
Incremental growth on Compositional Pattern
Producing Networks based optimization of

biohybrid actuators

Michail-Antisthenis Tsompanas1[0000−0002−6607−7831]

School of Computing & Creative Technologies, University of the West of England,
Bristol, United Kingdom Antisthenis.Tsompanas@uwe.ac.uk

Abstract. One of the training methods of Artificial Neural Networks is
Neuroevolution (NE) or the application of Evolutionary Optimization on
the architecture and weights of networks to fit the target behaviour. In or-
der to provide competitive results, three key concepts of the NE methods
require more attention, i.e., the crossover operator, the niching capacity
and the incremental growth of the solutions’ complexity. Here we study
an appropriate implementation of the incremental growth for an applica-
tion of NE on Compositional Pattern Producing Networks (CPPNs) that
encode the morphologies of biohybrid actuators. The target for these ac-
tuators is to enable the efficient angular movement of a drug-delivering
catheter in order to reach difficult areas in the human body. As a re-
sult, the methods presented here can be a part of a modular software
pipeline that will enable the automatic design of Biohybrid Machines
(BHMs) for a variety of applications. The proposed initialization with
minimal complexity of these networks resulted in faster computation for
the predefined computational budget in terms of number of generations,
notwithstanding that the emerged champions have achieved similar fit-
ness values with the ones that emerged from the baseline method. Here,
fitness was defined as the maximum deflection of the biohybrid actu-
ator from its initial position after 10 seconds of simulated time on an
open-source physics simulator. Since, the implementation of niching was
already employed in the existing baseline version of the methodology,
future work will focus on the application of crossover operators.

Keywords: Biohybrid machines · Compositional Pattern Producing Net-
works · optimization · evolutionary algorithms · machine learning

1 Introduction

Machine learning and, particularly, Artificial Neural Networks (ANNs) have be-
come an increasingly prominent method for building accurate and efficient mod-
els with minimal required effort and background knowledge of the under study
system. The widespread acceptance of ANNs is attributed to well established
computational methods of training these networks, i.e., backpropagation, along-
side other factors, such as big data availability. Another noteworthy and interest-



2 M.-A. Tsompanas

ing training method of ANNs is Neuroevolution (NE), which proved to produce
equally robust models [4].

NE is referring to the methodology of applying principles of Evolutionary
Algorithms (EAs) to the process of training and optimizing ANNs [14]. The
inspiration behind this technique was drawn from natural evolution, in order to
realize a bio-inspired method of optimization. Populations of possible solutions
or network instances (i.e. network architectures and connection weights) are
produced as the result of simulated evolution and tested against a predefined
fitness function. The fittest solutions are selected to mutate and reproduce, in
order to provide more possible solutions that are then injected in the following
generations, and so forth, until the computational budget is spent or a target
efficiency is reached.

The implementation of NE can be employed in the evolution of different
kinds of networks, like Compositional Pattern Producing Networks (CPPNs)
[13]. Since CPPNs are formalized in a similar way as ANNs, there is no need for
extensive changes in well-established methodologies applied on the latter, while
favourable results are expected. The main difference between the two types of
networks is the activation functions of their nodes; whereas, CPPNs are not
restricted in any way around this area, ANNs are mainly employing monotonic
functions. As a result, CPPNs are better suited for applications that require the
production of complex patterns and structures [3].

Here, the use of CPPNs is studied as a tool for the primary discovery of mor-
phologies of biohybrid machines (BHMs), in a similar way as previous works that
delivered promising results [1, 2, 7]. By adopting the open source code developed
previously [7], we aim to empower the integration of advanced algorithms dur-
ing the initial stages of the BHM development, helping identify crude designs
of efficient morphologies. The primary objective of our project is to establish
a BHM design process and employ this framework to pioneer the development
of a ground-breaking medical device, namely a biohybrid catheter capable of
delivering pharmaceuticals to challenging to reach areas of the human physiol-
ogy. In specific, the main goal of the developed software module is to produce
BHM actuators that will facilitate robust angular movement of a catheter in the
labyrinth-like environment of the circulatory system of humans.

