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Physically embodied artificial agents, or robots, are being incorporated into various practical and social con-

texts, from self-driving cars for personal transportation to assistive robotics in social care. To enable these

systems to better perform under changing conditions, designers have proposed to endow robots with varying

degrees of autonomous capabilities and the capacity to move between them—an approach known as variable

autonomy. Researchers are beginning to understand how robots with fixed autonomous capabilities influence

a person’s sense of autonomy, social relations, and, as a result, notions of responsibility; however, address-

ing these topics in scenarios where robot autonomy dynamically changes is underexplored. To establish a

research agenda for variable autonomy that emphasises the responsible design and use of robotics, we con-

duct a developmental review. Based on a sample of 42 papers, we provide a synthesised definition of variable

autonomy to connect currently disjointed research efforts, detail research approaches in variable autonomy

to strengthen the empirical basis for subsequent work, characterise the dimensions of variable autonomy, and

present design guidelines for variable autonomy research based on responsible robotics.
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1 INTRODUCTION

Robots are being incorporated into various practical and social contexts, from self-driving cars for
personal transportation to assistive robotics in social care. There is an emerging understanding
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of how robots with fixed autonomy influence a person’s sense of autonomy, social relations, and,
as a result, notions of responsibility [48, 72, 120, 123]. For example, some scholars have suggested
that social robots in care homes can increase residents’ feelings of autonomy by decreasing their
dependence on staff [99] or helping them stay connected with friends and family through video
[112]; meanwhile, others offer opposing critiques, claiming that social robots provide illusory and
inauthentic social relations that may emotionally manipulate care home residents [44, 129].

But what happens when these robots are imbued with the potential to operate along a con-
tinuum of autonomous capabilities? We refer to this approach to robotics as variable autonomy

[25]. Past work has shown that dynamically changing between LoAs in complex settings can im-
prove a robot’s performance [87]. For example, a robot for disaster response may need to operate
in environments with limited network conditions (e.g., [79]). When communication channels are
operating properly, a remote human operator can directly control the robot; in this situation, the
robot is in a teleoperated mode and consequently has lower levels of autonomous capabilities. Yet,
when there are instances of low connectivity between the teleoperator and robot, the robot may
have to transition to a state of greater autonomous capabilities to perform its rescue task with-
out direct control from its human operator. Another example when variable autonomy may be
required comes from the domain of assistive robotics. Consider a care robot that supports medica-
tion management for older adults. For some adults, the robot may only need to provide auditory
reminders at set times throughout the day. However, for those who suffer from dementia, the robot
may have to perform a wider range of tasks at higher LoAs, such as physically moving through-
out a house. Apart from having to change autonomous capabilities in accordance with individual
differences across a group of users, we can also imagine how the care robot’s autonomy may have
to adapt to the same individual user’s condition if it were to deteriorate over time. These examples
show how variable autonomy implementations lead to situations in which control authority over
a robot shifts between a human and artificial agent in response to some set of conditions.

Recently, others have proposed variable autonomy as a means to operationalise responsibility in
the design of autonomous systems (see [82]). Instead, we take the opposite direction: how can we
ensure that robots with variable autonomy are designed and developed in a responsible manner?
The preceding scenario of the care robot for medication management highlights the potential risks
of introducing variable autonomy into sensitive environments: too great or too little autonomy
under certain conditions may result in various harms, such as missed medication or a person
losing their sense of independence. The capability to alter a robot’s autonomous capabilities during
interaction accentuates questions pertinent to responsible robotics, such as the following. Under
what environmental and social circumstances is variable autonomy appropriate? Who may be
harmed and how? Who should be held accountable if control over a robot’s capabilities may alter
unexpectedly? To date, few, if any, studies have addressed the connection between responsibility
and variable autonomy (see the work of Small et al. [116] for one such study), and none, as far as
we are aware, have approached variable autonomy through the lens of responsible robotics.

Therefore, our objective in this work is to construct a research agenda for variable autonomy
based on responsible robotics. To do so, we must first establish a coherent representation of variable
autonomy research. In its present state, this field lacks cohesive terminology, leading to disjoint
research efforts; a detailed description of the field’s research approaches, making it difficult for
scholars to adopt similar designs, employ consistent and validated measures, and identify empirical
gaps; and a clear discussion of variable autonomy design guidelines that can serve as a heuristic
for engineers and researchers. From these gaps and in pursuit of our objective, we address the
following research questions:

RQ1 : How is variable autonomy defined in the literature?
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RQ2 : How is research into variable autonomy conducted?
RQ3 : How is variable autonomy implemented?

In answering these questions, we develop a novel model to the study and design of variable au-
tonomy robotics that builds on prior empirical and conceptual research. This research model will
be articulated through clear, consistent terminology, and guided by an in-depth understanding of
past empirical approaches. Given these aims, we follow the “developmental review” method as
described by Templier and Paré [126]. A developmental review is a structured literature review
method from the field of information systems that is useful for developing novel conceptualisa-
tions, frameworks, and approaches from previous bodies of research. As our review, we survey
42 recent contributions to variable autonomy in robotics published in high-quality and high-impact
venues; we expand upon our method in Section 3.

Based on our review, we make four contributions:

(1) We present a synthesised definition of variable autonomy in robotics to provide a shared
language for researchers, thereby linking together currently disjointed research efforts.

(2) We detail research approaches employed in the literature; our focus is on the research de-
signs, sites, and evaluative measures. Explicating these facets supports the development of
rigorous experimental protocols in variable autonomy research, highlights the need to refine
quantitative measures, and reveals the sheer absence of qualitative evidence surrounding
people’s experiences with variable autonomy robots.

(3) We distil previous characterisations of variable autonomy; this creates a heuristic for design-
ers when considering requirements for variable autonomy robotics.

(4) We present 11 design guidelines that will help researchers approach variable autonomy
through a lens of responsible robotics. These guidelines cover both the product and pro-
cess of variable autonomy research, and encourage an anticipatory and reflective approach
that engages with a range of stakeholders.

This article is organized as follows. Section 2 presents a brief background on three relevant
concepts—autonomy, variable autonomy, and responsible robotics—and a summary of related re-
views. Then, in Section 3 we elaborate our developmental review method. We provide a brief
description of our dataset in Section 4 before presenting our results in Section 5. Next, we present
the 11 design guidelines for variable autonomy based on responsible robotics in Section 6. In Sec-
tion 7, we discuss areas for future research at the intersection of variable autonomy and responsible
robotics. Finally, we conclude by summarising our key findings.

2 BACKGROUND

In this section, we provide a background on three concepts relevant to this review. First, we specify
our conception of autonomy as it relates to robotics. Second, we present a historical overview on
variable autonomy and its motivating questions. Finally, we introduce the interdisciplinary topic
of responsible robotics and its roots in responsible innovation. These three concepts are briefly
defined in Table 1.

2.1 Autonomy

Autonomy is a contested concept, subject to centuries of moral and philosophical debate. It con-
jures notions of free will, self-governance, and independence. Consolidating a balanced perspective
on what is meant by the term is therefore a knotty endeavour. Rather than engage in any philo-
sophical pretensions, we instead describe autonomy as it is conceived in the robotics literature.

An important first step is to note the subtle distinction between autonomy and its etymological
descendent: automation. Autonomy implies the ability to perceive, decide, and act independent of

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 1, Article 7. Publication date: January 2024.



7:4 T. Reinmund et al.

Table 1. Brief Definition of Concepts Addressed in This Article

Concept Definition

Autonomy “The extent to which a robot can sense its environment, plan based on that
environment, and act upon that environment with the intent of reaching
some task-specific goal (either given to or created by the robot) without
external control” [9, p. 77].

Variable autonomy An interaction strategy between human and robot agents in which the
robot’s level of autonomy varies during operation in response to changes
in context [Source: authors’ analysis].

Responsible robotics “Responsible robotics is the application of Responsible Innovation in the
design, manufacture, operation, repair, and end-of-life recycling of robot-
ics, that seeks the most benefit to society and the least harm to the envi-
ronment” [141, p. 173].

an external force [130]; automation meanwhile refers to “the execution by a machine, usually a
computer, of a function previously carried out by a human” [96, p. 931]. Autonomy is thus a more
demanding concept when ascribed to a robot, requiring the capacity to both deliberate and act
upon the world. A framework of autonomy in Human-Robot Interaction (HRI) by Beer et al.
[9] provides the following definition: “The extent to which a robot can sense its environment, plan

based on that environment, and act upon that environment with the intent of reaching some task-
specific goal (either given to or created by the robot) without external control” [italic emphasis
added] (p. 77).

As per Beer et al. [9], any task is composed of three “primitives”: sense, plan, act; a robot’s ability
to perform each of these facets independently determines how autonomous it is said to be. Since
the degree to which a robot executes each task primitive autonomously can vary, researchers have
conceptualised robot autonomy in a hierarchical structure of potential control modes.

Taxonomies for Levels of Autonomy (LoA) have a long history within the automation and
HRI literature. We do not attempt to delineate them all here, but focus on a few key contributions
that help explicate the concept of LoAs. Those interested in greater detail can refer to reviews by
Vagia et al. [130] and Beer et al. [9].

One of the earliest comes from research on automation by Sheridan and Verplank [114]. Pub-
lished in 1978, the authors survey the potential of teleoperated and supervisory control sys-
tems: teleoperation means, intuitively, that a vehicle is controlled remotely by a human operator,
whereas supervisory control includes vehicles that can operate automatically for periods of time
with intermittent intervention by a remote operator. These control modes represent 2 of 10 poten-
tial levels; as one moves up the hierarchy, the extent to which human intervention is necessary
decreases.

Building on this work over two decades later, Parasuraman et al. [98] expanded the framework
to include both types and levels of automation. As before, automation varies across a continuum
from manual performance to full automation. However, in this framework, the authors specified
the classes of functions to which automation can be applied: information acquisition, information
analysis, decision and action selection, and action implementation [98]. Automation is not all-or-
nothing and can be applied to varying degrees to certain types of functions.

