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A B S T R A C T

Advancements in mycelium technology, stemming from fungal electronics and the development of living
mycelium composites and skins, have opened new avenues in the fusion of biological and artificial systems.
This paper explores an experimental endeavour that successfully incorporates living, self-regenerating, and
reactive Ganoderma sessile mycelium into a model cyborg figure, creating a bio-cybernetic entity. The
mycelium, cultivated using established techniques, was homogeneously grown on the cyborg model’s surface,
demonstrating robust reactivity to various stimuli such as light exposure and touch. This innovative merger
points towards the future of sustainable biomaterials and the potential integration of these materials into new
and existing technologies.
1. Introduction

The fusion of organic and inorganic materials is not a new concept
in science. In fact, the pursuit of this fusion has been a driving force
behind numerous technological innovations, from the development of
bio-electronics to the creation of synthetic organisms (Meunier et al.,
2010a,b; Vallet-Regí et al., 2011; Sicard et al., 2010; Maciel et al.,
2021; Yoon et al., 2020; Bai et al., 2023; Yoon et al., 2019; Fallegger
et al., 2020; Huang et al., 2020). However, the potential of harnessing
the power of fungi, specifically their mycelium networks, sensorial
fusion, information processing and decision making is a relatively novel
exploration (Adamatzky, 2023; Adamatzky et al., 2022). The organic
networks created by fungi have been shown to be highly adaptable
and responsive to their environment, exhibiting electrical behaviours
similar to that of neural networks (Adamatzky, 2022; Adamatzky and
Gandia, 2021; Gandia and Adamatzky, 2022). By tapping into these
inherent properties, we can start to envision a future where organic
and inorganic materials coexist, creating a new breed of bio-cybernetic
entities.

The field of fungal electronics (Adamatzky, 2023; Adamatzky et al.,
2022) is a rapidly evolving research frontier, characterised by the
development of electronic devices made of mycelium-bound composites
and pure mycelium skins (Adamatzky et al., 2022; Danninger et al.,
2022; Adamatzky et al., 2021a; Web article:, 2014; Bayer and McIntyre,
2014). These devices are capable of changing their impedance and
generating spikes of electrical potential in response to external control
parameters. The utility of fungal electronics extends to being embedded
into fungal materials and wearables or serving as standalone sensing
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and computing devices (Adamatzky et al., 2021a,b; Vasquez and Vega,
2019).

The research into mycelium composites has led most of the ad-
vancements in mycelium technologies for the past decade (Jones et al.,
2020b; Attias et al., 2020; Girometta et al., 2019). Such materials are
not only eco-friendly but also exhibit a range of intriguing proper-
ties when kept alive. For instance, Ganoderma resinaceum, a type of
filamentous polypore fungus, can colonise a variety of lignocellulosic
substrates and react to physical stimuli, such as pressure from heavy
weights (Adamatzky and Gandia, 2022). On the other hand, growing ef-
forts are being poured into the development of pure mycelium materials
aiming to replace animal and synthetic leather and textiles. Such mate-
rials, known as fungal-based biotextiles, mycoleather, or mycofabrics,
are produced following different techniques such as liquid- and solid-
state fermentation (Jeong et al., 2023; Gandia et al., 2021; Adamatzky
et al., 2021a; Cartabia et al., 2021; Jones et al., 2020a) (Fig. 1).

The ability of the living fungal materials to respond to and interact
with their environment (Dehshibi et al., 2021), as well as recent interest
and investigation into self-healing properties (Elsacker et al., 2023;
Web Article:, 2017, 2016), make the fungi in the genus Ganoderma
prime candidates for integration into cyborg technologies.