Some NE algorithms, i.e., NeuroEvolution of Augmenting Topologies (NEAT)
[15], have been proved to be more efficient than others, because of three crit-
ical factors described in the following. These methodologies (i) employ means
that enable crossover during evolution without complicated topology analysis,
(ii) include niching capacity that is able to protect innovative individuals from
premature exclusion and (iii) encourage the incremental growth of complexity
in solutions, on account of the initial populations being structures of minimal
complexity. Reviewing the algorithmic approach implemented in [7], we could lo-
cate a variant method for niching, but there were no provisions for the other two
characteristic factors. While the crossover factor was not included intentionally
for simplicity reasons based on the authors’ reasoning, we could not pinpoint



Incremental growth on CPPN based optimization of biohybrid actuators 3

the motivation behind initialization of population with networks that were not
of minimal complexity.

As a result, this work takes into consideration the initialization of the pop-
ulations with minimal structure networks and compares the outputs with the
method followed by the original work [7]. To test the appropriateness of starting
at minimal dimensions and, as a result, allowing incremental growth of com-
plexity, the open source code was altered towards including that characteristic.
Moreover, a comparative analysis of the champions discovered was performed,
in order to justify previous findings [15], i.e., that this characteristic enables
higher effectiveness. The results show that starting at minimal dimension pro-
vides solution candidates with similar effectiveness in terms of fitness, however
a significant acceleration of the computation for the same target of total genera-
tions is achieved. This can be attributed to the lower complexity of the networks
being managed throughout the computational process.

The rest of the manuscript is organized as in the following. Section 2 provides
some background on NE and the aspects that render it a suitable surrogate of
other training methods, along with basic characteristics of CPPNs. Section 3
describes the methodology used in this study, i.e., details of the simulators,
algorithms and the proposed initialization method. Then, Section 4 presents the
results of the tests for both initialization methods and Section 5 concludes this
study.

2 Background

Some typical paradigms of NE methods [5, 9] assumed a fixed structure for the
networks that were studied and their dimensionality was manually set before
evolution began. One hidden layer was included with neurons fully connected
with the input and output neurons, while the evolution was assessing the weights
of the connections. Because of the fixed topology of networks, crossover and
mutation operators were trivially applied to the weights of the connections and
optimization enabled the training of networks towards a desired behaviour.

Nevertheless, the weights of network connections are not a sole indicator of
how neural networks function. The structure that defines the number of nodes
and how they are connected, plays a significant role as well. Thus, enhanced NE
methods were proposed under the term Topology and Weight Evolving Artificial
Neural Networks (TWEANNs) employing evolution of both topologies and con-
nection weights [8, 11]. These techniques take advantage of increasing structural
complexity through mutations. Although the addition of randomly formed nodes
may cause a decrease in fitness initially, the modulation of connection weights
during subsequent evolution steps can result in an ultimately higher fitness.

An innovative NE method, named NEAT [15] has motivated a large range of
variants relevant till this day [10] and managed to outperform previous meth-
ods, as it was more thoroughly designed, in order to exploit the fact that smaller
dimensionality networks can be optimized faster. It proved to be a superior
methodology, because, according to the authors [15], (i) it would include a



4 M.-A. Tsompanas

crossover operator, while previous versions did not, (ii) it would safeguard the
innovation in network architecture with initial low fitness against premature ex-
clusion of these promising architectures and (iii) it would allow for incremental
growth on the complexity of networks by initializing populations at minimal
complexities. The authors tested what each of these three aspects contributed
to the overall efficiency and concluded that all aspects and their combinations
were significant for providing even better efficiency.

In a similar setting, the conclusions in [16] argue that the robustness in
evolutionary methods is achieved by an initial population of minimal and non-
complicated genomes. As generations lapse these genomes undergo the intro-
duction of additional genes that serve as enablers to the expansion of the search
space. Therefore, novel dimensions are introduced and evolutionary exploration
is initially exploring a relatively small and manageable space, before moving to
additional dimensions that are included only if necessary, i.e., after the search
to the given search space dimensionality stagnates. This incremental process is
called complexification and is a technique used to partially tackle the curse of di-
mensionality. Moreover, complexification is not limited to enhance the results of
NE methods, but, also, the efficiency of more typical evolutionary algorithms. In
our previous works on optimization of individuals with variable genome lengths
[17, 18], the ability to optimize and complexify the genome were both included
in the methodology to produce fitter solutions, while the initial populations were
of minimal genome lengths.