Alongside the proliferation of such taxonomies in the automation literature, researchers in HRI
have articulated their vision of robot autonomy, taking into consideration the idiosyncrasies of
robotics technology such as physical embodiment and social situatedness [9]. From the perspective
of military applications, Huang et al. [54] created a framework to describe the LoAs along three
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dimensions: the complexity of the mission, the difficulty of the environment, and the degree to
which humans interface with the robot. Each axis contains a series of metrics which are used to
calculate the robot’s level of autonomy. In situations characterised by low mission complexity,
simple environments, and a high degree of human interaction, the robot’s autonomy is considered
to be low, and the more independently the robot can sense, plan, and act during complex missions
in difficult environments, the more higher LoAs are needed [54].

The most recent work by Beer et al. [9] sets out a framework that specifies in detail 10 different
levels of robot autonomy. Across each level, the framework states the roles performed by both
the human and robot, as they relate to the primitives of sense, plan, and act. For example, in a
level titled batch processing, “[b]oth the human and robot monitor and sense the environment.
The human, however, determines the goals and plans of the task. The robot then implements the
task” [9, p. 87]. As one moves along the continuum from manual to full autonomy, the number of
functions allocated to the robot increases.

Apart from its adoption in other academic disciplines, the level of autonomy concept has been
profoundly influential in shaping international standards. For example, the SAE J3016 standard
for “Levels of Driving Automation” depicts degrees of automation for vehicles [56], ranging from
Level 0, in which the human manually operates all driver support features, to Level 5, where the
automation drives the vehicle under any condition.

While influential, the LoA concept has been criticised by numerous authors. These critiques
commonly take issue with the implied tradeoff between human and autonomous control, albeit
through slightly different formulations. For example, Bradshaw et al. [16] implore that increases
in a system’s autonomy do not necessarily entail a concomitant decrease in the need for human
control. Ironically [5], the introduction of an autonomous system tends to create new kinds of
cognitively demanding work for human operators to perform [16]. Relatedly, Endsley [41] points
to the automation conundrum: “The more automation is added to a system, and the more reliable
and robust that automation is, the less likely that human operators overseeing the automation
will be aware of critical information and able to take over manual control when needed” (p. 8).
Building the line of critique levied against the LoA taxonomy, Shneiderman [115] proposes a two-
dimensional framework in which high levels of human control and autonomous capabilities are
simultaneously achievable.

In summary, frameworks for LoAs originate in the field of automation research and have been
influential in numerous areas. Those involved in HRI have adapted these taxonomies to fit the nu-
ances of robotics technology. The continuum of autonomy supposes that as the degree to which
a robot can sense, plan, and act in its environment increases, the level of human involvement sub-
sides. Despite its adoption in technical standards and much academic writing, the uni-dimensional
LoA concept is heavily criticised.

2.2 Variable Autonomy

A central assumption of these frameworks is that LoAs are fixed at the design stage—what Parasur-
aman et al. [97] termed static automation. The resultant rigidity of these robots comes with various
challenges, such as ensuring operators can intervene during automation failures [36, 37, 97] and
enabling human-robot teams to adapt to changing and complex environments [104]. To accom-
modate the challenges presented by fixed LoAs, substantial research has been directed towards
approaches that aim to dynamically shift between modes of autonomous control [37, 90]—which
we call variable autonomy. As early as the 1970s, variable autonomy has appealed to roboticists; it
promised flexibility amid dynamic and hostile environments, reduced workload for human opera-
tors, and the ability to exploit the complementary skill sets of humans and robots [47, 49, 66, 109].
The past four decades have seen a number of research groups investigate variable autonomy under
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many different labels, such as traded control [65], adaptive autonomy [35], adjustable autonomy
[18, 37], sliding autonomy [20, 36], and dynamic autonomy [21]. The different uses of these terms
are discussed in further detail in Section 5.1.

Despite their shared concern for the limitations posed by fixed LoAs in robots, these similar
concepts are loosely defined and inconsistently compared and contrasted: some authors provide
similar definitions for different terms, some create subtle distinctions between them, and others
offer no definition at all. This semantic ambiguity complicates attempts to formally characterise
variable autonomy and unnecessarily separates related research efforts. In this section, we provide
a historical background on the concept of variable autonomy in robotics, point to seminal work
in the field and its motivating problems, and outline limitations in current taxonomies of variable
autonomy to emphasise the need for a robust definition and characterisation.

One of the earliest formulations of the notion that a robot can possess multiple LoAs comes
from the previously discussed report by Sheridan and Verplank [114], who distinguished between
two types of control, which they term as shared and traded. As the authors wrote: “Here, to share
control means that both human and computer are active at the same time. To trade control means
that at one time the computer is active, at another the human is” [114, Section 6.1]. Shared control,
as defined in a recent review, is a control mode in which “human(s) and robot(s) are interacting
congruently in a perception-action cycle to perform a dynamic task that either the human or the
robot could execute individually under ideal circumstances” [1, p. 511]. As such, a robot with
shared control is not necessarily one with variable autonomy; it is a form of collaboration, typically
described as a specific LoA [9], that aims to achieve a given task through complementary human-
robot capabilities. Meanwhile, the distinction by Sheridan and Verplank [114] implies that traded
control is a type of variable autonomy in which control of a robot is at any time in one of two
discrete states: fully autonomous or remotely controlled [65].

Beginning in the late 1990s, the concept of variable autonomy and its variants took hold in ro-
botics research. A 1999 symposium titled Agents with Adjustable Autonomy hosted by the AAAI
brought together early contributors and offered an initial definition. According to the symposium
co-chairs, “adjustable autonomy means dynamically adjusting the level of autonomy of an agent
depending on the situation” [90]; the authors go further and state that adjustments in autonomy
can be initiated by either human or autonomous agents. Some of the earliest studies on variable
autonomy addressed its applications in diverse contexts such as space missions [17, 37] and urban
search and rescue [21]; investigated the problem of coordinating control in human-robot teams
[109, 138]; evaluated how changes in LoA affect task performance, situation awareness, work-
load, and acceptance [49, 77]; and designed user interfaces for controlling the autonomy levels of
multiple robots [47], moving across a continuum of LoAs [36], and delegating planning tasks to
autonomous agents [84]. As this research progressed, it began to revolve around several central
problems: who initiates changes in autonomy, for what reason, and when [82, 87, 104].

2.3 Responsible Robotics

To achieve our objective of constructing a research agenda for variable autonomy based on respon-
sible robotics, we must first define what responsible robotics is. In the past few years, numerous
authors have attempted to provide a description that captures the dynamic and diverse landscape
of research on the social and ethical issues associated with robotics. In a special issue of Frontiers

in Robotics and AI, Brandão et al. [19] outline the aims of responsible robotics; as per these authors,
the field “should focus both on identifying social and ethical issues, and on designing methods to
account for (and alleviate) such issues” [emphasis in original]. Meanwhile, another special issue
edited by van Wynsberghe and Sharkey [136] defines responsible robotics as “the responsible re-
search and innovation of robot development processes as well as the resulting products of such
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processes.” Along similar lines, Winfield et al. [141] provide the following definition for respon-
sible robotics: “Responsible robotics is the application of Responsible Innovation in the design,
manufacture, operation, repair, and end-of-life recycling of robotics, that seeks the most benefit to
society and the least harm to the environment.”

From these three articulations, we see that responsible robotics is an instantiation of Respon-

sible Innovation (RI) within the domain of robotics. RI, then, is described as an approach that
aims to align the products and processes of research and innovation with societal values and ex-
pectations (see [106, 122]). Numerous authors have contributed to the conceptual foundations of
RI over the past decade; therefore, we draw on this extensive corpus to sharpen the concept of
responsible robotics. In doing so, we clarify terms in the preceding definitions that have multi-
ple, and oftentimes opaque, meanings in the literature: responsibility, innovation, approach, and
societal values.

In their synthesis of moral responsibility and responsible innovation, Van de Poel and Sand [133]
distinguish between two interpretations of responsibility. The first, backward-looking responsibil-
ity, focuses on assessing a past sequence of events to attribute blame or praise for some outcome.
It requires “the ability and willingness to account for one’s actions and to justify them to others”
[133]. And the second, forward-looking responsibility, entails an obligation to ensure that some
future state comes about. This interpretation of responsibility implies anticipation of innovation
outcomes on the part of those involved in the innovation process. Given the inherently uncertain
nature of innovation and the unpredictability of its outcomes, attributing forward-looking respon-
sibility for the breadth of an innovation’s social, environmental, and ethical effects is challenging
to adopt in practice [12].

The term innovation itself likewise has many faces in the RI literature. Van den Hoven [134]
offers one such definition: “Innovation is an activity or process which may lead to previously
unknown designs pertaining either to the physical world (e.g., designs of buildings and infrastruc-
ture), the conceptual world (e.g., conceptual frameworks, mathematics, logic, theory, software), the
institutional world (social and legal institutions, procedures and organization) or combinations of
these, which—when implemented—expand the set of relevant feasible options for action, either
physical or cognitive” (p. 80). From this articulation, at least two interpretations of innovation are
apparent: innovation as both a product and a process. The latter represents the act of innovat-
ing, whereas the former is the result. Other scholars have extended that definition to include both
the purpose (the reasons motivating innovators [122]) and people(those involved in innovation
activities [58]).

Within the past decade, several academic and policy organisations have formulated multiple RI
approaches. Two of the most prominent are those presented by von Schomberg [106] and Stilgoe
et al. [122]. From the world of policy, the EPSRC, the UK’s main funding body for engineering and
physical sciences research, has assimilated the work of Stilgoe et al. into its “AREA” framework for
RI [93], constituted by four dimensions: anticipate, reflect, engage, act [42]. For clarity in writing,
we present the dimensions here as though they are discrete; in practice, they overlap and build on
one another.

First, anticipation refers to structured processes to identify and evaluate potential future scenar-
ios and their associated impacts: both intended and unintended, positive and negative [122]. As
mentioned previously, innovation is rife with uncertainty; therefore, the goal is not accurate pre-
diction, but anticipation of plausible and desirable futures towards which we guide innovation [74].
Second, reflection involves questioning underlying motivations, purposes, and assumptions, and
understanding the boundaries of knowledge [122]. Third, engagement is the inclusion of diverse
stakeholder groups throughout the innovation process, enabling deliberation and debate during
anticipation and reflection. Despite the consensus in the literature that stakeholder engagement
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is essential for responsible innovation [74, 132], questions remain on how to engage stakeholders
with vastly distinct, and potentially incompatible, worldviews [12] and enable meaningful engage-
ment [108]. Finally, acting is about using the insights gained from the three prior dimensions to
guide innovation along desired trajectories.