Fungi are traditionally considered non-excitable organisms, unlike
animals and some plants, which have well-defined electrical signalling
systems. However, recent studies have revealed intriguing aspects of
electrical behaviour in certain fungal species. Here are some key points.
Fungi have been observed to display electrical potentials during hy-
phal growth. Namely, an electrical current is initiated by a hypha:
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Fig. 1. Example of living floating fungal mat grown on MEB liquid medium.

positive current, more likely carried by protons (McGillviray and Gow,
1987), enters the tip of a growing hypha (Gow, 1984; Harold et al.,
1985). The reported current density is documented to reach up to
0.6 μA/cm2(McGillviray and Gow, 1987). Electrostatic repulsion of
charged basidiospores propels the spores away from similarly charged
basidia (Savile, 1965; Leach, 1976). The involvement or association of
electrical current with the translocation of material is reported to occur
concurrently with hydraulic pressure (Rayner, 1991). There is evidence
suggesting the participation of electrical current in the interactions
between mycelium and plant roots during the formation of mycor-
rhiza (Berbara et al., 1995). In 1976, Slayman, Long, and Gradmann
identified action potential-like spikes through intracellular recordings
in the mycelium of Neurospora crassa (Slayman et al., 1976). Two
decades later, Olsson and Hansson demonstrated spontaneous action
potential-like activity in the hyphae of Pleurotus ostreatus and Armillaria
bulbosa using intracellular recordings with a reference electrode in the
agar substrate (Olsson and Hansson, 1995).

The interest to electrical activity of fungi resurrected in 2018, when
we reported on action-potential like spiking in oyster fungi (Adamatzky,
2018). This followed by a series of discoveries on complexity of
electrical spiking (Dehshibi and Adamatzky, 2021; Adamatzky, 2022)
and mapping of the tactile, chemical and optical stimuli to distinctive
patterns of electrical activity (Dehshibi et al., 2021; Adamatzky et al.,
2021b; Adamatzky and Gandia, 2022).

Building upon these principles, we attempted to create a living, self-
regenerating, and reactive mycelium skin by growing the mycelium of
the fungus G. sessile on a cyborg figure. An 18 cm tall T-800 Terminator
model served as a physical structure that could be enhanced with
the biological capabilities of the mycelium. The experiment aimed
to demonstrate the potential of mycelium as a functional, responsive
interface for cybernetic systems, thereby inspiring a new step towards
a new class of bio-organic technologies.

The experiment involving living fungal skin holds specific interest
for design and engineering applications, particularly in the realm of cy-
borg technologies. The potential benefits and areas of interest include:
adaptive and responsive design, biohybrid sensing systems, self-healing
robotic structures, morphable and flexible robotics, human–machine
interaction and interfaces, environmental sensing and monitoring, bio-
compatible and biodegradable materials.

2. Methods

To create the mycelial cyborg, we utilised a two-pronged approach:
firstly, we cultivated a minimal viable amount of G. sessile mycelium
using a suitable liquid medium and proper environmental conditions.
Secondly, we established a methodology for embedding the mycelium
2

onto the surface of a model figure, a scale 1:10 T-800 Terminator en-
doskeleton (NECA, USA), effectively creating a functional living fungal
exoskin.

Our choice of fungus for this experiment was Ganoderma sessile,
selected for its robust growth and adaptability based in literature (Vice-
conte et al., 2021; Attias et al., 2021, 2020; Loyd et al., 2018). A
living culture of G. sessile was provided by MOGU S.r.l. (Inarzo, Italy)
with collection code 95-19 pv5. The mycelium was sub-cultured on
Potato Dextrose Agar (VWR Chemicals, USA) in 90 mm Petri dishes.
To promote optimal growth, the culture was kept in darkness at an
ambient room temperature of circa 22–23 ◦C for 5 days (Fig. 2a).

A mycelial plug from an active colony grown on PDA was trans-
ferred to a 1L liquid culture bottle filled with sterile malt extract
broth (MEB). The liquid culture was then incubated for 7 days under
stirring conditions, and homogenised with a laboratory blender before
use (Waring, USA). The cyborg figure model, made from plastic resin,
was subsequently prepared to accommodate the mycelium growth. The
figure surface was pre-treated with a commercial sporicide (Ecolab,
DE) and with ethanol 70%, and washed repeatedly with sterile demi-
water (Fig. 2b). To allow the fungal tissue to grow on the surface,
the cyborg model figure was coated with a thin layer of malt extract
agar (MEA). Once the MEA coating gelatinised, the figure was briefly
submerged in the homogenised liquid culture previously prepared to
allow the fungal hyphae to attach. The model was then placed in a
PP5 filter-patch microbox container (SaCO2, Belgium) under controlled
environmental conditions, and incubated for an additional 7 days at a
constant ambient temperature of 22oC and in absence of light. Once
the mycelium was fully established on the surface of the model figure,
we proceeded to conducting the electrical recordings.