CPPNs are similar to ANNs, with the main difference being the relaxation of
rules on the activation functions of nodes of the former type of networks. Namely,
CPPNs are better suited for generating complex patterns and structures [3], since
the graph that represents them define associations between a variety of functions
(or activation functions) that are depicted as nodes (as depicted in an example
of CPPN in Fig. 1). Connections are characterised by weights that determine
the impact of each node output to the input of the next layer node. In cases
where multiple connections terminate to the same node, all weighted outputs of
the previous nodes are aggregated and used as inputs to the current node. An
additional difference, that is also essential for CPPNs’ functionality is that the
topology of the graph is not restricted in any way, thus, enabling higher levels
of representation liberty that achieves more complex patterns.

Another, more semantic difference between these networks is that while
ANNs emulate the functionality of human brain in learning, CPPNs simulate a
completely different biological process, namely, the developmental process [13].
Consequently, another attractive feature of CPPNs in applications of producing
patterns is that when they are queried on an absolute coordinate frame (i.e.
x, y in a two-dimensional space), there is no need for the specific definition of
local interactions within the representation. When using each specific point in
a Cartesian coordinate system as an input of CPPN, the outputs will formulate
a pattern without the phenotype (i.e. the CPPN) requiring local interactions
or temporal sequencing. The network will use the coordinates of all points in a



Incremental growth on CPPN based optimization of biohybrid actuators 5

Inputs

A

B

Output

C

Fig. 1: An example of a CPPN with two inputs and one output. Each node
represents a specific function, while connections are weighted and represent the
sum of weighted intakes of each function.

space as inputs and the output provided will precisely specify the entities and
characteristics of the specific location in space that was used as input every time.

3 Methods

To evaluate some primary morphologies of BHM catheter actuators with no
detailed investigation of all the possible components of the underlying mecha-
nisms and no biotechnology laboratory overheads, the in silico investigation is
preferred. Thus, a simulator that would be capable of mimicking behaviours of
truly heterogeneous materials is required. Thus, Voxelyze [6] was employed as
the test-bed of morphologies composed of different materials with diverse physi-
cal properties, such as Poisson’s ratio, stiffness, density and friction coefficients.
Moreover, Voxelyze has the capacity to simulate external forces along with vol-
umetric actuation of entities; a characteristic that enables the representation of
novel architectures like the ones found in BHMs, namely accommodating con-
tracting muscle cells. In Voxelyze each elementary volume, designated as a voxel,
can encode a different material and the distance between neighboring voxels is
modeled as Euler-Bernoulli beams. Moreover, additional environmental settings
can be defined to illustrate specific scenarios, such as gravitational acceleration,
collision rules and friction between the range of different voxels and a static
floor. Here, to follow the scenarios investigated in previous studies [7], two types
of voxels were outlined with the parameters depicted in Table 1. Specifically,
one type is an active voxel that can contract and provide the energy required
for movement; whereas, the other type is a passive voxel with similar physical
properties, but, no motion capacity included.

Voxelyze acts as a test-bed for the fitness function, namely, morphologies
of 8 × 7 × 7 voxels in a Cartesian grid are evaluated based on their simulated



6 M.-A. Tsompanas

Table 1: Parameters of active and passive voxel.
Parameters Active voxel Passive voxel

Elastic modulus (MPa) 5 5
Density (kg/m3) 1,000,000 1,000,000
Poisson’s ratio 0.35 0.35

Coefficient of Thermal Expansion (1/◦C) 0.01 0
Coefficient of static friction 1 1

Coefficient of dynamic friction 0.5 0.5

Fig. 2: Boundaries in Voxelyze representing a fixed end and a free end of a
catheter actuator.

behaviours. The morphologies of a maximum of 392 voxels are constructed in
the virtual environment of Voxelyze, the simulation starts and after 1 second of
initial simulation time, the morphology will be settled from possible gravitational
motion into the starting point for the evaluation. Following this, a further 10
seconds are simulated, in order to record the final displacement of the whole
morphology and calculate the deflection achieved by the simulated actuator.
Note here, that in order to better represent the scenario of a catheter actuator,
one end of the morphology is fixed (the Y Z plane for x = 0, depicted as the
green plane in Fig. 2), whereas the other end is free to perform translational and
rotational motion based on the global behavior derived from all the individual
active voxels’ activity (the Y Z plane for x = 8, depicted as the purple plane
in Fig. 2). The fitness for each candidate morphology is provided by the total
deflection at t = 10s of simulated time, i.e., the distance of the projection on
any Y Z plane of one of the top and outer voxels that are adjacent to the free
end of the morphology.