Innovators are then tasked with shepherding innovations according to the values of various
societal actors. But what exactly are values, and how are innovators meant to identify them? Value
sensitive design, an approach that seeks to engage with human values during design processes,
offers some help; as per Friedman and Hendry [46], values are “what is important to people in
their lives, with a focus on ethics and morality” (p. 24). Yet, as Boenink and Kudina [13] argue in
their critique of values in RI, values are not “pre-given stable entities, ready made for reflection” (p.
452). The meaning of a given value varies: from person-to-person, place-to-place, and time-to-time.
The dynamism of values has implications for innovators’ strategies to identify them. One method
is to appeal to a priori defined lists of ethical principles. Such lists offer a helpful starting point and
heuristic for dealing with values in design [46]; however, a strict reliance on so-called “universal”
values neglects those that are culturally contingent [14]. Therefore, other authors advocate for
an empirically led approach to the identification of values, engaging with people in their place
and practice to understand what it is they find important [13]. A common critique against this
line of thinking is that it falls victim to the naturalistic fallacy—that is, it assumes that the things
people value are those they should value [14]. Our own perspective sees merits in both strategies.
As mentioned, pre-defined ethical guidelines provide a helpful basis for agreed-upon values. Yet,
we also acknowledge that they should not be used too rigidly; it is crucial to consider the actual
experiences of those impacted by a technology. Therefore, we draw from both strategies, noting
how ethical guidelines can inform our understanding of values, but they must be complemented
with an empirical investigation of those involved.

Responsible robotics applies elements of RI to the robotics innovation lifecycle to reach soci-
etal and environmental objectives. Responsibility for events that have yet to occur and those that
have already come about is essential; the former depends on anticipatory practices, and the lat-
ter on transparency into past events and a causal understanding that links actions and outcomes.
Innovation in robotics refers to its dimensions of process, product, purpose, and people: the how,
what, why, and who of innovation. And following an RI approach emphasises anticipation of po-
tential pathways, reflection on motivations and assumptions, inclusive deliberation with impacted
stakeholders, and responsiveness to the insights brought up through this process. We ground our
approach to interpreting societal values in ethical guidelines for robotics, most of which agree that
these systems should not harm individuals or the environment, promote human rights and well-
being, maintain transparency, and ensure that human designers and operators remain responsible
and accountable [140]. International standards such as BS 8611:2016 “Guide to the Ethical De-
sign and Application of Robots and Robotic Systems”[55], the IEEE 7000-2021 standard for “Model
Process for Addressing Ethical Concerns during System Design” [118], and the IEEE 7001-2021
standard for “Transparency of Autonomous Systems”[117] have been built on top of these shared
principles. However, we equally emphasise that any study must include opportunities to reflect on
stakeholder values as they exist in their time and place.

2.4 Past Reviews

Researchers have conducted reviews that address similar topics to those covered in this study, as
shown in Table 2. In an early paper, Bradshaw et al. [15] conducted a narrative review to distin-
guish the dimensions along which autonomy can be adjusted. Per Bradshaw et al. [15], autonomy
includes both actions that one is capable of performing and those that one is allowed to perform; as
such, a robot’s autonomy can be adjusted according to what it is allowed to do, what it is required
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Table 2. Summary of Related Work

Reference Period
Aspect

Robotics Responsible Robotics Methodology

Bradshaw et al. [15] 1996–2004 ◗ ❍ ❍

Mostafa et al. [87] 2003–2015 ◗ ❍ ◗

O’Neill et al. [94] 1999–2019 ❍ ❍ ●

Selvaggio et al. [110] 1989–2021 ● ❍ ❍

This study 2010–2021 ● ● ●

❍ indicates that a review does not focus on a given aspect, ◗ indicates that a review partially focuses on

a given aspect, and ● indicates that a review directly focuses on a given aspect.

to do, what others think it could plausibly do, and what it is able to do. This initial taxonomy pro-
vided a helpful conceptualisation of the elements of autonomy that can be altered, but it did not
offer any insight into other dimensions of variable autonomy, such as who adjusts and why. More
recently, Mostafa et al. [87] performed a systematic literature review to map the extent of research
on variable autonomy for multi-agent systems. Their review specifies six design requirements: how
autonomy is defined, measures to evaluate autonomy, available autonomy modes, which agent con-
trols changes in autonomy states, patterns of human-agent interaction, and techniques to evaluate
autonomy adjustments. Selvaggio et al. [110] provided a brief narrative review on shared control
and shared autonomy in robotics. In this review, the authors’ definitions of shared control and
shared autonomy resemble the distinction between adjustable and adaptable autonomy, respec-
tively, as detailed in Section 5.1. Finally, O’Neill et al. [94] conducted a critical review on teamwork
in human-autonomy teams. Importantly, their work excluded research on robotics because of the
idiosyncrasies that arise from physical embodiment.

This review differs from existing work across four aspects:

(1) Period: This review focuses on recent developments in variable autonomy for robotics, ex-
tending 6 years beyond the review by Mostafa et al. [87]. Although the review by Selvaggio
et al. [110] aims to cover recent research, the authors did not intend to conduct a compre-
hensive survey and therefore did not include details on the time frame of papers included in
their review.

(2) Robotics: Whereas others have included both embodied and non-embodied artificial agents
in their reviews [15, 87], we focus specifically on robotics. A robot’s physically embodied
nature allows them to move throughout and act upon an environment, as well as engage
with people, in ways that traditional automation cannot [9]. Therefore, focusing on robotics
specifically enables us to engage with the technology’s idiosyncracies.

(3) Responsible robotics: The objective of this review is to establish a research agenda for variable
autonomy that is based on responsible robotics. In contrast, the objectives of related work
have been to construct general frameworks [15, 87] or synthesise existing research [94, 110].
As far as we are aware, this is the first study to focus on how variable autonomy can be
approached through a responsible robotics lens.
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(4) Methodology: This study reviews the research designs, empirical sites, and evaluation mea-
sures employed in variable autonomy robotics research. In this sense, this review is similar
to that of O’Neill et al. [94]; yet, as mentioned, their review explicitly excluded research on
robotics. Meanwhile, Mostafa et al. [87] only briefly touched on the methodology of variable
autonomy for robotics, stating that “[m]ost of the adjustable autonomy research results are
obtained based on simulation programs . . . [and] hence, the results might lack valid testing”
(p. 181). We strengthen their claim by providing evidence that the results of variable auton-
omy research may lack ecological validity given that most studies have been conducted in
artificial settings, such as simulations or contrived physical environments.

3 METHOD

Because of the unresolved conceptual and operational ambiguities surrounding variable autonomy,
and our objective of specifying an approach to variable autonomy that is based on responsible
robotics, we employ a “developmental review” as proposed by Templier and Paré [126].

3.1 Search Strategy

To account for the diverse terminology in variable autonomy, we employ three data collection
strategies: database, backward, and forward searches. First, we query four databases: ACM Digital
Library Full-Text Collection, IEEE Xplore, Elsevier Scopus (Scopus), and Clarivate Web of Science

(WoS). The first two databases provide comprehensive coverage of papers published in ACM and
IEEE conferences, prominent associations for computing and technology research. The latter, Sco-
pus and WoS, likewise are known to have extensive and high-quality coverage of journals and
conferences [86]. We construct keyword searches for each database based on terms identified in
previous reviews [87], consultations with researchers in variable autonomy, and informal database
searches. The resultant keyword queries are shown in Appendix A. Searches were performed in
January 2022. To focus on recent developments in the field, we restrict our search from 2010 to
2021. Additionally, we only include results published in journal articles or conference proceedings,
and written in English. This strategy yields a total of 294 papers.

Additionally, we conduct a backward search by reviewing the reference lists of previous reviews
and papers recommended by colleagues to identify further references. In parallel, we record semi-
nal early works in variable autonomy based on recurring citations in papers identified through the
database search; these include the following works: [3, 6, 17, 18, 21, 37, 47, 59, 60, 76, 77, 84, 90, 103,
104, 109, 138]. Next, we conduct forward searching in the Scopus database—retrieving papers that
cite the previously stated seminal works or the review by Mostafa et al. [87]. Together, backward
and forward sampling result in an additional 438 papers.

3.2 Data Selection

Overall, our three search strategies lead to 732 papers. We then employ a multi-stage selection
approach to identify relevant and representative papers. First, we remove any duplicate entries.
Then, we review the titles and abstracts according to the following inclusion criteria:

(1) Primary research: conceptual or empirical.
(2) Full text is available.
(3) Discusses an architecture or implementation of variable autonomy.
(4) Discusses variable autonomy in relation to robotics (i.e., physically embodied artificial

agents).

After this initial inclusion review, we are left with 154 papers. Given that we do not intend
to provide an exhaustive review of the literature, we prioritise studies based on their publication

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 1, Article 7. Publication date: January 2024.



Variable Autonomy through Responsible Robotics 7:11

Fig. 1. PRISMA-style flowchart depicting the sampling strategy for the developmental literature review.

Adapted from Page et al. [95].

venue and citation counts—two fairly reliable indicators of influence [7]. Top-priority papers in-
clude those published in first and second quartile journals for their respective discipline, as per
the Scimago Journal Rank scheme, along with those published in conferences sponsored by the
ACM and IEEE, given that these are the venues in which leading contributions are likely to be
found [7, 126]. We make adjustments based on citation counts—as reported in the paper’s respec-
tive database—to identify central contributions that were published in lesser-known venues. This
approach strategically delimits the number of papers included in the review while mitigating the
bias towards highly cited publications or those published in prominent venues. At this stage, a
total of 67 papers are chosen.

Finally, we perform full-text reviews of each of the 67 papers, excluding those that are irrelevant
according to the initial inclusion criteria, extended abstracts, shorter than four pages, or elaborated
further by the same authors in a subsequent study. Ultimately, a sample of 42 papers are included
for analysis. Figure 1 presents these reasons for exclusion in a PRISMA diagram [95].

