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This paper presents a novel approach to conserving sensor communication and sensing energy while extending the sensor network
lifetime through sensor reading prediction. The proposed model generates readings, in each time slot, for a randomly selected subset
of sensors that enter sleep mode. The high accuracy of the generated readings enables frequent and prolonged sleeping periods.
Moreover, the proposed approach does not rely on any scheduling strategy, thus relaxing assumptions made in many existing works
in the literature. Our focus is on event-based sensing, which poses more signi�cant challenges and has received limited coverage in
the current literature. Although events may appear independent, they often exhibit temporal and spatial correlations. Our proposed
solution, TG-SPRED (Temporal Graph Sensor Prediction), captures these correlations and predicts the values of sleeping sensors. It
leverages gated recurrent units (GRUs) to learn temporal features from sensing data and utilizes a graph convolutional network (GCN)
to capture spatial features. The sensor network structure is represented as a graph, where weights are proportional to the distances
between sensors. Furthermore, the temporal graph network is trained adversarially, employing a "critic" network that enhances the
generation accuracy. This critic network uses the Wasserstein distance between real and generated data to estimate the performance
of the generator. To evaluate the suggested approach, we employed four metrics and compared them with six state-of-the-art solutions:
F-score, average energy consumption, average lifetime, and run time. The results demonstrate that the proposed method outperforms
all other solutions regarding accuracy and energy savings.
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1 INTRODUCTION

Researchers, network designers, developers, and hardware manufacturers have all expressed concerns about increasing
the network lifetime of smart devices in Internet of Things (IoT) applications. Various technologies such as Zigbee and
Bluetooth Low Energy (BLE) for local area networks, and Lora & Lorawan and Sigfox for LPWAN (Low Power Wide
Area Network) have addressed energy-e�cient connectivity in IoT, catering to di�erent ranges. Numerous research
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e�orts have been dedicated to designing power-management policies and protocols, including routing protocols [12],
medium access protocols [13], optimal relay node placement [11], data aggregation [4], broadcasting protocols [19],
among others. Additionally, hardware-level proposals have emerged to incorporate wireless charging and energy
harvesting capabilities into IoT devices [10].

However, these technologies may not ful�ll the requirements of many applications. For instance, LoRa conserves
energy through low-duty cycling and parameter adjustment [24], but this approach introduces latency, making it
unsuitable for real-time applications, particularly in event-driven settings where data transmission occurs irregularly.
This research work aims to maximize network lifetime by leveraging temporal and spatial features of sensory data while
meeting the demands of IoT applications. The objective is to save sensor energy by predicting their values without
compromising event detection accuracy. While many applications often require optimal sensing coverage, “continuous”
monitoring of the entire �eld is rarely necessary, especially for event detection. Events typically occur rapidly and can
be sensed simultaneously or in a time series by multiple sensors. If one sensor misses an event, others can detect it.
Moreover, the positioning of sensors plays a role, as overlapping sensing �elds can result in multiple sensors detecting
the same event. By employing a model capable of learning spatial and temporal data correlations, the values of the
sensors can be predicted, thereby reducing energy consumption in sensing and transmission.

Recently, accurate sensor reading prediction has gained attention in research. In the existing literature, two approaches
have been proposed. The �rst approach involves predicting future values when all sensors are turned “o�” based on their
previous readings, leveraging temporal correlations among sensors with similar states simultaneously[23]. On the other
hand, the second approach focuses on selectively activating a portion of the network and utilizing spatial correlations
to infer the values of the sleeping sensors[9]. At the data collector level, which depending on the architecture, can be
the cloud, a base station, or an edge device, we propose a model that generates the missing data of sleeping sensors.
This model employs Generative Adversarial Networks (GANs), which have already demonstrated their e�ectiveness
in data imputation tasks. GANs provide a robust framework for generating synthetic data that closely resemble the
characteristics of the original sensor readings. By leveraging the capabilities of GANs, our model aims to accurately
predict the values of the sleeping sensors, thereby completing the missing data and enabling comprehensive analysis
and processing of the sensor network data. GANs work based on a game-theoretic situation where two deep learning
models -the generator and the discriminator/critic - compete. The discriminator’s objective is to distinguish actual
data from the generated data, while the generator strives to generate missing data samples that closely resemble the
real data distribution. However, these models are limited to learning only similarities between data aspects, failing to
comprehend the problem’s structure. To overcome this limitation, we propose utilizing deep graph neural networks
(GNN) to model the generator. This technique extends deep learning to non-Euclidean domains, such as graphs, which
characterize sensor networks. The generator is trained semi-supervised, with network visibility restricted to readings
from active nodes. The output of the GNN is then passed to a gated recurrent unit (GRUs), a variant of recurrent neural
networks, to capture temporal features.

TG-SPRED’s main contributions can be summarized as follows: 1) It conserves sensor communication and sensing
energy in event-based applications by generating (predicting) the reading of sleeping sensors. The precision enables
extended and frequent inactivity (sleep) periods and, thus, energy preservation. This is achieved through contributions
2-3 and con�rmed in 4. 2) It learns temporal correlations in sensorial data and spatial structural information from
a weighted undirected graph that re�ects the coverage overlap between nodes. This is achieved by the generator
modeled as a graph convolutional network (GCN) in GRU-based architecture. 3) It trains the generator against a critic
network that learns to identify imputed data from actual data, thus speeding up training and enhancing accuracy. 4)The
Manuscript submitted to ACM
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comparison with six state-of-the-art solutions using a real data set and four metrics con�rms a clear improvement of
the proposed model.