The indirect encoding concept that exploits CPPNs is utilized to symbolize
candidate morphologies in the evolutionary optimization process. To decode the
individuals, the Cartesian coordinates (x, y and z) are used as inputs for the
network (in addition with the distance from the center of the available space
d and a bias b) and the output represents the voxel type for the respective
combination of coordinates (as illustrated in Fig. 3). After querying the network



Incremental growth on CPPN based optimization of biohybrid actuators 7

CPPN
y

x

z

d

b

Morphology of BHM

Outputs:
Type of material

per voxel

Fig. 3: Decoding of the CPPN into a morphology by using coordinates in a three-
dimensional space as inputs and material types as outputs. The functionality of
the CPPN is illustrated in Fig. 1

with all the possible combinations on the aforementioned 8×7×7 grid, the types
of all the 392 voxels are provided, thus, the morphology is decoded into the 3D
space and can be inserted to Voxelyze to calculate its fitness. Note here, that
the CPPN output can denote active or passive voxels, but, also empty space in
order to permit more elaborate morphologies.

The nodes in the hidden layers of the CPPNs can represent any of the prede-
fined mathematical functions (i.e., sine, absolute value, negative absolute value,
square, negative square, square root and negative square root). The weight of
the connection between two nodes represent the multiplication factor of the out-
going result. When several connections terminate to the same node, then, the
addition of the weighted in-going results is used as input to the node’s activation
function.

For the evolutionary algorithm, the genotype of the individuals is in a form of
a CPPN, whereas the phenotype is in a form of a 3D morphology of the BHM ac-
tuator, which is derived by querying the CPPN genotype. Following the concept
of the open source code [7] and for a clearer implementation, no crossover oper-
ator was implemented, however, the Age-Fitness Pareto Optimization (AFPO)
algorithm [12] was utilized. Particularly, a population of 50 randomly gener-
ated CPPNs was produced through an intricate initialization process. After-
wards, these 50 individuals were decoded into BHM morphologies and evaluated
through Voxelyze. Then, 50 additional individuals were created through muta-
tion operations over the initial population. These 50 additional individuals with
the inclusion of one more randomly generated individual were evaluated and
from the total of 101 available individuals the 50 fittest were selected to com-
prise the next generation. This would complete one evolution cycle and the new
generation would go again through the mutation operator and so forth, until
2000 generations were evaluated.

The mutation process for each individual involves the application of one type
out of six possible alternations in the CPPN genotype with a 0.167 probability.
The possible alternations are the addition of a node or connection, the modifi-
cation of a node or connection and the removal of a node or connection. As a
result, both the weights of the CPPN and its architecture can be modified to



8 M.-A. Tsompanas

permit training and complexification (or even simplification) of the network. It
is noteworthy, that if the decoding of the CPPN genotype produces a morphol-
ogy phenotype that is already evaluated, the mutation is considered neutral and
the process is repeated until a non-neutral mutation is found, for a maximum of
1500 attempts.

The utilization of AFPO [12] provides a basic niching capacity. On the con-
dition that this multi-objective optimization is pursuing the dominance over
fitness and age for individuals to survive for consequent generations, premature
convergence is avoided. In specific, the individuals are selected based on their
higher fitness value and lower genotypic age, in a multi-objective Pareto front
optimization. As a result, individuals that have emerged latter in evolution can
coexist in the same population with older and fitter individuals, because they
are not dominated on the age dimension of the Pareto front.

The final aspect that needs to be clarified is the initialization process, as
it was determined one of the three key factors for NE effectiveness. The orig-
inal initialization process, used in [7] and denoted here as the baseline, begins
with building the minimal possible network, namely connecting input and out-
put nodes with edges of weight zero. Then, the mutation operator is executed
multiple times, i.e., 10 times for random node addition, 10 times for random con-
nection addition, 5 times for random connection removal, 100 times for random
node modification and 100 times for random connection weight modification.
After that, the network is pruned to remove any erroneous nodes and connec-
tions. The notable operations here are the 10 node additions, the 10 connection
additions and the pruning of the network, which can result to a network with a
maximum of 10 hidden layer nodes. However, there is no guarantee that this is
the minimal or, even, close to the minimal possible structure.