3.3 Analysis

Our data analysis employs both deductive and inductive elements. The deductive elements are
the categories delineated in Table 3; these were defined prior to data extraction. Meanwhile, the
inductive elements were defined during analysis according to the data; these are represented in
Sections 5.1 through 5.3. We also extract bibliometric information, such as title, author(s), publi-
cation venue, abstract, and year. This scheme is coded into NVivo 12 to facilitate structured data
extraction and analysis.

Throughout our analysis, we continuously review extracted segments: conceptually relevant
extracts are grouped together and assigned an inductive code; these codes are added, combined,
separated, or removed as further studies are analysed; and patterns among inductive codes are
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Table 3. Data Extraction Form (Adapted from Bandara et al. [7])

Category Description RQ Relevant Section
Title Title of the paper – –
Author(s) Author(s) of the paper – –
Publication venue Journal or conference in which paper is published – Appendix B
Year Year in which paper is published Description Section 4
Technology Type of robot in which variable autonomy is implemented Description Section 4
Domain Application domain in which the paper is situated Description Section 4
Definition Definition of variable autonomy (or adjacent terms) RQ1 Section 5.1
Motivation Motivation or purpose for researching variable autonomy RQ1 Section 5.1
Design Paper’s study design RQ2 Section 5.2
Site Empirical site in which study takes place RQ2 Section 5.2
Evaluation Paper’s method to evaluate approach RQ2 Section 5.2
Architecture Technical description of variable autonomy implementation RQ3 Section 5.3

identified to determine higher-level relationships to inform the development of our conceptual
framework presented in Section 6 [7, 83].

It is worth offering further clarification on the Architecture category. Initially, we gather sub-
codes from previous reviews [15, 82, 87]. We follow a flexible approach where new dimensions are
added while some dimensions found in previous reviews are excluded. As an example, past reviews
do not differentiate between changes in autonomy determined before operation or at runtime;
our distinction between goal-oriented and stimulus-driven approaches captures this nuance. We
expand on the similarities and differences between the dimensions of variable autonomy proposed
in this article with past work in Section 6.

In summary, we aim to reconcile the conceptual and operational ambiguity around implementa-
tions of variable autonomy to devise an approach relevant for responsible robotics. With this aim
in mind, we employ a developmental review of recent work in the variable autonomy literature.
We leverage three search strategies to ensure a breadth of coverage, combined with a prioritisation
strategy that delimited the corpus to a manageable number of prominent and representative publi-
cations. Finally, we employ an analysis approach that draws on deductive and inductive elements;
the results of this analysis are presented in the following sections.

3.4 Limitations

We now deal with four limitations of our study. First, search queries are an inherently restrictive
sampling strategy: only papers which use equivalent language will be returned as a result. There-
fore, those which employ dissimilar language yet are still relevant will be excluded. We attempt to
mitigate this risk by developing an extensive search query as shown in Appendix A. The terms in
the query are gathered inductively by the first author from early papers and past reviews on vari-
able autonomy; the search query was then reviewed by the second and third authors and revised
accordingly. Additionally, we use multiple sampling strategies, such as forward and backward
searches, to further offset this limitation.

Second, the process of data selection and analysis includes numerous decisions that may impact
the internal validity of results. Therefore, we iteratively develop a data selection and extraction
protocol. The data selection protocol is encoded in Microsoft Excel and the data extraction protocol
is encoded in Nvivo 12 to support consistency.

Third, our search strategy draws from four sources of data: Scopus, WoS, IEEE Xplore, and ACM
Digital Library. Although each of these databases index high impact conferences and journals,
some relevant papers may be omitted. Nonetheless, the number of data sources in our review
exceeds the minimum of 2 suggested by Shea et al. [113].
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Fig. 2. Number of papers published by year (2010–2021).

Finally, we build our research agenda from what is currently possible from the perspective of
technical research on variable autonomy. As such, research that does not focus on the design and
implementation of variable autonomy is excluded from our search strategy. An implication of this
choice is that studies which adopt a qualitative orientation to HRI and social robotics may not
be included. In addition, although there is a productive community of scholarship that takes a
qualitative approach to the study of human interactions with robots [e.g., 81, 142], as far as we are
aware, such studies have not yet been extended to variable autonomy implementations.

4 DATA DESCRIPTION

Our review includes 42 papers published in journals and conferences spanning from 2010 to 2021
and a diversity of application domains and robot technologies. The list of publication venues cov-
ered in this review is included in Appendix B. In this section, we present a brief description of our
dataset. The intention of these statistics is not to infer properties of variable autonomy research
in general, but to depict the breadth of publications included within our review.

As shown in Figure 2, the number of publications is fairly constant across the 12-year period be-
tween 2010 and 2021. Our dataset is evenly distributed, with half of the papers (21 of 42) published
between 2010 and 2015, and the remaining half published between 2016 and 2021.

Figure 3 shows the application domains addressed in the reviewed papers. The most common
are search and rescue (13 of 42) [2, 22, 25–27, 38, 39, 45, 73, 79, 102, 124, 131] and military (9 of 42)
[30, 34, 39, 62, 88, 105, 119, 143, 144] contexts: the former refers to the use of robotics to identify and
rescue missing persons in, for example, disaster scenarios; the latter includes the use of robotics
for military operations such as surveillance, reconnaissance, and defence. Eight of 42 papers do
not state a specific domain and are categorised as generic.

Six different types of robot technology are addressed in the reviewed papers, as shown in
Figure 4. Sixteen studies include mobile robots [8, 25–28, 38, 70, 85, 101, 107, 111, 116, 124,
128, 131, 137], many of which are prototypes. Next, self-driving cars [8, 30, 34, 52, 100, 105,
119, 135, 144, 145]—autonomous ground vehicles that could transport passengers and cargo—and
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Fig. 3. Application domains addressed in the re-

viewed papers. The sum exceeds the number of

papers reviewed due to papers discussing multi-

ple domains.

Fig. 4. Types of robot technology addressed in

the reviewed papers. The sum exceeds the num-

ber of papers reviewed due to papers discussing

multiple robot technologies.

Unmanned Aerial Vehicles (UAVs) [2, 22, 24, 31, 62, 73, 88, 101, 143] are featured in 10 and 9
papers, respectively.

5 RESULTS

In this section, we present our results framed as responses to each of our three research ques-
tions. First, we review common definitions of variable autonomy in the literature and distil their
central features. We contextualise these definitions with the motivations for conducting variable
autonomy research and present a comprehensive definition. Second, we describe the process of
variable autonomy research, focusing on research designs, research sites, and evaluative measures.
Third, we present a taxonomic representation of variable autonomy implementations across four
dimensions, stated informally as questions: who initiates changes in autonomy, what aspects of
autonomy are adjusted, when are changes determined, and why do changes occur? We provide
formal characterisations of each dimension in turn.

5.1 RQ1: How Is Variable Autonomy Defined in the Literature?

As alluded to in Section 2.2, the literature on variable autonomy lacks consistent terminology. Dif-
ferent terms are given equivalent definitions, similar terms are alternatively defined, and some
terms are given no definition at all. Further, there is no central definition to which authors com-
monly refer. Therefore, we propose a comprehensive definition that, when combined with the
dimensions of variable autonomy discussed in Section 5.3, offers precision when describing robots
with variable autonomy.

Of the 42 papers, the authors of 30 explicitly define their conceptualisation of variable autonomy,
and across these 30 papers, six different terms appear. These terms, listed from highest to lowest
number of appearances, include adjustable autonomy, adaptive autonomy, variable autonomy, slid-
ing autonomy, adaptable autonomy, and dynamic autonomy. For some authors, the choice between
these terms signals different approaches to variable autonomy. Adjustable and adaptable autonomy
may represent systems in which changes in a robot’s autonomy are initiated by a human operator,
whereas adaptive autonomy describes systems in which changes are triggered by the robot agent
[51, 62, 131]. Valero-Gomez et al. [131] offer a representative distinction: “adjustable autonomy, in
which the operator has initiative over the autonomy level; adaptive autonomy, in which the auton-
omy level is adjusted depending on the task and context” [emphasis in original] (p. 703). From this
definition, we see that adjustments in autonomy are associated with particular conditions of the
context of use and can be initiated by either a human or artificial agent.

Most of the papers which identify their approach as adaptive autonomy align with this dis-
tinction [2, 30, 45]; meanwhile, those that employ adjustable autonomy use the term much more
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loosely. Specifically, these authors refer to adaptive and adjustable autonomy, along with other
terms such as sliding autonomy, inconsistently or interchangeably [8, 22, 70, 73, 101]. For example,
Basich et al. [8] define adjustable autonomy as “the ability of an autonomous system to alter its
level of autonomy during plan execution, often by dynamically imposing or relaxing constraints
on the extent of actions it can perform autonomously in a human-agent team” (p. 124). Similarly,
Lewis et al. [70] refer to adjustable autonomy as “having the robots alter their level of autonomy
in a situationally-dependent manner” (p. 1657). Next, an example of interchangeable use of terms,
Roehr and Shi [101] state that “sliding autonomy also known as adaptive/adjustable autonomy and
mixed initiative control is one area . . . [motivated by] increasing the efficiency of mixed [human-
robot] teams by adjusting the autonomy level of individual robots” (p. 508). Here, sliding, adaptive,
and adjustable are treated as equivalent terms, and the focus of the definition shifts to human-robot
collaboration. These definitions complicate the adaptable/adjustable and adaptive autonomy dis-
tinction, and point out the dynamic nature of autonomy in variable autonomy systems.

The third most common term is variable autonomy, favoured by Chiou et al. [25–27, 100] and
Ramesh et al. [100]. Chiou et al. [25] indicate that a “variable autonomy system is one in which
control can be traded between a human operator and a robot by switching between different Levels

of Autonomy” (p. 2). In comparison, this definition makes no claim as to who effects change; the
emphasis is instead on what is changed.