Electrical activity was recorded using iridium-coated stainless steel
sub-dermal needle electrodes (Spes Medica S.r.l., Italy). Four pairs of
electrodes were inserted into the neck (channel 1–2), the back (channel
3–4), and the two arms (channel 5–6 in the right arm and channel 7–8
in the left arm) of the mycelium-covered model (Fig. 2cd and Fig. 3)
with distances between electrodes ranging of approx. 1 cm.

The high-resolution data logger ADC-24 (Pico Technology, UK) was
used to record electrical activity, averaging as many measurements as
possible (600 per second). The signals have been analysed in a semi-
automatic mode and using algorithm proposed in Adamatzky (2022).
The signal quality is contingent upon the positioning of electrodes
relative to the hyphal network. Consequently, signals may exhibit vari-
ations, at times presenting as noise while in other instances appearing
clearer. Although signal quality enhancement can be achieved through
averaging and filtering techniques, we opt to present raw data to
readers in the interest of transparency.

The environmental relative humidity in the recording chamber was
maintained between 70%–80%.

With the electrodes in place, two different experiments were con-
ducted to stimulate the fungal tissue mechanically and optically. In the
first experiment, mechanical stimulation in form of slight touch was
applied to the fungal tissue using a non-conductive wooden stick. In the
second experiment, the fungal tissue was stimulated optically using a
white LED lamp placed at a distance of approx. 60 cm from the surface
of the myceliated figure.

3. Results

The G. sessile mycelium showed robust growth on the agar-coated
surface of the cyborg model. It successfully colonised the entire surface
of the model in 5 days, creating a fully organic layer that intertwined
with the inorganic substrate of the model. This resulted in a visually
striking juxtaposition of the organic mycelium and the inorganic cyborg
model, symbolising the fusion of biology and technology.

An example of high-frequency spiking is shown in Fig. 4. Average

distance between spikes is 25 s (median 13 s, 𝜎 = 65) (Fig. 4b).
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Fig. 2. Experimental procedure; (a) culture plate of Ganoderma sessile used in the experiments, (b) sanitisation of the model figure with sporicide and ethanol 70%, (c) close-up
view of the myceliated model figure, (d) exemplar locations of electrodes on the living mycelium exoskin.
Fig. 3. Schematic placement of the electrode pairs inserted on the back side of the
living mycelium exoskin grown on a T-800 Terminator model figure.
3

Amplitudes of fast spikes are strongly around average 0.0021 mV
(median 0.0017, 𝜎 = 0.0016) Fig. 4c.

Example of a very low frequency oscillations of electrical poten-
tial are shown in Fig. 5a. Slow oscillations are characterised by the
following parameters. Average width of a spike is 125 min (median
119 min, 𝜎 = 41) (Fig. 5b), average amplitude of spikes is 0.03 mV
(median 0.03 mV, 𝜎 = 0.01) (Fig. 5c), average distance between spikes
is 155 min (median 157 min, 𝜎 = 48) (Fig. 5d).

A ‘train of spikes’ denotes a series of spikes that occur sequentially
over a period. In this context, each spike is succeeded by another spike,
and the distance between them does not surpass twice the width of a
single spike. (Dehshibi and Adamatzky, 2021; Adamatzky, 2022). We
have observed trains of spikes in the intact fungal skin, as illustrated in
Fig. 6. A number of spikes in a train can vary from 2 to 7 but typically
3-4. In contrast to our previous study we did not observe a sufficient
number of train to collect statistics.