To study the potential of incremental growth in the NE of CPPNs, we al-
tered the aforementioned initialization process to build a population with lower
amount of hidden layer nodes. Specifically, we kept the same methodology as
described previously, however, we altered the amount of random node additions
during initialization from 10 to 2. This small number was enough to allow the
production of an initial population with acceptable diversity and a range of hid-
den layer nodes from zero to 2. This is obviously an initial population of simpler
network structures that will more probably permit complexification alongside
optimization.

4 Results

In the following, the comparison of the outputs for 10 runs with the same ran-
dom generator seeds are presented for both initialization processes. Execution
times of the two variants are presented in Fig. 4. It is apparent that the orig-
inal initialization stems a significantly slower evaluation of the 2000 genera-
tions, when compared with the minimal structure initialization proposed here
(Wilcoxon rank-sum test, p < 0.001). In specific, execution times of the original
initialization have a mean of 19.71 hours (samples= 10, minmax= (18.69, 20.88),



Incremental growth on CPPN based optimization of biohybrid actuators 9

Original source code Minimal initialization

14

16

18

20

Ex
ec

ut
io

n 
tim

e 
in

 h
ou

rs

Fig. 4: Execution times for the two variants of the population initialization.

variance= 0.35, skewness= 0.35, kurtosis= 0.0998), while for the proposed mini-
mal initialization a mean of 13.37 hours (samples= 10, minmax= (12.44, 14.93),
variance= 0.72, skewness= 1.19, kurtosis= -0.0620) was observed. So, the min-
imal initialization economizes 6 hours of computational time per run of 2000
generations.

This acceleration can be attributed to the bottleneck in the whole process
of finding non-neutral mutated networks. As mentioned previously, after each
mutation operation the phenotype (3D morphology) produced from the geno-
type (CPPN) was compared with the phenotype of the pre-mutated genotype.
If the new CPPN would produce the same morphology, a new mutation would
be attempted, unless 1500 unsuccessful attempts are executed. We realised that
this technique introduces significant overheads to the whole evolutionary com-
putation process. Moreover, it is evident that this procedure requires more com-
putational resources when assessing networks with higher numbers of nodes in
the hidden layer. On the contrary, when assessing less complex networks the
discovery of non-neutral mutations would happen faster, as realised from the
execution times in Fig. 4.

In order to compare the complexity of the networks within the initial popula-
tion for both variants of the initialization process, Fig. 5 illustrates the number
of nodes in the hidden layer. These data are collected for all 50 initial individuals
for each of the 10 runs of both variants (i.e. 500 individuals). As expected the
original source code initialization produces more complex networks, with a mean
of 7.734 nodes (variance= 2.436), whereas, the proposed minimal initialization
produces simplified networks with a mean of 1.9 nodes (variance= 0.110) in the
hidden layer.

Moreover, Fig. 6 depicts the distribution of the nodes in the networks within
the population after 2000 generations of evolutionary optimization. Note that



10 M.-A. Tsompanas

Original source code Minimal initialization

2

3

4

5

6

7

8

9

10

Nu
m

be
r o

f n
od

es

Network nodes of initial populations

Fig. 5: Distributions of nodes of networks in the initial populations.

the data collected include all 50 final individuals for each of the 10 runs of both
variants (i.e. 500 individuals). While the final populations of the baseline method
have higher mean (=8.49) and variance (=10.35) in terms of network nodes, the
proposed methodology illustrates sufficient diversity in the final populations as
well (mean= 3.45, variance= 6.80). Nonetheless, by comparing the means of
the initial and final populations, it can be seen that the complexification of the
networks is more prominent in the minimal initialization process. Fig. 7 outlines
the distribution of the complexity (or number of nodes) of the fittest individuals
at the end of the 2000 generations. It can be concluded here that champions
are found in the higher network complexity available in the populations for
both variations. Moreover, the minimal initialization methodology manages to
discover champions encoded by networks with up to c. 10 hidden layer nodes,
despite the starting point of only 2 nodes.