Despite the inconsistent terminology, researchers’ motivations for pursuing variable autonomy
are fairly similar. Researchers position variable autonomy as a strategy for groups comprised of
both humans and robots to interact with one another, thereby balancing the strengths and limi-
tations of autonomy with those of human operators. In particular, autonomous robot behaviour
is seen to reduce operator workload, stress, and fatigue, and compensate for losses in an oper-
ator’s situation awareness: the ability to sense and perceive the robot’s operating environment
[26, 30, 38, 100]. Human operators, however, are valued for their ability to respond to and navigate
complex and uncertain environments [27, 70, 73, 87, 91, 116, 131]. Researchers, implicitly or explic-
itly, view this capability balancing as a means to improve the effectiveness, efficiency, and safety of
the joint human-robot team [25, 31, 85, 88, 101, 107, 116]. Two papers offer an alternative framing,
instead stating that the motivation for variable autonomy is to enable automation to adapt to the
needs of human operators [51, 85].

From the preceding discussion and the results presented in Section 5.3, five fundamental con-
cepts related to variable autonomy arise. The first two, LoAs and dynamism, are closely linked.
In other words, the robot must possess multiple LoAs and the capacity to move between them
during operation. Importantly, these changes can be initiated by either the human, robot, or both.
Next, variable autonomy is an interaction strategy for groups comprised of both human and robot
agents, each of whom possess distinct capabilities. As such, HRI considerations are central to the
operationalisation of variable autonomy. Finally, changes in autonomy are deliberate: contextual
cues trigger an adjustment from one LoA to another. Drawing together these concepts, we propose
the following definition for variable autonomy in robotics.

An interaction strategy between human and robot agents in which the robot’s level of autonomy

varies during operation in response to changes in context.

This definition makes explicit the five fundamental concepts of variable autonomy, whereas
many of these are omitted from the reviewed definitions. Additionally, it includes both systems
in which changes in autonomy are initiated by either the human, robot, or a combination of both;
the intention is that this merging will remove unnecessary separation between related research
efforts.
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5.2 RQ2: How Is Research into Variable Autonomy Conducted?

In this section, we discuss three features of variable autonomy research: the research design em-
ployed, the research site, and measures used for evaluation. Reporting on the research design and
site provides insight into the state of variable autonomy research, and, relatedly, the robustness of
results. Depending on how results are generated and in what context they arise inferences can be
made on their validity. Additionally, the measures researchers choose for evaluation and compari-
son reveal the qualities valued in variable autonomy implementations.

5.2.1 Research Design. Ordered from most to least common, variable autonomy researchers
report on a range of research designs, as shown in Table 4: experimental, simulation, field tests,
conceptual, and surveys. All research designs besides those categorised as conceptual or survey
were task-oriented: a human-robot team, whether real or simulated, had to complete some pre-
defined task.

Experimental designs refer to studies in which human participants act as a robot operator and
perform a series of tasks under varying experimental conditions. Many experimental studies in-
volve participants operating a robot across multiple LoAs while performing a secondary task, such
as responding to questions [73] or mentally rotating three-dimensional objects [25]. Secondary
tasks enable researchers to test operators’ situation awareness [26] and induce cognitive load
[25–27, 34, 85]. The participants in these studies constitute a relatively homogeneous population:
11 of 28 experiments rely on undergraduate and graduate students from the authors’ respective
universities [24, 25, 30, 34, 52, 73, 92, 131, 143, 144], and 5 of 27 employ members of the research
team [23, 61, 88, 102, 128]. For 11 of 27 experimental papers, the participant sampling strategy is
unclear [26, 27, 31, 38, 62, 70, 91, 111, 116, 124, 137], and 1 paper recruits participants from the lead
author’s research institution [105].

There are three variations of experimental design: within-subjects, between-subjects, and single-
subject; it is unclear which approach is followed for six papers. The differences between these
three refers to how many experimental conditions, or independent variables, each participant
experiences. A within-subjects design has each participant experience each condition, whereas
between-subjects exposes each participant to only one condition; for both within- and between-
subjects, either one or multiple conditions can be tested. Most within-subjects experiments are
single factor, meaning they only test one independent variable across each participant; these stud-
ies compare different implementations, such as teleoperation and variable autonomy [24, 38, 70],
variable autonomy with other static LoAs [27, 92, 116, 124, 144], or systems in which changes in au-
tonomy are triggered by the system or the human operator [25, 62, 143]. Meanwhile, the remaining
within- and between-subjects studies test multiple independent variables, such as implementation
(e.g., static vs. variable autonomy), operator and robot workload, and task difficulty [26, 30, 34, 73].
Three studies test unique conditions, such as differences in interfaces [105], alerts for changing
autonomy [52], and number of robots [131]. Lastly, the single-subject designs imply that the study
includes only one participant, a design used in preliminary work [23] or as a supplement to field
tests [102].

Simulations, however, rely on numerical experiments within a virtual environment. For seven
of nine papers that employ a simulation design, it serves as preliminary validation for a proposed
variable autonomy architecture [8, 22, 28, 45, 101, 119, 135]. In contrast, Miller et al. [85] compare
the predictive performance of different information streams for triggering shifts in LoAs, including
signals from human control, autonomy, and the environment.

For the remaining papers, four report on field tests, such as in robotics competitions [79, 91, 102]
or navigation through difficult terrain [107]; three papers introduce conceptual frameworks for
performance measures to trigger adjustments in autonomy [2, 100, 145]; one paper presents the
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Table 4. Research Designs Employed by Authors in the Reviewed Studies

Research Design Occurrences References

Simulation 9 [8, 22, 28, 45, 79, 85, 101, 119, 135]

Conceptual 3 [2, 100, 145]

Experimental

Between-subjects 3 [26, 52, 131]

Not stated 6 [31, 61, 88, 111, 124, 137]

Single-subject 3 [23, 102, 128]

Within-subjects 16 [24, 25, 27, 30, 34, 38, 62, 70, 73, 91, 92, 105, 116, 124, 143, 144]

Field test 4 [79, 91, 102, 107]

Survey 1 [51]

Unclear 1 [39]

The sum exceeds the number of papers reviewed due to papers reporting on results from multiple research

designs.

results of a survey that explores how older adults would respond to changes in a social robot’s
autonomy if triggered automatically or by the user; and for one paper it is unclear whether the
results are from a simulation or experiment [39].

In summary, the majority of studies in this review employ an experimental design. Across these
studies, the participants come from a limited subset of possible populations. Additionally, the ex-
perimental design varies from study to study, making it difficult to compare results.

5.2.2 Research Site. All four field tests and half of experiments (14/28) occur in physical re-
search sites: arenas designed specifically for robotics trials [24, 79, 88, 91, 102], realistic out-
door [107] and indoor [38] settings, or, common for experiments, contrived environments such
as indoor obstacles courses [23, 25, 26, 28, 61, 70, 85, 92, 116, 124, 128, 137]. The remaining
half of experiments (14/28) take place in virtual environments, such as simulated programmes
[24, 27, 30, 31, 34, 52, 62, 73, 105, 111, 124, 131, 143, 144].

These results show that most variable autonomy studies take place in artificial settings, whether
in contrived physical environments or simulations. Variable autonomy implementations, therefore,
are not evaluated in contexts that reflect the dynamism and complexities of the real world, a central
factor motivating variable autonomy research.

5.2.3 Evaluation Measures. Researchers who conduct experimental studies and field tests em-
ploy an array of constructs and associated measures to evaluate variable autonomy implementa-
tions. Within the reviewed studies, constructs fall into two categories: capability constructs, which
focus on the performance of either the operator or the robot in completing a pre-defined task, and
collaboration constructs which characterise the quality of collaboration between the human and
robot. Tables 5 and 6 detail the capability and collaboration constructs, respectively. Across each
construct, measures are either objective or subjective, a common distinction in the HRI literature:
the latter refers to measures that draw from the experiences and perceptions of the participant,
commonly recorded through Likert-style surveys provided after the experiment; the former refers
to data that is “independent” of the participant, recorded manually by the researcher or through
devices such as sensors and timers.

Capability constructs include effectiveness, efficiency, safety, situation awareness, adaptability,
border-line functioning, and workload. Objective measures of effectiveness and efficiency such as
whether the primary task of operating the robot was successfully completed, the number of errors,
and task completion time are ubiquitous. Many of these are idiosyncratic to each study, such as
the number of targets accurately identified in a surveillance mission [34] or total area explored
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Table 5. Capability Constructs and Associated Objective and Subjective Measures Focus on the

Performance of Either the Operator or the Robot in Completing a Pre-Defined Task

Construct Objective Measure(s) Subjective Measure(s)

Adaptability Acceptance rate of proposed autonomy

changes

–

Border-line functioning Time taken to resolve perturbation –

Effectiveness
Number of errors

Primary task success rate
–

Efficiency Task completion time –

Safety Primary task success rate –

Situation awareness
Secondary task success rate

Amount of information exchange
Situation Awareness Rating Technique

Workload

Amount of information exchanged

Operator energy expenditure

Time spent in LoA

Mental demand

Physical demand

Operator performance

Temporal demand

Effort

Task difficulty

Frustration

in a search and rescue simulation [131]. For studies in which errors are associated with vehicle
collisions, researchers interpret primary task success rate as a measure of safety [25–27, 38, 52].
Relatedly, Zieba et al. [144] employ two unique constructs of adaptability and border-line func-
tioning, which refer to the ability of the system to manage issues and “border-line use conditions
in a given operational mode” (p. 381), respectively.

Whereas measures of effectiveness and efficiency are exclusively objective, workload and sit-
uation awareness include measures both drawn from the operator’s experience and behavioural
data. A common instrument for measuring subjective mental workload of task execution is the
NASA Task Load Index (NASA TLX) method [25–27, 30, 34, 73, 85, 116, 124]. The NASA TLX
is a well-established survey, composed of six dimensions: mental demand, physical demand, tem-
poral demand (i.e., how rushed a participant felt), effort, performance, and frustration level. After
completing a trial, participants rate their response to each question on a scale from low (1) to
high (20). Although not all papers directly use the NASA TLX survey, some include closely related
questions covering task difficulty [62] and perceived stress [38]. These are combined with objective
measures of workload, including operator energy expenditure, calculated in terms of mechanical
work [92]; amount of information exchanged between operator and robot [39, 79]; and time spent
in each LoA [107]. Similarly, a combination of objective and subjective measures represent situa-
tion awareness. For example, Kidwell et al. [62] interpret participant performance on secondary
tasks as an indication of situation awareness, whereas Côté et al. [31] infer situation awareness
from the amount of environmental information displayed on a GUI throughout the duration of the
experiment.

