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Abstract
[bookmark: _Hlk94841200][bookmark: _Hlk107102656]
Cardiac arrhythmias are one of the leading causes of increased mortality worldwide and place a heavy burden on the medical environment. Premature ventricular contraction is the disturbance in electrical activity which is the most dangerous arrhythmia. Frequent occurrence of this type of arrhythmia in a regular heartbeat can lead to sudden cardiac death. Over the last decades, contemporary health-related device usage has increased the demand for efficient computational models for real-time analysis of cardiac arrhythmia. Despite notable experiments that have been done in the past decades, due to the intricate nature of PVC arrhythmia, success stories are still unsatisfying. There are numerous morphological and temporal variations present in ECG signals due to the inter-patient variability issue; extracting important characteristics of ECG signals is the most challenging task. As a result, there is a need to investigate the exact features of PVC arrhythmia, which assist in avoiding biased diagnosis. Precisely predicting it is a difficult task due to the negative polarity of PVC arrhythmia, the irregular mechanic of the ECG cycle, and anomalies between the normal cardiac rhythm. Furthermore, most of the studies in the literature followed the public benchmark dataset for the PVC arrhythmia classification, which is already pre-processed dataset. This study opens the door for a new direction of research using our unique, fully automatic model for PVC arrhythmia classification (FAPAC). This study designed an ECG monitoring module using the IoMT devices to obtain the real-time dataset for experiments and extract the relevant features from ECG signals. To classify the ECG beats, the fastest extended version of the recurrent neural network (RNN) model cyclic echo state networks to predict PVC arrhythmia. Our proposed FAPAC model successfully achieved 99.97% of accuracy, 99.99 % sensitivity,99.99% specificity, and 99.98% positive predictivity using the MIT-BIH-arrhythmia dataset, which is relatively higher than compared studies. 
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Introduction

