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Abstract
Mathematical modelling has become a key tool in pharmacological analysis, towards understanding dynamics of cell

signalling and quantifying ligand-receptor interactions. Ordinary differential equation (ODE) models in receptor theory

may be used to parameterise such interactions using timecourse data, but attention needs to be paid to the theoretical

identifiability of the parameters of interest. Identifiability analysis is an often overlooked step in many bio-modelling

works. In this paper we introduce structural identifiability analysis (SIA) to the field of receptor theory by applying three

classical SIA methods (transfer function, Taylor Series and similarity transformation) to ligand-receptor binding models of

biological importance (single ligand and Motulsky-Mahan competition binding at monomers, and a recently presented

model of a single ligand binding at receptor dimers). New results are obtained which indicate the identifiable parameters

for a single timecourse for Motulsky-Mahan binding and dimerised receptor binding. Importantly, we further consider

combinations of experiments which may be performed to overcome issues of non-identifiability, to ensure the practical

applicability of the work. The three SIA methods are demonstrated through a tutorial-style approach, using detailed

calculations, which show the methods to be tractable for the low-dimensional ODE models.

Keywords Mathematical pharmacology � Receptor theory � Differential equations � Structural identifiability analysis

Introduction

Mathematical models of pharmacological systems have

become key in understanding the interactions between

ligands and living cells, and as such play a significant role

in the development of new therapeutic medicines. These

models are often comprised of ordinary differential equa-

tions (ODEs) which depend on mechanistic parameters that

represent biological processes and whose values are largely

unknown [13]. An essential step in using these models

requires estimating values of these parameters [52] by fit-

ting to experimental data from, for example, ligand binding

assays. Parameter estimation for ODE models of biological

systems typically involves optimisation algorithms [17].

However, these fitting routines can result in inaccurate and

unreliable estimates [17, 42].

Identifiability analysis is the process of assessing whe-

ther it is even theoretically possible to estimate a set of

parameters uniquely from experimental observations and

the dynamic equations [20, 52]. Such analysis is therefore

required to determine the reliability of parameter estimates.

In particular, structural identifiability analysis (SIA) uses

the model structure, together with observed outputs, to

determine whether parameters can be returned success-

fully, given perfect, noiseless and bias-free observations

[3, 51].

A simple demonstration of the issue of (non-)
identifiability

Theory and methodology for identifiability analysis have

been developed and considered within the context of
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compartmental models for pharmacokinetics

(PK) [4, 14, 22, 23, 29, 30]. We use a simple PK model to

demonstrate the issue of non-identifiability. Consider the

schematic shown in Fig. 1, which depicts a two-compart-

ment model for oral absorption of a drug. In response to a

drug input rate u(t) (eg. a bolus dose), the drug amount in

the absorption compartment is abðtÞ and the drug amount

in the central compartment is acðtÞ.
Assuming linear pharmacokinetics gives the following

linear system of ordinary differential equations (ODEs) for

abðtÞ and acðtÞ:
dab
dt

¼ �kaab þ uðtÞ; ð1aÞ

dac
dt

¼ kaab � keac; ð1bÞ

abð0Þ ¼ acð0Þ ¼ 0; ð1cÞ

where u(t) is the input dosing rate. It is straightforward to

show [22, 27] that the drug level in the absorption com-

partment following a single bolus dose D0 (so that

uðtÞ ¼ FD0dðtÞ, where F is the bioavailability fac-

tor [22, 27, 31] and d is the Dirac delta function) is given

by

abðtÞ ¼ D0Fe
�kat:

Note that an equivalent problem is given by setting uðtÞ �
0 and setting abð0Þ ¼ FD0. The drug level in the central

compartment is found to be

acðtÞ ¼
D0Fka
ka � ke

e�ket � e�kat
� �

: ð2Þ

In PK studies using such models, acðtÞ (or some scaled

drug amount, for example, drug concentration given by

ac=V where V is the volume of distribution [27]) would be

of primary interest and would be the measured/observed

output of the ODE system. Suppose a dose D0 ¼ 500 (in

arbitrary units) is given at time t ¼ 0. In Fig. 2, we show

acðtÞ and abðtÞ for the two different sets of parameter

values (ka, ke and F) given in Table 1. Despite the different

parameter values, the two parameter sets give identical

observed output acðtÞ (despite the unobserved, intermediate

timecourses for abðtÞ being different). Hence the three

parameters ka, ke and F are theoretically unidentifiable

from such a time course; their values cannot be determined

without further a priori knowledge. This system in fact

gives an example of local identifiability, where multiple

distinct values, unique in a neighbourhood, solve the

problem - see definitions, e.g., in [12]. Clearly, issues of

identifiability should be considered as part of any param-

eter estimation implementation using real data.

Classical structural identifiability analysis (SIA)
methods

The origins of SIA lie in the works of Kalman [33] for

linear ODE systems, and Hermann and Krener [25] for

nonlinear models. Since these works, many methods have

emerged to assess the identifiability of a given model. For

linear models, the Laplace transform (transfer function)

method [4] may be used. For linear or nonlinear models,

Taylor series expansions [45] and similarity transforms

[8, 28] are applicable. In theory, the methodology under-

lying these three approaches applies to an n-dimensional

ODE system. In practice, the complexity of the algebraic

manipulation involved in the required computations may

limit their applicability to low-dimensional systems. Often

compartment models arising in pharmacokinetics are used

as suitable low-dimensional examples of the application of

SIA methods [10, 21, 50].

SIA methodology has grown as a field, and a number of

methods and software packages have been developed,

which are particularly useful for nonlinear or high-dimen-

sional systems, many making use of symbolic alge-

bra [2, 5, 12, 13, 37–39]. More recent SIA algorithms

include singular value decomposition of sensitivity matri-

ces [32, 48] and scaling approaches [7]. While the field of

SIA has grown, the difficulties in applying both classical

and newly developed methods in general are still noted

throughout the literature. The intractability of the required

algebraic manipulations for large and/or nonlinear ODE

systems has proven to be a ‘‘persistent bottle-neck’’ [48]

and most of the available methods may be ‘‘too complex

mathematically for the general practitioner’’ [7]. It is this

limitation of SIA methods that has resulted in only a very

small proportion of theoretical biology studies considering

the identifiability issue [7].

Receptor theory is a core component of pharmacological

analysis which considers the interactions between ligands

and receptors, and the implications of these interactions, at

the top of signal transduction pathways of pharmacological

interest. A key aim of analytical pharmacology is to use

timecourse data to estimate kinetic association and disso-

ciation parameters to quantify ligand-receptor interactions.

Similar to in many systems biology modelling work, SIA is

frequently overlooked for ligand binding models. The aim

of the current work is an informative tutorial which brings

classical SIA methods to the field of receptor theory, in

particular considering the dynamics of ligand binding

models of importance.

u(t)
ab ac

ka ke

Fig. 1 A two-compartment PK model for oral absorption of a drug
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SIA has been applied to pharmacodynamics models with

drug effect as the observed output [31], and to more

complex PK/effect models with measured outputs

beyond/downstream of ligand binding [11, 16]. Ligand

binding has been considered in a PK context with total

ligand (free ligand plus bound ligand) as the output [9].

Identifiability for equilibrium ligand binding is only con-

sidered in detail in [42, 43]. Here we follow a receptor

theory approach and consider SIA for models of ligand

binding assay dynamics with total ligand-bound receptor as

the readout for binding scenarios of practical impor-

tance [34, 44, 55]. Given the similar size and structure of

many ligand binding receptor theory ODE mod-

els [34, 36, 54] to the PK models for which the three

‘‘classical’’ SIA methods have been demonstrated, we

propose that application of these classical methods to

widely used receptor theory models is valuable on two

fronts. Firstly, the analysis will provide new results on the

identifiability of key kinetic parameters. Secondly, the

study will bring the SIA methodology to a new audience in

receptor theory.

Paper overview

Here we consider three ligand-binding scenarios. The first

concerns a single ligand type binding monomeric receptors,

which is the starting point for much of receptor the-

ory [34, 35]. The second scenario is the widely used com-

petition binding model of Motulsky-Mahan [44], wherein

two different ligand types compete for monomeric receptors.

This model can be formulated as a second order linear ODE

system with four kinetic rate constants and the total receptor

concentration as the ‘‘unknown’’ parameters. It is known

intuitively that a subset of the parameters may be estimated

if the other parameters are already known [44], but formal

analysis of what is theoretically identifiable from a single

experiment has not been presented. Furthermore, due to its

widespread use, the practicality of parameter estimation for

this model continues to receive attention [15, 18, 49]. The-

oretical (SIA) questions still remain.

The third scenario we consider is that of a single type of

ligand binding to homo-dimerised G protein-coupled

receptors (GPCRs). This model is a natural extension of the

monomeric receptor model to account for the growing

acceptance of the existence of GPCR dimers. This model

may also be formulated as a second order linear ODE

system. An analysis of the binding kinetics appears in [55],

but SIA questions have not yet been addressed.

The remainder of this paper is organised as follows. In

Sect. 2, we introduce the three ‘‘classical’’ methods by

their application to the simple model for ligand binding to

monomeric receptor. In Sect. 3, we apply the three clas-

sical methods to the Motulsky-Mahan and GPCR dimer

models, yielding new identifiability results of practical

importance to the pharma-modelling community, and also

contrasting the three approaches. In Sect. 4, we extend the

analysis to consider further experiments (including equi-

librium binding, washout and multiple timecourses) which

can be performed to overcome issues of non-identifiability.

We conclude in Sect. 5 with a discussion of our main

results and contribution to the literature.

Methods: applying SIA to monomeric
receptor binding model

To demonstrate the methods, we use a simple model of a

monomeric receptor binding with a ligand. While the

analysis of this model is mostly trivial, it will allow us to

Fig. 2 Time courses for observed output acðtÞ and non-observed abðtÞ for the two-compartment PK model (1a–c), for the two parameter sets

given in Table 1

Table 1 Parameter values for PK model (2)

ka ke F

Parameter set 1 0.7 0.25 0.35

Parameter set 2 0.25 0.7 0.98
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explain the process of using each method to determine

identifiability. Furthermore, this model has been the basis

of much of the theoretical foundations of receptor theory of

the past few decades and is still widely used in drug

development research [34, 35].

We assume that a ligand, A, binds to the monomeric

receptor R with association and dissociation rates kaþ and

ka� respectively, to create the complex AR. This can be

described as a chemical reaction as:

A þ R �
kaþ

ka�
AR

The law of mass action, assuming ½A� is held constant,

gives the linear system of ODEs Now, asssuming that the

only known value is

½R�0 ¼ �kaþ½A�½R� þ ka�½AR�; ð3aÞ

½AR�0 ¼ kaþ½A�½R� � ka�½AR�: ð3bÞ

These ODEs, together with the initial conditions

½R�ð0Þ ¼ Rtot; ½AR�ð0Þ ¼ 0; ð3cÞ

form the initial value problem describing the kinetics of the

system, where Rtot is the total receptor concentration.

Throughout our work, we focus on constant ligand con-

centration, linear models, in line with typical, classical

analyses in the literature ([34, 44]). We note that the less-

common assumption of of significant ligand depletion

effects would yield a nonlinear system for which the

transfer function method (see below) is not applicable.

For the model 3, the concentration of ½AR� is measured

experimentally at a number of timepoints, hence the ob-

served output is

y ¼ ½AR�: ð3dÞ

Our assumption here uses total bound ligand as a direct

readout (e.g. [44, 55]). More detailed models for specific

binding assays could consider a further constant of pro-

portionality or Hill function measured response [6, 34].

