

Motivating Programming Language

Design for Digital Lutherie

Word Count: 48557

Nathan Glyn Renney

A thesis submitted in partial fulfilment of the requirements of

the University of the West of England, Bristol for the degree of

Doctor of Philosophy in Computer Science

Faculty of Environment and Technology, University of the West of England, Bristol

January 2024

0.1 Abstract

Digital lutherie is a sub-domain of digital craft focused on creating digital musical instruments:

high-performance devices for musical expression. It represents a nuanced and challenging area

of human-computer interaction that is well established and mature, offering the opportunity to

observe designers’ work on highly demanding human-computer interfaces. Through the integration

of instruments and computers, a new digital ‘material’ is introduced to the craft. And with a new

medium comes new tools. Digital luthiers require expressive use of programming languages to

draw together multiple different problem domains in creating new instruments. Motivated by

initial explorations in programming language design, this thesis explores the motivations for tool

choice in digital lutherie and inductively researches what characterises good programming language

design for digital lutherie. Findings from 27 standardised open-ended interviews with prominent

digital luthiers from commercial, research, independent and artistic backgrounds are analysed

through reflexive thematic analysis. Our discussion explores their perspectives, generating a set

of themes that are analysed and discussed. Through this process, a set of ‘selective pressures’ on

language design is presented in order to help motivate and guide future language design in digital

lutherie. We also present how challenges faced by digital luthiers relate to social creativity and

meta-design, key components of end-user development. Some suggestions are also made to inspire

strategies and approaches to programming language design.

2

Prior Publication

Parts of this thesis were previously published in the following papers:

• Return to temperament (In digital systems) (Renney, Gaster, and Mitchell 2018)

N.Renney is the author of this work. The additional authors supervised the work.

• Digital Expression and Representation of Rhythm N.Renney and B.Gaster conceived

the premise for this work. N.Renney designed the algorithms and structures and wrote the

paper. B.Gaster and N.Renney jointly implemented the Haskell implementation. B.Gaster

later added an additional implementation in C++. (Renney and Gaster 2019)

• Studying How Digital Luthiers Choose Their Tools (Renney et al. 2022) N.Renney

and B.Gaster conceived the idea for an inductive study. N.Renney designed and conducted

the study, led the analysis and wrote the paper. B.Gaster assisted in coding. All authors

contributed to discussions in the iterative generation of themes.

Other previous works include:

• Fun with Interfaces (SVG Interfaces for Musical Expression) (Gaster, Nathan,

and Carinna 2019)

• Outside the block syndicate: Translating Faust’s algebra of blocks to the arrows

framework (Gaster, Renney, and Mitchell 2018)

3

Contents

0.1 Abstract . 2

1 Introduction 8

1.1 Introduction . 8

1.2 Motivations (Prelude) . 8

1.3 Research Questions . 10

1.4 Overview . 11

1.5 Contributions . 12

2 Background 13

2.1 The Programmer . 14

2.1.1 The Programmer as an Individual . 14

2.1.2 Novice Programmers . 15

2.1.3 Experienced Programmers . 16

2.1.4 Programmer Communities . 16

2.1.5 The Evolution of Programming Languages 17

2.1.6 Paradigms and Idioms . 18

2.1.7 Domain Specific Languages . 19

2.1.8 Humans and Programming Languages . 20

2.1.9 Summary . 21

2.2 The Performer . 22

2.2.1 Summary . 24

2.3 The Digital Luthier . 25

2.3.1 Situating Digital Lutherie as a Design Domain 26

2.3.2 Design of Digital Musical Instruments . 27

2.3.3 Domains and the problem space of digital lutherie 29

2.3.4 Tools For DMI design . 30

2.3.5 Summary . 32

3 Exploring Languages for Digital Lutherie 34

3.1 Exploring Programming Idioms for Expressing Tuning Systems 34

3.1.1 Introduction . 35

3.1.2 Tuning and Temperament . 35

3.1.3 Current interactions with instrument tuning 36

3.1.4 Expressing Temperament . 37

3.1.5 Practical Examples . 38

3.1.6 Applications . 39

3.1.7 Conclusion . 39

3.2 Exploring DSLs for Expressing Musical Patterns 40

3.2.1 Traditional Expression of Rhythm . 41

4

3.2.2 Describing Time with Tidal influenced Patterns 44

3.2.3 Notions of Time . 45

3.2.4 Representing Sequences . 45

3.2.5 Polyrhythmic Merge . 48

3.2.6 An example DSL for expressing notions of time 49

3.3 Applications for DMI . 50

3.3.1 Conclusion . 52

3.4 Exploring Embedded DSLs for Dynamic Grid Controller Layouts 53

3.4.1 Embedded Domain Specific Languages . 53

3.4.2 Transpilation Strategy . 53

3.4.3 Modelling with Types . 54

3.4.4 Horizontal and Vertical Composition . 54

3.4.5 Motivating a Study on the Designer Tool Relationship 55

3.4.6 Summary . 56

4 Study Methodology 58

4.1 Motivations . 59

4.2 Participants . 59

4.2.1 Participant Roles . 61

4.3 Instruments . 61

4.4 Interviews and Analysis . 62

5 How do Digital Luthiers Choose Their Tools? 64

5.1 Theme 1: ‘The Pragmatist’ . 64

5.2 Theme 2: ‘A Product of our Environment’ . 67

5.3 Theme 3: ‘Intentions’ . 71

5.4 Discussion . 74

5.4.1 Why and how do Instrument designers pick their tools? 75

5.4.2 What distinct problem spaces do instrument designers consider to be involved

in instrument design? . 76

5.4.3 How do instrument designers define a digital musical instrument? 77

5.5 Conclusion and Future Work . 78

6 What do Digital Luthiers value from their programming languages? 80

6.1 Theme 4: ‘A Guiding Force’ . 80

6.2 Theme 5: ‘The Mutable Instrument’ . 83

6.3 Theme 6: ‘Expressing My Ideas’ . 87

6.4 Discussion . 91

6.4.1 What do Digital Luthiers value from their programming languages? 93

6.4.2 Constructivist Models . 93

6.4.3 The Pluggable Architecture . 94

7 Selective Pressures: Toward Design Guidelines for Programming Languages in

Digital Lutherie 96

7.1 Selective Pressures for Programming DMI . 98

7.1.1 Themes . 100

7.1.2 Overview of Selective Pressures . 100

7.1.3 Signposting Ideas to Address the Selective Pressures on Langauges for Digital

Lutherie . 101

7.1.4 Summary . 110

5

7.2 The Next Steps: Understanding the needs for Digital Luthiers 111

7.2.1 What are the Implications of Influential Programming Languages? 112

7.2.2 How can PLs Support EUD In Digital Lutherie? 112

7.2.3 How can we Avoid Compromise in Digital Luthiers Tool Choices? 113

7.2.4 Contributing to HCI Research on DSLs . 114

7.2.5 Mapping Problem . 114

8 Methodologies 115

8.1 Designing Studies to better understand PL and HCI 115

8.2 Promoting Rigour in Qualitative Research . 116

8.2.1 Transparency . 116

8.2.2 Reproducibility & Replication . 117

8.3 Reflexive Thematic Analysis as a tool for Programming Language HCI 117

9 Conclusion 119

9.1 Explorations of New Music DSLs . 120

9.2 Study Analysis: How do Digital Luthiers Choose Their Tools? 120

9.3 Study Analysis: What do Digital Luthiers Value from their Programming Languages?121

9.4 Selective Pressures on Programming Languages for Digital Lutherie 121

9.5 Directions for Future Works . 121

9.6 Reflexive Thematic Analysis . 123

9.7 Final Words . 123

A Participant Data 124

B Preregistration of Study 132

7

Chapter 1

Introduction

1.1 Introduction

For the traditional luthier, one might envisage a woodworking space where the luthier uses hand

tools to sculpt the form of an instrument such as a violin or guitar, applying years of muscle memory

and craft in order to create an instrument that empowers a musician to create music. This thesis

concerns the digital luthier whose craft is extended into the digital space, resulting in the creation

of digital musical instruments that can leverage computation to extend the possibilities of music

making beyond the physical constraints of traditional instruments.