[bookmark: _Hlk94840505]With a steady increase in the human population and spending on medical growth, it has become one of the general critical problems for each folk and government. The increasing mortality ratio increases researchers' attention to the automated classification of ventricular arrhythmia. As ECG tool is considered a primary non-invasive technique for a medical practitioner to analyze the condition of the heart. This research aims to design an ECG monitoring module using Internet of Medical Things components for the ECG acquisition for real-time analysis of arrhythmia. The major concept of this study is to design an algorithm that identifies the critical and non-critical heartbeat automatically to reduce the ratio of mortality. In previous studies, most of the researchers used the public benchmark dataset to design the algorithm which is ineffective because the real-time collection of signals is different from that of already preprocessed and stored datasets. To analyze the real-time condition of the patient, this research contributes to the design ECG monitoring module and modified Pan and Tompkins algorithm which satisfies the requirement of accurate detection of arrhythmia and critical heartbeat which was not considered previously. In the real-time collection of ECG signals, we have observed that it retains many different types of noisy information and variation which requires heavy pre-processing for efficient analysis [1][2], for instance, negative polarity of QRS and missing waves. In recent years, studies used time-domain analysis [3][4], frequency-domain analysis [5][6], and ECG signal analysis using wavelet transform [7]–[9] for the aim of analyzing the disorder in the heart or identify the heart abnormalities in a heartbeat. Researchers are working hard to develop a computer-assisted diagnostic method for PVC arrhythmia classification. Still, most of the studies are limited to extracting the general type of arrhythmia and used public benchmark datasets for their experiments. In literature, Bayesian classification techniques for premature ventricular contraction arrhythmia developed by [26] the authors claim that their proposed algorithm is generative and straightforward due to the probability distribution. According to the author's assumptions, their study needs to improve to extract more accurate features for the classification of PVC beat. [27] proposed evolutionary optimization to conduct a new experiment for feature extraction. A total of six features were selected to feed the SVM classifier to identify the PVC beat and normal beat. RF classifiers are proposed by [28] to determine the PVC arrhythmia from the ECG signals. This study only selects three PVC detection attributes: RR interval, QRS complex, and R amplitude. [1] proposed the improved template matching technique to identify PVC arrhythmia in ECG signals. The most significant parts of ECG morphology are the R-peak and QRS complex [29], [30]. Pan and Tompkins's algorithm plays a benchmark role to detect the QRS complex and R-peak intervals. [31] used the pan and Tompkins (PT) algorithm to extract R peaks from the de-noised ECG signal. The proposed technique detects the R-peak and QRS complex from ECG signals efficiently using less time. However, the limitation is observed in that studies only focus on regular peak intervals. [29] used Pan and Tompkins algorithm to extract R-peaks from the ECG signals. This method has the potential to provide excellent detection performance. However, the authors determined in the study that improvements are still needed to obtain efficient performance.[30] used pan and Tompkin's algorithm to identify the QRS complex. This algorithm aims to classify PVC arrhythmia from ECG signals automatically. The proposed algorithm selects the maximum threshold for the cross-correlation coefficients between the generated sub-signals and the template T(n) signals. Although it is efficient, extracting the other relevant features for the PVC arrhythmia classification is required. 
Despite the notable efforts done in previous studies to analyze life-threatening arrhythmic PVC beats, existing research solutions utilize a complicated way to analyze the morphological or temporal features. Several existing studies fail to extract many features for PVC arrhythmia identification which analyzes inter-patient variability in ECG signals. In addition, the traditional adaptive threshold method adopted by the Pan and Tompkins algorithms has the problem of incorrect threshold due to the occurrence of interference. It requires multiple prior data points to predict PVC arrhythmias accurately. Most of the studies did not focus on R-peak-related features such as RR interval and previous RR interval standard deviation of the RR interval. However, these are the most crucial features not discussed in previous studies. However, using the conventional technique of the Pan and Tompkins algorithm, those features of PVC arrhythmia cannot be accurately extracted, which has multiform patterns due to the massive variation in ECG signals. Pan and Tompkins's algorithm is only limited to extracting the regular bizarre QRS with positive peaks. However, QRS often has negative peaks that are not extracted using the conventional pan and Tompkin’s algorithm. The conventional Pan and Tompkins algorithm has high complexity [32]. Failing to detect the exact features of ECG signals returns misclassification, which is highly dangerous when the system implements it in real-world scenarios. This study proposed the FAPAC model for feature extraction and classification to bridge this gap, which supports inter-patient variation in ECG signals. This study performed extensive experiments to identify PVC arrhythmia. We assume that the research will point to a new research path in machine learning and the internet of medical things-based applications.
The remainder of the paper is structured as follows: The author explained related work in Section 2. Section 3 discusses the ECG monitoring module and FAPAC model respectively. Sections 4 and 5 discuss the time complexity and result and discussion, respectively. The comparison of the current study with state-of-the-art methods discusses in Section 6. Finally, Section 7 provides the conclusions and future directions.
ECG MONITORING MODULE
Three main components or modules are used to collect the ECG signals in this study to analyze the critical and non-critical heartbeat, including data acquisition, data transmission, and data processing. Each stage used different sensor modules and performed another function represented in Figures 1, 2, and 3. In the initial stage, data collection takes place using the patient skin surface. ECG monitoring modules' supervision in this stage is too much necessary due to the accuracy issue in collecting ECG signals. The efficiency in data collection will determine the highest accuracy in the classification outcomes. Secondly, the data transmission needs to be checked via a microcontroller, and sometimes information is lost due to network communication disturbance. The last stage is processing data on the fog user system according to their task priority. The detailed description of each module is described in the following subsections. Figure 4 presents the schematic design of the ECG monitoring module. The purpose of this monitoring module is to collect data, and it also can transmit data to the cloud for remote monitoring. The detailed workflow of the FAPAC model is described in Figure 5.  
[bookmark: _Toc64185348][bookmark: _Hlk57731118]2.1 Data Acquisition using AD8232 Module
AD8232 is the main sensor module that collects ECG signals from the patient body surface.AD8232 is an analog sensor with a 3.3V operating power factory-made by Sparkfun. This sensor module contains three terminals of electrodes (Right Arm (RA), Left Arm (LA), and Right Leg RL) which are used to place on the patient body surface for the collection of ECG signals. Furthermore, two built-in analog filters are available in this sensor module, a high pass filter and a low pass filter, which help to minimize the ECG signal noise with cut-off frequencies 0.48Hz and 40Hz, respectively [33]. There are five types of pins present in the AD8232 module, which are 3.3V, GND, Output (returns ECG signal), LO- and LO+ (sends information related to the electrode information loss and connections), and SDN (works as a battery saver and for shutdown). It is mandatory to put the patient to rest condition for the perfect collection of ECG signals. Einthoven’s Triangle placement of AD8232 is illustrated in Figure 1. This module's output is displayed using the Arduino IDE serial monitor (COM) and later is used for the transmitting purpose. 
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[bookmark: _Toc64136897]Figure 1: The Einthoven’s Triangle placement of the AD8232 Module on the body surface[1].