Constructs that refer to human-robot collaboration include interaction effectiveness, interaction

efficiency, automation reliance, trust, confidence, and acceptance. The number of LoA switches [25,
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Table 6. Collaboration Constructs and Associated Objective and Subjective Measures

Characterise the Quality of Collaboration between the Human and Robot

Construct Objective Measure(s) Subjective Measure(s)

Acceptance –
Preference

Intention to use
Perceived usefulness

Interaction effectiveness
Number of LoA switches

Time spent in LoA
Comfort with automation

Interaction efficiency [8]
Number of HRIs

Operator reaction time
Time spent in LoA

–

Confidence –
Robot performance

Operator performance

Reliance
Number of LoA switches

Time spent in LoA
–

Trust
Number of LoA switches

Time spent in LoA
Robot performance

62, 101, 105] and time spent in each LoA [25, 52, 62, 91, 105, 131], along with the number of HRIs [31]
and operator reaction time [143, 144], are collectively interpreted as reflecting the effectiveness and
efficiency of interactions, how reliant participants are on automation, and the trust participants
have in the robot. Owan et al. [92] evaluate participants’ level of comfort engaging with the robot
as a subjective measure of collaboration effectiveness. Similarly, three studies include questions to
gauge participants’ trust in automation [34, 62, 92]. Finally, measures of acceptance were mainly
informal survey questions, asking participants to state their preferences between control modes
[62, 73, 92, 116, 143], intention to use, and perceived usefulness [51].

The use and interpretation of measures varies significantly across the studies. For example, the
number of LoA switches and time spent in each LoA is interpreted as an indicator of operator re-
liance on autonomy [105], trust [52], interaction efficiency [91, 101], and interaction effectiveness
[131]. Even more, many studies do not explicitly state which constructs their measures are associ-
ated with. Additionally, the use of established subjective measures beyond the NASA TLX survey
is limited. For other constructs such as situation awareness, trust, and acceptance, researchers rely
on informal measures developed for the study at hand. Two exceptions are the experiments by de
Visser and Parasuraman [34] and Owan et al. [92]: the former draws from the Situation Awareness
Rating Technique by Taylor [125] and trust and self-confidence measure of Lee and Moray [69],
and the latter adapts a questionnaire for human-robot collaboration fluency from Hoffman [53].
Finally, there are instances of joint use of objective and subjective measures to converge on a given
construct. For example, Schaefer et al. [105] infer trust in automation through both the number of
LoA switches and responses to trust questionnaires.

5.3 RQ3: How Is Variable Autonomy Implemented?

Implementations of variable autonomy differ across four dimensions, stated informally as ques-
tions: who initiates changes in autonomy, what aspects of autonomy are adjusted, when are changes
determined, and why do changes occur? Each dimension includes several attributes. In this sec-
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Fig. 5. Overview of the four dimensions of variable autonomy: initiative, specificity, flexibility, trigger.

tion, we detail the four dimensions in turn and describe the variety of considerations designers
manage when constructing variable autonomy systems. An overview of the four dimensions and
associated attributes is provided in Figure 5.

5.3.1 Initiative. A long-standing concern in variable autonomy is who initiates changes in au-
tonomy. Whether it is the human, robot, or a combination of both represents our first dimen-
sion. We distinguish between these three types—human initiative, system initiative, and mixed
initiative—and reflect on the implications of each.

Human initiative refers to implementations in which the human operator has sole capacity to
change the robot’s autonomy. In one study, Lin and Goodrich [73] design an interface that en-
ables an operator to manage the behaviour of a simulated UAV by setting the amount of time
allocated to autonomy. In this instance, the human operator interprets information provided by
the GUI to make a judgment on the appropriate level of autonomy during the task. Whereas the
information provided by Lin and Goodrich’s interface is continuous, Bush et al. [22] present an
architecture in which the robot issues a request for an autonomy switch based on the predicted
likelihood of goal completion. Importantly, the robot could not initiate the change in autonomy
itself and the operator could reject requests for assistance. Therefore, humans retain full control of
changes in autonomy for human initiative variable autonomy systems, and may receive informa-
tion that guides their decision on when to initiate a change either through continuously available
information on an interface or discrete alerts sent by the robot. Besides serving as a medium for
information on when to intervene, interface design also influences a human operator’s propensity
to initiate autonomy changes. Schaefer et al. [105] find that operators are more likely to adjust a
robot’s autonomy when the interface is familiar; drawing on past work in automation reliance, the
authors suggest that the familiarity of interfaces mediates human trust in and reliance on robots.

Rather than relying on a human operator to adjust a robot’s autonomy, system initiative imple-
mentations enable the robot’s autonomy to change automatically. Specifically, a “control switcher”
[25]—an artificial agent, such as a learning algorithm [38, 61, 70, 92, 119], fuzzy controller [111],
Markov decision process [135, 137], or finite state machine [79]—adjusts the robot’s autonomy.
For example, Doroodgar et al. [38] develop a hierarchical reinforcement learning algorithm that
allocates control for performing a task to either a human operator or robot according to whichever
agent is predicted to do so more efficiently. These systems obviate the need for human interven-
tion in autonomy switches, yet still require human involvement. A transition from autonomous
behaviour to teleoperation demands the availability and awareness of a human operator who is
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willing and able to assume a greater degree of control following a period of passivity. Research
on self-driving cars discusses the risk of “vigilance decrement” on behalf of operators when they
remain in a passive state for an extended period of time [64].

Finally, mixed initiative implementations integrate the previous two types: both human oper-
ator and control switcher are able to initiate autonomy changes [25, 88, 100, 144]. The operator
and robot must collaborate to determine the appropriate level of robot autonomy, with the most
capable either seizing or being granted control [25]. As characterised by Chiou et al. [26], this im-
plies that both the robot and human must have an understanding of the other’s state, knowledge,
and capabilities. Recent experimental work by Chiou et al. [25] finds that mixed initiative sys-
tems improve performance and operator workload during navigation tasks as compared to human
initiative systems, at least in a simulated environment.

5.3.2 Specificity. When developing a variable autonomy system, designers must specify what
aspects of autonomy are subject to variation. Approaches found in the literature adjust autonomy
between two or more discrete operation modes, or at a granular level of control for autonomous
behaviour.

Traded control approaches shift between two extremes: manual and autonomous control [24,
26, 119]. A concern for this approach is that operators lose situation awareness during periods
of inattention, and struggle to regain control after the robot’s autonomous behaviour decreases
[52]. Cosenzo et al. [30] attempt to mitigate this risk by continuously reengaging the operator.
Similarly, discretised control implementations include pre-defined LoAs with intermediate degrees
of autonomy [28, 31, 85, 143]. As no studies in the review compare traded and discretised control
implementations, there lacks evidence on the tradeoffs associated with employing either approach.

Granular control implementations do not conceptualise operation modes in terms of discrete
LoAs. Instead, they adjust autonomy by constraining or expanding the functions a robot and hu-
man are allowed to do, required to do, and able to do [73, 128, 144, 145]. The continuous scale ap-
proach requires designers to exercise greater specificity in defining what autonomous behaviours
will be adjusted—for example, Lin and Goodrich [73] set constraints on where a UAV could operate
under autonomous behaviour and for how long.

5.3.3 Flexibility. A variable autonomy system is one in which the robot’s autonomy changes
during operation. Some variable autonomy implementations provide greater flexibility in the num-
ber and timing of these adjustments than others. Our third dimension differentiates between sys-
tems in which changes in autonomy are defined a priori or occur dynamically.

In goal-oriented variable autonomy systems, when and what autonomy changes occur are de-
fined before operation. In a study by Small et al. [116], the authors introduce a goal-oriented vari-
able autonomy system, termed Assigned Responsibility, in which various segments of a task are
assigned an LoA before operation, and the robot monitors the progress of task completion to auto-
matically change LoAs as it moves from one segment to the next. This approach imposes rigidity
on the system, but, as Small et al. [116] suggest, reduces the operator’s cognitive load and enables
designers to explicitly state when automation will be used to align with legal and ethical consid-
erations.

Stimulus-driven autonomy adjustments imply that all decisions related to changes in autonomy
take place at runtime [2, 22, 24, 28, 31]. The human operator or control switcher dynamically
adjusts autonomy during task execution, without following a prescribed set of changes. These
approaches enable greater flexibility and the ability to respond to unpredictable circumstances,
but introduce a degree of uncertainty in robot behaviour.

Of course, the choice is not binary. Some implementations, such as that proposed by Romay et al.
[102] and Mostafa et al. [88], adopt a hybrid approach, in which designers define a relative LoA
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for various task segments during the design stage while the operator retains the ability to make
adjustments on-the-fly.

5.3.4 Trigger. According to our definition for variable autonomy, autonomy adjustments occur
because of some change in context. Influenced by previous taxonomies for triggers in adaptive
systems [43, 97], we organise triggers for variable autonomy systems into four categories: task,
operator, system, and environment.

Task triggers address aspects of the task which the human-robot team performs, relying either
on a measurement of the task’s state or the properties ascribed to individual tasks by designers.
Variable autonomy systems calculate task state indicators such as completion status [116, 124] and
predicted likelihood of failure [22, 101]. In the goal-oriented approach by Small et al. [116], the sys-
tem monitors task progress to automatically change LoA as the robot moves from one task to the
next. Task completion is represented as an observable state of the world to which a current state
is continuously compared against. These triggers require the system to sense its surrounding envi-
ronment and relate environmental conditions to the ongoing task. Another grouping of task trig-
gers address properties of the task itself: some studies distinguish between types of tasks, labelling
some as sensitive and therefore requiring human, rather than autonomous, control [102, 137]; oth-
ers switch between control modes as the relative difficulty of a task changes [30, 34, 39, 88, 143]. For
example, de Visser and Parasuraman [34] develop a system initiative architecture that moves from
manual to autonomous control as task load, defined in terms of the number of vehicles under an
operator’s supervision, increases. Similarly, Mostafa et al. [88] develop a system that varies its au-
tonomy according to a task’s complexity, calculated by the number of individual actions required
to complete it.