For the digital luthier, programming languages are as much a tool of their craft as a chisel

or a saw. But as programming languages have become a ubiquitous tool for the creation of new

technology, the design of programming languages has primarily relied on the tacit knowledge of

communities or drawn upon features that develop from theoretical constructs that are more math-

ematically derived. This approach has led to a rich socio-techno-environment where programming

languages develop through a means analogous to Darwinian evolution. The space between de-

signing programming languages and the human-computer interaction of that process is waiting

to be better understood and should be explored to inform the next generation of programming

languages.

This thesis explores how we should approach designing the next generation of programming

languages used by digital luthiers with a human-centred approach to programming language design.

1.2 Motivations (Prelude)

As this thesis focuses heavily on motivations for Digital luthier’s approaches to creating new

instruments, it would be appropriate to first relay how this work itself was motivated. My journey

to this point began with the ambition of becoming a professional jazz musician, influenced heavily

by the cross-over electronic jazz scene. This interest in how technology can be used, particularly in

live and improvised contexts, led to a focus on music technology, digital musical instruments and

ultimately, the world of computer science. In learning to program, a whole new world of creative

expression was uncovered. Having taken a year after my degree to explore areas of programming

real-time systems such as audio apps, games and embedded systems, I took the opportunity to work

on a PhD which, inspired by Dr Bendict Gaster, began to look at programming language design

through the lens on functional programming and programming language theory. And so we set out,

exploring programming idioms and languages for musical expression, always with a keen interest

in tangible ways to manipulate sound. Our mutual interest in controllers such as the MPC and

its descendants led us to explore a strongly typed functional language for laying out and mapping

8

musical controllers, beginning with exploring two core components of music pitch and rhythm,

each in the form of programming strategies for expressing the concepts. This work was influenced

considerably by functional programming and the rise in popularity of functional techniques in

general-purpose languages. As we worked on and considered the addition of a new domain-specific

programming language, it struck me that from the many great programming concepts that I had

been introduced to in the field of functional programming research (generalised algebraic data

types, dependent types, even the ever-present and revered monad (Maguire 2018; Wadler 1992))

it was not easy to rationalise the inclusion of language features in a way that felt evidence-based.

Ben’s suggestion to take a step back and perform a study to motivate the design was the beginning

of an unwinding stack of regression (nb. not recursion). Ultimately, exploring the literature and

the lack of rigorous HCI around programming language design led me to a far more fundamental

research question than whether adding pattern matching to a language improves the mapping

problem. In 1966, Landin wrote the paper ‘The Next 700 Programming Languages’, which observed

the direction and the language features that would define the next generation of general-purpose

programming languages (Landin 1966). Whilst the number might be exaggerated for the more niche

domain of music programming, this thesis sets out to provide a foundation for those developing

the next ‘700 languages for digital lutherie’ and to advocate for evaluation and design in a human-

centred and democratised way. You may take a proof engine and provide a proof that a given

program is ‘correct’, but of course, there is no way to prove that a programming language itself is

the correct way for everyone to express themselves. However, scientifically rigorous and nuanced

research has largely not been an informing factor for the design of programming languages. Instead,

this has been left to the empirical learning, intuition and foresight of just a few. In the world of

digital lutherie, there are many examples of language design with a number of domain-specific

programming languages targeting audio and music programming. When writing their follow-up to

Landin’s seminal paper, Chately, Donalson, and Mycroft focused on capturing the evolutionary and

human nature of programming languages rather than the adoption of specific features predicted by

Landin originally, and this thesis takes a similar form (Chatley, Donaldson, and Mycroft 2019).

Through investigating means for writing expressive programs for DMI creation, we realised that a

more holistic and inductive approach was required to capture better the complex requirements of

designing tools for digital lutherie. This work intends to provide future developers of programming

languages that might be used to create music a nuanced discussion informed by the practices

of digital luthiers, which might contribute ideas and inspiration for creating new tools, physical

instruments and software instruments.

9

1.3 Research Questions

The primary research questions this thesis explores are:

How do digital luthiers select the tools they use?

What do digital luthiers require from their programming languages?

These research questions developed from the formative research questions used early in this

work:

How do we design the next generation of

programming languages used in Digital Lutherie?

How should we research the relationship between

Digital luthiers and programmers?

Finally, through the course of this work, the reflective question was asked:

How can qualitative analysis be best applied

in researching programming language design?

As such, some discussion is provided on this topic to share the experience from this thesis.

10

1.4 Overview

Following this introduction, this thesis is structured as follows.

Chapter 2 provides a literature review and background that aims to provide a high-level un-

derstanding of the fields drawn upon in this thesis. Due to the cross-disciplinary nature of this

work, many ideas from Computer Science, mainly programming language design, must be drawn

together with the rich field of digital lutherie. As such this chapter introduces and links together

many different ideas that are then later used in discussion in chapters 5, 6, 7.

Chapter 3 introduces the early work that motivated the direction of this thesis. This chapter

explores work on the design of new languages and language features that support the expression

of musical ideas such as polyrhythm, polymeter and tuning systems. These ideas were used as a

means to explore language design strategies, some of which offer solutions to the needs of digital

lutherie, discussed in Chapter 7.

Chapter 4 describes the methodology for a study inductively analysing 27 standardised open-

ended interviews with prominent digital luthiers using reflexive thematic analysis.

Chapter 5 presents the analysis and discussion of the inital reflexive thematic analysis for the

study described in Chapter 4. This analysis produces three themes: ‘The Pragmatist’, ‘A Product

of Our Environment’ and ‘Intentions’ .

Chapter 6 presents the findings from a secondary analysis following on from the findings and

discussion of Chapter 5, further examining the data from the study outlined in Chapter 4. This

analysis produces three more themes, titled, ‘A Guiding Force’, ‘The Mutable Instrument’ and

‘Expressing My Ideas’.

Chapter 7 provides a discussion that contextualises the themes generated in both Chapters 5

and 6 within the broader literature, transferring existing theories from work in areas such as

DMI design to the programming language theory of digital lutherie, as recommended by Chasins,

Glassman, and Sunshine (2021). From this discussion, a series of ‘selective pressures’ are described

to represent the needs of the digital luthier. Ideas from the literature and from the exploration

of language design in Chapter 3 are discussed and related to these selective pressures and new

directions for research on programming language design are presented.