2.2 Data Transmission using the ESP8266 WLAN Module 
The proposed ECG IoMT-based ECG monitoring system is developed using ESP8266 produced by Espressif Systems in Shanghai, China. It is a low-cost module chip with a 32-bit RISC processor that is widely used in the rapid development of intelligent sensor systems and IoT-based solutions. The programming of this module is based on AT commands. The purpose of using this WiFi module is to connect with the microcontroller directly to transmit ECG signal data on the Fog user system. ESP8266 WiFi module transmits the raw ECG data towards Fog using the wireless channel to the access point. This WiFi module performs as a crucial communication bridge between the ECG signals and data over the network. It has 80% processing capabilities for network-related user systems. The ESP WiFi module is shown in Figure 2.
[image: ]
[bookmark: _Toc64136898]                                                 Figure 2: ESP8266 WiFi module[2]
[bookmark: _Toc64185350]2.3 Data Processing using Arduino Nano 3 Component
This component plays a vital role in integrating and connecting two different modules to collect, transmit, and process ECG signals. The signal ECG stream series is the reading of the voltage managed by the third component, Arduino nano 3. The central processing unit utilized in IoMT-based ECG monitoring for PVC arrhythmia (critical heartbeat) identification proposed a healthcare system that consists of an ATmega328 microchip as the microcontroller. The graphical representation of the Arduino nano 3 component is shown in Figure 3. Arduino Nano involves a 10-bit built-in analog-to-digital (ADC) converter, reducing system complexity and vital in acquiring and processing analog data signals from the AD8232 chip. Arduino Nano is also equipped with a set of communication terminals for serial data transmission. The output data is transmitted from the AD8232 module to Arduino by connecting the OUTPUT pin to the A1 analog pin. As explained, the data will be processed using an A/D converter and USART to transmit the data serially via pins 2 and 3 to the ESP8266 wi-fi module.  
[image: ]
[bookmark: _Toc64136899]                                                    Figure 3: Arduino Nano 3 component[3]
[image: ]
[bookmark: _Toc64136900]Figure 4: The schematic diagram of the Internet of Medical Things-based ECG monitoring module.
 

FAPAC Model
This study aims to design a novel solution for the detection of Premature ventricular contraction with all features of the ECG signals which may cause a serious threat to life. In general,[] usually considers the MIT-BIH arrhythmia public benchmark dataset for the identification of different types of arrhythmia, however, those recordings are already preprocessed and do not require heavy preprocessing. One of the drawbacks of using those recordings is that each ECG device has its miscellaneous noises and developing the algorithm using those recordings may fail to integrate with those devices which collect different types of noises as well as information of interest. Therefore, in this study, we have followed a detailed procedure for the efficient preprocessing of completely new recordings which are acquired by our own ECG Monitoring Module. In the first stage of the model we acquire the dataset we also consider the public benchmark dataset for the result comparison, secondly, we have modified the Pan and Tompkins algorithm for the acceptance of negative polarity changes in ECG signals, each feature extraction phase is elaborated in modified Pan and Tompkins section with the detailed workflows. Furthermore, we have tuned the new classifier Cyclic Echo state Networks which has good capability to accept real-time changes. In the end, we evaluate the performance of the proposed FAPAC model.

 
[image: ]
                                       Figure 5: The detailed workflow of the FAPAC model 

[bookmark: _Toc64142486][bookmark: _Toc64142710][bookmark: _Toc64165653][bookmark: _Toc64185292] 3.1 ECG Data Acquisition 
Our proposed ECG monitoring module was used for real-time ECG acquisition. A total of thirty ECG subjects with a 20-minute duration inclusive dataset was collected from the Cardiology Ward of Liaquat University Hospital, Jamshoro, Sindh, Pakistan. Furthermore, most of the studies in the literature used the MIT-BIH arrhythmia dataset [37] for the experimental setup. To compare studies fairly with our proposed methodology, we also consider the Public benchmark dataset. The standard division is used to divide the dataset for training and testing purposes which were presented by [38][39]. Table 1 briefly describes the classification of the MIT-BIH arrhythmia dataset. DS1 was used for training and DS2 for testing purposes. MIT-BIH consists of a total of five classes normal beat (N), supraventricular ectopic beats(S), Premature ventricular contraction beat(V), a fusion of ventricular and normal beats(F), and unknown beats(Q).
[bookmark: _Toc64137121]        Table  1:  Class distribution scheme of MIT-BIH-Arrhythmia dataset[4]

	Dataset
	Recordings
	N
	S
	V
	F
	Q
	Total Beats

	Dataset
	44
	90127    
	2745
	7008
	802
	17
	100699

	DS1
	101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230
	45880 
	909 
	3788 
	414 
	10 
	51001

	DS2
	100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213,214, 219, 221, 222, 228, 231, 232, 233, 234
	44247 
	1836 
	3220 
	388 
	7 
	49698



3.2 Modified Pan and Tompkins Algorithm
Pan and Tompkin's algorithm [32] is the conventional technique that has been previously seen for R-peak detection [7][29][41][42]. This study conducts a unique experiment to analyze premature ventricular contraction arrhythmia patterns and detect the different structures of PVC arrhythmia from ECG signals. PVC arrhythmia often occurs between the normal beat (see Figure 6). The conventional Pan and Tompkins algorithm structure is more complex and thus has more implementation steps. Moreover, the amplitude parameter of the ECG signal is an important part of the analysis in the Pan and Tompkins algorithm, and the statistical average value of the ECG signal should be removed. In this study we have modified the algorithm according to the clinical specialist's advice, for instance, to detect premature ventricular contraction heartbeat and inter-patient variability from the ECG signals accurately, the border of the QRS complex area needs to be considered carefully. A differentiation step of Pan and Tompkins helps to identify the gradient information of the QRS area. However, conventional pan and Tompkins did not return the negative polarity values. Therefore, this research aims to experiment with which modifies the pan and Tompkin’s algorithm to determine the accurate R-peak location and extract other relevant attributes for the efficient detection of PVC arrhythmia. The proposed modified Pan and Tompkins algorithm is depicted in Figure 7. The following steps of the algorithm are described as follows:  