To investigate the impact of incremental growth that clearly manifested in the
aforementioned, Table 2 describes the fitness of the champions (i.e., fittest indi-
viduals) after 2000 generations for both variants. Each line illustrates the fitness
for both runs with the same random generator seed. The original initialization
method is producing fitter champions in half of the runs (samples= 10, minmax=
(0.253, 0.433), mean= 0.346, variance= 0.00345, skewness= -0.115, kurtosis= -
0.8651). On the other hand, the minimum complexity initialization is not falling
far behind and, despite the minimal networks present in the first populations,
it manages to produce comparable champions (samples= 10, minmax= (0.176,
0.469), mean= 0.333, variance= 0.00679, skewness= -0.275, kurtosis= -0.2162).
Moreover, comparing the distributions of the fitness of both sets of champions,
we can not reject the null hypothesis that the two sets of fitnesses are drawn from
the same distribution (Wilcoxon rank-sum test, p = 0.879). Thus, no advantage



Incremental growth on CPPN based optimization of biohybrid actuators 11

Original source code Minimal initialization

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f n
od

es

Network nodes of final populations

Fig. 6: Distributions of nodes of networks in the final populations.

Original source code Minimal initialization

4

6

8

10

12

14

16

Nu
m

be
r o

f n
od

es

Network nodes of champions in final populations

Fig. 7: Distributions of nodes of networks of the champions in the final popula-
tions.

is apparent for starting from a minimal or complex population, other than the
acceleration in computations.

To demonstrate the incremental growth of network complexities throughout
evolution, the range of the amount of nodes for whole populations, the median
and the champions are provided for both variations in runs with seeds 52 and
58 (the fittest champions of both variations) in Figs. 8 and 9 respectively. For
illustration reasons, the morphology of the highest performing champion of all



12 M.-A. Tsompanas

Table 2: Fitness of the champions after 2000 generations for both initialization
procedures (higher is better and indicated by bold fonts).

Random seed Original init. Minimum init.
50 0.382 0.352
51 0.253 0.255
52 0.328 0.469
53 0.266 0.417
54 0.325 0.176
55 0.419 0.293
56 0.341 0.375
57 0.375 0.344
58 0.433 0.303
59 0.337 0.349

0 250 500 750 1000 1250 1500 1750 2000
Generations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f n
od

es

Network nodes of populations throughout evolution
Median
Fittest

(a)

0 250 500 750 1000 1250 1500 1750 2000
Generations

0

2

4

6

8

10

12
Nu

m
be

r o
f n

od
es

Network nodes of populations throughout evolution
Median
Fittest

(b)

Fig. 8: Evolution of CPPN node numbers for runs with seed 52 for (a) the original
initialization process and (b) the proposed minimal initialization.

the runs (found in the minimal initialization variant with seed 52) is illustrated
in Fig. 10 (a) at its initial position and in Fig. 10 (b) at its final position (after 10s
of simulation time). Moreover, the CPPN that was evolved from the algorithm
to encode this morphology is depicted in Fig. 11, where the input and output
nodes, activation functions and connection weights are defined.

5 Discussion

The implementation of CPPNs, as an indirect representation of individuals, in
evolutionary optimization has proved to be quite efficient. However, the initial-
ization of a previously published work did not follow the incremental growth con-
cept that is of paramount importance to the efficiency of NE methods. To prove
the effects of starting at minimal complexity and, thus, allowing incremental
growth through evolution (or complexification) along optimization, we altered
the initialization methodology to apply this concept. The software framework



Incremental growth on CPPN based optimization of biohybrid actuators 13

0 250 500 750 1000 1250 1500 1750 2000
Generations

0

5

10

15

20

25

Nu
m

be
r o

f n
od

es

Network nodes of populations throughout evolution
Median
Fittest

(a)

0 250 500 750 1000 1250 1500 1750 2000
Generations

0

2

4

6

8

10

Nu
m

be
r o

f n
od

es

Network nodes of populations throughout evolution
Median
Fittest

(b)

Fig. 9: Evolution of CPPN node numbers for runs with seed 58 for (a) the original
initialization process and (b) the proposed minimal initialization.

(a) (b)

Fig. 10: The highest performing champion of this study simulated in the Voxelyze
environment at its (a) initial and (b) final position.

was an application of NE optimization on the first module of a design pipeline
for a BHM catheter actuator.