Chapter 8 presents a peripheral contribution of this thesis, where through the process of con-

ducting a significant reflexive thematic analysis, a discussion of strategies for improving the use

and methods of qualitative research in HCI is presented. This chapter draws on various other fields

and their methodologies, providing suggestions for improving transparency, rigour and developing

future work.

Finally, Chapter 9 provides a brief conclusion, highlighting the contributions of this work.

11

1.5 Contributions

The contributions of this work are aimed at motivating and stimulating ideas for those designing

new programming languages and tools for digital lutherie. Through an exploration of theoretical

programming language design, HCI and reflexive thematic analysis, this thesis inductively creates

hypotheses for exploration in future works, aiming to seed work that joins the fields of programming

language design and HCI in the form described by Chasins, Glassman, and Sunshine (2021). This

works analysis and discussion ties together ideas from the field of DMI research with the HCI of

programming language design, corroborating ideas and extending their relationship to the tools

used to create DMIs. This work also signposts DMI design as a rich example of meta-design

as described by Fischer and Scharff (2000), establishing the role of programming languages in

facilitating the continued development of an instrument after it is created and given to users.

This thesis contributes the following:

• Introduces an approach to expressing temperament through lists and list comprehensions

(implying the potential to manipulate tunings with catamorphisms such as map, filter, reduce

etc.), as well as a data model to represent musical rhythm as time-independent patterns that

can be transformed into efficient representations that support polyrhythm and polytempic

patterns.

• Presents a qualitative Analysis of interviews with prominent digital luthiers, inductively

generating themes explaining the designer tool relationship for digital lutherie and signposting

digital lutherie as a mature example of meta-design in practice.

• Continues the previous analysis to examine what features digital luthiers look for in their

programming languages, resulting in themes that describe the idealised concepts that digital

luthiers seek in their programming languages.

• Through discussion of these generated themes presents a set of design guidelines, framed

as selective pressures for why digital luthiers choose their programming languages, then

introduces some programming language design ideas that address these pressures.

• Produces a set of directions for future research of programming language design for digital

lutherie, including the use of end-user development and in particular, meta-design in dig-

ital lutherie, how the influence of programming languages impact digital lutherie and how

programming languages can avoid compromise in digital luthiers tool choices.

Additionally, this thesis shares insights and observations on the application of reflexive thematic

analysis in order to provide rigorous and open research that promotes transparent research that

can be built upon.

12

Chapter 2

Background

Whilst the term digital luthier is far from a standardised and far-reaching one, we see its evolution

and popularisation in the field of research surrounding digital musical instruments (DMI). Pop-

ularised by Jordà (2004b), it has departed from the origins of lutherie, the building of stringed

instruments, to replace the strung component with that of the digital domain. As such, we use

digital luthier to refer to those who build digital instruments.

To introduce this thesis, we must explore the aspects that comprise the role of the digital luthier

and, given its highly fluid definition, look to understand the developing wealth of understanding

around how new instruments and interfaces for musical expression are designed. In order to

contextualise the field, this background provides insight into the essential roles and relationships

in the craft of digital lutherie and then considers how research is conducted in each of these areas,

such that we might answer the research questions presented in the introduction. This chapter

breaks down the archetype of the digital luthier to expose the underlying fields that provide the

background required to contextualise this thesis.

This begins with an exploration of the programmer, the role that currently defines the creator

within the digital domain, this section contextualises the environment of programming languages

and those that use them. The digital luthier is concerned with creating instruments and tools for

performance. The Second section explores how the digital luthier is not just a creator and how the

need for performance and artistic expression drives this role.

Finally, Section 2.3 provides the overarching background that joins the world of technology,

creation and performance into a single amalgamation of technologist, programmer, musician and

composer.

13

2.1 The Programmer

This section aims to provide a high-level overview of the critical areas related to programmers,

particularly how they approach problems and how the ecosystem of programming languages op-

erates. Providing in-depth detail of all areas of programming languages alone would require an

entire book. This background section aims to stitch together areas of programming in such a way

that the relationships are clear enough to be further explored if required, and the foundations for

following the discussion in this thesis can be followed. Studying the programmer requires under-

standing how many areas of computer science relate, and this section should help contextualise the

discussion and comments from participants in the study described in Chapter 4.

2.1.1 The Programmer as an Individual

The role of a programmer is one that blends together a number of different application domains

suggesting the need for a programmer to have a complementing range of domain-specific knowledge.

Carey and Spelke state, ‘Humans are endowed with domain-specific systems of knowledge such as

knowledge of language, knowledge of physical objects and knowledge of number (Hirschfeld and

Gelman 1994, page 169). They describe domains as systems of knowledge that directly apply to

specific entities and phenomena. In the case of the programmer, we may immediately suggest these

14

are, at a minimum, the digital domain of computers and the domain for which they are developing

an application. In 1979, Newell described a model of the ‘problem space’, a fundamental unit

for reasoning and problem-solving that addresses goal-oriented cognition (Newell 1993). This

describes problem-solving as a heuristic-based search of a given or novel problem space. Whilst

this works for well-constrained problems such as puzzle-solving, Goel and Pirolli (1992) argue this

oversimplifies design tasks. They observe that design tasks tend toward being underspecified from

the outset, where the knowledge required for a solution draws on a near-limitless set of domains.

They conclude that a set of invariant features define design-based problem-solving and present

a framework they define as the ‘design problem space’. As Goel and Pirolli present it, in the

design context, we are required to consider a phase of four key points when observing problem

spaces for design. Analysis of the problem through decomposition. The identification of how

these components interact. Solving these components in isolation. The synthesis of the complete

solution from the previously solved components where this final step must factor in the implications

of how these components interact. Payne, Squibb and Howes examine the idea that working on a

task on a computer (a device) requires mapping between two problem spaces: the device and the

task domains goal (Payne, Squibb, and Andrew Howes 1990). Typically a programming language

provides an abstraction over the device that is being programmed, meaning this mapping is more

likely a mapping between the task domain’s goal and the language’s programming model. However,

in many cases where performance is required, the interplay between the programming language and

the device must be considered deeply, extending the domains in which a programmer works. While

the nature of this thesis does not tackle pedagogy directly, it is implicitly related to programming

languages as whether the programmer is a novice or an expert, new languages require some level

of learning with perspectives in the literature typically focusing on psychology and education for

novices and software engineering practises for experts (Robins, Rountree, and Rountree 2003).

Due to the nature of digital lutherie, practitioners are likely to land all over the continuum of

novice to expert, and so this background briefly introduces the current literature on each.