[bookmark: _Toc64136866][image: ]Figure 6: Premature ventricular contraction beats in the ECG signal[5]
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                           Figure 7: Block diagram of modified Pan and Tompkins algorithm
3.2.1 Signal Filtering
The recorded ECG signals are often contaminated by different kinds of noises, for instance, baseline wandering, power line interference, and instability of electrode-skin contact with the body [44]. The presence of noises and artifacts makes it difficult to analyze the ECG signal properly, making it less accurate in rhythm analysis and classification. The corrupt ECG signal can result in inaccurate evaluation, and it also has a significant impact on the output of algorithms during classiﬁcation [45][46]. The filtering technique is quite challenging due to the spectral overlap between noise and information of interest in the ECG signal. This research implements Finite impulse response as a low pass and median filter to remove the ECG signals' powerline interference and baseline wandering. The median filter is known as the nonlinear digital filter, and it is efficient to implement on one-dimensional time series data. FIR filter is designed to analyze the coefficient from the ECG signals to remove powerline interference. The reason for implementing these two filters together is because the ECG signal often has baseline drift and powerline interference, each filter has different roles to eliminate the noise median used in this study to eliminate the baseline wander outliers, and the FIR filter implemented to eradicate the powerline interference from ECG signal.  
3.2.2 Differentiator
After successfully implementing the filtering methods, the quality vector of the ECG subjects was used to derivate to obtain the high slope values. A total of five points of the derivative with a transfer function and gain of 0.1 are estimated. T represents the sampling period and the output of the differentiator. The equation of differentiator equation is defined below: 
                                                                                                      (1)             
                                        (2)
 3.2.3 Squaring Function 
The purpose of this step is to make nonlinear amplification and to make all data points positive value. The output of this step is to get high-frequency components from the ECG signals by using the equation 
                                                An                                                                                           (3)       {\displaystyle H(z)=0.1(-2z^{-2}-z^{-1}+z^{1}+2z^{2})}
     
 3.2.4 Moving Average For QRS Interest Block Detection
Two event-related moving averages are used to create blocks of interest. QRS features and heartbeats are extracted using the first moving average  and second-moving average  respectively. The created blocks are then subjected to an event-related threshold to separate the blocks that contain R peaks from the ones that include noise. The QRS moving  average is used to smooth out several peaks corresponding to QRS complex intervals so that the QRS region may be highlighted and extracted:
The                       (4)                                                                                                                  
 represented as the approximate duration, scaled up to the next odd integer, where n represents the number of data points. Figure 8 describes the interesting area of QRS. Furthermore, the main motive of the one-beat moving average   is the same as like   however, it highlights the QRS beat to be utilized as a limit for the first moving average :    
                             (5)                                                                                               

[image: ]
                             Figure 8: Results of detection of the interesting area of the QRS block

The usage of   without an extra offset, diminishes the detection accuracy due to its sensitivity to a low signal-to-noise ratio (SNR). The SNR is defined as the ratio of a region's mean signal to its standard deviation[6]. This indicates that when the statistical mean of the signal increases, SNR also increases. As a consequence, an offset is introduced using the statistical mean of the signal which is represented as 
                                                                                                                                                                     (6)
Where  represented as the statistical mean of the squared ECG signal where the fraction of the  , the signal is represented by  , the threshold offset of signal is represented by  . The dynamic threshold calculates to increase the accuracy of detected QRS complexes by using the following equation.
                                                                                                                                                     (7)
The comparing of   signal with  create the interesting area of QRS. If a created area is higher than                                                                   , it is categorized as a block of interest since it contains ECG main features such as  (P, QRS, or T). At this point, an interesting area of QRS is created and represented by . The next step is to remove the noise-induced blocks. The rejection should be related to the expected block width.

3.2.5 QRS Point Thresholding
Here, the undesired blocks are rejected by using the new  threshold to reject the blocks that contain P and T waves and noise. By applying the   threshold, the accepted blocks contain only QRS complexes:
                                                                                                                                                              (8)
The QRS length in arrhythmia ECG signal durations is often varied. Thus, the condition is configured to capture both average (healthy beats) and broad QRS complex lengths (arrhythmia beats). The QRS complex is classified when the block width is higher than or equal to  . If it is not classified as a QRS complex then it considers a P-wave, T-wave, or noise. where N represents the total number of samples in the integration window's width. Hence N is the most important factor in the moving window. In general, the size of the window must be equal to the broadest QRS complex. Sometimes the peaks are too narrow, in that case, QRS and T complexes merge.
	Algorithm 1 Steps of Detection QRS area and R-peak