Now, asssuming that the only known value is the ligand

concentration ½A�, the vector of unknown parameters in the

initial value problem (3a–d) is given by

p ¼ ðkaþ; ka�;RtotÞ.
For this simple model, it is possible to solve the initial

value problem and obtain exact solutions. The measured

output solution is found to be

½AR�ðtÞ ¼ kaþ½A�Rtot

kaþ½A� þ ka�
1� e�ðkaþ½A�þka�Þt
� �

: ð4Þ

From this we can see that there are two identifiable

parameter combinations, namely

kaþ½A�Rtot

kaþ½A� þ ka�
and kaþ½A� þ ka�: ð5Þ

Noting that the second of these expressions appears in the

denominator of the first, we see that the identifiable

parameter combinations may be simplified and listed as

kaþ½A�Rtot and kaþ½A� þ ka�: ð6Þ

We would therefore expect identifiability methods to also

find these two identifiable parameter combinations. In

particular, we note that a single experiment does not show

the primary parameters of interest, kaþ and ka�, as

identifiable.

The transfer function method

The first method we apply is the transfer function method,

which makes use of the Laplace transform. This method

was first proposed by Bellman and Åström [4] and is one

that is simple in nature, but restricted to linear time-in-

variant systems.

Before applying this method to the monomer-ligand

binding model, we first note that, the only input to the

system is captured by the initial conditions (3c). We choose

to reformulate in such a way that the ligand input is cap-

tured by a forcing term in the ODE, as in similar analysis in

PK and control theory [1]. We use a conservation law to

reduce the system dimensions, in line with our previous

work [55]. In (3a–d), total receptor is conserved such that

Rtot ¼ ½R� þ ½AR�; ð7Þ

which we use to reduce the system by eliminating ½R�.
Upon substitution, we find the single differential equation

d½AR�
dt

¼ �ðkaþ½A� þ ka�Þ½AR� þ kaþ½A�Rtot; ð8aÞ

with initial condition

½AR�ð0Þ ¼ 0; ð8bÞ

and output

y ¼ ½AR�: ð8cÞ

The system is now in the format

X
ðpÞ ¼

x0 ¼ Fxþ Gu

y ¼ Hx

xð0Þ ¼ x0

2

64

3

75; ð9Þ

with
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x ¼ ½AR�; F ¼ �ðkaþ½A� þ ka�Þ; G ¼ kaþ½A�Rtot;

H ¼ 1; u ¼ 1; x0 ¼ 0:

ð10Þ

The transfer function describing the input–output relation

for the system
P

in (9) (see [1]), is

QðsÞ ¼ HðsI � FÞ�1G; ð11Þ

where I is the n� n identity matrix if x is an n-vector. For

the model given by (10), we find that

QðsÞ ¼ HðsI � FÞ�1G ¼ kaþ½A�Rtot

sþ ðkaþ½A� þ ka�Þ
: ð12Þ

The parameter-dependent coefficients of powers of s (in-

cluding the s0 terms) in both the numerator and denomi-

nator of Q(s), give the uniquely identifiable parameter

combinations. We find a vector of parameter combinations

that are identifiable to be

fðpÞ ¼
kaþ½A�Rtot

kaþ½A� þ ka�

� �
: ð13Þ

To determine identifiability we assume the existence of an

alternate vector of parameters which would yield the same

output as the original parameters p ¼ ðkaþ; ka�;RtotÞ.
Denote this alternative vector by ep ¼ ðgkaþ ;gka� ;gRtot Þ.
Then a second vector of parameter combinations is fðepÞ.
Now we set fðpÞ ¼ fðepÞ and solve for p. Each parameter,

pi, is deemed structurally globally identifiable if, in solving

this system of equations, it is found that pi ¼ epi . Similarly,

the parameter is structurally locally identifiable if there is a

fixed number of possibilities for pi, and unidentifiable if

there are infinitely many possible solutions for pi.

Clearly, in this example, we have three unknown

parameters and only two identifiable combinations, and

therefore, it is not possible to identify all parameters from a

single output time course. In fact, solving fðpÞ ¼ fðepÞ we
find that none of the parameters are identifiable individu-

ally, and so we conclude that only the grouped parameters

kaþRtot and kaþ½A� þ ka� ð14Þ

are identifiable.

Non-identifiability for (8a–c) can be seen in the

numerical results shown in Fig. 3 that were generated using

the parameter values in Table 2. Here we see how, for

example, three different parameter sets can result in the

same measured output curve (½AR�) but have different

magnitudes of the free receptor concentrations (½R�). In

Table 2 we see that the values of the identifiable grouped

parameters given in (14) are equal for all three parameter

sets.In Sect. 4, we discuss approaches we can take to

compensate for the non-identifiability of individual

parameters.

Taylor series method

The next method we present makes use of the Taylor ser-

ies. The Taylor series method was first developed by

Pohjanpalo [45], and can be applied to either linear or

nonlinear systems. While the receptor theory models we

present in this paper are linear, we will later analyse the

identifiability properties of a nonlinear system for ligand

binding [57]. We note however, that while the Taylor

series may be used to determine identifiability of nonlinear

systems, the algebra involved in applying the method to

these problems can be difficult [10].

To apply this method to our example model, we can use

the system in the form given in (3a–d), or the reduced form

(as in (8a–c)), with both giving the same results. We

choose to use the full system (3a–d). The Taylor series

approach exploits the fact that there is a unique Taylor

expansion for a given output yðtÞ about t ¼ t0, and so the

Taylor coefficients (we refer to these simply as coefficients

throughout) give identifiable parameter combinations [13].

It can also be shown that, for linear problems, the maxi-

mum number of coefficients needed to determine identifi-

ability is defined as

kmax ¼ 2n� 1; ð15Þ

where n is the number of variables [13]. Coefficients

beyond the first ð2n� 1Þ terms in the Taylor series give no

further information about identifiability.

In our example of monomer-ligand binding (3a–d) we

have n ¼ 2, and will therefore need to calculate a maxi-

mum of three coefficients. Here, our initial conditions are

taken at time t ¼ 0, hence we take t0 ¼ 0. Recall, the

Taylor series of y about t ¼ 0, noting that we use the

bracketed superscript to indicate the order of the derivative,

is

yðtÞ ¼ yð0Þ þ t yð1Þð0Þ þ t2

2!
yð2Þð0Þ þ � � � : ð16Þ

The first coefficient is simply

yð0Þ: ð17Þ

As y ¼ ½AR�, we use the initial conditions to obtain the first

coefficient as

yð0Þ ¼ ½AR�ð0Þ ¼ 0: ð18Þ

Since the expression for yð0Þ contains no parameters, it

gives no information about parameter identifiability. Since

we have two remaining coefficients to determine but three

unknown parameters, we can immediately conclude that

the system is not globally identifiable. However, we will

still continue to determine which, if any, parameters are

identifiable and also any identifiable parameter
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combinations. The next coefficient, yð1Þð0Þ, involves cal-

culating the first derivative of the output function. Now,

yð1ÞðtÞ ¼ ½AR�ð1ÞðtÞ: ð19Þ

From (3b), we have

yð1Þ ¼ kaþ½A�½R� � ka�½AR�: ð20Þ

Evaluating at t ¼ 0, using the initial conditions, then gives

the second coefficient as

yð1Þð0Þ ¼ kaþ½A�Rtot: ð21Þ

Since ½A� is known, we have

c1 ¼ kaþRtot; ð22Þ

where we denote ci as the ith identifiable parameter com-

bination. Further derivatives are found with recursive

substitution of the equations in system (3a–d). This gives

the second derivative as

yð2Þ ¼ ½AR�ð2Þ ¼ kaþ½A�½R�ð1Þ � ka�½AR�ð1Þ

¼ �kaþ½A�ðkaþ½A�½R� � ka�½AR�Þ
� ka�ðkaþ½A�½R� � ka�½AR�Þ

¼ �kaþ½A�ðkaþ½A� þ ka�Þ½R�
þ ka�ðkaþ½A� þ ka�Þ½AR�:

ð23Þ

After evaluation at t ¼ 0 and substitution of the initial

conditions (3c), the second coefficient is found to be

yð2Þð0Þ ¼ �kaþ½A�Rtotðkaþ½A� þ ka�Þ: ð24Þ

Using (22), we see that

yð2Þð0Þ ¼ �c1½A�ðkaþ½A� þ ka�Þ; ð25Þ

and since ½A� is known, we may write

c2 ¼ kaþ½A� þ ka�; ð26Þ

as the second identifiable parameter combination. Hence,

we have two identifiable parameter combinations. More-

over, these agree with the parameter combinations found

when using the transfer function method, which is as we

expected. To determine which parameters (if any) are

identifiable, we would proceed as in the transfer function

method by creating the vector fðpÞ ¼ ðc1; c2Þ and solving

fðpÞ ¼ fðepÞ.
Calculating further derivatives gives no further identi-

fiable parameter combinations. For example, the third

derivative is, after some simplification, given by

yð3Þ ¼ kaþ½A�ðkaþ½A� þ ka�Þ2½R� þ ka�ðkaþ½A� þ ka�Þ2½AR�:
ð27Þ

This gives the next Taylor coefficient as

Fig. 3 Three sets of parameters are used to plot the system given in

Eqs. (3a–d). All three parameter sets give the same measured output

curve. However, non-identifiability can be seen in the individual

species curves, ½R�. Each set of plots is created using the values in

Table 2 together with ½A� ¼ 10�8M

Table 2 The parameters for the three different parameter sets that are

used to plot Fig. 3

Units Set 1 Set 2 Set 3

kaþ M�1s�1 3:4� 105 1:7� 104 1:23� 107

ka� s�1 1:2� 10�1 1:23� 10�1 10�5

Rtot M 6:12� 10�10 1:22� 10�8 1:68� 10�11

kaþRtot s�1 2:07� 10�4 2:07� 10�4 2:07� 10�4

kaþ½A� þ ka� s�1 1:23� 10�1 1:23� 10�1 1:23� 10�1

The identifiable parameter combination expressions in (14) are equal

in each case
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yð3Þð0Þ ¼ kaþ½A�Rtotðkaþ½A� þ ka�Þ2 ¼ c1½A�c22; ð28Þ

and so is comprised of already identifiable parameters and

parameter combinations.

Similarity transformation method

The similarity transformation method (or exhaustive

modelling approach) was first proposed by Walter and

Lecourtier [53], and originally was only applicable to lin-

ear problems. This was later extended to include nonlinear

problems [50]. The theory behind this method, along with

proofs, can be found in [50].

In order to use the similarity transformation method, the

system must be both controllable and observable [33]. A

system is said to be controllable if changing the input to the

system changes the system states x, and observable if the

initial state x0 can be uniquely determined from a set of

input–output measurements. In [50], a test for linear sys-

tems to determine whether the system is controllable and

observable is outlined. For a linear system of the form (9),

the controllability matrix C is defined by

C ¼ G ..
.
FG ..

.
F2G ..

.
� � � ..

.
Fn�1G

� �
; ð29Þ

and the observability matrix by

O ¼

H

HF

HF2

..

.

HFn�1

2

6666664

3

7777775

: ð30Þ

The system is then said to be controllable if rankðCÞ ¼ n,

and observable if rankðOÞ ¼ n.

For our ligand binding model, we consider the system

given by (9, 10), where the system input is captured in the

ODE. That is, we have

F ¼ �ðkaþ½A� þ ka�Þ; G ¼ kaþ½A�Rtot; H ¼ 1; ð31Þ

and n ¼ 1. As n ¼ 1, the system is both controllable and

observable, hence we now move forward with checking

identifiability.

The similarity transform method involves taking this

system
P

ðpÞ, and assuming the existence of a systemP
ðepÞ that depends on an alternate parameter set ep. These

systems must be equivalent (that is, they give the same

solution), and so must satisfy some equivalence conditions.

The underlying theory and full algebraic equivalence the-

ory can be found in [20, 47] here we just state the condi-

tions. We assume that there exists an n� n matrix, T, that

describes the transformation between the two systems. The

conditions we impose are then

det T 6¼ 0; ð32aÞ

Tex0 ¼ x0; ð32bÞ

T eF ¼ FT ; ð32cÞ

T eG ¼ G; ð32dÞ

eH ¼ HT ; ð32eÞ

where a tilde indicates the alternate system. Applying

these constraints on the two systems determines the iden-

tifiability of parameters.