2.1.2 Novice Programmers

The literature on learning to program as a novice focuses on cognitive psychology and our under-

standing of knowledge representation, problem-solving and working memory (Robins, Rountree,

and Rountree 2003). The constructivist viewpoint is currently the primary position on the phi-

losophy of learning in computer science (Szabo and Sheard 2022). When applied to programming

pedagogy, a leading tenet of constructivist views orient around programmers building a mental

model of how the computer (or a programming language) works. These models represent ‘short-

cuts’ that allow practical progress without fully understanding every detail of the device on which

they work, which are refined over time (Ben-Ari 1998). But as Ben-Ari points out, it is critical

that these models be explicitly taught and provide suitable stepping stones to more nuanced under-

standing rather than flawed models that later form obstacles. Winslow suggests that rather than

specific language features, it is basic program planning that limits novice programmers meaning

that rather than language syntax or nuances of the programming environment, it is the design

and structuring of the program logic that presents a challenge Winslow (1996). In more recent

work, following suggestions that mathematical aptitude was a predictor for programming success

(Bennedsen and Caspersen 2005; Quille and Bergin 2018), Graafsma et al. present a study that

explores five cognitive skills; pattern recognition, algebra, logical reasoning, grammar learning and

vocabulary learning (Graafsma et al. 2023). They found that logical reasoning, algebra, and

vocabulary skills were predictors of generalised programming performance and that logical rea-

soning was a further predictor of course-related programming performance. They concluded that

algorithmic or, more broadly, mathematical skills were the most significant predictor of general

15

programming performance.

2.1.3 Experienced Programmers

For the most part, our understanding of the general psychology of expert programmers is provided

by work done up until the mid 90’s (Hoc 2014; Davies 1993), with trends in this field moving on

to be far more focused on pedagogy and accessibility.

Adelson and Soloway studied the application design of expert programmers finding they ap-

plied breadth-first design when dealing with familiar domains and depth-first design for unfamiliar

domains (Adelson and Soloway 1985). For domains that are familiar, the programmer would de-

sign an abstract solution and then decompose the problem into a series of subproblems in order

to apply a known solution to each. In cases where the target domain was unfamiliar, however,

programmers solved the problem one piece at a time, creating detailed solutions and composing

those together to form a broader solution. Building upon this, Rist suggests that programmers

design programs in a top-down fashion, with breadth or depth first design approaches dependent

on expertise in the target domain of the application (Rist 1991).

However, in the limited research in this space, there is not a strong consensus that this rea-

soning holds. Davies argues that for the design of programs, strategies employed by experts vary

considerably and are not indicative of the level of their level of expertise (Davies 1993).

As research focuses moved to the pedagogical side of programming and how novices solve

problems, how more experienced programmers solve problems was left to remain as tacit knowl-

edge (Thomas and Schneider 1984, Chapter 5), where the discourse largely resides in technical

books and blog posts (Sprankle 2003; Gamma 1995). This tacit knowledge is often characterised

as ‘best practices’ or in the context of particular languages or communities’ idioms (discussed in

Section 2.1.6). The formulation of these software engineering guidelines typically aims to cap-

ture understanding learnt through previous projects; however, this is prone to confirmation bias

(Stacy and MacMillan 1995). For more formalised research, programming is explored in more

specific scenarios, centred around programming features or concepts (Koeppe 2018).

2.1.4 Programmer Communities

In addition to considering the programmer as an individual, given the highly social nature of

programming, it is also crucial to consider both the social context and cultures of programmers.

Programming, and more generally creativity, are understood to be highly social endeavours (Fischer

2004). Fischer has extensively explored the importance of creativity in the context of socio-technical

environments such as programmers, highlighting how ‘communities of interest’ form diverse, het-

erogenous collectives that share a common problem and solve them through sharing knowledge.

This work draws attention to how creativity needs to extend beyond communities that focus on

particular domains. For example, programmers form what Fischer defines as a community of

practice, a community who are domain experts (for example, in computing) with a shared back-

ground and knowledge system. By extending their collaboration to a wider community of interest

(such as designers, product testers and marketers for a software product), communities of practice

are able to augment their creativity mediated through so-called boundary objects, which provide

abstractions that can transfer meaning effectively between knowledge systems (Star 1989).

Further, in order to consider cultures of programming, an appropriate description of cultures

is helpful. This, however, is not a simple topic to define, where culture has been criticised as

too broad a definition to be helpful in a research context (Halabi and Zimmermann 2019). The

idea of programmer culture is a familiar colloquialism that has been addressed in various forms

around computing (Levy 1984; Selic 2008; Silver 2006). Much like the digital subculture ‘the

geeks’ (McArthur 2009) or even punk culture (Lohman 2017), this notion of culture is based

16

around the shared context of its members. Though cultures as a component of social theory is still

a heavily debated subject (Hesmondhalgh 2005; Bennett 2005; Bennett and Rogers 2016) and an

in-depth description is beyond the scope of this work, culture is considered a critical dimension of

HCI research (Sayago 2023). Much of the HCI literature depends on theories that were not formed

to take into account the relationship between people and digital technology as we know it. In

order to properly consider cultures, this thesis must look to incorporate cultures through inductive

practice and through the lens of culture as a sensitising concept, forming and transforming theories

of culture for each study rather than attempting to retrofit culture to existing generalised categories.

Rather than using the taxonomic perspective, which categorises how culture is defined as a set of

finite categories, research should aim to view culture as a fluid and constructed phenomenon of

interaction between people, referred to in the literature as the contingent perspective (Halabi and

Zimmermann 2019). With this approach, both the cultural backgrounds of the people who make

up programming communities (Fleissner and Baniassad 2009), as well as the cultures that develop

in communities of programmers, can be reconciled more holistically.

Ko et al. (2011) state, ’ Most programs today are written not by professional software devel-

opers, but by people with expertise in other domains working towards goals for which they need

computational support’. Examples of domain experts who program are particularly common in

the sciences (Deardorff 2020; Eglen et al. 2017), integrating programming in the course of their

day-to-day work. Notably, their code will likely not resemble that of more dedicated programmers

(Sakulniwat et al. 2019) as their priorities do not align. Code may be written as a short-term test

or to transform and handle data, therefore not requiring the diligence of a programmer who has

end users to consider other than themselves. This principle may justify the focus of research shift-

ing toward that of novice programmers described previously, as for many domain experts, learning

to program is an ongoing process that is done in conjunction with their daily work whilst they

simultaneously make progress on their goal. This, combined with the digitisation of people’s lives,

makes improving the learning process around programming important to multiple stakeholders.

2.1.5 The Evolution of Programming Languages

From punched paper tape to the programming languages we are familiar with today, program-

ming has developed from the necessity of innovation to a tool to empower the expressive potential

of computers. The design of programming languages has been developed through the duality of

engineering practical solutions to real-world problems and through the development of theoreti-

cal constructs in fields of logic. Famously, javascript, one of today’s most prolific programming

languages, was developed in just ten days to add interactivity to Netscape’s web browser and fa-

cilitate the transformation from static to dynamic web content. It would have been impossible to

foresee that this language would grow to develop from what was considered a ‘toy language’ with

many shortcomings into such a widespread language (Mikkonen and Taivalsaari 2007). With its

use cases now extending beyond the web, many substantial innovations have enabled the language

to thrive, such as its advanced interpreter (Dot, Mart́ınez, and González 2015) and the addition

of frameworks (Tilkov and Vinoski 2010) and supersets of the language (Bierman, Abadi, and

Torgersen 2014; Burnham 2015) that make it more ergonomic to work with in teams or in larger

code bases (Cherny 2019; Rastogi et al. 2015). We see this trend with many well-established

long-standing programming languages, with criticisms of the C language’s lack of safety (Akritidis

et al. 2008) as another example. These languages are examples of how languages are developed in

the short term to solve an immediate problem, then later rely on innovation and absorbing new

theoretically informed features in order to thrive.