The remainder of the paper is presented as follows. Sec.2 presents the related work. Sec.3 explains the main
components of the proposed framework. Sec.4 gives the experimental analysis part, where Sec.5 concludes the paper.

2 RELATEDWORK

Low-Power Wide Area Network (LPWAN) solutions gained attention among industry and researchers due to their
promise of boosting node lifetime in IoT networks. LoRa technology [28] promises kilometers of communication range,
years of battery life, interference resistance, and many device simultaneous transmissions. However, Liando et al.
[24] demonstrate that the claimed performance is contingent on �ne-tuning the settings and that a long battery life
necessitates a very low duty-cycling rate. Predicting sensory data is one intriguing solution, where machine learning-
based approaches have been explored for generating sensor values. This section reviews works on predicting missing
IoT values and solutions that explore spatiotemporal learning using graph convolution neural networks.

2.1 Prediction-based Solutions for Missing IoT Values

Diaz et al. [8] studied the possibility of forecasting data in sensors, and the results indicated that this approach reduces
transmissions without compromising data quality. There are two types of prediction-based sensor energy-saving
techniques: 1) “single prediction schemes” and 2) “dual prediction schemes.” One network node maintains the prediction
model and generates sensor values in the �rst category. The central node and sensor nodes both contribute to the
prediction process in the second category. The principal limit of the second category is the sensor nodes’ restricted
capacity, where the energy used in calculations is likely to outweigh the energy saved by lowering transmissions.

Consequently, this paper targets solutions of the �rst category and focuses on single prediction schemes that allow
energy savings in sensing and communication operations based on a central entity. Silvestri et al. [29] infer sensor
readings using a Gaussian distribution. First, they presented strategies for selecting a collection of awake monitoring
sensors. The values of the sleeping sensors are then deduced from the values of the awake sensors using the Gaussian
joint distribution. Laidi et al. [23] described a new method that allows sensors to be turned o� during periods when their
data can be predicted, saving energy that would otherwise be used for sensing and transmission. For future predictions,
the suggested method employs an extended short-term memory model that learns spatiotemporal patterns in sequences
of sensory input. The sensors and the long short-term memory model collaboratively monitored the environment.
They are guided by a reinforcement learning agent that makes dynamic decisions about whether to use the long
short-term memory prediction or physical sensing to save energy while maintaining prediction accuracy. In the context
of missing data imputation, Yoon et al. [34] investigated the application of a generative adversarial network at the data
collector level for missing data imputation. However, their method does not learn from the structural information in
data, making it inappropriate for learning spatial and temporal relationships. This may cause the generator’s training
to be delayed and its generation accuracy to su�er. On the other hand, Spinelli et al. [30] presented data as a graph
structure automatically generated by measuring the distance between data features. A GCN network processes the
generated graph to generate missing data. However, the solution creates a graph node for each data entry, which results
in a big graph for large datasets. Such graphs are impossible to process on data collectors with limited processing
capabilities. Our work exploits node locations and sensing coverage to build the graph structure. Each graph node
represents a sensor, which is computationally more optimal.
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2.2 Spatiotemporal Graph Convolution Neural Network

Liu et al. [25] proposed the Social spatiotemporal Graph Convolutional Neural Network (Social-STGCNN), which models
interactions as a graph and eliminates the requirement for aggregation methods. A kernel function was proposed to
integrate the social interactions between pedestrians within the adjacency matrix. To replace the aggregation layers, the
pedestrians’ paths are modeled as a spatiotemporal graph. The graph edges represent the pedestrians’ social interactions.
A weighted adjacency matrix is also created, in which the kernel function quantitatively measures pedestrians’ in�uence.
Khodayar et al. [20] provided a graph deep learning model for learning powerful spatiotemporal features from wind
speed and wind direction data in surrounding wind farms. An undirected network models the underlying wind
farms, with each node representing a wind station. A long-short-term memory network extracts temporal information
for each node. Inspired by the localized �rst-order approximation of spectral graph convolutions, a scalable graph
convolutional deep learning architecture used the recovered temporal features to anticipate the wind-speed time series
of the entire network nodes. At each wind station, the proposed network captures both spatial and deep temporal
aspects of the wind data. Ali et al. [2] provided a graph deep learning model for learning powerful spatiotemporal
features from wind speed and wind direction data in surrounding wind farms. An undirected network models the
underlying wind farms, with each node representing a wind station. A long-short-term memory network extracts
temporal information for each node. Inspired by the localized �rst-order approximation of spectral graph convolutions,
a scalable graph convolutional deep learning architecture used the recovered temporal features to anticipate the
wind-speed time series of the entire network nodes. Deng et al. [7] proposed a spatiotemporal graph convolutional
adversarial network (STGAN). A spatiotemporal generator is created to anticipate normal tra�c dynamics, and a
spatiotemporal discriminator is created to determine whether an input sequence is real or fake. In both the spatial and
temporal dimensions, there are strong correlations between surrounding data points. As a result, a new module that
used the graph convolutional gated recurrent unit (GCGRU) is presented to assist the generator and discriminator in
learning the spatiotemporal aspects of tra�c dynamics and anomalies, respectively. The generator and discriminator
can be employed as detectors independently after adversarial training, with the generator modeling regular tra�c
dynamics patterns and the discriminator providing detection criteria that vary with spatiotemporal variables. Wang et
al. [31] investigated the novel topic of multivariate correlation-aware multiscale tra�c �ow prediction and proposed
the MC-STGCN, a feature correlation-aware spatiotemporal graph convolutional network. In particular, given a road
graph, a coarse-grained road graph is designed based on topology similarity and tra�c �ow similarity among the nodes.
Then, a cross-scale spatial-temporal feature learning and fusion technique deals with �ne and coarse-grained tra�c
data. A cross-scale graph convolution neural network is presented in the spatial domain to learn and fuse multi-scale
spatial variables concurrently. A cross-scale temporal network of hierarchical attention is created to capture intra and
inter-scale temporal correlations in the temporal domain.