Operator triggers reflect the states and decisions of the human operator. Several studies attempt
to infer internal properties such as operator workload through physiological sensors [143] and
competence level through the amount and quality of human input [70, 85, 111]. Zhao et al. [143]
employ eye trackers and sensor-enabled wristbands to measure cognitive processing and stress
levels, whereas Lewis et al. [70] develop a model of expert-novice differences to increase the de-
gree of autonomy when lower-skilled operators engage with the system. Whereas such systems
require the ability to sense aspects of the operator, others defer to an operator’s own judgment.
Some studies indicate that an operator’s judgment on when to adjust a robot’s autonomy may
be influenced by individual characteristics such as personality, preferences, trust, and experience
with robots [25–27, 62, 101].

System triggers refer to events and states internal to the robot. There are two varieties of sys-
tem triggers: monitoring and error detection. The difference between the two is one of severity:
monitoring approaches measure gradual changes in system performance, whereas error detection
focuses on discrete failures in autonomy. By comparing current to expected performance, moni-
toring techniques initiate changes in autonomy whenever system performance falls below a given
threshold [24, 25, 61, 119]. A recent paper by Ramesh et al. [100] proposes the concept of “robot
vitals,” a composite measure of performance in multi-robot systems; the vitals include “rate of
change of signal strength, sliding window average of difference between expected robot velocity
and actual velocity, robot acceleration, rate of increase in area coverage, and localisation error”
(p. 303). The authors argue that the relative simplicity of their measure supports explainability
in a robot’s decisions. Meanwhile, error detection triggers changes whenever the autonomy fails
[52, 91, 107, 124, 144].

Finally, environment triggers capture the circumstances of the robot’s external environment. For
example, a robot may enter a manual control mode when entering a novel environment or encoun-
tering unforeseen events [79]. Likewise, changing environmental conditions such as weather and
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obstacles may require an operator to take or relinquish control from the autonomy [92, 107, 135].
Robots must be able to sense their surrounding environment for these triggers to function.

6 DISCUSSION: DESIGN GUIDELINES FOR VARIABLE AUTONOMY THROUGH

RESPONSIBLE ROBOTICS

We reviewed 42 recent papers on variable autonomy to investigate how variable autonomy is de-
fined in the literature (RQ1), how research into variable autonomy is conducted (RQ2), and how
variable autonomy is implemented (RQ3). Overall, our review makes four contributions. First, we
provide a definition of variable autonomy synthesised from past definitions in the literature. As
shown by our results in Section 5.1, the variable autonomy literature employs diverse and incon-
sistent terminology and definitions. We attempt to clarify the field’s language by offering a synthe-
sised definition that builds on past articulations and incorporates the four dimensions of variable
autonomy.

Second, we detail the research designs, sites, and measures employed in the literature to support
rigorous empirical research. We provide evidence for the concern that the results of variable auton-
omy research may lack ecological validity given that most studies have been conducted in artificial
settings, such as simulations or contrived physical environments [87]. As such, these studies have
not been evaluated in contexts that reflect the dynamism and complexities of the real world. Addi-
tionally, we highlight how variable autonomy research follows a restrictive definition of relevant
stakeholders, focusing only on the role of the operator rather than any other implicated group such
as bystanders or passengers. Further, we point to the field’s limited modes of evaluation; most em-
pirical studies rely on homegrown measures, rather than utilising validated instruments, and do
not include qualitative evidence surrounding people’s experiences with variable autonomy robots.
These challenges are not restricted to variable autonomy but have been noted in the field of HRI
more broadly [33, 63].

Third, we distil previous characterisations of variable autonomy to provide a heuristic for design-
ers when defining requirements for variable autonomy robotics. In particular, we deepen the de-
scription of the triggers that initiate changes in autonomy and introduce the dimension of “flexibil-
ity” to distinguish between implementations that allow for changes in autonomy to be determined
before operation or at runtime. Further, previous reviews include several dimensions which we ar-
gue are not specific to variable autonomy but are relevant to autonomy more broadly; these include
human-agent interaction, autonomy representation, and autonomy measurement [87]. Therefore,
our taxonomy offers a concise formulation of aspects that distinguish variable autonomy from
other HRI strategies.

Finally, in this section, we draw inspiration from Jirotka et al. [58] and Amershi et al. [4] to
present 11 design guidelines (DG1–DG11) that will help researchers approach variable autonomy
through a lens of responsible robotics. These guidelines, depicted in Table 7, touch upon the prod-
uct and process of innovation, as introduced in Section 2.3, and build upon the results from our
review in Section 5.

DG1: Select Ethical Robotics Principles. There are several resources that outline ethical principles
for robotics (see [140]). Select one as a basis for ethical reflection throughout the duration of the
research and innovation process while remaining flexible so the principles can be adapted to fit
the circumstances of project stakeholders.

DG2: Determine the Objectives of the Robotic System. As shown in the discussion of researcher
motivations and evaluation measures, the values underpinning variable autonomy research are
predominantly performance-based. The concern is how to enable a human and robot to interact
with one another to achieve some objective. Yet, a responsible robotics approach to variable au-
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Table 7. Eleven Design Guidelines for Variable Autonomy Research Based on

Responsible Robotics

Design Guidelines

P
ro

ce
ss

1 Select ethical robotics principles.
2 Determine the objectives of the robotic system.
3 Identify relevant stakeholders beyond users.
4 Conduct ethical risk assessment.
5 Sample representative participants from stakeholder populations.
6 Create study design with stakeholder input.
7 Develop holistic evaluation plan.

P
ro

d
u

ct

8 Match initiative to context.
9 Support specific control modes.
10 Enable flexible autonomy changes.
11 Select appropriate triggers.

tonomy entails a wider range of goals, such as supporting stakeholder physical and psychological
well-being and minimising environmental harm.

DG3: Identify Relevant Stakeholders beyond Users. Stakeholders are “those who are or will be sig-
nificantly implicated by the technology” [46, p. 35]. A stakeholder can be one who directly interacts
with a technology or one who does not interact with it but is still impacted by its use—a distinction
between direct and indirect stakeholders, respectively. Within variable autonomy research, most
participants assume the role of operators. This presents an abstraction of how robots would be
used in practical contexts—for example, there are networks of different humans who exist in the
robot’s operating environment. The IEEE 7001-2021 standard for “Transparency of Autonomous
Systems”[117] includes several categories of direct and indirect stakeholders to consider, such as
non-expert users, domain expert users, superusers, the general public, and bystanders. Take the
scenario of an assistive robot within a care home: the intended user may be an older adult with
support needs, but she does not live in isolation. She is likely supported by a network of family
members, friends, care workers, and physicians. Each of these groups may have separate experi-
ences of and responses to the use robots with variable autonomy.

DG4: Conduct Ethical Risk Assessment. The British Standard 8611 (BS8611) outlines a systematic
approach to identify, analyse, and mitigate ethical hazards associated with the design and appli-
cation of robots [55]. It includes a taxonomy of 20 ethical hazards that designers can draw from
to reduce the effect of ethical harms—that is, harms that compromise psychological, societal, or
environmental well-being.

DG5: Sample Representative Participants from Stakeholder Populations. As shown in this re-
view, research on variable autonomy—and HRI more generally [63]—relies on non-representative
groups, namely university students and members of the research team, to act as prospective robot
operators. These groups may not actually display the same characteristics as future relevant stake-
holders given differences in age and professional history. Therefore, the preferences and attitudes
towards robots expressed by these study populations may not represent those of other populations.

DG6: Create Research Design with Stakeholder Input. Collaborate with stakeholders to determine
where the study will be conducted, the tasks to be performed, how different types of stakeholders
will be included, and whether the approach is acceptable. From this process, researchers should
clearly specify the research design employed. For example, when following an experimental setup,
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researchers should articulate whether it follows a between-, within-, or single-subject(s) design;
the independent variable(s); the evaluative measures (along with what construct each is meant to
operationalise); and the research site. Additionally, researchers should use this as an opportunity
to extend beyond the traditional experimental paradigm, towards studies that focus on “how real
people, in real-world environments, would interact face to face with a real robot” [33]. In other
words, research should evaluate variable autonomy implementations in contexts that reflect the
dynamism and complexities of the real world.

DG7: Develop Holistic Evaluation Plan. Evaluation should employ well-established quantitative
and qualitative methods. For quantitative evaluation, rather than developing homegrown objec-
tive and subjective measures, leverage validated instruments for constructs such as workload (see
[50]), situation awareness (see [40, 125]), trust (see [68, 69, 75]), psychological safety (see [67]),
and usability (see [71]). There are numerous reviews that outline common measures used in HRI
research (e.g., [29, 32, 78, 89, 121]). Although quantitative evaluation allows for comparison across
individuals and the potential for generalisable knowledge, it misses out on the meanings and val-
ues people ascribe to phenomena within specific contexts. Qualitative methods such as interviews
[10, 11] and ethnography [57] enable researchers to engage with such concepts.

DG8: Match Initiative to Context. Deciding who has the authority to initiate changes in auton-
omy has implications for the performance of the human-robot team, the experience of the human
operator, as well as the experiences of other people who either directly or indirectly interact with
the robot. The choice between human, system, and mixed initiative implementations entails trade-
offs between factors such as human control, efficiency, and consistency, and therefore should be
made in relation to the context in which the robot will be used.

DG9: Support Specific Control Modes. LoAs are a useful construct to help us understand variation
in autonomous capabilities. However, in actual implementations, different autonomous capabilities
are allocated to different functions and may change depending on the activity [16]. Therefore,
greater specificity of choice in autonomous capabilities, such as in discretised and granular control,
enables the robot and human to fine-tune autonomous capabilities to the current situation.