With this engineering-first, solutions-driven approach to programming language design, lan-

guages evolve to fill their niche. Chatley et al. describe the landscape of languages as existing in

17

a ‘Darwinian tree of life’ largely implying survival of the fittest, yet also including mechanisms

in which languages with less fitness, in the evolutionary sense, can remain relevant long beyond

what seems likely (Chatley, Donaldson, and Mycroft 2019). Examples of these factors include es-

tablished communities, maturity in libraries and tools and the challenges of replacing large legacy

codebases.

Though many features of programming languages are incorporated in an ad-hoc fashion in

order to solve immediate problems, we still see the languages of today drawing from the theoretical

work on programming languages design that still builds heavily upon the likes of Gödel, Church

and Turing nearly 90 years ago. The seminal Landin paper titled ‘The next 700 programming

languages’ (Landin 1966) makes a number of predictions about what programming languages

concepts will define the future of programming languages. Landin describes the ISWIM family

of languages imagining that this ancestral approach to language design may form a systematic

way of thinking about programming language design. This is a reasonably apt prediction with

the influence of language ‘families’ being commonplace in categorising programming languages,

however much like in the evolutionary analogy constructed in the Chately et al.’s follow-up paper

50 years later (Chatley, Donaldson, and Mycroft 2019), language features act like genes in the

evolutionary sense, where ideas such as lambdas, streams and futures (all concepts discussed in

the context of ISWIM languages by Landin) are added into existing languages through selective

pressures. For a real-world example, we can consider the use of futures to manage asynchronous

control flow in programs as concurrent processing has become more critical.

Type theory is one of the most significant theoretical ideas to impact modern programming

language design. As codebases have grown to projects with vast codebases and many contribu-

tors, it has been seen as more and more critical to have tools such as compilers, transpilers and

linters that are able to enforce correctness about a program, effectively eliminating many runtime

bugs statically, when the code is written. In addition, types also provide many opportunities for

runtime performance optimisation. Dynamically typed languages describe languages that do not

enforce types when written but instead allow the type of data to represent to change at runtime

dynamically. As codebases using dynamically typed languages have grown to a size that no indi-

vidual is familiar with an entire code base, pressures are applied to help prevent code from being

misused as it changes. There are many examples of where this pressure has resulted in efforts to

retrospectively add stronger types to languages through techniques such as transpilation (as with

Typescript) and gradual typing in Python code bases (Jin et al. 2021), a strategy that allows types

to be incrementally annotated in a code base, rather than requiring it to be added immediately.

2.1.6 Paradigms and Idioms

As programming languages have evolved, they have grown to address solutions in wildly different

ways. In 1972 Dijkstra lamented that as computers had grown more powerful, so programming had

become a greater problem (Dijkstra 1972). 25 years later, it was clear that there was no one solution

to programming, with the prominent voices of programming language design expressing many

different opinions on the state of programming languages (Trott 1997) and paradigms continuing

to evolve (Floyd 1979). Since then, a range of different programming paradigms has continued

to develop in order to address the ‘gigantic problem’ that is programming. Due likely to its

more direct mapping to the mechanisms of computing, procedural and imperative programming

largely dominate programming. However, declarative programming and the functional paradigm

are growing in popularity (Gagniuc 2023). For general-purpose programming languages, this tends

to support multiple paradigms (Steffen 2019), further demonstrating the adaptability of languages

to stay relevant and evolve to the use cases that its community requires. Of course, languages

may also reject certain premises as they fall out of favour, such as the Rust language’s lack of

18

support of object-oriented programming (Milanesi 2022). As communities develop approaches to

solving problems, the notion of idiomatic code developed (Sivaraman et al. 2022) to support shared

reasoning about the code, lowering cognitive load (Sakulniwat et al. 2019). This has also led to

broader patterns in programming that are recognised as common design patterns (Gamma 1995),

codifications of the expert knowledge that can be used to tackle problems.

Practically, programming languages must provide an abstraction over the finite resources of

the computer that runs the program it outputs. Memory management is an example of a complex

practical problem in computing that is typically an entirely different domain to reason about than

the problem the programmer is solving. Programming languages attempt to abstract this problem

space away through strategies like Garbarge collection (Grgic, Mihaljević, and Radovan 2018),

RAII (Combette and Munch-Maccagnoni 2018), reference counting (Hudak 1986), and, more

recently, borrow checking (Blackshear et al. 2022).

All of these strategies have different tradeoffs, for example, Java and its implementation of the

Java virtual machine (JVM) provides a cross-platform way to develop applications without the

overhead of managing memory allocation, making a good case for ease of development that suits

many businesses. For performance-sensitive environments, however, this lack of control over when

garbage collection occurs can lead to unacceptable delays in processing at critical times. As a

result, alternative strategies such as C++’s RAII, Swift’s reference counting and Rust’s borrow

checking have remain as solutions to managing memory more effectively, adding more varying

degrees of safety over completely manually memory-managed languages like C.

As the mechanism for the development of programming languages, a Darwinian tree of life

represents a good analogy for the current way in which programming languages develop. As

research focused languages introduce new ideas, we see these features inherited and mutated by

other languages.

2.1.7 Domain Specific Languages

Whilst general-purpose programming languages provide the backbone of software development,

Domain-Specific (Programming) Languages (DSL), such as those described by Hudak (Hudak

1997), offer a number of benefits over general-purpose languages in particular problem spaces. The

increased expressivity afforded through specialised and nuanced semantics and convenient syntax

allows for the language to meet many requirements of the programmer whilst typically remaining

easier to learn. Both Latex and SQL provide examples of prolific DSLs, for document layout and

database query, respectively. Domains are a concept that features heavily throughout this thesis,

in part due to its role in identifying problem spaces for programming but also because digital

lutherie itself is composed of multiple domains which must be addressed. Hudak (1997) presents

the advantages of DSLs as:

• being more concise

• quicker to write

• easier to maintain

• easier to reason about

When Kosar, Bohra, and Mernik (2016) reviewed the literature on DSLs, they found that

research is focused on the technical methods of creating DSLs and that there is a lack of evaluation

and study of integration. It is hard to deny the potential of a well-executed DSL in light of

ubiquitous examples such as SQL1. Due to the design of a DSL requiring a deep understanding

of both the target domain and programming language design and implementation, it is a complex

topic that deserves research focused on technical methods. Music DSLs do provide a compelling

1https://en.wikipedia.org/wiki/SQL

19

perspective of DSL usage in fields such as live-coding (Blackwell and Collins 2005; Aaron and F.

Blackwell 2013), with Max2 and visual lanugages (Snape and Born 2022) and also languages such

as Faust (Orlarey, Fober, and Letz 2009). We also see this area explored effectively in user interface

design through examples such as that of Elm in the domain of web programming, where the Elm

programing language heavily influenced the adoption of reactive programming (Wan, Taha, and

Hudak 2002) in modern web frameworks (Czaplicki 2012).