2.3 Discussion

To our knowledge, no work in the literature considers the spatiotemporal information for predicting missing IoT values
to save sensor energy. Motivated by the success of the hybrid combination of GCNs and recurrent neural networks in
handling spatiotemporal data, we propose a hybrid GCN and GRU model to learn spatiotemporal dependencies between
sensor readings. Besides, we train the model adversarially to endorse its data generation performance.
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3 TG-SPRED FRAMEWORK

3.1 Overview and Problem Formulation

We suppose an IoT solution that comprises # event-based sensors (e.g., motion sensors). Following a star topology, the
latter sends event data to a data collector (base station, edge, or cloud). In IoT architectures, the data collector commonly
has higher computation and energy resources than the sensors, usually powered using cell batteries. The goal of the
solution is to reduce the sensors’ working time and, thus, the energy consumed for sensing and communication. At
each time step, a part of the network is randomly turned o� to save sensor energy. The ratio of sleeping sensors is a
parameter that controls the number of sleeping sensors in each time slot. A higher value means more extended sleeping
periods (homogeneously for all sensors), which reduces energy but causes more missing sensor readings. Therefore, we
propose TG-SPRED model that runs on the data collector level and generates data that replaces the missing values. Our
solution enhances real-time responsiveness in IoT environments by employing a central unit that directly predicts the
values of dormant sensors, e�ectively bypassing the latency typically introduced by traditional duty cycling strategies.
Our predictive model is powered by advanced algorithms capable of accurate forecasts, minimizing the risk of false
negatives that could occur due to sensor inactivity. As a result, the integrity of real-time monitoring is preserved
without compromising energy conservation goals often associated with sensor duty cycling. This predictive approach
ensures a seamless data stream, avoiding the common issue of missing critical events during sensor inactivity periods.
Consequently, our system delivers an uninterrupted monitoring experience, crucial for applications where immediate
detection and action are imperative, such as security and safety monitoring in smart buildings. This method not only
maintains continuous system vigilance but also aligns with energy e�ciency objectives, striking a balance between
operational immediacy and power management.

TG-SPRED comprises two neural networks: 1) a spatiotemporal generator and 2) an adversarial critic. The generator
is a temporal graph network that learns spatial and temporal features in sensor readings and generates the sleeping
sensor values. It combines a graph network that captures spatial features and a recurrent network that learns temporal
ones. On the other hand, the critic’s role is limited to the training phase by sending feedback about generation accuracy,
which challenges the generator to enhance its performance.

The sensors are organized as a weighted graph with # nodes and an adjacency matrix, 2 R#⇥# . -C 2 {0, 1}#⇥3

is the binary data for time step C collected by the sensor nodes, where 1 represents the presence of an event. 3 is the
number of node attributes. It may represent multiple readings for a sensor at the time C , e.g., a node with multiple
sensing boards, or the length of the historical time series, i.e., each time step is presented as a window of 3 readings.
The binary data is either collected by binary sensors (e.g., motion sensors) or processed data from analog sensors,
e.g., increasing temperature beyond a threshold can indicate a �re event. This paper makes abstraction of the signal
processing phase, and data is deemed preprocessed and presented in a binary form. Finally, the overall network is
presented as a sequence of ) graphs, GC = h-C ,, i, where ) is the number of time sequences. The construction of the
weighted adjacency matrix is discussed in Sec.3.2.

The missing data is captured by a binary mask,"C 2 {0, 1}#⇥3 , where each row<8
C indicates the presence or absence

of the reading in G8C :<
8, 9
C = 0 if G8, 9C is missing and needs to be generated, the presence of the real sensor reading is

indicated by<8, 9
C = 1. Fig.1 shows an example of the network for # = 5, 3 = 1, and ) = 3.