In our system, we have n ¼ 1; and so T is a single entry

matrix. As H ¼ 1, applying condition (32e) gives

eH ¼ HT ; ) 1 ¼ 1 � T ; ) T ¼ 1: ð33Þ

Clearly, det T 6¼ 0 and, as x0 is independent of parameters,

Tex0 ¼ x0, and so conditions (32a) and (32b) both hold.

Applying condition (32d), we have

T eG ¼ G; ) gkaþ½A�gRtot ¼ kaþ½A�Rtot;

) gkaþgRtot ¼ kaþRtot:
ð34Þ

Finally, we have, from condition (32c)

T eF ¼ FT ; ) �ðgkaþ½A� þgka�Þ ¼ �ðkaþ½A� þ ka�Þ;
) gkaþ½A� þgka� ¼ kaþ½A� þ ka�:

ð35Þ

Hence, we find the same identifiable parameter combina-

tions as in the previous methods, with no individually

identifiable parameters, confirming that all methods give

the same results.

Results: SIA for further ligand binding
models

Now that we have outlined the methods, we will apply each

of these methods to the classical Motulsky-Mahan [44]

competition binding model, in Sect. 3.1, and to our

recently presented dimeric receptor binding model in

Sect. 3.2. This will provide a tutorial of how each of the

methods work in practice and also allows us to compare the

different techniques.

Competition binding model

The Motulsky-Mahan [44] model is for a competitive

binding scenario where two ligands, A and B, are each able

to bind to a monomeric receptor. The ligand concentrations
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are assumed constant, and each ligand is able to bind the

same receptor. Ligand A is radiolabelled and the total

concentration of A bound to receptor can be measured

experimentally. Ligand B is an unlabelled competitor

whose total receptor-bound concentration cannot be mea-

sured directly. The reactions describing the interactions

are:

A þ R �
kaþ

ka�
AR; B þ R �

kbþ

kb�
BR :

The system of ODEs governing the dynamics of the system

is

½R�0 ¼ �ðkaþ½A� þ kbþ½B�Þ½R� þ ka�½AR� þ kb�½BR�;
ð36aÞ

AR½ �0 ¼ kaþ A½ � R½ � � ka� AR½ �; ð36bÞ

BR½ �0 ¼ kbþ A½ � R½ � � kb� BR½ �; ð36cÞ

together with the initial conditions

½R�ð0Þ ¼ Rtot; ½AR�ð0Þ ¼ 0; ½BR�ð0Þ ¼ 0; ð36dÞ

where Rtot is the total receptor concentration. This forms

the initial value problem describing the kinetics of the

system. We assume that only the concentration of ½AR� is
measured experimentally, hence the output is

y ¼ ½AR�: ð36eÞ

The ligand concentrations ½A� and ½B� are known constants,
and so a vector of unknown parameters in the model is

p ¼ ðkaþ; ka�; kbþ; kb�;RtotÞ. In Sect. 4.2, we will consider

the scenario suggested in [44] where kaþ and ka� are

already known from other experiments, but here we anal-

yse the competition binding model with respect to the

identifiability of all five parameters using a single

timecourse.

Transfer function method

We first apply the transfer function method to determine

identifiability of the parameters. In keeping with the

Motulsky-Mahan analysis [44], we reduce the system in

(36a–e) using the conservation law Rtot ¼ ½R� þ ½AR�
þ½BR�. This gives
AR½ �0 ¼ � ka þ A½ � þ ka�ð Þ AR½ � � ka þ A½ � BR½ � þ ka

þ A½ �Rtot;

ð37aÞ

BR½ �0 ¼ �kbþ B½ � AR½ � � kbþ B½ � þ kb�ð Þ BR½ � þ kbþ B½ �Rtot:

ð37bÞ

To write in the form (9), i.e.,

X
¼

x0 ¼ Fxþ Gu

y ¼ Hx

xð0Þ ¼ x0

2

64

3

75;

we introduce the matrices

F ¼
�ðkaþ½A� þ ka�Þ � kaþ½A�

�kbþ½B� � ðkbþ½B� þ kb�Þ

� �
;

G ¼
kaþ½A�Rtot

kbþ½B�Rtot

� �
; H ¼ ½1; 0�:

ð38Þ

To check the identifiability of the system, we calculate the

transfer function as

Qðs;pÞ ¼ kaþ½A�Rtotsþ kaþkb�½A�Rtot

s2 þ ðkaþ½A� þ kbþ½B� þ ka� þ kb�Þsþ kaþkb�½A� þ ka�kbþ½B� þ ka�kb�
; ð39Þ

which gives the vector of coefficients as

fðpÞ ¼

kaþ½A�Rtot

kaþkb�½A�Rtot

kaþ½A� þ kbþ½B� þ ka� þ kb�

kaþkb�½A� þ ka�kbþ½B� þ ka�kb�

2

6664

3

7775
: ð40Þ

We have five unknown parameters and only four identifi-

able combinations, therefore we can immediately conclude

that it is not possible for all five parameters to be globally

identifiable. Setting fðpÞ ¼ fðepÞ allows us to determine

identifiability of any individual parameters. The first two

equations are

kaþ½A�Rtot ¼gkaþ½A�gRtot ; ð41Þ

kaþkb�½A�Rtot ¼gkaþgkb�½A�gRtot : ð42Þ

Dividing (42) by (41) gives

kb� ¼gkb� : ð43Þ

Hence, we find kb� to be identifiable, however, this is the

only parameter to be so. This leaves the remaining iden-

tifiable parameter combinations as

kaþRtot; kaþ½A� þ kbþ½B� þ ka�;

kaþkb�½A� þ ka�kbþ½B� þ ka�kb�:
ð44Þ

In Fig. 4 the non-identifiability of the model is clear, as

three parameter sets (as given in Table 3) result in different

species timecourse curves, yet the measured output curve

of ½AR� is the same for all sets. In particular, we notice that

½BR�ðtÞ has significant peaks in some of the curves,

depending on the parameters used.

Taylor series method

To apply the Taylor series we consider the system (36a–e).

As we now have three state variables, we have n ¼ 3,

so (15) gives that there is a maximum of five coefficients
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required to determine identifiability. Calculating the Taylor

series coefficients, as stated in (16), and evaluating at

t ¼ 0, gives the identifiable parameter combinations.

Again, the first coefficient is

y0 ¼ 0; ð45Þ

which gives no information regarding identifiability. As we

have five unknown parameters and only four remaining

coefficients to evaluate, we can conclude that the system is

not globally identifiable. The first derivative, as given by

(36b), is

yð1ÞðtÞ ¼ kaþ½A�½R� � ka�½AR�; ð46Þ

giving the first Taylor coefficient as

yð1Þð0Þ ¼ kaþ½A�Rtot; ð47Þ

and as such, the first identifiable parameter combination as

c1 ¼ kaþRtot; ð48Þ

since ½A� is known. Using recursive substitution of equa-

tions (36a–e), we can write the second derivative as

Fig. 4 Three sets of parameters are used to plot the solutions of the

system (36a–e). All three parameter sets give the same measured

output curve, AR. However, non-identifiability can be seen in the

individual species curves. Each set of plots is created using the values

in Table 3 together with ½A� ¼ 10�8M and ½B� ¼ 10�7M

Table 3 The values of three

different parameter sets that are

used to plot Fig. 4

Parameter Units Set 1 Set 2 Set 3

kaþ M�1s�1 107 106 105

ka� s�1 0.01 0.097123 0.105746

kbþ M�1s�1 105 128765.3 132538.6

kb� s�1 0.4 0.4 0.4

Rtot M 10�10 10�9 10�8

kaþRtot s�1 10�3 10�3 10�3

kaþ½A� þ kbþ½B� þ ka� s�1 0.12 0.12 0.12

kaþkb�½A� þ ka�kbþ½B� þ ka�kb� s�2 0.0441 0.0441 0.0441

The parameter kb�, as well as the parameter combinations in the final three rows are equal in each case, as

these are the identifiable quantities
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yð2Þ ¼ �kaþ½A�ððkaþ½A� þ kbþ½B�Þ½R� � ka�½AR� � kb�½BR�Þ
� ka�ðkaþ½A�½R� � ka�½AR�Þ

¼ �kaþ½A�ðkaþ½A� þ kbþ½B� þ ka�Þ½R�
þ ka�ðka� þ kaþ½A�Þ½AR� þ kaþkb�½A�½BR�;

ð49Þ

which gives the coefficient

yð2Þð0Þ ¼ kaþ½A�Rtotðkaþ½A� þ kbþ½B� þ ka�Þ: ð50Þ

Now,

yð2Þð0Þ ¼ kaþ½A�Rtotðkaþ½A� þ kbþ½B� þ ka�Þ; ð51Þ

yð2Þð0Þ ¼ c1½A�ðkaþ½A� þ kbþ½B� þ ka�Þ; ð52Þ

and therefore, we have a second identifiable combination as

c2 ¼ kaþ½A� þ kbþ½B� þ ka�: ð53Þ

Further coefficients are found in the same way, using

recursive substitution of the system equations in (36a–e) to

calculate higher order derivatives followed by substitution

of the initial conditions. Using this method we obtain the

third coefficient as

yð3Þð0Þ ¼ kaþ½A�Rtotðk2aþ½A�
2 þ 2kaþkbþ½A�½B� þ 2kaþka�½A�

þ k2bþ½B�
2 þ ka�kbþ½B� þ kbþkb�½B� þ k2a�Þ

¼ c1½A�ðc22 þ kbþðka� � kb�ÞÞ;
ð54Þ

which gives the third identifiable combination as

c3 ¼ kbþðka� � kb�Þ: ð55Þ

We also obtain

yð4Þð0Þ ¼ kaþ½A�Rtotðk4aþ½A�
4 þ 4k3aþkbþ½A�

3½B� þ 4k3aþka�½A�
3

þ 6k2aþk
2
bþ½A�

2½B�2

þ 9k2aþka�kbþ½A�
2½B� þ 3k2aþkbþkb�½A�

2½B�
þ 6k2aþk

2
a�½A�

2 þ 4kaþk
3
bþ½A�½B�

3

þ 6kaþka�k
2
bþ½A�½B�

2 þ 6kaþk
2
bþkb�½A�½B�

2

þ 6kaþk
2
a�kbþ½A�½B� þ 4kaþka�kbþkb�½A�½B�

þ 2kaþkbþk
2
b�½A�½B� þ 4kaþk

3
a�½A� þ k4bþ½B�

4

þ ka�k
3
bþ½B�

3 þ 3k3bþkb�½B�
3 þ k2a�k

2
bþ½B�

2

þ 2ka�k
2
bþkb�½B�

2 þ 3k2bþk
2
b�½B�

2 þ k3a�kbþ½B�
þ k2a�kbþkb�½B� þ ka�kbþk

2
b�½B�

þ kbþk
2
b�½B� þ kbþk

3
b�½B� þ k4a�Þ;

ð56Þ

which, we find via some trial and error, may be written as

yð4Þð0Þ ¼ c1ðc32 þ c3ð2c2 þ kb�ÞÞ; ð57Þ

which gives the identifiable parameter

c4 ¼ kb�: ð58Þ

We note that the calculations are all performed using

MATLAB Symbolic Toolbox [40]. To conclude, we find

that kb� is identifiable, and also the identifiable

combinations

fðpÞ ¼
kaþRtot

kbþðka� � kb�Þ
kaþ½A� þ kbþ½B� þ ka�

2

64

3

75: ð59Þ

Although these parameter combinations are not identical to

those found from the transfer function method in expres-

sion (44), we note that

kbþðka� � kb�Þ þ kb�ðkaþ½A� þ kbþ½B� þ ka�Þ
¼ kaþkb�½A� þ ka�kbþ½B� þ ka�kb�;

ð60Þ

hence the same four parameter combinations are indeed

identifiable.