2.1.8 Humans and Programming Languages

There was a time when using a computer necessitated being a programmer. Now the field of

Human-Computer Interaction (HCI) is concerned with a nearly innumerable range of ways that a

human may interact with a digital system. But for now, programming remains one of the most

potent methods to interface with computers and so programming remains a significant facet of

HCI research. Myers and Ko document the research landscape of early HCI study on program-

ming as moving from areas such as pedagogy, graphical programming and program visualisation

into a human-focused observation of software engineering, leading to the development of software

engineering methodologies (Myers and Ko 2009). Glass describes the history of computing research

as being divided into three categories; Computer Science, Software engineering and Information

systems (Glass, Ramesh, and Vessey 2004). Research around programming languages fits into

both computer science and software engineering fields both rich fields with many other compo-

nents to consider. Early on, the software engineering field had been criticised for its immaturity

as a research field and lack of rigour and for focusing on what was termed ‘advocacy research’

where researchers would use the broadly adopted term ‘software crisis’ as a crutch to advocate for

their theoretical idea (Glass 1994). However, due to the worldwide relevance and importance of

software engineering, this has largely improved (Glass, Vessey, and Ramesh 2002) though in such

a complex environment, the vastness of the fields still leaves some areas under-researched.

Whilst Myers and Ko looked forward and advocated that the trends they describe all converge

on a ‘. . . need for a better understanding of how to design and support programming’, we see that

even today, there is still a call to approach better how we research programming language de-

sign (Chasins, Glassman, and Sunshine 2021). Existing work on designing programming languages

is fragmented and often fails to draw from the many related fields in order to provide a more holis-

tic perspective. It therefore seems compelling that to effectively contribute to language design,

both fields such as programming language theory and HCI need to be incorporated into existing

research. We see examples in the ongoing evaluation of static type systems as a feature that is

claimed to improve exploration of undocumented code (Mayer et al. 2012); however, studies find

conflicting observations. Some document benefits of static typing (Hanenberg et al. 2014) and

in some cases, even where dynamic typing should excel, they still suggest positive results (Okon

and Hanenberg 2016). Meanwhile, other studies show no improvement from static typing when it

would be expected (Harlin, Washizaki, and Fukazawa 2017). This is likely the result of a very

nuanced and complex subject of study that is difficult to distil into self-contained and testable sin-

gle experiments. Design patterns are a well-established idiom in programming in general, though

studies have failed to demonstrate a compelling case for their claimed benefits (Zhang and Budgen

2012).

Empirical research through study and observation is an approach still being explored heavily, it

is an approach that is criticised in Kaijanaho’s thesis on evidence-based programming language de-

sign (Kaijanaho 2015) for not being rigorous enough and failing to isolate for control groups. Often

it may be reasonable to consider this form of research a reiteration of ‘advocacy research’ as criti-

cised by Glass until improved methodologies are introduced in empirical research for programming

2https://en.wikipedia.org/wiki/Max (software)

20

languages. In their article ‘PL and HCI: Better together’, Chasins et al. discuss the importance of

directly cross-pollinating ideas between the HCI research community and Programming languages

(PL) community Chasins, Glassman, and Sunshine (2021). In particular, they describe how the

design of programming languages cannot be a staged process where the PL researcher designs a

language and then hands it off to a HCI researcher for a ‘second pass’. They describe the need

to meet the goals of both subfields by having ‘. . . HCI and PL expertise at the same table’ which

are faciliated by advances in both language engineering and both methodological and theoretical

inovations in HCI.

2.1.9 Summary

To summarise, the programmer of today, no matter the field, requires first learning the domain-

specific skills required to program before then being able to apply the many paradigms and idioms

of programming for their use case. The relationship between programmer and programming lan-

guage relationship has taken on the survival of the fittest strategy (Chatley, Donaldson, and

Mycroft 2019), where languages develop to suit the needs of their community. While programming

languages may have continually been developed with the intention of good human-centred design,

it is only more recently that we have become equipped to better integrate the fields of HCI and

PL design in order to empower the programmer in their application domain (Chasins, Glassman,

and Sunshine 2021), improving the designer tool relationship.

21

2.2 The Performer

Despite the dominance of traditional instrument performance in mainstream music, digital musical

instruments such as the Akai MPC and its derivatives have made a significant cultural impact and

are perhaps the clearest case of DMI being used as a performance tool in widely consumed music.

Of course, DMIs integrate with performance tools and music productions in many hybrid ways,

through MIDI 3 controllers and samplers, for example, but also often as highly bespoke components

of an artist’s output. In light of Heidegger’s philosophy of technology, Magnusson describes how

musical instruments are technological tools that are tied to our development as humans Magnusson

(2019) (page 8) where we encode knowledge in the technological artefacts we use and develop in

conjunction with the technology we build. Magnusson describes how this tracks from the design

of bone flutes that provide a functional memory of a discrete set of pitches through to that of

computers situating the performance and creation of musical instruments at the forefront of our

technological innovation and growth as a species. Performance remains a means of expression and

communication of knowledge implicit in the instrument that is being performed. Having such a

nuanced and interwoven relationship with music and technology, it is entirely appropriate that

there is a well-developed research community that studies the relationship between performers and

DMIs.

3https://en.wikipedia.org/wiki/MIDI

22

It is likely that the exploration of DMIs is most focused in the conference New Interfaces for Mu-

sical Expression (NIME), which initially started as a workshop at the ACM Conference on Human

Factors in Computing Systems (CHI) but grew into an independent conference and community

that incorporates researchers and notably also artists/musicians directly in its discourse (Mor-

reale, McPherson, and Wanderley 2018). Of course, other collections such as the Computer Music

Journal, Journal of the Audio Engineering Society and many other organisations also provide sub-

stantial contributions to the literature around DMIs. This surprisingly deep niche demonstrates

the continued relevance of people’s ability to express themselves using technological instruments.

Unlike traditional instruments, DMIs are unconstrained by their physical attributes. Sound

generation and interaction with DMIs are typically considered separate concerns with a mapping

relationship determining completing the dynamics of the system (Hunt, Wanderley, and Paradis

2002). For a DMI, form and function can be largely unrelated, and the performer of a digital

musical instrument must develop sufficient control over an interface to express their ideas. This

so-called ‘gestural control’ (Wanderley 2001), separated from the sound synthesis component of

the DMI, means that the potential change in the mapping of parameters between gesture and

the resultant sound complicates performers’ mastery of a digital musical instrument. Also, the

exponential explosion in possible gesture-to-sound generator mappings has developed a culture in

which many DMIs are not deeply explored by performers to the point of reaching a high profi-

ciency (Cannon and Favilla 2012). DMIs are often cited as requiring a low barrier to entry whilst

maintaining the potential for virtuosity (Wessel and Wright 2002), a mastery over the gestures of

their instrument and an innate intuition as to how this manifests as sound. However, some work

on DMIs has considered virtuosity as a goal through a continuation of instruments as a method

of storing knowledge in the instrument, where the DMI is described as a musically intelligent in-

teractive system and incorporates machine-augmented instrumental technique. In Machover and

Chung’s early example, the Lisp programming language provides a means for encoding music the-

ory and constraints into the performance of the instrument (Tod, Machover and Chung, J 1989).

This included strategies such as grid quantisation and sequencing prerecorded sounds and pat-

terns. This formed the notion of hyperinstruments, which explored the potential of augmenting

traditional instruments through sensors to pursue new dimensions of virtuosity. This focus around

virtuosity, however, is only a single dimension of DMI performance that, for many performers, is

not the focus or potentially even possible. We see the concept of hyper instruments subverted by

the description of infra-instruments, devices of ‘restricted interactive potential’ which allow perfor-

mance to focus on other factors such as aesthetic, usability and other emergent properties (Bowers

and Archer 2005). Given that, ultimately, performance is the most important evaluator of an

instrument, it is critical to consider the role of the performer within the wider context of digital

lutherie (O’Modhrain 2011).