Finally, the solution yields to generating .C 2 {0, 1}#⇥3 , which represents the combination of the real and generated
data as shown in Eq.(1):

.C = "C � -C +"C � e.C , (1)
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Fig. 1. Network representation.

where e.C 2 {0, 1}#⇥3 is the output of the TG-SPRED model, and � is the Hadamard product. The goal is learning
a mapping function 5 that learns spatial dependencies from, and temporal dependencies from ) previous time
sequences -C ,-C�2, · · · ,-C�)�1, as shown in Eq.(2). When deployed, the trained model uses data from the ) � 1
previously imputed time steps. The Architecture of the TG-SPRED network is detailed in Sec.3.3.

b.C = 5 ((-C�)�1, · · · ,-C�1,-C ), ("C�)�1, · · · ,"C�1,"C ),, ) (2)

3.2 Graph Construction

The sensor network is considered a weighted undirected graph of distributed interconnected sensors. Assume a graph
GC = h-C ,, i represented by a pair, (V, E). V is a set of # vertices de�ning the network topology, and E ✓ V ⇥V is
the set of edges representing the di�erent connections between two di�erent sensors. (V, E) are not variable over time,
since sensor locations do not change. For each pair of sensors (8, 9), we determine the coverage value used to build
the edges. Thus, (8, 9) 2 E if the sensor 9 is covered by the sensing range of the sensor 8 , and vice-versa. We suppose
all sensors have an equal sensing range; therefore, the graph is undirected. We de�ne the weighted adjacency matrix
, 2 R#⇥# for the edge weights. Each value in, represents the coverage value of two sensors and is proportional to
the %8 9 probability that 9 covers 8 . It is given by:,8 9 = %8 9 = 4�V38 9 , where 38 9 is the Euclidean distance between E8 and
E 9 , V 2 [0, 1] is the sensing capacity decay factor. It describes how fast the sensing decays with distance and depends
on the sensor and the environment. Notice,8 9 = 0 if there is no edge between 8 and 9 , and,88 = 1 88 .
Manuscript submitted to ACM
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Fig. 2. Overview of the TG-SPRED framework.

3.3 Spatiotemporal Sensor Data Generation

This section presents the proposed model, the Temporal Graph for Sensorial Data PREDiction (TG-SPRED), a spa-
tiotemporal graph-based solution to elongate the lifetime of event-based IoT applications. Given a sequence of readings
- [C �) ; C], the role of the model is to generate binary sensor readings at a time C to restore the missing readings of
inactive sensors at this time step. The inactivity of the sensors is depicted by a mask" [C �) ; C]. The solution combines
temporal and spatial dimensions to approach the real data distribution. To accelerate and enhance the learning process,
we introduce adversarial training. The process is summarized in Fig.3. The TG-SPRED model is presented herein,
followed by the adversarial training.

3.3.1 Temporal Graph Convolution Network.

Spatial Dependencies. Classical deep learning algorithms fail to catch spatial dependencies in complex and non-
Euclidean spaces like graphs. Therefore, Graph Neural Networks (GNN)[33] emerged as a class of methods that explicitly
use the structural relationships between graph entities. Part of these techniques are Graph Convolutional Networks
(GCN), which inspire the capacity of traditional Convolutional Neural Networks (CNN) to learn local spatial features in
images and extend it to graphs. In this paper, we adopt the approach proposed by [22] to temporal and missing data. A
traditional GCN layer propagation rule is de�ned as :

� (;+1) = q (⇡̃� 1
2,̃ ⇡̃�

1
2� (; )l (; ) ), (3)

where q (.) is a non-linear activation function, � (; ) is the output of layer ; , and l (; ) is a trainable weight matrix
for ; . ,̃ =, + �# is an adjacency matrix, with added self-loops using the identity matrix �# . ⇡̃88 =

Õ
92N(8 ) ,̃8 9

is the diagonal node degree. ⇡̃�
1
2,̃ ⇡̃�

1
2 is a symmetric normalization of ,̃ . ⇡̃�

1
2,̃ ⇡̃�

1
2 is calculated during the

pre-processing.
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Fig. 3. TG-SPRED Network structure.

We de�ne the GCN model as follows:

5 C⌧⇠# (-C ,"C ,, ) = f ( b,'4!* ( b, (-C � "C )l0)l1), (4)

where 5 C⌧⇠# (-C ,"C ,, ) 2 R#⇥3 is the output of the model. -C ,, , and"C are, respectively, features, adjacency, and
mask matrices as de�ned in Sec. 3.1, and � is the Hadamard product. b, and ⇡88 are calculated in the prepossessing
as, b, = ⇡�

1
2,⇡�

1
2 , ⇡88 =

Õ
92N(8 ),8 9 . Note that we do not add the identity matrix to, since the adjacency matrix

already contains self-loops, as shown in Sec.3.2. l0 2 R3⇥� is the �rst weight matrix (input to hidden), l1 2 R�⇥3 is
the hidden to output weight matrix, 3 is the size of the input and output units and � the size of the hidden unit. Finally,
ReLU(.) and f (.), are the REcti�ed Linear Unit and sigmoid activation layer, respectively. The GCN model is repeated )
times for each element in the time sequence.

Temporal Dependencies. We de�ne a recurrent neural network (RNN) to catch temporal dependencies in the sequence
of spatial embeddings generated by the GCN network. RNNs are the most used deep learning models for sequential data.
However, because traditional RNNs su�er from gradient vanishing or explosion, they are limited to catching long-term
dependencies. Therefore, variants such as LSTM[18] and GRU[6], which resolve this problem, are currently the most
used. While LSTM and GRU have equal performances at multiple tasks, the structure of the GRU is less complex and,
hence, faster to train; therefore, GRU is the model used in this work.