	1
	i. Procedure create function QRS 
ii. Input: 
iii. Output: Detect QRS area

	2
	Squaring_filt=Square ()

	3
	

	4
	

	5
	

	6
	 

	7
	

	8
	                      for n=1 to length ()   do

	9
	                            If        Then

	10
	                                           Interested area of QRS block=0.1

	20
	           Else

	21
	                     Interested area of QRS block=0

	22
	    End if

	23
	 End for

	24
	

	25
	

	26
	For k=1to number of QRSarea do

	27
	              If width (QRSarea[k])>=   Then

	28
	                                

	29
	           Else

	30
	      Search inverse peak using algorithm 2

	31
	  End if 

	32
	 End for

	33
	End Procedure



 3.2.6 R-peak Related Fiducial Markers Extraction
The proposed modified algorithm helps to extract the QRS complex duration and R-peak. These two attributes are the main, by using these features, this study extracts other relevant attributes which are helpful to identify PVC arrhythmia accurately. After the extraction of R-location from the ECG signals, the R–R interval is the most important feature of PVC arrhythmia detection. However, we compute the subsequent R–R interval based on the initiate the jth element from 1 to  and take out the difference between (jth +1) and (jth). Furthermore, the previous R-R interval is computed for the comparison of the PVC beat and normal beat. The calculation of this parameter is relatively easy. Once we have an R-wave location, we locate the previous R–R interval by using this equation  (jth-1). Furthermore, due to the frequent occurrence and different structure of PVC arrhythmic beats in the ECG signal, sometimes the value of inverse R peaks is missed to detect therefore to eliminate this issue, this study rechecks the ECG signal for clarification of . Figure 9 (a,b) represents the results of detecting the R-peaks based on the modified Pan Tompkins algorithm and the proposed algorithm for computing inverse peaks. The representation of the RR interval is described in Figure 10.
[image: ]
			          (a)					(b)
                          Figure 9 (a, b): Represents the regular and inverse R-peak detection 
[image: ]
                                    Figure 10: The representation of RR interval and QRS interested block area

3.3 Cyclic Echo State Networks 
Echo state networks (ESNs) are a form of RNN that uses a fixed RNN as a pool, has an input layer, and is sampled by the output layer. It is a new type of recurrent neural network which solves the previous issues of the traditional recurrent neural network, and it has a very low cost for the training phase [7]. Figure 11 describes the architecture of cyclic echo state networks. The basic idea is to convert the low-dimensional time input into a high-dimensional state, and then train the weights of the output connections, so that the system outputs the target information. Training is generally faster and more computationally efficient than other recurrent neural networks because only the output weights change. Reservoir Computing based architecture consists of three primary layers. The input layer helps feed the input signal to the classifier, reservoir states. The last layer is output, which allows combining the reservoir states linearly and the output of the reservoir states. The non-linear way of inputting the feature vector helps the reservoir to efficiently compute its task with a wide range of time-series data. In general, the ESN reservoir takes   time complexity for each time step and for all data it considers . Whereas  consider as input feature vector set and  represents the length of time series data.

[image: ]

[bookmark: _Toc64136891]                                     Figure 11: Architecture of proposed cyclic or ring ESN 
                                   
The detection of normal and abnormal attributes from the entire heartbeat is formalized as supervised learning which demands the binary output ECG signals, however, the time duration of classifying the ventricular heartbeat detection task is defined by   .

                                                                                      (9)
                                                                                                                          (10)
The target matrix for calculating the  in each cycle , the vector  is used. The estimation of the target is generated by . This new strategy of training improves the learning of the classifier. However, extra training cycles are required when the duration of training is increasing.  To train the network, the feedback controller is utilized and the feedback gain was decreased to 0 for 10 epochs. Table 2 defines the cyclic echo state network hyperparameter setting. Table 3 summarises the experiment details including the value of the number of epochs and 𝛽 value, where the cesn was trained for 10 epochs. Compared to linear activation functions, it performs better than nonlinearity.
                   Table 2: Hyperparameters of the cyclic echo state networks.
	CESN Hyper Parameter 
	Setting

	Input Dimension 
	13

	Reservoir dimension
	300

	Readout layer dimension
	13

	Input radius
	0.7

	Input Density
	0.7

	Reservoir density
	0.6

	Reservoir radius
	0.6

	Feedback density
	0.7

	Feedback radius
	0.6

	Reservoir spectral radius 
	0.6

	Leaking rate 
	0.1

	Normalization constant(𝛽)
	0.000001

	Bias
	0.03



      Table 3: 10-fold cross-validation experiment details of cyclic echo state networks
	Experiment no.
	𝛽
	cpe

	K=1
	1
	1

	K=2
	0.1
	1

	K=3
	1
	1

	K=4
	0.3
	2

	K=5
	0.04
	3

	K=6
	0.1
	5

	K=7
	0.02
	1

	K=8
	0.1
	2

	K=9
	0.3
	10

	K=10
	0.05
	6


            **cpe: cycle per epoch


 4. Time Complexity
This study aims to detect the ventricular heartbeat for the classification of PVC arrhythmia. It is quite challenging to calculate the classifier's actual time with the unbalanced dataset for the detection of PVC arrhythmia. Since in this case, window-based segmentation has taken place for the pattern recognition of the heartbeat, the main reason for doing this window-based segmentation is to accurately identify ECG signals' patterns for minimizing the inter-patient variability issue. The  vector has the total dimension of output classes, whereas  for the entire segmented heartbeat which is related to the PVC class and  for the rest of the other classes present in the ECG signal. The model is trained according to  and the time duration of classifying each subject is defined by