In contrast to traditional musical instruments is the capacity for both real-time and event-

driven systems of performance, where the latter describes the control of the temporal evolution

of the piece through discrete events that are triggered somewhat more analogous to the control

a conductor has over instruments rather than the instrumentalist themselves (Wanderley 2001).

This asynchronous approach to performance is further exemplified by instruments supporting fully

deferred performance, where ideas are expressed before the performance to be integrated into live

performance later. The sequential Drum provides an early example of this, allowing the drum-like

interface to be performed with but also used to launch music expressed using the Music-N family

of programming languages (Mathews and Abbott 1980). This kind of instrument has pushed the

performance of DMIs into new territory beyond that of traditional music performance.

Given that music making and technology have always been deeply intertwined, it is no surprise

to see that performing music using computers has a legacy that goes back to the formative years of

computing, with the first of the MUSIC-N family of languages being used on the CSIRAC, one of

23

the earliest electronic stored-program computers ever developed (Annab 2021). Music DSLs have

close ties with the very origins of computing, with the Music-N family of languages originated by

Max Matthews at Bell Labs for the first mainframe computer to support floating point arithmetic

(Roads and Mathews 1980). In the world of music technology, DSLs have a long history that

tracks developments in computing. More contemporary music DSLs include the likes of Faust and

Stride, but also an extensive range of others (McLean 2014; Magnusson 2010b), typically with ties

to the live coding movement (Collins et al. 2003) where these languages are used for expression

of music directly. Languages like Faust are particularly useful for digital lutherie as it is a DSL

for signal processing, allowing the expressive description of efficient audio processing, which is

far harder to achieve with low-level code. Magnusson says, “Anyone who speaks more than one

language, in particular, if those languages are of different linguistic families, knows how differently

each language portrays the world. A language is a world-view.”

2.2.1 Summary

The role of digital lutherie is intrinsically tied to the role of performance, with digital luthiers

uniquely different to performers of traditional instruments due to their duality of both designer

and performer (Morreale, McPherson, and Wanderley 2018). Performance is considered the defin-

ing method of evaluation for a DMI; however, this can be measured along many dimensions.

Virtuosity is a commonly sought-after goal in traditional musical performance, and whilst this

pursuit continues in performance with DMIs, performers also take on many alternative directions

of artist expression. This pursuit of alternative goals in DMI performance leads to the develop-

ment of communities of practice that are highly specialised and drastically transform the notions

of musical performance, even incorporating typically prepared processes such as programming and

introducing it to a live context as a component of performance. This form of ‘live coding’. It is

apparent that the performer forms an essential facet of the archetype, the digital luthier. From

here, the two key components of the digital luthier related to this work, the programmer and the

performer, can be built upon to describe the digital luthier.

24

2.3 The Digital Luthier

Digital lutherie, a term coined by Jordà (2004b), refers to the specialised domain (Hirschfeld and

Gelman 1994) and diverse community that is concerned with the creation of musical instruments

featuring a digital component. Though the term digital musical instrument (DMI) is a common

term used in music technology research, the term does not have a broadly accepted definition. Mi-

randa and Wanderley (2006) suggest that a DMI is an instrument that uses ’computer-generated

sound’ and features a control surface to act on musical parameters in real-time. In this work,

and informed our exploration of the idea in interviews featured in this work, we choose not to

be prescriptive in defining the term. Within this work, we may use DMI to loosely refer to any

entity that may be used for performance and that embraces the capabilities and attributes of dig-

ital systems in some way, in particular allowing for a capacity to be programmed whether ahead

of time or in a continued fashion. However, throughout the study presented later in this work,

participants have suggested many different definitions. While for some, defining DMIs may re-

quire some adherence to the use of discrete systems or of real-time performance capacity through

discussion with digital luthiers and users of DMI, it is clear that exceptions are abundant and

providing a concrete definition of the term actually has very little function in the wider sense of

music creation. Creating digital instruments or interfaces capable of expressing musical intention

is a process incorporating many disparate and specialist skills (Moro et al. 2016). In the pursuit of

25

this craft, the designer is required to use tools that extend beyond the traditional tools of a luthier

(or any other traditional instrument builder), allowing the manipulation of digital technology as

an additional medium (Lindell 2014).

At first glance, the motivation for creating an instrument suggests digital lutherie is concerned

wholly with the artistic goal of the expression and making of music. There are, of course, many

additional motivations for the design of DMIs, including as tools for research (Gurevich 2016), as

a means to preserve and explore different mediums and also to support pedagogic efforts (Jack,

Harrison, and McPherson 2020; Rossmy and Wiethoff 2019; Théberge 1997; McPherson, Morreale,

and Harrison 2019). Given that its namesake is derived from the artisanal craft process of building

stringed instruments, it is little surprise that digital lutherie, the process of building any form of

DMI, has also been examined in the context of digital craft (Armitage and McPherson 2018). This

perspective has extended to the study of digital practices more widely in the arts, where program-

ming is also explored as a craft process (Blackwell 2018). This approach to viewing digital craft in

processes such as digital lutherie opens the door for implicit, tacit and embodied experiences in a

craft practice to contribute to a deeper exploration of these digital practices. Armitage, Morreale,

and McPherson (2017) state that ’Though these ways of knowing are often personal, subjective

and unverifiable, they enable the realisation of fine instruments.’ Digital luthiers often embrace

a multifaceted role in their craft process, blurring the boundary between designer, builder and

player (Gurevich and Treviño 2017; Tahiroğlu 2021). The building and design process both involve

a range of technical cross-disciplinary skills. Nevertheless, the challenges of digital lutherie do not

end there. There are considerations in the design of new DMIs extending beyond the artefact itself

and its use (Jordà 2004a). Numerous challenges related to the continued use and practice of the

artefacts produced must also be considered (Morreale and McPherson 2017). Whilst this does raise

the question concerning the importance of persistence in digital artefacts, all of these factors are

important to consider in light of the intentions of the digital luthier (and further also the digital

craftsperson more generally).

2.3.1 Situating Digital Lutherie as a Design Domain

Design is a field that naturally is called upon by many domains, from architecture to biology

and beyond. Due to its application in such a vast range of fields, it is no surprise that research

tends towards domain-specific studies of design. While efforts toward a generalized definition of

domain-independent design have been attempted (Suh 2001; Suh 1998; Braha and Maimon 2011),

these failed to effectively incorporate aspects such as the creative and innovative components

of design; a characteristic attempted to be captured by C-K theory (Hatchuel and Weil 2003).

Despite the attempts of C-K theory, much of the research design community have been more

divided than unified by such theories, as highlighted by Dorst (University of Technology Sydney

and Eindhoven University of Technology and Dorst 2016). Dorst, too, looks to strategies to bring

together independent fields of design with an approach that seeks to reconcile design practice and

research. Rather than a single generalized framework, Dorst advocates for recognizing that design

research exists as a discussion between dynamically interrelated fields and suggests that they should

build bridges between them when appropriate to create a richer discussion.