In our approach, the GRU cell receives as input 5 C⌧⇠# , i.e., the output of the GCN model at the time C , and the hidden
state from the previous time step ⌘C�1. It then uses its reset, update, and new gates to calculate the new hidden state ⌘C .
Eq. (5) shows the operations in di�erent gates.

DC = f (lD [5 C⌧⇠# (-C ,"C ,, ),⌘C�1] + 1D )

AC = f (lA [5 C⌧⇠# (-C ,"C ,, ),⌘C�1] + 1A )

2C = C0=⌘(l2 [5 C⌧⇠# (-C ,"C ,, ), (AC � ⌘C�1)] + 12 )

⌘C = DC � ⌘C�1 + (1 � DC ) � 2C

(5)
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where, ⌘C 2 R#⇥; , is the hidden state at the time C and the output of the model, 5 C⌧⇠# is the input at the time C , and the
output of the GCN using Eq.4, ⌘ (C�1) represents the hidden state of the layer at the time C � 1 (when C > 1) or the initial
hidden state at the time 0, and AC , DC , 2C are the reset, update, and new gates, respectively. f is the sigmoid function, � is
the Hadamard product.

Finally, the hidden state is passed to a linear layer and then to a sigmoid function, as shown in Eq.(6). l; 2 R;⇥3 and
1; 2 R3 are learnable weight matrix and bias vector, respectively. We use a sigmoid function in the output layer to
generate the matrix b.C 2 (0, 1)#⇥3 , which is rounded to a binary matrix e.C 2 {0, 1}#⇥3 .

b.C = f (⌘Cl; + 1; ) (6)

Loss function. In this work, we train the model in a semi-supervised fashion, i.e., in each time slot, only the readings
of active sensors are used as labels. Although it is possible to dedicate a training phase where the complete set of sensor
readings is collected by keeping all the sensors active, the chosen approach reduces energy consumption. It extends the
network’s lifetime since collecting data for training may expand through several weeks. It also proves that the model
approaches the real data distribution and is not over�tting.

Therefore, we compare the generated b.C to the values of active sensors in -C , i.e.,<
8 9
C = 1. Since the generated data

is binary, we use the binary cross-entropy loss. Hence, the loss function used to train the TG-SPRED model is presented
as follows:

L = � 1
)

C’
g=C�)�1

#’
8=1

3’
9=1

[G8 9g <8 9
g log ~̂8 9g + (1 � G8 9g <8 9

g ) log(1 � ~̂8 9g )] (7)

3.3.2 Adversarial Training with W-GAN. The goal of the TG-SPRED framework is to use the spatial and temporal
features to learn a function that approaches the distribution of sensor readings and, therefore, accurately generates
the missing data. One family of neural networks that has proven its e�ciency in approaching data distributions for
generation is Generative Adversarial Networks (GAN)[14]. Following Wasserstein GAN (W-GAN) approach[3], we
train a deep neural network called “critic” to provide feedback about the performance of the temporal-GCN. We then
add the adversarial loss to the temporal-GCN loss (de�ned in Eq.(7)).

During the training, the critic learns a function 2 to compute theWasserstein distance between the sensor readings
of active sensors in -C and the generated vector b.C . We note these distributions ?A and ?6 , respectively. The optimal
function maximizes the distance between ?A and ?6 . Thus, it increases the critic’s capacity to di�erentiate real and
generated data and challenges the temporal-GCN to approach -C better. Accordingly, the W-GAN loss function is
de�ned as:

L2 = sup
2
E

G⇠?A
[2 (G)] � E

G̃⇠?6
[2 (G̃)] (8)

where G and G̃ are sampled from ?A and ?6 , respectively. sup corresponds to the supremum (the least upper bound) of all
possible functions. 2 a 1-Lipschitz continuous function: everywhere continuously di�erentiable and its gradient’s norm
is at most 1 everywhere, i.e., 2 satis�es |2 (G) � 2 (~) |  |G � ~ | ,8G,8~. 2 is learned during the training. To guarantee
that 2 is a 1-Lipschitz function, Gulrajani et al. [16] added a gradient penalty by calculating the gradient’s norm for
random samples to enforce the norm to be is at most 1 everywhere, Ĝ . Implicitly, the Wasserstein loss with gradient
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penalty is calculated as:

L26? = E
G̃⇠?6

[2 (G̃)] � E
G⇠?A

[2 (G)] + _EĜ⇠?Ĝ [(krĜ2 (Ĝ)k � 1)
2]|                            {z                            }

gradient’s penalty

(9)

where Ĝ ⇠ ?Ĝ . ?Ĝ is sampled uniformly along straight lines between pairs of points sampled from ?6 and ?A i.e.,
Ĝ = nG + (1 � n)G̃ , where n ⇠ * [0, 1]. _ is the gradient penalty coe�cient, generally, takes the value 10[16].

