

pHRI physical Human-Robot Interaction. 36, 92–94, 96, 122, 125, 126, 143, 144

ProMP Probabilistic Movement Primitives. xiii, xvi, 31, 61–63, 74–81, 84, 85, 87, 88,

172, 310

pxHRI Proximate Human-Robot Interaction. 22, 125, 151, 311

RFID Radio Frequency Identification. 45, 47

SARA Social Assistive Robotic Agent. 43, 45–47

SHARD Software Hazard Analysis and Resolution in Design. 126, 129

SOCRATES Social Cognitive Robot Agents in The European Society. 7, 47

STPA Systems Theoretic Hazard Analysis. 126, 129, 130
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TE Task Engine. 46, 47

UnEv Unexpected Events. 2, 310

WHO World Health Organization. 18, 38
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requirements for personal care robots, (2014).

[23] C. J. BURGES, Dimension Reduction: A Guided Tour, Foundations and Trends® in

Machine Learning, 2 (2010), pp. 275–365.

[24] P. CALEB-SOLLY, S. DOGRAMADZI, C. A. HUIJNEN, AND H. VAN DEN HEUVEL,

Exploiting ability for human adaptation to facilitate improved human-robot
interaction and acceptance, https://doi.org/10.1080/01972243.2018.1444255, 34

(2018), pp. 153–165.

[25] P. CALEB-SOLLY, C. HARPER, AND S. DOGRAMADZI, Standards and regulations
for physically assistive robots, ISR 2021 - 2021 IEEE International Conference

on Intelligence and Safety for Robotics, (2021), pp. 259–263.

[26] S. CALINON AND A. BILLARD, Statistical learning by imitation of competing
constraints in joint space and task space, in Advanced Robotics, vol. 23, 10

2009, pp. 2059–2076.

[27] S. CALINON, F. D’HALLUIN, E. L. SAUSER, D. G. CALDWELL, AND A. G. BIL-

LARD, Learning and reproduction of gestures by imitation, IEEE Robotics and

Automation Magazine, 17 (2010), pp. 44–54.

319



BIBLIOGRAPHY

[28] A. CAMILLERI, S. DOGRAMADZI, AND P. CALEB-SOLLY, Cognitive Loading , Dis-
tractions and Human Movement in a Robot-Assisted Dressing [In Review],
Frontiers in Robotics and AI, (2019).

[29] A. CAMILLERI, S. DOGRAMADZI, AND P. CALEB-SOLLY, A Study on the Effects of
Cognitive Overloading and Distractions on Human Movement During Robot-
Assisted Dressing, Frontiers in Robotics and AI - Human Movement Under-

standing for Intelligent Robots and Systems, (2022).

[30] A. CAMILLERI, S. DOGRAMADZI, AND C.-S. PRAMINDA, Learning from Carers to
inform the Design of Safe Physically Assistive Robots - Insights from a Focus
Group Study, in Proceedings of the 2022 ACM/IEEE International Conference

on Human-Robot Interaction, Sapporo, Hokkaido, Japan, 2022, IEEE Press,

p. 703âĂŞ707.
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