Similarity transformation method for competition binding
model

In Appendix 1, we apply the similarity transform method,

as introduced in Sect. 2.3, to the Motulsky-Mahan com-

petition binding system. We show that the same parameter

combinations are found to be identifiable as for the previ-

ous methods (see (44) and (59)).

Comparing the methods, it is clear that, although all

methods give the same identifiable parameters and

parameter combinations, the transfer function method is by

far the simplest in terms of ease of use. The Taylor series

method, in particular, results in expressions that require

quite some manipulation in order to obtain reduced

expressions.

Pre-dimerised G protein-coupled receptor
binding

The next model, and the final linear model, we consider is

the GPCR homodimer model we presented and analysed in

[55], for a single ligand binding. The schematic for the

model is as follows.

A þ R �
kaþ

ka�
AR; A þ AR �

aþkaþ

a�ka�
ARA.

Here, R represents the dimerised receptor, AR is the

dimerised receptor with one ligand bound, and ARA is the

dimerised receptor with both protomers bound by ligand.

The parameters aþ and a� are the forwards and backwards
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binding cooperativities respectively. These capture the

increased or decreased propensity for binding and disso-

ciation when the opposite side of the dimer is ligand-bound

rather than unoccupied.

The ODE system describing the model dynamics is

given by (see [55])

d½R�
dt

¼ �kaþ½A�½R� þ ka�½AR�; ð61aÞ

d½AR�
dt

¼ kaþ½A�½R� � ðka� þ aþkaþ½A�Þ½AR� þ a�ka�½ARA�;

ð61bÞ
d½ARA�

dt
¼ aþkaþ½A�½AR� � a�ka�½ARA�; ð61cÞ

with initial conditions

½R�ð0Þ ¼ Rtot; ½AR�ð0Þ ¼ 0; ½ARA�ð0Þ ¼ 0:

ð61dÞ

The measured quantity is bound ligand, hence the output is

given by

y ¼ ½AR� þ 2½ARA�: ð61eÞ

We assume the only known parameter is the ligand con-

centration, ½A�, and so we have the vector of unknown

parameters as p ¼ ðaþ; a�; kaþ; ka�;RtotÞ, where Rtot is

total dimerised receptor. In contrast to the monomeric

receptor output (3d), we note that the output function is

now a combination of two states, adding a significant dif-

ference to the proceeding computations.

Transfer function method

Again, we consider the transfer function method to deter-

mine identifiability. We first use conservation of receptors,

which is given in this case by

Rtot ¼ ½R� þ ½AR� þ ½ARA�; ð62Þ

to reduce the system, giving

d½AR�
dt

¼ �ðkaþ½A� þ ka� þ aþkaþ½A�Þ½AR�

þ ða�ka� � kaþ½A�Þ½ARA� þ kaþ½A�Rtot;

ð63aÞ

d½ARA�
dt

¼ aþkaþ½A�½AR� � a�ka�½ARA�: ð63bÞ

This is in the form (9), where we identify

F ¼
�ðkaþ½A� þ ka� þ aþkaþ½A�Þ a�ka� � kaþ½A�

aþkaþ½A� � a�ka�

� �
;

G ¼
kaþ½A�Rtot

0

� �
; H ¼ 1 2½ �:

ð64Þ

We find the transfer function of the system to be

Qðs; pÞ ¼ ð65Þ

which gives the vector of identifiable parameter combina-

tions as

fðpÞ ¼

kaþRtot

2aþkaþ½A� þ a�ka�
kaþ½A� þ ka� þ aþkaþ½A� þ a�ka�
aþk2aþ½A�

2 þ a�kaþka�½A� þ a�k2a�

2

6664

3

7775
: ð66Þ

Hence we have no identifiable parameters but do have four

identifiable parameter combinations. Again this can be seen

in Fig. 5 where we show how three sets of different

parameter values result in different individual species

curves, yet all give the same measured output curve Abound .

While the curves of ½R� and ½ARA� are similar in shape

across the three parameter sets, they have different mag-

nitudes of concentration. The clearest differences are seen

in the ½AR� curves, where the different parameter sets result

in curves that have distinctly different evolution patterns,

with some curves having a peak and fall while others are

monotonic. This highlights how naive parameter estimation

performed without knowledge of identifiability issues

could lead to incorrect conclusions being drawn about the

underlying qualitative dynamics. The parameter values

used for the plots are given in Table 4.

Taylor series method

We proceed with the Taylor series method to determine

identifiability, with repeated substitution of the ODEs and

initial conditions. While the process is the same as for the

competition binding model in Sect. 3.1, the output function

being a combination of two state variables adds an extra

complexity to the calculations. As in all previous sections,

the first coefficient is trivial, that is

y0 ¼ 0: ð67Þ

The first derivative of the output function in (61e) is given

by
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yð1Þ ¼ kaþ½A�½R� � ðka� þ aþkaþ½A�Þ½AR� þ a�ka�½ARA�
þ 2ðaþkaþ½A�½AR� � a�ka�½ARA�Þ

¼ kaþ½A�½R� � ðka� � aþkaþ½A�Þ½AR� � a�ka�½ARA�;
ð68Þ

which, using the initial conditions in (61d), gives the first

unique coefficient as

yð1Þð0Þ ¼ kaþ½A�Rtot: ð69Þ

The remaining three coefficients are calculated by fol-

lowing the method of Sect. 3.1.2, by repeatedly differen-

tiating the output expression and substituting in the

dynamic equations (61a–e). We find that

Fig. 5 Three sets of parameters are used to plot the solution to

equations (61a–e). All three parameter sets give the same measured

output curve, Abound . However, non-identifiability can be seen in the

individual species curves. Each set of plots is created using the values

in Table 4 together with ½A� ¼ 10�8M

Table 4 The parameters for

three different parameter sets

are used to plot Fig. 5

Parameter Units Set 1 Set 2 Set 3

kaþ M�1s�1 107 5� 106 103

ka� s�1 0.1 0.137667 0.177379

aþ – 0.8 1.353341 5738.851

a� – 0.01 0.186435 0.260590

Rtot M 10�10 2� 10�10 10�6

kaþRtot s�1 10�3 10�3 10�3

2aþkaþ½A� þ a�ka� s�1 0.161 0.161 0.161

kaþ½A� þ ka� þ aþkaþ½A� þ a�ka� s�1 0.281 0.281 0.281

aþk2aþ½A�
2 þ a�kaþka�½A� þ a�k2a� s�2 0.0082 0.0082 0.0082

The parameter combinations in the final four rows are equal in each case; these are the identifiable

combinations found in (66)
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yð2Þð0Þ ¼ kaþ½A�Rtotðaþkaþ½A� � kaþ½A� � ka�Þ; ð70Þ

yð3Þð0Þ ¼ kaþ½A�Rtotðk2aþ½A�
2 � a2þk

2
aþ½A�

2

� aþk
2
aþ½A�

2 þ 2kaþka�½A� � a�kaþka�½A� þ k2a�Þ;
ð71Þ

yð4Þð0Þ ¼ kaþ½A�Rtotða3þk3aþ½A�
2 þ a2þk

3
aþ½A�

3

þ aþk
3
aþ½A�

3 � k3aþ½A�
3

þ 2a2þa�k
2
aþka�½A�

2 þ aþa�k
2
aþka�½A�

2

þ a2þk
2
aþka�½A�

2 � 3k2aþka�½A�
2

þ aþa
2
�kaþk

2
a�½A� � aþkaþk

2
a�½A�

� 3kaþk
2
a�½A� � k3a�Þ:

ð72Þ

A vector of identifiable combinations is then given by

f1ðpÞ ¼

kaþRtot

P

Q

R

2

6664

3

7775
; ð73aÞ

where

P ¼ aþkaþ½A� � kaþ½A� � ka�; ð73bÞ

Q ¼ k2aþ½A�
2 � a2þk

2
aþ½A�

2 � aþk
2
aþ½A�

2

þ 2kaþka�½A� � a�kaþka�½A� þ k2a�;
ð73cÞ

R ¼ a3þk
3
aþ½A�

2 þ a2þk
3
aþ½A�

3 þ aþk
3
aþ½A�

3 � k3aþ½A�
3

þ 2a2þa�k
2
aþka�½A�

2 þ aþa�k
2
aþka�½A�

2

þ a2þk
2
aþka�½A�

2 � 3k2aþka�½A�
2

þ aþa
2
�kaþk

2
a�½A� � aþkaþk

2
a�½A� � 3kaþk

2
a�½A� � k3a�:

ð73dÞ

While it is not immediately apparent that the Taylor Series

method gives the same identifiable combinations as the

transfer function method, we show in Appendix 2 that we

can recover the four combinations in (66) from those

in (73a–d) by algebraic manipulation, aided by symbolic

computation. The result, again, is that the identifiable

combinations are

fðpÞ ¼

kaþRtot

2aþkaþ½A� þ a�ka�
kaþ½A� þ ka� þ aþkaþ½A� þ a�ka�
aþk2aþ½A�

2 þ a�kaþka�½A� þ a�k2a�

2

6664

3

7775
: ð74Þ

Similarity transformation method for GPCR dimer model

In Appendix 3, we apply the similarity transformation

method to the GPCR dimer model, and find that he

identifiable parameter combinations are the same as those

in (66) and (74).

Comparing the three methods applied to this system, we

find that the transfer function method is the most

straightforward to implement, whereas the Taylor series

method results in expressions that require much

simplification.

Results: addressing identifiability issues
with equilibrium, washout and multiple time
courses

The results thus far have shown none of the models to be

globally identifiable from a single set of time course data.

In this section we consider alternative ways in which all

parameters can be identified. Commonly performed

experiments for ligand binding include equilibrium (or

saturation) binding assays, in which equilibrium binding

levels are measured for a range of ligand concentrations to

produce a concentration-response curve. For each ligand

concentration, the binding experiments are run until equi-

librium is assumed after which the amount of ligand bound

is observed. These experiments are often used to estimate

equilibrium constants KD ¼ 1=KA (the equilibrium disso-

ciation constant), where KA ¼ kaþ=ka�, and Rtot (total

receptor concentration), for monomeric receptors [34].

Here, for each model in Sects. 2, 3, we aim to establish

identifiability for the corresponding equilibrium model,

then use ‘‘known’’ equilibrium parameters together with

timecourse data to establish identifiability for those kinetic

parameters which were previously unidentifiable.

Washout experiments can also be used to gain further

insights into the dissociation kinetics of ligands. In these

experiments the free ligand is removed by repeated wash-

ing, ensuring that no further ligand associates with the

receptors [41]. Such experiments isolate the effect of dis-

sociation and preclude further binding. Here, we consider

this type of experimental dataset to establish identifiability

of the kinetic dissociation parameters, in conjunction with

association (binding) time course data to also determine

identifiability of association parameters.

Finally, we also consider multiple binding experiments,

whereby each data set is collected from experiments per-

formed using different ligand concentrations. These data

sets are then used simultaneously, with the aim of deter-

mining the minimum number of data sets required to make

the model globally identifiable. In each case, we choose

one identifiability method to apply.

Journal of Pharmacokinetics and Pharmacodynamics (2024) 51:39–63 51

123



Monomeric receptor binding with a single ligand

Recall the model for a monomeric receptor binding with a

single ligand, as given by the schematic

A þ R �
kaþ

ka�
AR

with the system of equations as given in (3a–d). In Sect. 2,

we found that there are no identifiable parameters, only the

parameter combinations

fðpÞ ¼
kaþ½A�Rtot

kaþ½A� þ ka�

� �
ð75Þ

are identifiable. We will use three different approaches to

establish global structural identifiability, namely, concen-

tration-response/saturation data together with a single set

of time course data, a combination of association and

dissociation data, and also multiple time courses. In each

case we use an appropriate method from the three that we

outlined in Sect. 2. In most cases this is the transfer

function method due to its simplicity of implementation,

however, dissociation timecourse data are analysed using

the Taylor series method.