                                                                         (11)
                                                                                                                                          (12)
The  dimension of the  is represented as   which is obtained from the CESN model  and  defined as an integration interval that is adjusted according to the 10th fold cross-validation, whereas  describes the average time of classifying the heartbeats over the window-based segmented heartbeat   centered at  is computed as: 

                                                                                                                          (13)
                                                                                                       (14)
                                                                                           (15)
 
                                                                                                                                                                         (16)

[bookmark: _Toc64142524][bookmark: _Toc64142748][bookmark: _Toc64165691][bookmark: _Toc64185336]The Ridge regression technique is used to reduce the overfitting of the model; while testing, this study only involves sparse connectivity. The reason for applying sparse connectivity is to minimize the heavy calculation of the model. The total time monitored while implementing the whole FAPAC model is around 1.5s in extraction features, and 5sec is only used to identify the heartbeat. However, the total computational time monitored for training is approximately 8 minutes.
 5. Result and Discussion
A ten-fold cross-validation technique is used to validate the FAPAC model and the standard performance measures were used to analyze the performance of the purposed cyclic echo state networks. To evaluate the performance of our FAPAC model, the study used three performance parameters which are recommended by AAMI standards for evaluating the performance of the learning algorithm, which include classification accuracy (ACC), sensitivity (Se), specificity (Sp), positive predictivity(+PPV), F1 score, the area under the curve (AUC), G-mean and error rate (Er). The equations are as follows:

                                                                                                                     (17)                                     

                                                                                                                                   (18)

                                                                                                                      (19)

Where True negative (TN) = correctly classified normal record, True positive (TP)= correctly classified abnormal record, False positive (FP)= normal records classified as abnormal record, and False Negative (FN) = abnormal records classified as a normal record.
5.1 Inclusive Dataset Results 
This experiment aims to reveal performance for real-time analysis. A total of thirty ECG subjects with a 20-minute duration inclusive dataset were collected from the Cardiology Ward of Liaquat University Hospital, Jamshoro Sindh, Pakistan. Before the collection of the inclusive dataset, we have taken ethical consent from all patients. The initial criteria for analysis of critical and non-critical heartbeats were set based on the R-R interval and QRS complex using these parameters; other relevant features are extracted to distinguish the critical and non-critical subjects. The detailed description and extracted values of the prominent peak for identifying critical and non-critical subjects of the collected ECG dataset are defined in Table 4. To evaluate the classification performance of our proposed FAPAC model, the standard parameters were used.  Table 5 and Table 6 discuss the detailed results of the FAPAC model using inclusive and public datasets. However, the real names of the patient and real information about heart disease are confidential. Therefore, the table only shows the information about PVC arrhythmia beat. However, the ranges of critical and non-critical are already discussed above. Among the ten ECG subjects, three ECG recordings were noted as critical due to the frequent occurrence of PVC arrhythmia. According to our classifier, the recorded ECG subject CHL004 seems less critical than CHL007 and CHL0010. Whereas in two recordings CHL007 and CHL0010 patients have severe heart diseases, the ratio of PVC heartbeats is more in less time duration recording only. Table 5 shows the real-time collected ECG dataset's classification performance using IoMT based ECG monitoring module. Furthermore, it is also noticed that affected ECG subjects also have inter-patient variability issues, which are successfully classified using our proposed classification technique and achieved positive predictivity and sensitivity around 98.89% and 98.87%, respectively. Whereas, the error rate is identified using the error rate formula, which is around 0.0018%.


[bookmark: _Toc64137128]           Table 4: Description and Feature Extraction results of the real-time collected ECG dataset.
	[bookmark: _Toc64137130]ECG Subject
	Gender
	age
	R-R Interval
	QRS Interval
	Condition Analyze