DG10: Enable Flexible Autonomy Changes. The flexibility of the variable autonomy implementa-
tion concerns the designer’s ability to specify a priori the types of behaviour which will be per-
formed under certain control modes. Goal-oriented approaches enable designers to pre-define the
allocation of autonomous capabilities. Defining exactly when the robot will operate with certain au-
tonomous capabilities is useful in regulated or safety-critical contexts where the use of autonomy
to perform certain tasks may be restricted. Yet, this regulation of autonomous behaviour increases
its rigidity, and may preclude the operator or the robot from adapting dynamically in uncertain
and unforeseen situations. Dynamic adjustments in autonomy, as stated before, imply greater vari-
ability and unpredictability in behaviour: an operator may be unprepared to regain control when
it is handed back to her, or she may retake it when she is not suited to perform the task at hand.
Hybrid approaches, therefore, provide a middle-ground route where certain behaviours can be as-
signed to autonomous capabilities beforehand while retaining the system and/or operator’s ability
to make adjustments as changes in context arise.

DG11: Select Appropriate Triggers. Responding to changes in context requires the use of
sensing capabilities. These triggers, such as those that infer an operator’s state or environmental
conditions, may introduce privacy and security concerns depending on the type of data collected.
Audio and video data of the operating environment may capture personal information if used
in a sensitive context such as a person’s home. Data collected within search and rescue and
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military applications may depict traumatising experiences or confidential national security
details. Decisions on the types of triggers should be made on a case-by-case basis, as the operating
environment determines the data that is likely to be collected. Different jurisdictions face different
regulatory requirements for data collection and processing, and these should serve as a foundation
for these decisions.

An important property of these design guidelines is that they are not speculative; several of these
recommendations have already been successfully applied on numerous robotics projects. First, we
begin with the process-oriented design guidelines (DG1–DG7). In a project on accidents involving
autonomous vehicles, Ten Holter et al. [127] describe how they based their approach on the AREA
framework (DG1) and drew on the expertise of stakeholders such as insurers, scholars, engineers,
pedestrians, and cycling groups to inform their research plan (DG3, DG6). Meanwhile, McGinn
et al. [80] build on BS8611 to conduct an ethical assessment of a real-world disinfectant robot used
in a hospital in Ireland (DG4). Moving towards the design guidelines focused on product (DG8–
DG11), our recommendations have been drawn from the technical literature: Small et al. [116]
point to the utility of system initiative architectures in predictable environments (DG8), the work
of Lin and Goodrich [73] introduces an innovative strategy to enable specific modes of autonomy
adjustment (DG9), Romay et al. [102] and Mostafa et al. [88] enable flexible autonomy changes
(DG10), and Ramesh et al. [100] propose a unique set of performance monitoring measures that
support explainability in a robot’s autonomy adjustment decisions (DG11).

7 FUTURE WORK

This article’s objective is to establish a research agenda for variable autonomy based on respon-
sible robotics. The relationship between these two areas is in its early stages and has yet to be
investigated through primary research. Therefore, we propose the following research agenda.

Responsibility. As discussed, there are two notions of responsibility: forward- and backward-
looking [133]. Forward-looking responsibility depends on the anticipation of consequences. There-
fore, we ask what concerns and challenges stakeholders anticipate regarding the use of variable
autonomy robotics, particularly across different design configurations. This inquiry will seek to
provide an empirical basis for our initial explorations of impacts discussed in this section and to
conceptualise how variable autonomy design features can mitigate the adverse consequences of
robotics in varied contexts. Next, backward-looking responsibility requires the ability to assess a
past sequence of events. We are exploring the concept of an Ethical Black Box (EBB), a device
similar to a flight data recorder that continuously records sensor inputs, actuator outputs, and
relevant internal status data to facilitate accident investigations involving robots (see the work of
Winfield et al. [141] and Winfield and Jirotka [139] for further discussion on the concept of an EBB).
As such, we are interested in how variable autonomy can be incorporated into EBB recordings and
how relevant information can be interpreted during accident investigations.

Product, Process, Purpose, and People of Innovation. Responsible robotics implies a concern for a
broad range of stakeholders, moving beyond the perspective of the individual user [74, 122, 132].
Yet, our results show that variable autonomy research has thus far only been concerned with the
perspective of the operator; therefore, we will explore how diverse stakeholders experience vari-
able autonomy. Specifically, we are interested in how variable autonomy affects stakeholders’ trust
and confidence in a robot, as well as their sense of autonomy and identity, using both qualitative
data and quantitative measures. Additionally, we will ask whether these experiences and percep-
tions vary across contexts, such as application domains and technology.
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Societal Values. When taking a values-led approach to design, there is a balance to be struck
between relying on a priori values and those that are situated and local. As such, we pick up two
directions in our investigations of values and variable autonomy. First, how can we use variable
autonomy to enable robots to adapt to the values of different cultural contexts? Second, the values
currently driving variable autonomy research, as inferred from the researchers’ motivations and
evaluation measures, are predominantly performance-based. Therefore, we will explore holistic
approaches to the evaluation of variable autonomy that span beyond concerns of efficiency and
effectiveness.

8 CONCLUSION

In this article, we conducted a developmental review on variable autonomy in robotics to establish
the foundation for a research agenda in responsible robotics. To conclude, we summarise this
work’s key findings:

— We define variable autonomy in robotics as “an interaction strategy between human and
robot agents in which the robot’s level of autonomy varies during operation in response to
changes in context.”

— Based on the research designs and sites of empirical studies, most variable autonomy imple-
mentations have not been evaluated in contexts that reflect the dynamism and complexities
of the real world, a central factor motivating variable autonomy research.

— From the motivations discussed in the papers and the evaluation measures employed in
empirical studies, variable autonomy research is driven by performance-based values, such
as efficiency and effectiveness in relation to some task. Additionally, the perspectives of
human participants are reduced to questions of mental workload, preference, and technology
acceptance through instruments such as the NASA TLX survey. There is a need to conduct
more holistic evaluation of variable autonomy implementations that combines a diversity of
quantitative measures and qualitative explorations of participants’ experiences.

— Participants included in empirical studies are limited in terms of representativeness and
diversity. First, most study participants are either university students or members of the
research team, populations that may not represent relevant stakeholder groups. Second, the
only stakeholder role investigated across the reviewed studies is that of the operator, whereas
a robot in a practical context is likely to interact with networks of different humans.

— Variable autonomy implementations vary along four dimensions: initiative (the agent that
initiates changes in the robot’s autonomy), specificity (the aspects of autonomy that are
changed), flexibility (the point at which autonomy changes are determined), and trigger (the
contextual features that stimulate changes in autonomy).
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APPENDICES

A DATABASE SEARCH QUERIES

The search queries used for the four databases—Scopus, WoS, ACM Digital Library, and IEEE
Xplore—are shown in Table 8.

Table 8. Search Queries for Scopus, WoS, ACM Digital Library, and IEEE Xplore Databases

Database Query Results

Scopus (variable OR adjustable OR adaptive OR dynamic OR flexible OR
sliding) PRE/0 autonomy) AND robot* OR self?driving OR
((autonomous OR unmanned OR uninhabited) PRE/1 vehicle))

99

WoS TS=((variable OR adjustable OR adaptive OR dynamic OR flexible OR
sliding ) NEAR/0 autonomy) AND TS=(robot* OR self?driving OR
((autonomous OR unmanned OR uninhabited) NEAR/1 vehicle))

84

ACM Digital
Library

[[All: “variable autonomy”] OR [All: “adjustable autonomy”] OR [All:
“adaptive autonomy”] OR [All: “dynamic autonomy”] OR [All:
“flexible autonomy”] OR [All: “sliding autonomy”]] AND [[All:
robot*] OR[All: self?driving] OR [[[All: autonomous] OR [All:
unmanned] OR [All: uninhabited]] AND [All: vehicle]]]

49

IEEE Xplore (((“All Metadata”:variable OR “All Metadata”:adjustable OR “All
Metadata”:adaptive OR “All Metadata”:dynamic OR “All
Metadata”:flexible OR “All Metadata”:sliding) ONEAR/1 “All
Metadata”:autonomy) AND (“All Metadata”:robot* OR “All
Metadata”:self?driving OR ((“All Metadata”:autonomous OR “All
Metadata”:unmanned OR “All Metadata”:uninhabited) ONEAR/2 “All
Metadata”:vehicle)))

62

All searches were conducted in January 2022, and results were restricted to the years 2010 – 2021.
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B PUBLICATION VENUES

The publication venues for variable autonomy papers included in this review are shown in Table 9.

Table 9. List of Publication Venues Included in the Review

Publication Venue No. of Papers
IEEE International Conference on Intelligent Robots and Systems 5
Proceedings of the Human Factors and Ergonomics Society 3
IEEE Robotics and Automation Letters 2
IEEE/WIC/ACM International Conference on Intelligent Agent Technology 1
Chinese Journal of Aeronautics 1
International Joint Conference on Autonomous Agents and Multiagent Systems 1
IEEE Aerospace Conference Proceedings 1
Transportation Research Part C 1
IEEE Intelligent Systems 1
International Conference on Collaboration Technologies and Systems, CTS 1
IEEE International Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises 1
International Journal of Intelligent Robotics and Applications 1
ACM/IEEE International Conference on Human-Robot Interaction 1
Sensors 1
IEEE International Conference on Robotics and Automation 1
Cognition, Technology, and Work 1
IEEE International Conference on Systems, Man, and Cybernetics 1
Information Sciences 1
IEEE International Symposium on Computational Intelligence and Informatics, CINTI 1
International Conference on Self-Adaptive and Self-Organizing Systems, SASO 1
IEEE International Workshop on Robot and Human Interactive Communication 1
International Journal of Intelligent Computing and Cybernetics 1
International Symposium on Artificial Intelligence, Robotics and Automation in Space 1
Human Factors: The Journal of the Human Factors and Ergonomics Society 1
Journal of Cognitive Engineering and Decision Making 1
Journal of Field Robotics 1
Journal of Intelligent and Robotic Systems: Theory and Applications 1
Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems 1
IEEE SOUTHEASTCON 1
Robotica 1
IEEE-RAS International Conference on Humanoid Robots 1
Springer Tracts in Advanced Robotics 1
IEEE/ACM Workshop on AI Engineering–Software Engineering for AI (WAIN) 1
ACM Transactions on Human-Robot Interaction 1
IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1
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