Equilibrium saturation curves

We first establish the identifiability of equilibrium param-

eters associated with ligand binding, namely KA ¼ 1=KD

(the equilibrium dissociation constant) and Rtot (total

receptor). Note that, at equilibrium, as ½AR�0 ¼ 0 in (3b),

we have

½AR� ¼ KA½A�½R�; ð76Þ

where

KA ¼ kaþ=ka�: ð77Þ

Substituting in ½R� ¼ Rtot � ½AR� and solving for ½AR� gives
the usual expression (see also [34], for example) for the

concentration of ligand bound at equilibrium as

Abound ¼
KA½A�Rtot

1þ KA½A�
: ð78Þ

Taking two ligand concentrations, ½A�1 and ½A�2, and the

corresponding output measurements, ½AR�1 and ½AR�2 gives

KA½A�1Rtot

1þ KA½A�1
¼ ½AR�1 and

KA½A�2Rtot

1þ KA½A�2
¼ ½AR�2:

ð79Þ

These equations contain the two unknown parameters Rtot

and KA ¼ kaþ=ka�. Solving for these gives a unique

solution

Rtot ¼
½AR�1½AR�2ð½A�1 � ½A�2Þ
½A�1½AR�2 � ½A�2½AR�1

and

KA ¼ ½A�1x2 � ½A�2x1
½A�1½A�2ð½AR�1 � ½AR�2Þ

ð80Þ

and hence these parameters are identifiable from a single

dose-response curve. In fact, only two points on the curve

are needed, theoretically. Once these are known, we con-

clude from (77) that only a single parameter, either kaþ or

ka�, remains to be found. This can be obtained from time

course data. Using only one of the parameter combinations

in (75), we find

ka�KA½A�Rtot ¼gka�KA½A�Rtot ) ka� ¼gka� :
ð81Þ

Hence, we conclude that, using equilibrium data (a dose-

response curve) together with a single set of time course

data, it is possible to identify all three model parameters

ðkaþ; ka�;RtotÞ.

Washout experiments

We consider using washout experiment data to identify

dissociation parameters. In a washout experiment, the

ligand is removed from the system (usually once equilib-

rium has been reached), hence, we set ½A� ¼ 0 in the model

given in equations (3a–d). This gives

½R�0 ¼ ka�½AR�; ð82aÞ

½AR�0 ¼ �ka�½AR�: ð82bÞ

As the concentration of free receptor is unknown at the

start point of washout, we write the initial conditions as

½R�ð0Þ ¼ Rtot � ½AR�w; ½AR�ð0Þ ¼ ½AR�w; ð82cÞ

where the w refers to the value when washout begins, at

time t ¼ 0. The output remains unchanged

y ¼ ½AR�: ð82dÞ

The unknown parameters in this model are ka� and Rtot.

We note that, it is clearly possible to solve the ODE for

½AR�, specifically giving

½AR�ðtÞ ¼ ½AR�ð0Þe�ka�t; ð83Þ

and use the result to determine identifiability directly.

However, we refrain from this here and continue with our

SIA methodology applied to the ODE system in order to

highlight the general process.

Here, the Taylor series approach is straightforward (as

outlined in Sect. 2.2); no reformulation of the ODE system

is required and the unknown initial conditions are naturally

incorporated into the analysis. Since the number of
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variables n ¼ 2, we need to determine a maximum of three

Taylor coefficients (see (15)). Calculating the first of these

coefficients gives

y ¼ AR; ) y0 ¼ ½AR�w; ð84Þ

which clearly gives no information about ka�, but does

provide the value of ½AR�w. The second coefficient is

yð1Þ ¼ AR0 ¼ �ka�½AR�; ) y
ð1Þ
0 ¼ �ka�½AR�w;

ð85Þ

and so we find ka� to be identifiable. The final coefficient is

calculated as

c1 ¼ k2a�½AR�w; ð86Þ

which gives no further information, hence, only ka� is

identifiable from washout data (as we would expect,

given (83)). Since Rtot does not appear in (84)-(86), it is

clearly not identifiable from the washout model alone.

Combining the newly established identifiability of ka� with

the results we obtained from a binding timecourse, namely

the parameter combinations in (75), we find that the

remaining parameters, kaþ and Rtot, are now identifiable.

Hence the system, considering the combination of both

experiments, is now globally identifiable, using experi-

mental data for association and washout for a single ligand

concentration.

Multiple time courses

Next, we consider the case where, instead of one time

course, we have multiple sets of time course data, each

with a different ligand concentration. Each of these will

individually give the identifiable parameters, as stated in

equation (75) for their corresponding concentration of ½A�.
That is, the identifiable parameter combinations are given

by

fðpÞi ¼
kaþ½A�iRtot

kaþ½A�i þ ka�

� �
; ð87Þ

for i ¼ 1; 2; :::, for the number of time courses being con-

sidered. As fitting may be performed on all sets simulta-

neously, we analyse the corresponding system as a single

system. For example, for two time courses we have

fðpÞ ¼

kaþ½A�1Rtot

kaþ½A�1 þ ka�

kaþ½A�2Rtot

kaþ½A�2 þ ka�

2

6664

3

7775
: ð88Þ

Setting fðpÞ ¼ fðepÞ results in all parameters being suc-

cessfully identified. This is shown easily by considering the

following system:

kaþ½A�1Rtot ¼gkaþ½A�1gRtot ; ð89aÞ

kaþ½A�1 þ ka� ¼gkaþ½A�1 þgka� ; ð89bÞ

kaþ½A�2Rtot ¼gkaþ½A�2gRtot ; ð89cÞ

kaþ½A�2 þ ka� ¼gkaþ½A�2 þgka� : ð89dÞ

From (89b,d), we see that

kaþð½A�1 � ½A�2Þ ¼gkaþð½A�1 � ½A�2Þ; ) kaþ ¼gkaþ ;

and so kaþ is identifiable. Then (89a) gives Rtot ¼ gRtot and

(89b) gives ka� ¼gka� , so that all three parameters are

identifiable. We conclude that the model is fully identifi-

able from just two time courses.

Competition binding model

Next, we consider the model for a monomeric receptor

binding with two ligands in a competition binding scenario,

with a labelled ligand A and an unlabelled ligand B. This is

described by the schematic

A þ R �
kaþ

ka�
AR; B þ R �

kbþ

kb�
BR,

and the related system of equations is given in (36a–e). In

Sect. 3.1, we performed the identifiability analysis con-

sidering the parameters p ¼ ðkaþ; ka�; kbþ; kb�;RtotÞ, and
concluded that from a single time course the parameter kb�
is uniquely identifiable, as well as the parameter

combinations

fðpÞ ¼
kaþRtot

kaþ½A� þ kbþ½B� þ ka�

kaþkb�½A� þ ka�kbþ½B� þ ka�kb�

2

64

3

75: ð90Þ

A simple analysis towards establishing identifiability of all

parameters is suggested by the scenario discussed in [44]

where kaþ and ka� are already known from other experi-

ments. For example, we can consider ½B� ¼ 0, whereby

there is no competition, and use the monomeric receptor

model of Sects. 2 and 4.1 to ensure identifiability of these

parameters. Then we may treat kaþ as known in the first

row of (90), meaning that Rtot is identifiable. Treating kaþ
and ka� as known in the second row of (90), we see that

kbþ also becomes identifiable. Hence, with prior knowledge

of kaþ and ka�, the original system is globally identifiable

from a single timecourse with ½B� 6¼ 0.

Continuing with our detailed tutorial approach, we now

consider experiments which may be used to establish

identifiability of ka�, kaþ, kbþ and Rtot without the prior

knowledge of the binding parameters for ligand A. Again
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we consider equilibrium concentration-response, a washout

timecourse curve or a second timecourse.

Saturation curves

Here, we combine the above results with an equilibrium

concentration-response curve. It follows from sys-

tem (36a–e) that at equilibrium, we have the relations

½AR� ¼ KA½A�½R�; ½BR� ¼ KB½B�½R�; ð91Þ

where KA ¼ kaþ=ka� and KB ¼ kbþ=kb�. Moreover, we

have the conservation law

½R� þ ½AR� þ ½BR� ¼ Rtot: ð92Þ

Combining these and solving for ½AR� gives the equilibrium
concentration of the measured ligand bound as

½AR� ¼ KA½A�Rtot

1þ KA½A� þ KB½B�
: ð93Þ

Assuming we have a concentration-response curve, with a

fixed concentration of ligand ½B�, then we take two points

on this curve, giving

KA½A�iRtot

1þ KA½A�i þ KB½B�
¼ ½AR�i; ð94Þ

for i ¼ 1; 2. This results in a system of two equations for

KA and Rtot, which has the following solution:

KA ¼ ð1þ KB½B�Þð½A�1½AR�2 � ½A�2½AR�1Þ
½A�1½A�2ð½AR�1 � ½AR�2Þ

;

Rtot ¼
½AR�1½AR�2ð½A�1 � ½A�2Þ
½A�1½AR�2 � ½A�2½AR�1

:

ð95Þ

Considering further points on the dose-response curve

gives no extra information. Hence from a single concen-

tration-response curve the only identifiable parameter is

Rtot, since the expression for KA still depends on the

unknown parameter KB.

We combine the above with the results from a time

course dataset, as given by the parameter combinations in

(90). Since Rtot and kb� are now known, the unknowns are

given by p ¼ ðkaþ; ka�; kbþÞ. We consider fðpÞ ¼ fðepÞ,
where f is given in (90). The first equation can be solved as

kaþRtot ¼gkaþRtot; ) kaþ ¼gkaþ ; ð96Þ

thus kaþ is now identifiable. The other two resultant

equations, using that kb� and kaþ are known, are

kbþ½B� þ ka� ¼gkbþ½B� þgka� ; ð97Þ

ka�kbþ½B� þ ka�kb� ¼gka�gkbþ½B� þgka�kb�: ð98Þ

There are two possible solutions of these two equations for

ka�; kbþ, given by

ka�

kbþ

� 	
¼

gkbþ½B� þgkb�
gka� �gkb�

½B�

0

B@

1

CA or
ka�

kbþ

� 	
¼

gka�
gkbþ

 !

:

ð99Þ

Hence the system is only locally structurally identifiable,

but not globally. This could be circumvented with prior

knowledge about the parameters. If we have prior knowl-

edge that kb� [ ka�, then the first solution in (99) cannot

be satisfied since all parameters must be positive. This

implies that the only solution that fits within the require-

ments is the second solution, and hence, that all parameters

are identifiable. Remarkably, it is shown in [44] that

kb� [ ka� if and only if [AR](t) is monotonic. Therefore,

an experimental timecourse readout showing no peak in

[AR](t), together with an equilibrium concentration-re-

sponse curve for ligand A results in identifiability of all five

parameters ðka�; kaþ; kb�; kbþ;RtotÞ. For the same combi-

nation of experimental data, but with non-monotonic

[AR](t), only ðkaþ; kb�;RtotÞ are identifiable.

We may also consider an equilibrium concentration-re-

sponse curve for varying concentration of the competition

ligand B, as in [44], in addition to the single time course

and the concentration-response for [A] described above.