The results show that there is no significant advantage in the fitness of the
emerging champions for the populations that started from higher complexity for
the baseline implementation. On the contrary, the methodology that employed
minimal initialization performed at the same degree of efficiency, maintained
high diversity in the final populations and required less computational resources
to reach the same degree of efficiency. As a result, aspects of future work will be
the comparison of the two methods with the same computational budget, but
in terms of wall-time and not amount of generations. Moreover, the effect of the



14 M.-A. Tsompanas

Inputs Outputs

0.42

-0.1

-0.1
x

-0.32
-0.11

-0.1

y

-1

z

-0.1

0.1

-0.01

0.032

0.1

-0.1

d 1

0.1

1

Empty
space

Active or
passive

0.82

-0.1

square

abs

1
square

1

0.1

-0.1

1square

0.1

0.96
neg

square

1

0.1

neg
abs 1

neg
abs

1

sin
1

1

-0.032

neg
abs

-0.1

neg
abs

Fig. 11: The CPPN structure that decodes into the morphology of the highest
performing champion of this study illustrated in Fig. 10

crossover will be studied as it has been proved [15] that enhances the capabilities
of NE in well-established benchmarks.

Acknowledgement

This project has received funding from the European Union’s Horizon Europe
research and innovation programme under grant agreement No. 101070328. UWE
researchers were funded by the UK Research and Innovation grant No. 10044516.

Code availability

The code to reproduce the results can be found here: https://github.com/
Antisthenis/reconfigurable_organisms/tree/biomeld_dev2

References

1. Cheney, N., Bongard, J., Lipson, H.: Evolving soft robots in tight spaces. In: Pro-
ceedings of the 2015 annual conference on Genetic and Evolutionary Computation.
pp. 935–942 (2015)

2. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling evolution: evolv-
ing soft robots with multiple materials and a powerful generative encoding. ACM
SIGEVOlution 7(1), 11–23 (2014)



Incremental growth on CPPN based optimization of biohybrid actuators 15

3. Clune, J., Lipson, H.: Evolving 3d objects with a generative encoding inspired by
developmental biology. ACM SIGEVOlution 5(4), 2–12 (2011)

4. Galván, E., Mooney, P.: Neuroevolution in deep neural networks: Current trends
and future challenges. IEEE Transactions on Artificial Intelligence 2(6), 476–493
(2021)

5. Gomez, F.J., Miikkulainen, R., et al.: Solving non-markovian control tasks with
neuroevolution. In: IJCAI. vol. 99, pp. 1356–1361. Citeseer (1999)

6. Hiller, J., Lipson, H.: Dynamic simulation of soft multimaterial 3d-printed objects.
Soft robotics 1(1), 88–101 (2014)

7. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: A scalable pipeline for de-
signing reconfigurable organisms. Proceedings of the National Academy of Sciences
117(4), 1853–1859 (2020)

8. Lee, C.H., Kim, J.H.: Evolutionary ordered neural network with a linked-list en-
coding scheme. In: Proceedings of IEEE International Conference on Evolutionary
Computation. pp. 665–669. IEEE (1996)

9. Moriarty, D.E., Mikkulainen, R.: Efficient reinforcement learning through symbi-
otic evolution. Machine learning 22, 11–32 (1996)

10. Papavasileiou, E., Cornelis, J., Jansen, B.: A systematic literature review of the
successors of “neuroevolution of augmenting topologies”. Evolutionary Computa-
tion 29(1), 1–73 (2021)

11. Pujol, J.C.F., Poli, R.: Evolving the topology and the weights of neural networks
using a dual representation. Applied Intelligence 8, 73–84 (1998)

12. Schmidt, M.D., Lipson, H.: Age-fitness pareto optimization. In: Proceedings of the
12th annual conference on Genetic and evolutionary computation. pp. 543–544
(2010)

13. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines 8, 131–162 (2007)

14. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nature Machine Intelligence 1(1), 24–35 (2019)

15. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary computation 10(2), 99–127 (2002)

16. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary
complexification. Journal of artificial intelligence research 21, 63–100 (2004)

17. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: Evolutionary algorithms
designing nanoparticle cancer treatments with multiple particle types [application
notes]. IEEE Computational Intelligence Magazine 16(4), 85–99 (2021)

18. Tsompanas, M.A., Bull, L., Adamatzky, A., Balaz, I.: Metameric representations
on optimization of nano particle cancer treatment. biocybernetics and biomedical
engineering 41(2), 352–361 (2021)