While the critic is trained to minimize the loss in Eq.(9), the generator is trained to minimize �EG̃⇠?6 [2 (G̃)]. Eq.(10)
shows the combination of the adversarial training loss with the temporal-GCN loss (Eq.(7)). We include the hyperpa-
rameter Z to balance between the two losses.

L0 = L � Z E
G̃⇠?6

[2 (G̃)] (10)

Algorithm 1 describes the training process of the TG-SPRED model. For every time step C in ) , both the generator
and critic are trained. As in [3, 16], the critic is trained =2A8C82 = 5 times for each generator’s iteration. We compute
E

G⇠?A
[2 (G)] and E

G̃⇠?6
[2 (G̃)] by sampling a random mini-batch G from active sensor readings, i.e., -C � "C , and G̃ its

corresponding generated mini-batch from b.C (Eq.(6)). G and G̃ are fed to the critic, and the expectations are approximated
using the critic’s output averages. The critic weights \ are updated with L26? (Eq.(9)) and the generator weights,
are updated using L0 (Eq.(10)). For the gradient optimization of the two networks, we use the Adam optimization
algorithm[21], which is more robust against the gradient vanishing problem.

4 PERFORMANCE EVALUATION

Context and Dataset. Our employed MERLSense dataset [27] consists of a meticulous collection of over 50 million
motion sensor events from two �oors of a workspace building, recorded with millisecond granularity over two years,
noting the timestamp and sensor ID for each event. From this, we constructed a matrix where columns correspond
to sensor IDs and rows represent the events within the same second, selecting and retaining readings from sensors
of particular interest based on their �oor map locations. This data represents a sequence of 3337087 consecutive
seconds. To ensure a robust test bed, 20% of this dataset was set aside for testing. Our experimental setups evaluated
our solution’s scalability in 8, 16, and 32 node networks. Fig.4 displays the sensor placements and building layout. We
based the interaction graph on a 3.5-meter sensing radius, aligning with the motion sensors’ operational range during
data collection. The experimental setup, including the dataset used and sensing parameters, is summarized in Table 1,
providing a detailed overview of the key components of our study. The models were implemented using the PyTorch
deep learning framework [26], with the PyTorch Geometric Temporal library [27] employed for the temporal generator,
all trained on an Nvidia GeForce RTX 2080 Ti GPU.

Adversaries. TG-SPRED is compared against six state-of-the-art approaches: 1) GCN1[22], 2) A3T-GCN [5] 2, 3)
ASTGCN [17]3 4) GAIN4[34], 5) GINN5[30], and 6) JGD[29]. GCN is a generic approach for deep learning on graphs,
while A3T-GCN and ASTGCN combine GCN with GRU and attention mechanism. The comparison between TG-SPRED
and GCN shows the in�uence of removing the adversarial and temporal training on the generator’s performance. On
1https://github.com/tkipf/pygcn
2https://github.com/lehaifeng/T-GCN/tree/master/A3T-GCN
3https://github.com/guoshnBJTU/ASTGCN-r-pytorch
4https://github.com/jsyoon0823/GAIN
5https://github.com/spindro/GINN
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Algorithm 1: The temporal GCN generator and critic training algorithm
Input: =2A8C82 : the number of critic iterations per generator iteration; B: the batch size, _: the critic’s gradient

penalty coe�cient, U, V1, V2: Adam hyperparameters.
Initialization critic parameters \0 and generator parameters,0;
while the training loss has not converged do

for C = 1 to ) do
for 9 = 1 to =2A8C82 do

calculate b.C ;/* Eq.(6) */

Sample a random batch G 2 {0, 1}#⇥B from -C � "C and its corresponding generated batch
G̃ 2 (0, 1)#⇥B from b.C ;
for 8 = 1 to B do

Sample a random number n ⇠ * [0, 1];
Ĝ  nG⇤,8 + (1 � n)G̃⇤,8 ;
L(8 )
26?  2\ (G̃⇤,8 ) � 2\ (G⇤,8 ) + _[(krĜ2\ (Ĝ)k � 1)2]; /* Eq.(9) */

end
/* Update the critic: */

\  �30<(r\ 1
B
ÕB
8=1 L

(8 )
26? , \ ,U, V1, V2);

end
/* Update the generator: */

Sample a random batch G 2 {0, 1}#⇥B from -C �"C and its corresponding generated batch G̃ 2 (0, 1)#⇥B
from b.C ;

,  �30<(r, L � Z 1
B
ÕB
8=1 2\ (G̃⇤,8 ),, ,U, V1, V2); /* Eq.(10) */

end
end

Table 1. Overview of Dataset and Sensing Parameters.

Parameter Value
Dataset MERLSense dataset [32]
Dataset Size Total:3337087, Test:20%
Sensor Type Motion sensor for occupancy detection
Event Type Binary motion detection
Sensing Radius 3.5 meter
Network Size 8, 16, 32

the other hand, comparing with A3T-GCN and ASTGCN enables examining the bene�ts of adversarial training and the
proposed GRU architecture. Furthermore, the comparison with GAIN demonstrates the impact of using adversarial
training for missing data generation without including spatial and temporal feature learning. GINN used both a GCN
network and adversarial training. Nevertheless, each node in the graph represents a data input. Such a presentation
is not optimal for sensor data. The latter is continuously generated at a high rate. Furthermore, it does not include
temporal feature learning. GAIN and GINN target missing data in general. However, their tests are mainly conducted
on sensor data. Finally, JGD shares with the current solution the goal of generating the data of the passive sensors to
preserve their energy. The authors propose an active node selection strategy and present sensor data as a Gaussian
distribution.
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Fig. 4. The sensor graph and the building floorplan.