For example, taking three equilibrium experiments with

concentrations ([A], [B]) = ð½A�1; ½B�1Þ, ð½A�2; ½B�1Þ and

ð½A�1; ½B�2Þ and corresponding readouts /1, /2 and /3 gives

the following system for the equilibrium parameters KA;KB

and Rtot:

KA½A�1Rtot

1þ KA½A�1 þ KB½B�1
¼ /1;

KA½A�2Rtot

1þ KA½A�2 þ KB½B�1
¼ /2;

KA½A�1Rtot

1þ KA½A�1 þ KB½B�2
¼ /3:

ð100Þ

Solving these for the equilibrium parameters, KA, KB and

Rtot, gives the unique solution

Rtot ¼
/1/2ð½A�1 � ½A�2Þ
½A�1/2 � ½A�2/1

;

KB ¼ /2ð/1 � /3Þð½A�1 � ½A�2Þ
/3½A�2½B�2ð/1 � /2Þ � /2½A�1½B�1ð/1 � /3Þ þ /1½A�2½B�1ð/2 � /3Þ

;

KA ¼ ð1þ KB½B�Þð½A�1/2 � ½A�2/1Þ
½A�1½A�2ð/1 � /2Þ

;

and thus determines all three of these parameters to be

identifiable. Combining these with time course results, as

in (90), we find the model to be globally structurally

identifiable.
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Washout experiments

In this section, we combine the results from an association

time course experiment, in (90), with a washout experi-

ment. To determine identifiability using washout experi-

ment data we set ½A� ¼ 0 in equation (36a–c) to simulate

the washout of ligand A (a similar analysis is possible for

washout of ligand B, or of both ligands). This results in the

reduced model

½R�0 ¼ �kbþ½B�½R� þ ka�½AR� þ kb�½BR�; ð101aÞ

½AR�0 ¼ �ka�½AR�; ð101bÞ

½BR�0 ¼ kbþ½B�½R� � kb�½BR�: ð101cÞ

For this system, the initial conditions are unknown so we

assume

½R�ð0Þ ¼ Rtot � ½AR�w � ½BR�w; ½AR�ð0Þ ¼ ½AR�w;
½BR�ð0Þ ¼ ½BR�w:

ð101dÞ

The only measured quantity is ½AR� and so the output is

y ¼ ½AR�: ð101eÞ

Assuming that kb� is known, the washout model has

unknown parameters p ¼ ðka�; kbþ;RtotÞ. We again use the

Taylor series method. The first Taylor coefficient is given

by

y ¼ AR; ) y0 ¼ ½AR�w; ð102Þ

and the quantity ½AR�w is known. The second coefficient is

determined by

y0 ¼ AR0 ¼ �ka�½AR�; ) y00 ¼ �ka�½AR�w;
ð103Þ

giving that ka� is identifiable. Further coefficients of the

Taylor series give no new information, and so only ka� is

identifiable from dissociation data (again, as in Sect. 4.1.2,

Rtot is not identifiable from washout alone). So use of this

washout experiment in conjunction with the binding

experiment of Sect. 3.1 allows us to consider ka� as known

in (90). We then determine identifiability using the com-

bination of experiments by considering the possible solu-

tion, for ðkaþ; kbþ;RtotÞ, of the system

kaþRtot ¼gkaþgRtot ; ð104Þ

kaþ½A� þ kbþ½B� ¼gkaþ½A� þgkbþ½B�; ð105Þ

kb�kaþ½A� þ ka�kbþ½B� ¼ kb�gkaþ½A� þ ka�gkbþ½B�: ð106Þ

It is straightforward to show that the system has a unique

solution kaþ ¼gkaþ , kbþ ¼gkbþ , Rtot ¼ gRtot . We conclude

that the Motulsky-Mahan problem, considering the

combination of both one binding timecourse and one

washout timecourse, is now globally identifiable.

Multiple time courses

There are two ways in which we can use multiple sets of

time course data to determine identifiability of this model.

Taking the coefficients as stated in equation (90) we con-

sider multiple time courses with either several concentra-

tions of A or several concentrations of B, giving either

fðpÞi ¼
kaþRtot

kaþ½A�i þ kbþ½B� þ ka�

kaþkb�½A�i þ ka�kbþ½B� þ ka�kb�

2

64

3

75

or fðpÞi ¼
kaþRtot

kaþ½A� þ kbþ½B�i þ ka�

kaþkb�½A� þ ka�kbþ½B�i þ ka�kb�

2

64

3

75:

ð107Þ

for i ¼ 1; 2; ::: . If we study the first case, having time

courses for two A concentrations, we find the identifiable

parameter combinations, in addition to the single identifi-

able parameter kb�, are given by

fðpÞ ¼

kaþRtot

kaþ½A�1 þ kbþ½B� þ ka�

kaþkb�½A�1 þ ka�kbþ½B� þ ka�kb�

kaþ½A�2 þ kbþ½B� þ ka�

kaþkb�½A�2 þ ka�kbþ½B� þ ka�kb�

2

6666664

3

7777775

: ð108Þ

Solving fðpÞ ¼ fðepÞ, we find that kaþ and Rtot are identi-

fiable and that ka� and kbþ again satisfy (99). The identi-

fiability properties of the Motulsky-Mahan system

combining timecourses for two different values of [A] are

the same as those for the single timecourse plus the con-

centration-response curve for [A].

When we instead consider having time courses for two

concentrations of B, we obtain the vector of identifiable

parameter combinations (in addition to kb�, which we

know is identifiable from a single timecourse)

fðpÞ ¼

kaþRtot

kaþ½A� þ kbþ½B�1 þ ka�

kaþkb�½A� þ ka�kbþ½B�1 þ ka�kb�

kaþ½A� þ kbþ½B�2 þ ka�

kaþkb�½A� þ ka�kbþ½B�2 þ ka�kb�

2

6666664

3

7777775

: ð109Þ

Solving fðpÞ ¼ fðepÞ this time gives that all parameters are

identifiable from these two time courses.
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Pre-dimerised G protein-coupled receptor
binding

In Sect. 3.2 we explored identifiability for a model of

dimeric receptor binding with a single ligand. The sche-

matic for this is given by

A þ R �
kaþ

ka�
AR; A þ AR �

aþkbþ

a�kb�
ARA,

and the system of equations is given in (61a–e). We found

that from a single time course we have no identifiable

parameters. Recall that this analysis gave the following

identifiable parameter combinations (see (66))

fðpÞ ¼

kaþRtot

2aþkaþ½A� þ a�ka�
kaþ½A� þ ka� þ aþkaþ½A� þ a�ka�
aþk2aþ½A�

2 þ a�kaþka�½A� þ a�k2a�

2

6664

3

7775
: ð110Þ

Saturation curves

We first consider the combination of (110) with informa-

tion from an equilibrium concentration-response curve

which is parameterised by equilibrium parameters,

KA ¼ kaþ=ka�, a ¼ aþ=a� and Rtot. The expression for the

concentration of ligand bound at equilibrium, Ab was

determined in our previous work [55], and is given by

Ab ¼ ½AR� þ 2½ARA� ¼ ðKA½A� þ 2aK2
A½A�

2Þ
1þ KA½A� þ aK2

A½A�
2
Rtot: ð111Þ

Taking three points on the dose-response curve, that is,

three different concentrations of ½A�i, we have

ðKA½A�i þ 2aK2
A½A�

2
i Þ

1þ KA½A�i þ aK2
A½A�

2
i

Rtot ¼ ½Ab�i; i ¼ 1; 2; 3; ð112Þ

where ½Ab�i denotes the corresponding measurement for the

concentration of ligand ½A�i. Equation (112), with

i ¼ 1; 2; 3, is a system of three equations which can be

solved for KA, a and Rtot. This can be done by using a

symbolic equation solver (for example, in MATLAB [40]

or Mathematica [58]), and using MATLAB Symbolic

Toolbox, we find a unique solution to (112), using just

three points. The expressions are extremely lengthy and

impractical to write down, and therefore we refrain from

doing so here.

We now treat KA, a and Rtot as known quantities,

together with identifiable parameter combinations (110) to

determine identifiability of the parameters in

p ¼ ðaþ; a�; kaþ; ka�Þ. The first of the equations, after

setting fðpÞ ¼ fðepÞ in (110), yields

kaþRtot ¼gkaþRtot; ) kaþ ¼gkaþ : ð113Þ

Clearly, kaþ is identifiable. Combining this with the known

equilibrium parameter KA ¼ kaþ=ka�, we find that ka� is

also identifiable. The second and third equations from

fðpÞ ¼ fðepÞ can be simplified to

2aþkaþ½A� þ a�ka� ¼ 2faþkaþ½A� þ fa�ka� ð114Þ

aþkaþ½A� þ a�ka� ¼ faþkaþ½A� þ fa�ka�: ð115Þ

It is straightforward to show that aþ ¼ faþ and a� ¼ fa� ,
and thus all four parameters aþ; a�; kaþ and ka� (in addi-

tion to Rtot, from the equilibrium analysis) are identifiable.

Washout experiments

Here we consider washout experimental data. The corre-

sponding model for washout of the ligand is given by

setting ½A� ¼ 0 in equations (61a–e), giving

d½R�
dt

¼ ka�½AR�; ð116aÞ

d½AR�
dt

¼ �ka�½AR� þ a�ka�½ARA�; ð116bÞ

d½ARA�
dt

¼ �a�ka�½ARA�: ð116cÞ

The initial conditions are unknown so we assume

Rð0Þ ¼ Rtot � ½AR�w � ½ARA�w; ½AR�ð0Þ ¼ ½AR�w;
½ARA�ð0Þ ¼ ½ARA�w;

ð116dÞ

where subscript w denotes the value at the start of washout,

and ½AR�w and ½ARA�w are unknown. The output remains as

y ¼ ½AR� þ 2½ARA�: ð116eÞ

We again use the Taylor series method to determine

identifiability in this section. Through repeated differenti-

ation of y and substitution of the initial conditions we

obtain the vector of coefficients as

f1ðpÞ ¼

½AR�w þ 2½ARA�w
�ka�ð½AR�w þ a�½ARA�wÞ

k2a�ð½AR�w þ ða� � 1Þa�½ARA�wÞ
�k3a�ð½AR�w þ ða2� � a� � 1Þa�½ARA�wÞ

k4a�ð½AR�w þ ða3� � a2� � a� � 1Þa�½ARA�wÞ

2

6666664

3

7777775

:

ð117Þ

Since Rtot does not appear in f1 here, we note that it is not

identifiable from the washout model alone, as in

Sect. 4.1.2. Further, while the parameters a� and ka� are

sought, we have introduced new parameters ½AR�w and

½ARA�w, the initial conditions, which are also unknown and
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are intertwined in the identifiable parameter combinations

in (117). Although we do not require them to be identifi-

able, the analysis requires us to consider them. In

Sects. 4.1.2 and 4.2.2, the analysis was simpler given that

the new parameter ½AR�w was immediately identifiable as

the measured output.

At this point, we may define p ¼
ða�; ka�; ½AR�w; ½ARA�wÞ for the washout experiment and

proceed by attempting to solve f1ðpÞ ¼ f1ðepÞ to determine

the identifiability of individual parameters. Thereafter, we

could return to the association timecourse result (110) to

determine identifiability of those individual parameters.

Given the level of complexity seen in (117), we would use

symbolic computation here. Alternatively, our computation

could consider p ¼ ðaþ; a�; kaþ; ka�;Rtot; ½AR�w; ½ARA�wÞ
for the two experiments (association and washout) com-

bined. Then the combined identifiable are groupings given

by

f2ðpÞ ¼

kaþRtot

2aþkaþ½A� þ a�ka�
kaþ½A� þ ka� þ aþkaþ½A� þ a�ka�
aþk2aþ½A�

2 þ a�kaþka�½A� þ a�k2a�
½AR�w þ 2½ARA�w

�ka�ð½AR�w þ a�½ARA�wÞ
k2a�ð½AR�w þ ða� � 1Þa�½ARA�wÞ

�k3a�ð½AR�w þ ða2� � a� � 1Þa�½ARA�wÞ
k4a�ð½AR�w þ ða3� � a2� � a� � 1Þa�½ARA�wÞ

2

66666666666666664

3

77777777777777775

:

ð118Þ

Now when solving f2ðpÞ ¼ f2ðepÞ, we find (by symbolic

computation, see Appendix 4) the unique solution

aþ ¼ faþ ; a� ¼ fa� ; kaþ ¼gkaþ ; ka� ¼gka� ; Rtot ¼ gRtot ;

½AR�w ¼ g½AR�w ; ½ARA�w ¼ g½AR�w :
ð119Þ

Hence we conclude that the combination of associa-

tion (61a–e) and washout (116a–e) results in all five of the

parameters ðaþ; a�; kaþ; ka�;RtotÞ being globally

identifiable.