	CHL001
	Male
	43
	0.874
	0.092
	Non-critical

	CHL002
	Male
	25
	0.746
	0.086
	Non-critical

	CHL003
	Male
	32
	0.987
	0.089
	Non-critical

	CHL004
	Male
	65
	1.057
	0.233
	Critical

	CHL005
	Male
	52
	0.103
	0.096
	Non-critical

	CHL006
	Female
	60
	0.875
	0.087
	Non-critical

	CHL007
	Male
	48
	0.518
	0.165
	Critical

	CHL008
	Male
	23
	0.749
	0.085
	Non-critical

	CHL009
	Male
	55
	0.932
	0.099
	Non-critical

	CHL0010
	Female
	50
	0.47
	0.172
	Critical

	CHL0011
	Male
	35
	1.03
	0.354
	Critical

	CHL0012
	Male
	42
	1.3
	0.146
	Critical

	CHL0013
	Female
	40
	1.5
	0.162
	Critical

	CHL0014
	Male
	47
	0.95
	0.080
	Non-critical

	CHL0015
	Male
	50
	1.01
	0.154
	Critical

	CHL0016
	Male
	39
	0.98
	0.176
	Critical

	CHL0017
	Female
	40
	0.90
	0.090
	Non-critical

	CHL0018
	Female
	52
	0.97
	0.192
	Critical

	CHL0019
	Male
	57
	1.02
	0.183
	Critical

	CHL0020
	Female
	37
	0.75
	0.082
	Non-critical

	CHL0021
	Male
	39
	0.69
	0.085
	Non-critical

	CHL0022
	Female
	40
	0.80
	0.087
	Non-critical

	CHL0023
	Male
	55
	1.4
	0.133
	Critical

	CHL0024
	Female
	63
	0.25
	0.153
	Critical

	CHL0025
	Male
	70
	0.59
	0.124
	Critical

	CHL0026
	Female
	41
	0.86
	0.090
	Non-critical

	CHL0027
	Female
	45
	0.70
	0.092
	Non-critical

	CHL0028
	Female
	65
	0.16
	0.139
	Critical

	CHL0029
	Female
	62
	0.13
	0.163
	Critical

	CHL0030
	Male
	69
	0.17
	0.191
	Critical



          Table 5:The classification performance of real-time collected ECG dataset     
	Rec no
	Total Beats
	PVC Beats
	FP
	FN
	+P
	Se (%)
	Der(%)

	CHL001
	1547
	0
	1
	2
	99.93
	99.87
	0.001

	CHL002
	1493
	0
	2
	2
	99.86
	99.86
	0.002

	CHL003
	1494
	0
	1
	1
	99.93
	99.93
	0.001

	CHL004
	1524
	105
	1
	2
	99.93
	99.86
	0.001

	CHL005
	1592
	0
	2
	3
	99.87
	99.81
	0.003

	CHL006
	1511
	0
	1
	3
	99.93
	99.80
	0.002

	CHL007
	1561
	200
	5
	10
	99.68
	99.36
	0.009

	CHL008
	1459
	0
	3
	5
	100
	99.65
	0.005

	CHL009
	1505
	0
	0
	3
	100
	99.80
	0.001

	CHL0010
	1487
	130
	3
	5
	99.79
	99.66
	0.005

	CHL0011
	1470
	20
	1
	1
	99.93
	99.93
	0.001

	CHL0012
	1495
	200
	4
	2
	99.73
	99.86
	0.004

	CHL0013
	1444
	5
	0
	0
	99.65
	100
	0

	CHL0014
	1416
	0
	1
	0
	100
	100
	0.0007

	CHL0015
	1442
	60
	0
	3
	100
	99.79
	0.002

	CHL0016
	1510
	35
	2
	0
	99.86
	100
	0.001

	CHL0017
	1500
	0
	0
	0
	100
	100
	0

	CHL0018
	1519
	28
	1
	2
	99.93
	99.86
	0.001

	CHL0019
	1518
	91
	2
	0
	99.86
	100
	0.001

	CHL0020
	1542
	0
	3
	0
	99.80
	100
	0.001

	CHL0021
	1550
	0
	0
	0
	100
	100
	0

	CHL0022
	1589
	0
	0
	0
	100
	100
	0

	CHL0023
	1654
	108
	0
	1
	100
	99.93
	0.0006

	CHL0024
	1687
	20
	2
	0
	99.88
	100
	0.0011

	CHL0025
	1699
	75
	3
	1
	99.82
	99.94
	0.002

	CHL0026
	1634
	0
	1
	2
	99.93
	99.87
	0.001

	CHL0027
	1564
	0
	0
	0
	100
	100
	0

	CHL0028
	1582
	150
	2
	1
	99.87
	99.93
	0.001

	CHL0029
	1587
	300
	4
	1
	99.74
	99.93
	0.003

	CHL0030
	1578
	550
	2
	5
	99.87
	99.68
	0.004

	Total/Avg
	46153
	       2077
	  47
	   55
	    99.89
	     99.87
	0.0018



6. Comparison with State-of-the-art Methods
The performance of the proposed FAPAC model using the public benchmark dataset is described in Table 6. To promote fair comparison we have chosen a public benchmark dataset. In total 100694 beats were identified of which 93746 were normal, 6933 were successfully identified as PVC and 15 beats were missing beats. Moreover, our proposed study successfully achieved the highest performance in terms of sensitivity, and accuracy which are around 99.98% and 99.97% respectively. The detection error rate was observed at 0.025 which is very less. Thus, according to the result analysis, the FAPAC model is also capable to support other different types of recordings for the identification of abnormalities from ECG signals which support the same features of ECG signals. Table 7 highlights the comparison of the proposed model with an existing technique to classify PVC arrhythmia from ECG signals using supervised learning and unsupervised learning technique.
[bookmark: _Toc64137126]Table 6: Results of ventricular heartbeat classification using MIT-BIH-Arrhythmia full dataset.
	Records
	Beats 
	N
	PVC
	MB
	Se%
	ACC%
	DER%