Evaluation Metrics. We compare the solution using four metrics. First, we measured the F-score[15] while varying the
percentage of missing data. F-score is a harmonic mean of recall and precision, two metrics that estimate the accuracy
of binary classi�cation. The precision is the sum of correctly generated events (true positives) divided by the number of
events in the generated data, including false positives. The recall is the number of correctly generated events divided
by the number of all the events that should have been detected. The second and third metrics are the average energy
consumed and the average lifetime, respectively, for a sensor. Both the average energy and lifetime are measured while
varying the F-score. Finally, we tested the impact of extending the size of the network. Three network sizes were tested
while measuring the run times and the previously mentioned metrics for the compared solutions.

4.1 Model Training and Hyperparameters Choice

We conceived a graph of # = 8 sensors. To decide the optimal value for ) , we calculated the F-score for training
and test sets while varying ) . The results are depicted in Fig.5. The results show that starting ) = 1000, the F-score
stops increasing. Hence, we choose this value for ) , which is computationally e�cient. We �xed 3 to 3600 second,
representing a time window of one hour with one-second granularity. The increase of the F-score for the �rst values
also demonstrates the bene�t gained from including the temporal dependencies in estimating sensor readings.

The TG-SPRED model is trained using the Adam optimizer for both the temporal GCN and the critic. The generator’s
learning rate is 10�4, and the critic’s learning rate is 5.10�5. Tab.2 shows the selected hyperparameter values.
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Model Hyperparameters Value
GCN Generator d 3600 second

Epoch 50
Activation ReLu
Learning Rate 5.10�4
Weight Decay 0.1
V1, V2 (0.9, 0.999)

Critic Learning Rate 5.10�5
Critic Iteration 5
Embedding dimension 512
_ Gradient penalty 10
V1, V2 (0.9, 0.999)

Table 2. Selected hyperparameters values.

Fig. 5. F-score per T for 50% missing data.

Fig.6 shows the loss functions L(Eq.(7)), L26? (Eq.(9)), and L0 (Eq.(10)) through the epochs with a missing data
percentage �xed to 50% for both the train and test sets. We can notice that the loss for the generator decreases, which
implies that the generators learned to approach the real dataset. In contrast, the critic’s loss increases, indicating that
the critic learned to di�erentiate between the generated and real data. Fig.7 indicated the F-score per epoch for 50%
missing data. We notice that the F-score for test and train sets becomes close after 35 epochs, which indicates that the
model is generalizing and not over�tting the data.

4.2 Generation Accuracy

The F-score in a network of 8 sensors is presented in Fig. 8, which shows that the performance of TG-SPRED is better
than that of the compared solutions. Compared to GIIN, the outcomes con�rm the e�ectiveness of the suggested
formulation for the weighted graph that considers the sensor locations and their sensing range.

Outperforming A3T-GCN was due to the integration of adversarial training. A3T-GCN is considerably superior to
regular GCN, which shows that temporal feature learning is primordial and spatial learning is not exclusively e�cient.
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Fig. 6. L, L26? , and L0 loss functions per epoch for 50% missing data.

Fig. 7. F-score per epoch for 50% missing data

Despite ASTGCN and A3T-GCN utilizing both spatiotemporal learning and attention mechanisms, ASTGCN’s perfor-
mance is notably poorer than A3T-GCN. This is due to the solution structure, which necessitates high computational
resources. As we use a time window of 3600 seconds (instead of 24 used in the original paper), we must lower other
hyperparameter values during training, which impacts the solution’s performance. In conclusion, computationally
e�ective models are required when dealing with applications that necessitate high temporal granularity.
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Fig. 8. F-score for 8 sensors per missing data %

The performances of TG-SPRED and GAIN are fairly comparable when the missing data is less than 30% or more than
80%, indicating that the two systems learn equally when a high or low quantity of data is provided. However, TG-SPRED
is superior between 30% and 80%. All solutions have a poor F-score with 90% or more missing data, which highlights
how challenging it is to train models with a small amount of data. A more realistic scenario has typical missing data
percentages within a range that allows accuracy preservation and energy e�ciency. The �ndings demonstrate that
TG-SPRED greatly outperforms GAIN and all other solutions for these values. Additionally, JGD exhibits reduced
variation in performance, suggesting that Gaussian distributions cannot adequately describe event-based sensing data.

4.3 Energy Conservation Performance

4.3.1 Energy Consumption. We measured the average energy in milliwatt second (mWs) consumed by one sensor while
varying the F-score. By taking a commercialized wireless motion detector as a reference[1], the following energy model
has been considered: the sensor is powered with a CR2032 coin cell battery of 3+ and 240<�⌘. It consumes 402C = 1.57
<� in active mode for 56.66<B , 4BC1 = 3.45 .10�3 <� in standby mode, and 48=02C = 2.16 .10�3 <� in shutdown.