Multiple experiments

Next, we consider association timecourse data obtained

from experiments each with a different ligand concentra-

tion [A]. We aim to determine the minimum number of

concentrations needed to ensure full identifiability. Each of

these experiments yields identifiable parameter combina-

tions, as obtained in (110), with ½A�i as the concentration

for experiment yi. This gives the identifiable parameter

combinations

fðpÞi ¼

kaþRtot

kaþ½A�iRtotð2aþkaþ½A�i þ a�ka�Þ
kaþ½A�i þ ka� þ aþkaþ½A�i þ a�ka�

aþk2aþ½A�
2
i þ a�kaþka�½A�i þ a�k2a�

2

6664

3

7775
: ð120Þ

Upon assuming data for two experiments, we choose i ¼
1; 2 to give the vector of identifiable combinations as

fðpÞ ¼

kaþRtot

2aþkaþ½A�1 þ a�ka�
kaþ½A�1 þ ka� þ aþkaþ½A�1 þ a�ka�

aþk2aþ½A�
2
1 þ a�kaþka�½A�1 þ a�k2a�

2aþkaþ½A�2 þ a�ka�
kaþ½A�2 þ ka� þ aþkaþ½A�2 þ a�ka�

aþk2aþ½A�
2
2 þ a�kaþka�½A�2 þ a�k2a�

2

666666666664

3

777777777775

: ð121Þ

To determine identifiability we again set fðpÞ ¼ fðepÞ and
solve for p ¼ ðaþ; a�; kaþ; ka�;RtotÞ. It is a matter of

simple algebraic manipulation to find that

aþ ¼ faþ ; a� ¼ fa� ; kaþ ¼gkaþ ; ka� ¼gka� ; Rtot ¼ gRtot :

ð122Þ

So we conclude that only two data sets are required to

ensure that the system is globally structurally identifiable.

Discussion

Structural identifiability analysis (SIA) is an often-over-

looked element of modelling of biological systems [12].

The notion of identifiability is well known and appreciated,

but in practice the complexity of the calculations that are

required to draw conclusions regarding the identifiability of

a given ODE system is often a barrier. While the ‘‘classi-

cal’’ SIA methods of transfer function, Taylor Series and

similarity transformation have been applied to a number of

pharmacokinetics models in the literature, SIA is largely

absent from receptor theory and analytical pharmacology

studies. Here, we have introduced SIA methodology to

receptor theory via application of these three classical

methods to three widely adopted ligand-receptor binding

schematics of biological importance. Our analysis has

yielded new identifiability results for single-timecourse

receptor theory outputs, plus a significant and crucial focus

on approaches to mitigating non-identifiability via the

addition of further experiments. In addition, the article

provides a pedagogical, tutorial-style introduction to for-

mal identifiability analysis, aligned with the aim of bring-

ing SIA to a broader audience [7].

Our key results include a formal SIA verification that,

for the model of ligand A binding monomeric receptor, the
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quantities kaþRtot and kobs ¼ kaþ½A� þ ka� (the so-called

observed on-rate [34]) are globally identifiable, see

expression (6). For this monomeric receptor model, we

also confirm mathematically the intuitively known fact that

all kinetic parameters and the receptor concentration

become identifiable when adding a washout experiment, an

equilibrium saturation binding model or simply when using

timecourses for two ligand concentrations.

For the Motulsky-Mahan competition binding mod-

el (36a–e), it was already known that if the total receptor

Rtot and labelled ligand constants kaþ; ka� are known, then

the unlabelled ligand constants kbþ and kb� are theoreti-

cally identifiable from a single [AR] timecourse [15, 44].

Our SIA (see expressions (43, 44)) shows that kb� is in fact

identifiable without the need for a priori knowledge of any

constants. Furthermore, if kaþ is known, then Rtot is also

identifiable without knowledge of any other parameters, or

if Rtot is known, then kaþ is identifiable. From these results,

it is clear that a single timecourse may yield more practical,

quantitative parametric information than previously

thought. In addition, we have shown that SIA enables a

formal strategy for constructing an identifiable system

when also considering washout experiments and/or multi-

ple ligand concentrations (Sect. 4.2). Recent computational

studies of the Motulsky-Mahan model have focused on

questions of practical identifiability and parameter esti-

mation [18, 49] and have noted a relationship between

binding timescales and estimation reliability. Further

investigation into this relationship will benefit from the

analytical results and methods presented in the current

work.

We have also shown new results from SIA applied to a

model of GPCR dimers in Sect. 3.2. This model has been

previously used with experimental data for total bound

ligand to partially quantify the important effect of coop-

erativity (reporting an equilibrium parameter) across a

dimer [41] without discussion of parameter identifiability

properties. Our new analysis indicates that no model

parameters are identifiable from a single binding time-

course. However, when using multiple ligand concentra-

tions, all kinetic parameters and the total receptor

concentration are identifiable. These results that were so far

unknown provide both practical guides for the estimation

of kinetic cooperativity and an extension of the recent

theoretical study of cooperativity and dimer binding

dynamics given in [55].

The models we have considered have been low-dimen-

sional (at most third-order) and linear, which is typical of

many ligand-binding models in receptor theory. For such

models, the implementation of the three classical SIA

methods is tractable. Given the relative conceptual sim-

plicity of these approaches compared to more recent

methods developed for larger biology and systems biology

models [3, 12, 46, 48], the introduction of SIA to receptor

theory via these three methods has been shown to be

viable, although we remark that the Taylor Series approach

is cumbersome in some cases, benefiting from symbolic

computation tools. The transfer function method is rela-

tively straightforward, and reflects earlier use of the

Laplace Transform in textbook PK parameter estimation

discussion [19]. The Taylor Series approach and a modi-

fied similarity transformation method suitable for nonlinear

models [10, 50] are potentially suitable for second-order

nonlinear binding models such as those arising in ligand-

induced receptor dimerisation [56], and simple nonlinear

models for receptor-mediated cell responses via kinetic

operational models of agonism [26]. To bridge the gap to

higher-dimensional models of interest in receptor theory

(including binding of allosteric modulators [24], more

detailed operational models [26] and G protein activa-

tion [59]), recent novel algorithmic and computational

approaches including Exact Arithmetic Rank [46], input–

output method [3, 31] and singular value decomposition of

sensitivity matrices [48] appear to be promising methods.

We conclude by proposing the following studies as

future work.

1. Apply SIA to a binding model for ligand-induced

receptor dimerisation. Recent analysis of this nonlinear

ODE model has shed new light on dynamic coopera-

tivity effects across the dimers, and the model has been

validated by fitting it to real timecourse data [56]. SIA

is required to determine the theoretical identifiability of

the model parameters (in preparation [57]).

2. Apply an identifiability analysis to the Motulsky-

Mahan model combining both the structural identifia-

bility results presented in the current work and the

recent practical identifiability and estimation results

in [15, 18, 49] to derive an overall strategy for

informing parameter estimation studies for this

widely-used model.

3. Perform a bridging-the-gap analysis which implements

the Exact Arithmetic Rank [46], input–output

method [3, 31] and singular value decomposition

method [48] to the models in the current work, the

ligand-induced dimerisation model and kinetic opera-

tional models, to compare ease of implementation and

computational cost.

Appendix 1 Similarity transformation
method for competition binding model

In this appendix, we apply the similarity transform method,

as introduced in Sect. 2.3, to the Motulsky-Mahan, com-

petition binding system. To apply this method we require
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the system to be controllable and observable. In the full

system (36a–e) we have G ¼ ð0; 0; 0ÞT , and so the con-

trollability matrix is

C ¼
0 ..

.
0 ..

.
0

0 ..
.

0 ..
.

0

0 ..
.

0 ..
.

0

2

6664

3

7775
; ð123Þ

so we are unable to determine controllability. Therefore,

we instead reformulate and use the reduced form, as in

(37a, b) in Sect. 3.1.1. Recall that in this form we define

x ¼
½AR�
½BR�

� �
; F ¼

�ðkaþ½A� þ ka�Þ � kaþ½A�
�kbþ½B� � ðkbþ½B� þ kb�Þ

� �
;

G ¼
kaþ½A�Rtot

kbþ½B�Rtot

� �
; H ¼ 1 0½ �:

ð124Þ

In this case, the dimension is n ¼ 2, and the controllability

matrix is given by

C ¼
kaþ½A�Rtot � kaþ½A�Rtotðkaþ½A� þ ka� þ kbþ½B�Þ
kbþ½B�Rtot � kbþ½B�Rtotðkaþ½A� þ kbþ½B� þ kb�Þ

� �
;

ð125Þ

which has rankðCÞ ¼ 2, and so the system is controllable.

The observability matrix is found to be

O ¼
1 0

�ðkaþ½A� þ ka�Þ � kaþ½A�

� �
; ð126Þ

which also has rankðOÞ ¼ 2, therefore, both controllability

and observability conditions are met.

Next, we assume that there exists a transformation

matrix

T ¼
t11 t12

t21 t22

� �
; ð127Þ

and assume that conditions (32a–e) have to hold. Then,

step by step, we draw conclusions from these conditions,

and find the entries in matrix T. We first note that (32b) is

satisfied for any T as x0 ¼ ~x0 ¼ ð0; 0ÞT . We now check

condition (32e), which becomes

1 0½ � ¼ 1 0½ �
t11 t12

t21 t22

� �
and hence t11 ¼ 1; t12 ¼ 0:

ð128Þ

Then, condition (32d) implies that

1 0

t21 t22

� � gkaþ½A�gRtot

gkbþ½B�gRtot

" #

¼
kaþ½A�Rtot

kbþ½B�Rtot

� �
; ð129Þ

which leads to

gkaþ½A�gRtot ¼ kaþ½A�Rtot; ð130Þ

t21gkaþ½A�gRtot þ t22gkbþ½B�gRtot ¼ kbþ½B�Rtot: ð131Þ

The first of these equations, since ½A� is known, yields
gkaþgRtot ¼ kaþRtot; ð132Þ

which is the first identifiable parameter combination.

Next, (131) can be written as

t22 ¼
kbþ½B�Rtot � t21gkaþ½A�gRtot

gkbþ½B�gRtot

: ð133Þ

So far, we have found that

T ¼
1 0

t21
kbþ½B�Rtot � t21gkaþ½A�gRtot

gkbþ½B�gRtot

2

64

3

75: ð134Þ

Next, for condition (32c) to hold

T
�ðgkaþ½A� þgka�Þ �gkaþ½A�

�gkbþ½B� � ðgkbþ½B� þgkb�Þ

" #

¼
�ðkaþ½A� þ ka�Þ � kaþ½A�

�kbþ½B� � ðkbþ½B� þ kb�Þ

� �
T ;

ð135Þ

needs to be satisfied. We multiply both sides by �1, and

write (135) as

M11 M12

M21 M22

� �
¼

N11 N12

N21 N22

� �
; ð136Þ

where

M11 ¼gkaþ½A� þgka� ;
M12 ¼gkaþ½A�;

M21 ¼ t21gka� þ kbþ½B�Rtot

gRtot

;

M22 ¼
gkbþkbþ½B�2gRtot þ kbþgkb�½B�Rtot � t21gkaþgkb�½A�gRtot

gkbþ½B�gRtot

;

and

N11 ¼ kaþ½A� þ ka� þ t21kaþ½A�;

N12 ¼
kaþ½A�ðkbþ½B�Rtot � t21gkaþ½A�gRtot Þ

gkbþ½B�gRtot

;

N21 ¼ kbþ½B� þ t21kbþ½B� þ t21kb�;

N22 ¼
ðkbþ½B� þ kb�Þðkbþ½B�Rtot � t21gkaþ½A�gRtot Þ

gkbþ½B�gRtot

:

We now equate the entries of matrices M and N. First we

solve M12 ¼ N12 for t21, giving
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gkaþ½A� ¼
kaþ½A�ðkbþ½B�Rtot � t21gkaþ½A�gRtot Þ

gkbþ½B�gRtot

;

t21 ¼
kaþkbþ½B�Rtot �gkaþgkbþ½B�gRtot

kaþgkaþ½A�gRtot

:

ð137Þ

We equate M11 ¼ N11, which together with the above

expression for t21, becomes

gkaþ½A� þgka� ¼ kaþkbþ½B�Rtot þgkaþka�gRtot þ kaþgkaþ½A�gRtot �gkaþgkbþ½B�gRtot

gkaþgRtot

:

ð138Þ

Since we have already determined that gkaþgRtot ¼ kaþRtot

(see (132)), this results in

gkaþ½A� þgka� ¼
gkaþka�gRtot þ kaþgkaþ½A�gRtot þgkaþkbþ½B�gRtot �gkaþgkbþ½B�gRtot

gkaþgRtot

:

ð139Þ

Hence we find

gkaþ½A� þgka� þgkbþ½B� ¼ kaþ½A� þ ka� þ kbþ½B�; ð140Þ

which is the second identifiable combination. Equating

M22 ¼ N22 gives

kaþkbþ½B�Rtot þgkaþgkb�gRtot

kaþgRtot

¼
gkaþðkbþ½B� þ kb�Þ

kaþ
: ð141Þ

With gkaþgRtot ¼ kaþRtot, this can simplified to

gkb� ¼ kb�; ð142Þ

confirming that the parameter kb� is identifiable. Finally,

equatingM21 ¼ N21, gives, after some simplification (again

using MATLAB Symbolic Toolbox)

gkbþðgka� �gkb�Þ ¼ kbþðka� � kb�Þ; ð143Þ

which gives a fourth identifiable parameter combination.