Our experiments showed that the fungal skin responded to the
mechanical and optical stimulation by exhibiting changes in its elec-
trical activity. An exemplar recording of the electrical activity during
stimulation is shown in Fig. 7. A typical response to illumination is
characterised by a substantial (0.02 mV to 2 mV) drift of the electri-
cal potential away from the based level of intact activity (Fig. 8a).
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Fig. 4. High frequency oscillations of electrical potential. (a) Exemplar of spikes with amplitude 0.01 mV or more are shown by arrows. (b) Distribution of distances between
spikes, bin size 550.
Response to light stimulation is manifested equally on all electrode
pairs due to the fact the myceliated model figure was illuminated from
above, so most parts of the fungal skin were exhibited to the stimulus.

The potential returns to near baseline intact potential after the light
is switched off. Fungal skin response to momentary tactile stimulation
is manifested by single spikes of electrical potential (Fig. 8b). In the
exemplar response, we see that the amplitude of the responses does not
depend on the distance from the stimulus. Recall that the figuring was
touched for c. 20 ms, by a non-conductive and non-charged wooden
stick. Electrodes attached to the neck recorded a response with the
amplitude 0.3 mV lasting 12 s (orange line in Fig. 8b). With a delay of
6 s responses were registered at other electrode pairs. The electrodes
attached to the neck recorded a spike 0.1 mV for 5 s (green line in
Fig. 8b). The neck’s response is followed by relatively high-amplitude
responses on arms with amplitudes 1.3 mV and 0.8 mV lasting for 36 s
and 44 s (blue and red lines in Fig. 8b).

4. Discussion

The emergence of fungal-infused bio-cybernetics offers a novel av-
enue in our approach to integrating biology with technology. Through
the utilisation of the unique properties of fungal hyphae, we can gener-
ate bio-cybernetic entities that are alive, responsive, and adaptive. The
cyborg model in this study, en-sheathed in a layer of living mycelium,
represents a symbol of this new frontier.

The observed electrical responses of the mycelium to external stim-
uli demonstrate the potential of mycelium as a natural sensor. As
a form of biotechnology, this functionality could have far-reaching
applications. For instance, creating robotics with a new level of tactile
sensing, which could improve their performance in different applica-
tions, such as grasping delicate objects or working in unknown or
unstructured environments. We could also raise buildings constructed
with mycelium-infused materials that could self-regulate and respond
4

to environmental changes, enhancing sustainability and energy ef-
ficiency. Similarly, mycelium-based wearables could monitor bodily
conditions and react in real-time, creating a new paradigm for per-
sonalised medicine and self-preservation. Moreover, integrating fungal
components into computing arrays could lead to hybrid systems that
merge biological and technological functionalities. These systems might
offer capabilities such as self-repair, adaptation to changing conditions,
or even bio-assisted decision-making.

We acknowledge that the envisioned experimental methodology
comes with certain constraints that warrant future consideration and
refinement. One such constraint pertains to the necessity of maintaining
the mycelium in an environment characterised by elevated humidity
levels. This particular requirement underscores a potential limitation in
the experimental setup that merits further investigation and potential
optimisation in subsequent phases of the study. Additionally, another
noteworthy limitation lies in our current lack of understanding regard-
ing how the fungal skin will respond to the movement of the robot. This
aspect introduces a degree of uncertainty, necessitating future research
efforts to elucidate and address potential challenges associated with the
dynamic interaction between the fungal skin and the robotic system.
Resolving these uncertainties will contribute to a more comprehensive
understanding of the proposed experimental approach and enhance its
efficacy in practical applications.

The variability observed in response amplitudes following a me-
chanical stimulus could potentially be attributed to the heterogeneous
structure of the mycelium network that forms the fungal skin. This
heterogeneity may influence the distribution and strength of hyphae
within the network. Additionally, the positions of electrodes in relation
to the most robust hyphae could play a crucial role in shaping the
recorded responses. The spatial arrangement of these electrodes in
proximity to key elements of the mycelial structure might contribute
to the observed variations in signal amplitudes. Hence, understanding
both the intricate architecture of the mycelium network and the strate-
gic placement of electrodes becomes essential for comprehending the
nuances of the recorded responses.
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Fig. 5. Low frequency oscillations of electrical potential. (a) Exemplar spikes are shown by arrows. (b) Distribution of spike width, bin size 300. (c) Distribution of spike amplitudes,
bin size 0.01. (d) Distribution of distances between spikes, bin size 550.