The energy in<,B equals the product of the Power in mW and Time in s, and the Power equals Voltage in + times
Current in mA, i.e., ⇢ = + ⇥ � ⇥ C . Eq.(11) shows the calculation of the consumed energy by sensor 8 at time slot C . The
time slot duration equals one second. .C and"C are the model’s output and mask matrix as de�ned in Sec.3.1. Finally,
the average energy in<,B consumed by one sensor over ) time slots is: ⇢ = 1

#
Õ#
8=1

ÕC
g=C�)�1 ⇢

8
g , where # is the
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Fig. 9. Average energy in mWs consumed by one sensor per F-score

total number of sensors and ) is the number of time slots.

⇢8C = 3 ⇥ [(402C ⇥ 56.66 .10�3 + 4BC1 ⇥ 0.94334)
3’
9=1

~8 9C <
8 9
C

|      {z      }
events

+4BC1
©≠
´

3’
9=1

<8 9
C �

3’
9=1

~8 9C <
8 9
C
™Æ
¨|                       {z                       }

stand by

+48=02C (3 �
3’
9=1

<8 9
C )

|          {z          }
inactive

] (11)

Fig. 9 depicts the average energy in mWs consumed by one sensor while varying the F-score. The �gures demonstrate
that TG-SPRED delivers the best accuracy/energy compromise.

4.3.2 Sensor Lifetime . The same energy model was used to measure the battery’s lifetime using Eq.(12).

Battery Life =
Battery Capacity (mAh)

I (mA)
⇥ Derating factor, (12)

where the derating factor depends on external factors that a�ect batteries’ lifetime, and � is the average Current of one
sensor calculated by: � = ⇢/(+ ⇤) ), where ⇢, + , and ) are average energy, voltage, and time as de�ned in Sec.4.3.

Fig. 10 shows the average lifetime for one sensor per F-score. In line with the results from Fig. 9, TG-SPRED guarantees
the longest lifetime of all the compared solutions.
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Fig. 10. Average lifetime for one sensor per F-score

4.4 Extending the Network Size

In this part, the performance of the solutions is examined in di�erent network sizes, 8, 16, and 32 sensors, while setting
the missing data percentage to 50%. Given the star sensor network architecture and a 10< communication range,
the network’s maximum size was restricted to 32 sensors. A higher value in the number of sensors would re�ect
an unrealistic communication scenario for the dataset used in the experiment. Because ASTCGN necessitates high
computational resources, we couldn’t extend the network size to 32. As shown in Fig.11a, the F-score of TG-SPRED is
the highest compared to all solutions and is una�ected by the number of sensors. The F-score for TG-SPRED, A3tGCN,
and ASTCGN is stable and una�ected by the number of nodes, while JGD has a better F-score for 32 sensors. Conversely,
GAIN, GIIN, and GCN performance decreases with the increase in the number of sensors. Fig.11b and Fig.11c display the
average energy consumed by one sensor and its lifetime. While TG-SPRED demonstrates the lowest energy consumption,
this metric decreases with the number of sensors, like most solutions. Similar results are shown for network lifetime,
with TG-SPRED having the highest values. However, the lifetime drops when extending the network.

Fig. 11d plots runtime, i.e., the time needed for running the solution using a 2.80GHz Intel Core 87�7700�& processor
with 16⌧⌫ ⇡⇡'4 RAM. ASTCGN couldn’t run under this hardware con�guration. Hence, it is not included in these
tests. Due to its data structure and attention mechanism, A3tGCN has the highest runtime, followed by GINN, whose
network topology necessitates the creation of a node for each data entry, leading to a large graph and adjacency matrix.
TG-SPRED, GCN, and JGD runtimes are comparable and almost identical, with JGD being slightly faster. However,
as shown earlier, TG-SPRED signi�cantly improves the other metrics, and TG-SPRED exhibits continuous runtime,
con�rming its scalability.
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(a) F-score (b) Average energy for one sensor

(c) Average lifetime for one sensor (d) Computational run time

Fig. 11. Varying network size for 50% of missing data

5 CONCLUSION AND FUTUREWORK

The problem of predicting sensor readings to preserve energy in event-based IoT applications has been considered in
this work, and a new solution has been proposed. It enables deactivating part of the sensors and synthesizing the missing
data by leveraging the network’s temporal correlation information, network structural information, and readings from
the remaining active sensors. The proposed approach makes the abstraction of sensors’ activity cycles and uses a
generic random scheme. This makes it more general, as it does not depend on any duty-cycling scheduling method. The
missing data is generated by an adversarially trained hybrid model combining GRU and GCN. We tested the approach
on a real dataset and compared it to six other solutions from the literature using four metrics. The results revealed that
the proposed method provides optimal accuracy and energy savings balance.

This solution is a continuation of our previous work [23] in which we utilized an LSTM to detect temporal connections
in sensor readings and a reinforcement learning agent to decide when switching all the sensors on or o� optimally. The
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current work considers the sensor network’s structural information, and advanced machine learning models have been
accordingly used. Future work targets extending further the size of the network for higher scalability. This will result in
many disjoint subgraphs that traditional Deep Graph Networks do not process. A method of global representation for
these disjoint graphs will be needed.
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