We note that the transformation matrix is given by

T ¼
1 0

kaþkbþ½B�Rtot �gkaþgkbþ½B�gRtot

kaþgkaþ½A�gRtot

gkaþ
kaþ

2

64

3

75; ð144Þ

which has determinant

detðTÞ ¼
gkaþ
kaþ

: ð145Þ

As detðTÞ 6¼ 0, we find that condition (32a) holds.

In summary we have kb� as identifiable, and identifiable

parameter combinations

fðpÞ ¼
kaþRtot

kbþðka� � kb�Þ
kaþ½A� þ kbþ½B� þ ka�

2

64

3

75: ð146Þ

That is, the same parameter combinations are found to be

identifiable as for the previous methods (see (44)

and (59)).

Appendix 2 Taylor series approach to GPCR
homodimer model

Here, we apply the Taylor Series method to the GPCR

dimer model. In (73a–d), we established that for the GPCR

homodimer model, a vector of identifiable combinations is

then given by

f1ðpÞ ¼

kaþRtot

P

Q

R

2

6664

3

7775
; ð147aÞ

where

P ¼ aþkaþ½A� � kaþ½A� � ka�; ð147bÞ

Q ¼ k2aþ½A�
2 � a2þk

2
aþ½A�

2 � aþk
2
aþ½A�

2

þ 2kaþka�½A� � a�kaþka�½A� þ k2a�;
ð147cÞ

R ¼ a3þk
3
aþ½A�

2 þ a2þk
3
aþ½A�

3 þ aþk
3
aþ½A�

3 � k3aþ½A�
3

þ 2a2þa�k
2
aþka�½A�

2 þ aþa�k
2
aþka�½A�

2

þ a2þk
2
aþka�½A�

2 � 3k2aþka�½A�
2

þ aþa
2
�kaþk

2
a�½A� � aþkaþk

2
a�½A� � 3kaþk

2
a�½A� � k3a�:

ð147dÞ

By ad hoc algebraic manipulations, largely using

MATLAB Symbolic Toolbox, we find that

2PQ� P3 � R

Q� P2
¼ 2aþkaþ½A� þ a�ka�; ð147eÞ

PQ� R

Q� P2
¼ kaþ½A� þ ka� þ aþkaþ½A� þ a�ka�; ð147fÞ

PR� Q2

Q� P2
¼ aþk

2
aþ½A�

2 þ a�kaþka�½A� þ a�k
2
a�; ð147gÞ

showing that the combinations in (74) are recoverable

from (147a–g) and hence identifiable. A sample MATLAB

code is given in Supplementary Materials.

Appendix 3 Similarity transformation
method for GPCR dimer model

In this appendix, we apply the similarity transformation

method to the GPCR dimer model. Recall that the reduced

form of the system is given by (9) where

60 Journal of Pharmacokinetics and Pharmacodynamics (2024) 51:39–63

123



F ¼
�ðkaþ½A� þ ka� þ aþkaþ½A�Þ a�ka� � kaþ½A�

aþkaþ½A� � a�ka�

� �
;

G ¼
kaþ½A�Rtot

0

� �
; H ¼ 1 2½ �:

ð148Þ

Before we determine identifiability for the system, we first

check whether the controllability and observability condi-

tions are satisfied. Using (29) the controllability matrix for

this system is found to be

C ¼
kaþ½A�Rtot � kaþ½A�Rtotðkaþ½A� þ ka� þ aþkaþ½A�Þ

0 aþk2aþ½A�
2Rtot

� �
;

ð149Þ

and the observability matrix is found, using (30), to be

O ¼
1 2

aþkaþ½A� � kaþ½A� � ka� � ða�ka� þ kaþ½A�Þ

� �
:

ð150Þ

As rankðCÞ ¼ rankðOÞ ¼ 2 we conclude that the system is

both controllable and observable, hence we continue with

the identifiability analysis.

Assuming the existence of a linear transformation

matrix

T ¼
t11 t12

t21 t22

� �
; ð151Þ

and that conditions (32a–e) hold, we begin to draw con-

clusions. We first note that xð0Þ ¼ 0 implies that condition

(32b) automatically holds. We now apply condition (32e),

giving

1 2½ � ¼ 1 2½ �
t11 t12

t21 t22

� �
: ð152Þ

From this we determine

t11 ¼ 1� 2t21; ð153Þ

t12 ¼ 2� 2t22: ð154Þ

We next apply condition (32d), giving

1� 2t21 2� 2t22

t21 t22

� � gkaþ½A�gRtot

0

" #

¼
kaþ½A�Rtot

0

� �
:

ð155Þ

From the bottom row, we find

t21 ¼ 0: ð156Þ

Then the top row gives the first identifiable parameter

combination as

gkaþgRtot ¼ kaþRtot: ð157Þ

With (156) the transformation matrix now becomes

T ¼
1 2� 2t22

0 t22

� �
: ð158Þ

Applying condition (32c) and determining the left-hand

and right-hand side we obtain

M11 M12

M21 M22

� �
¼

N11 N12

N21 N22

� �
; ð159Þ

where

M11 ¼ faþgkaþ½A� �gkaþ½A� �gka� � 2t22faþgkaþ½A�;
M12 ¼ 2t22fa�gka� �gkaþ½A� � fa�gka� ;
M21 ¼ t22faþgkaþ½A�;
M22 ¼ �t22fa�gka� ;

and

N11 ¼ �ðkaþ½A� þ ka� þ aþkaþ½A�Þ;
N12 ¼ t22ðkaþ½A� þ 2ka� þ 2aþkaþ½A� þ a�ka�Þ

� 2ðkaþ½A� þ ka� þ aþkaþ½A�Þ;
N21 ¼ aþkaþ½A�;
N22 ¼ 2aþkaþ½A� � 2t22aþkaþ½A� � t22a�ka�:

We solve M21 ¼ N21 for t22, which gives

t22 ¼
aþkaþ

faþgkaþ
: ð160Þ

We note that, while it is possible to begin with a different

matrix entry, and therefore have a different expression for

t22, this will still give the same identifiability results. We

substitute the expression for t22 into the remaining matrix

entries. Solving M11 ¼ N11, we find, after some

simplification

gkaþ½A� þgka� � faþgkaþ½A� ¼ kaþ½A� þ ka� � aþkaþ½A�:
ð161Þ

Equating M22 ¼ N22 and M12 ¼ N12, we obtain

2faþgkaþ½A� þ fa�gka� ¼ 2aþkaþ½A� þ a�ka�; ð162Þ

and

faþgkaþ2½A�2 þ fa�gkaþgka�½A� þ fa�gka�2 ¼ aþk
2
aþ½A�

2

þ a�kaþka�½A� þ a�k
2
a�;

ð163Þ

respectively. Hence, we find the identifiable parameter

combinations for this model given in the vector
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f2ðpÞ ¼

kaþRtot

2aþkaþ½A� þ a�ka�
aþk2aþ½A�

2 þ a�kaþka�½A� þ a�k2a�
kaþ½A� þ ka� � aþkaþ½A�

2

6664

3

7775
: ð164Þ

The transformation matrix is given by

T ¼
1 2� 2

aþkaþ

faþgkaþ

0
aþkaþ

faþgkaþ

2

6664

3

7775
; ð165Þ

which has determinant

detðTÞ ¼ aþkaþ

faþgkaþ
6¼ 0; ð166Þ

and so we confirm that condition (32a) holds.

Note that the combinations listed in (164) and (74) are

not identical. However, since the second and fourth entries

in (164) sum to give ðkaþ½A� þ ka� þ aþkaþ½A� þ a�ka�Þ,
we conclude that the identifiable parameter combinations

are the same as those in (66) and (74), namely

fðpÞ ¼

kaþRtot

2aþkaþ½A� þ a�ka�
kaþ½A� þ ka� þ aþkaþ½A� þ a�ka�
aþk2aþ½A�

2 þ a�kaþka�½A� þ a�k2a�

2

6664

3

7775
: ð167Þ

Appendix 4 Combined association
and washout computation for GPCR
homodimer model

In Supplementary Materials, we include a MATLAB code

which, when run after the code for the Appendix 2 com-

putations, returns a unique solution to the equation f2ðpÞ ¼
f2ðepÞ for p ¼ ðaþ; a�; kaþ; ka�;Rtot; ½AR�w; ½ARA�wÞ and f2
given by (118).

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s10928-

023-09870-y.
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1. Åström KJ, Murray RM (2007) Feedback systems. An Intro-

duction for Scientists and Engineers, Karl Johan Åström and
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57. White C, Rottschäfer V, Bridge L (2022b) Structural identifia-

bility analysis of a model of ligand binding with ligand-induced

dimerisation. IN PREPARATION

58. Wolfram (2022) Mathematica, Version 13.2. https://www.wol-

fram.com/mathematica, champaign, IL, 2022

59. Woodroffe P, Bridge L, King J et al (2009) Modelling the acti-

vation of g-protein coupled receptors by a single drug. Math

Biosci 219(1):32–55

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Journal of Pharmacokinetics and Pharmacodynamics (2024) 51:39–63 63

123


	Classical structural identifiability methodology applied to low-dimensional dynamic systems in receptor theory
	Abstract
	Introduction
	A simple demonstration of the issue of (non-) identifiability
	Classical structural identifiability analysis (SIA) methods
	Paper overview

	Methods: applying SIA to monomeric receptor binding model
	The transfer function method
	Taylor series method
	Similarity transformation method

	Results: SIA for further ligand binding models
	Competition binding model
	Transfer function method
	Taylor series method
	Similarity transformation method for competition binding model

	Pre-dimerised G protein-coupled receptor binding
	Transfer function method
	Taylor series method
	Similarity transformation method for GPCR dimer model


	Results: addressing identifiability issues with equilibrium, washout and multiple time courses
	Monomeric receptor binding with a single ligand
	Equilibrium saturation curves
	Washout experiments
	Multiple time courses

	Competition binding model
	Saturation curves
	Washout experiments
	Multiple time courses

	Pre-dimerised G protein-coupled receptor binding
	Saturation curves
	Washout experiments
	Multiple experiments


	Discussion
	Appendix 1 Similarity transformation method for competition binding model
	Appendix 2 Taylor series approach to GPCR homodimer model
	Appendix 3 Similarity transformation method for GPCR dimer model
	Appendix 4 Combined association and washout computation for GPCR homodimer model
	Acknowledgements
	Author contributions
	References