	100
	2272
	2271
	1
	0
	100
	100
	0

	101
	1862
	1862
	0
	0
	100
	100
	0

	103
	2084
	2084
	0
	0
	100
	100
	0

	105
	2570
	40
	2530
	0
	100
	100
	0

	106
	2026
	1505
	519
	2
	99.90
	99.80
	0.19

	108
	1762
	17
	1745
	0
	100
	100
	0

	109
	2532
	2495
	37
	0
	100
	100
	0

	111
	2122
	2121
	1
	0
	100
	100
	0

	112
	2538
	2538
	0
	0
	100
	100
	0

	113
	1794
	1794
	0
	0
	100
	100
	0

	114
	1878
	1835
	43
	0
	100
	100
	0

	115
	1952
	1952
	0
	0
	100
	100
	0

	116
	2412
	2302
	107
	3
	99.91
	99.83
	0.16

	117
	1534
	1534
	0
	0
	100
	100
	0

	118
	2276
	2260
	16
	0
	100
	100
	0

	119
	1986
	1541
	443
	2
	99.89
	99.79
	0.20

	121
	1862
	1861
	1
	0
	100
	100
	0

	122
	2476
	2476
	0
	0
	100
	100
	0

	123
	1516
	1514
	2
	0
	100
	100
	0

	124
	1618
	1571
	47
	0
	100
	100
	0

	200
	2600
	1772
	826
	2
	99.92
	99.84
	0.15

	201
	1962
	1764
	198
	0
	100
	100
	0

	202
	2136
	2118
	18
	0
	100
	100
	0

	203
	2978
	2534
	444
	0
	100
	100
	0

	205
	2656
	2586
	70
	0
	100
	100
	0

	207
	1860
	1649
	209
	2
	99.89
	99.89
	0.10

	208
	2954
	1963
	991
	0
	100
	100
	0

	209
	3004
	3003
	1
	0
	100
	100
	0

	210
	2650
	2455
	195
	0
	100
	100
	0

	212
	2748
	2748
	0
	0
	100
	100
	0

	213
	3250
	3030
	219
	1
	99.93
	99.93
	0.06

	214
	2262
	2006
	256
	0
	100
	100
	0

	215
	3362
	3198
	164
	0
	100
	100
	0

	219
	2154
	2091
	63
	0
	100
	100
	0

	220
	2046
	2046
	0
	0
	100
	100
	0

	221
	2426
	2030
	396
	0
	100
	100
	0

	222
	2482
	2482
	0
	0
	100
	100
	0

	223
	2604
	2132
	472
	0
	100
	100
	0

	228
	2052
	1692
	360
	0
	100
	100
	0

	230
	2256
	2255
	1
	0
	100
	100
	0

	231
	1570
	1568
	2
	0
	100
	100
	0

	232
	1780
	1779
	0
	1
	100
	99.88
	0.11

	233
	3078
	2248
	828
	2
	99.93
	99.87
	0.13

	234
	2752
	2749
	3
	0
	100
	100
	0

	Avg/Total
	100694
	93746
	6933
	15
	99.98
	99.97
	0.025


[bookmark: _Toc64137127]                      
                            Table 7: Comparison analysis of the proposed work with the conventional technique
	Studies
	Dataset
	Method
	Acc(%)
	Sen(%)
	Sp(%)
	PPV(%)

	[8]
	MIT-BIH-ARR (DS2)
	Ensemble ESN
	98.6
	84.4
	95.8
	99.7

	[9]
	MIT-BIH-ARR (DS2)
	Morse Theory
	92.73
	73.35
	96.70
	88.01

	[10]
	MIT-BIH-ARR (DS2)
	RF
	96.38
	97.88
	97.56
	95.46

	[11]	MIT-BIH-ARR (DS2)
	SVM and KNN
	99.11
	82.21
	85.88
	85.36

	Proposed
	MIT-BIH-ARR(DS2)
	FAPAC
	99.97
	99.99
	99.9
	99.98




7. Conclusion
A novel, fully automatic model for PVC arrhythmia classification is developed. This model can assist in pre-processing extracted features and classifying the abnormality in a real-time manner. The proposed model analyzes ECG signals' morphological and temporal features using the modified pan and Tompkins’s algorithm, and Pearson correlation coefficient. The proposed unique feature extraction technique' performance is evaluated using common parameters such as sensitivity, accuracy, and detection error rate. This research strongly encourages private datasets for the experiment because public datasets are already pre-processed and used by many studies for their experiments. This study also compares our FAPAC model using the public benchmark dataset. We observed that our proposed fully automatic model has overwhelmed the performance of other state-of-the-art studies. The future work of our research would be to analyze the different types of arrhythmias and implement this FAPAC model in the Fog network for remote monitoring. Considering federated learning for remote monitoring of patients also plays a vital role in its being implemented for heart disease patients. 
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