Fig. 6. Trains of spikes of electrical potential. Exemplar trains are shown by arrows with asterisk.
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Fig. 7. Recording of electrical activity of fungal skin in response to tactile and light stimulation. Orange is channel 1–2, green channel 3–4, blue channel 5–6, red channel 7–8.
Fig. 8. Responses of fungal skin to (a) optical and (b) tactile stimulation. Orange is channel 1–2, green channel 3–4, blue channel 5–6, red channel 7–8.
The concept of utilising living fungal skin for robots presents in-
riguing possibilities across various fields. Here are some potential
pplications. First, is a biodegradable robotics (Rossiter et al., 2016;
iesemüller et al., 2021; Zarei et al., 2023). Fungal materials are

iodegradable. Incorporating living fungal skin into robot components
ould contribute to the development of environmentally friendly and
iodegradable robots, which could be particularly useful in applica-
ions where traditional materials may pose ecological concerns. Second
otential application is environmental monitoring (Dunbabin and Mar-
ues, 2012; Trincavelli et al., 2008; Dhariwal et al., 2004). Robots
6

equipped with fungal skin could serve as environmental sensors. The
living skin might react to specific environmental conditions, such as
pollutants or changes in humidity, providing real-time data for envi-
ronmental monitoring. Third is a self-healing robotics (Bilodeau and
Kramer, 2017; Tan et al., 2021). Fungi have natural regenerative
capabilities. Integrating fungal skin into robot structures could enable
self-healing mechanisms, allowing the robot to repair minor damages
autonomously and prolonging its operational lifespan. Fourth is bi-
ological interaction and sensing (Romano et al., 2019; Kaur et al.,
2021; Murphy, 1996). Living fungal skin could be designed to interact



BioSystems 235 (2024) 105106A. Gandia and A. Adamatzky
Fig. 9. ‘‘I’ll be back’’.
with biological entities, such as plants or microorganisms. This could
find applications in agriculture and forestry, where robots with fungal
skin may sense and respond to plant health or assist in pollination
processes. Fifth is soft robotics and morphable structures (Whitesides,
2018; Kim et al., 2013; Fu et al., 2020; Cicconofri et al., 2020). Fungal
materials are inherently flexible. Incorporating fungal skin could lead
to the development of soft robotics with morphable structures, allowing
robots to navigate complex and dynamic environments more effec-
tively. Sixth is biological energy sources. Some fungi can participate
in bioelectrochemical processes. Living fungal skin might be employed
in robots to harness biological energy sources, potentially enabling
sustained operation without the need for traditional power supplies.
Seventh is human–robot interaction and assistive devices (Sheridan,
2016; Goodrich et al., 2008). Fungal skin could enhance the tac-
tile and sensory capabilities of robots, making them more suitable
for human–robot interaction. This could be particularly valuable in
the development of assistive devices for healthcare or daily living
assistance. Eights is space exploration (Jemison and Olabisi, 2021;
Gelinsky, 2020; Williams, 2022). The adaptability and resilience of
fungal organisms make them potential candidates for robots designed
for space exploration. Living fungal skin could help robots withstand
harsh environmental conditions and contribute to the sustainability of
long-duration missions.

In conclusion, our study showcases the potential of mycelium as
a foundational element in the development of bio-cybernetic systems.
However, it also illuminates the need for further research to better
understand and harness these capabilities. Future investigations should
focus on further elucidating the mechanisms underlying the electrical
responses and habituation of mycelium to different stimuli, as well
as the potential applications of mycelium-based electronics in various
fields. Furthermore, the challenges of scaling up and maintaining fungal
7

cultures alive during the intented operational time also need to be
addressed before this technology can be fully implemented in prac-
tical applications. As we continue to push the boundaries of what is
achievable with mycelium, solving these question marks will make us
step closer to a future where bio-cybernetic systems are a part of our
everyday lives (Fig. 9).
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