The design process of creative technologists has primarily been researched in the context of

digital craft, which focuses on expressivity, allowing individual mastery over the medium with

which they work (Jacobs et al. 2016). Much in line with Dorst’s suggestions, combinations of craft

and technology are being explored in considerable depth in areas such as DMI design (Armitage

and McPherson 2018) and eTextiles (Posch and Fitzpatrick 2021). This introduces a focus on

the capacity for the craftsperson to achieve an ever more comprehensive and demanding set of

engineering challenges whilst retaining the critical component of design that is a capacity for cre-

26

ativity (Fischer et al. 2005). Fischer describes the requirement for social and individual creativity

in design as a spectrum that ideally depends on cross-pollination varieties of social and individual

ideas, facilitated through the environment in which they interact.

Frankjaer and Dalsgaard observe that craft-based practices can address many outputs and pro-

cesses (Frankjær and Dalsgaard 2018). Examples given include the digitally assisted design of

physical artefacts, computational physical artefacts and materials, digital artefacts such as code,

merging digital and physical media and practices, and artefacts emerging from within Maker and

DIY culture. They further observe that the ambiguity in defining a ‘craft process’ presents chal-

lenges in addressing knowledge creation that generalises to all craft processes. This ambiguity

tends to also be prevalent within the specific domains in which we see digital craft, such as in

providing a firm taxonomy of artefacts in the DMI community (Tanaka 2010). Ultimately, Frank-

jaer and Dalsgaard observe three approaches to the scientific inquiry of craft practices. They state

these as:

1. ”Combining, aligning, and integrating analogue and digital crafting techniques and processes”

2. ”Creating highly refined artefacts, defined by attention to detail and aesthetics”

3. ”Creating knowledge through deep, embodied engagement.”

They define these to encourage researchers to engage in craft processes in a tacit and embodied

manner, engaging with the knowledge in a practice-based manner. This emphasis is due to the

narrowing of experiential knowledge as it is transferred into the written form that constitutes typical

scientific literature, a perspective shared by University of Technology Sydney and Eindhoven

University of Technology and Dorst (2016). As such, the developing approach to analyse the

design process of practitioners incorporates strategies such as workshops (Posch and Fitzpatrick

2021; Lepri and McPherson 2019), interviews with expert practitioners (Stolterman and Pierce

2012) and qualitative analysis of data derived from the first-hand experience.

The maker movement has profoundly lowered technological barriers, democratising and open-

ing up access to technology (Tanenbaum et al. 2013). Increased quality and availability of 3D

modelling software and manufacturing methods drive the production and further development of

more traditional instruments (Zoran 2011; Dabin et al. 2016; Kantaros and Diegel 2018). Entire

hardware platforms dedicated to supporting the design intentions of digital luthiers also situate

high performance embedded computing within the community (McPherson, Jack, and Moro 2016;

Madgwick and Mitchell 2013; Turchet and Fischione 2021). This enables the realization of many

forms of instrument design, from hybrid instruments (Tod, Machover and Chung, J 1989), to

entirely novel instruments.

2.3.2 Design of Digital Musical Instruments

Designing a DMI, or indeed any human-used artefact, is not just a physical endeavour but an

exercise in psychology. This is particularly relevant for DMIs with the goal of effectively fa-

cilitating musical expression. Drawing originally from ecological psychology and Gibson’s term

‘affordances’ (Gibson 2014), Gaver Gaver (1991) introduces ‘perceptual affordances’ as a concept

for describing human interaction with technology, suggesting that we explore interfaces through

the interaction of the affordances they provide. By considering a door handle, a person may see

that the shape affords the opportunity to grip the handle and through the extension of some tactile

exploration, turned, pushed or pulled, somewhat intuitively leading to the action of opening the

door through the affordances offered by the handle. DMI design through the affordances presented

to the performer has been widely explored (Tanaka 2010; Marshall and Wanderley 2006; Silva

27

Figure 2.1: The widely described instrumental model (Magnusson 2010a; Wessel and Wright
2002; Wanderley 2001)

et al. 2013; Kaltenbrunner et al. 2006) and emerged as a common method for designing and eval-

uating DMIs. In DMI design, Wessel and Wright’s description of a ‘ low entry fee with no ceiling

on virtuosity’ is commonly viewed as the ultimate goal in creating an expressive DMI (Wessel and

Wright 2002). Cannon and Favilla examine the facilitation of virtuosity in DMIs through affor-

dances offered to the performer. They introduce a concept they term ‘investment of play’ (Cannon

and Favilla 2012). This process is initiated through the exploration of the affordances of the instru-

ment and then develops until the performer’s proficiency facilitates expression. The mechanism for

this is described as a cognitive shift from the operation of the control interface to the conception of

the abstract, performed sonic material. Their study couples the increase in subjective expressivity

with the affordances offered by a system to provide considerations for frameworks that address

DMI design. In contrast to evaluating DMIs through their affordances, Thor Magnusson proposes

that constraints are the defining characteristics in composing and performing with digital musical

instruments and that designing DMI can be viewed as designing these constraints (Magnusson

2010a). Magnusson suggests that in complex digital systems, affordances can be imperceptible.

This is a factor acknowledged by Gaver as a facet of perceived affordances, potentially including

hidden or false affordances (Gaver 1991). Having considered other models of constraints (Nor-

man 1999; Pearce and Wiggins 2002), Magnusson draws a new model of constraints for the context

of DMI design. He defines subjective, objective and cultural constraints. Subjective constraints

are described as the limitations on the thinking, creative person’s expressivity, formed as habit-

uated traits of a musical tradition and its practices. Objective constraints are physical limits on

the environment and tools. Finally, cultural constraints are described as “. . . conditions in which

technology and ideas exist”. With these constraints formed, Magnusson presents a variation on

the model of a musical interface as described by Wanderley (2001), as well as Wessel and Wright

(2002), the instrumental model is shown as a distinct sub-component of the overall coupled model,

consisting of the mapping engine and sound engine. The controller is captured in the coupled

model, denoting a distinction between the core sound generation of the instrument and how the

instrument is controlled.

28

To Magnusson, the observation that the mapping engine and sound engine are captured as

a singular perceived system (the instrumental model) matches his model of constraints. The

constraints that a user interacts with are found in this instrumental model, which they interact

with via the controller, which is perhaps more loosely coupled, allowing it to be changed for a

different controller that realises the same mapping interface.

Having described some of the physical and practical implications of DMI design, the cultural

and social implications on DMI design warrant an independent and introspective view of how it

affects DMIs. It is widely observed that musical tools and software are fraught with cultural and

social bias. Looking again to Gaver’s perceptual affordances, Gaver recognises the social/cultural

implications of affordances. Magnusson, in his model of constraints also recognises this stating

‘The digital instrument is an artefact primarily based on rational foundations, and, as a tool

yielding hermeneutic relations, it is characterised by its origins in a specific culture’ (Magnusson

2009). Magnusson draws attention to the importance of instrument designers considering the effect

these cultural assumptions have due to DMIs potentially having more symbolic and compositional

influence than our existing physical tools, primarily because the software itself has agency and

inherently imposes greater specifications than traditional physical instruments. To contextualise

this further, Puckette acknowledges that despite the intentions to remove semblances of western

musical notation from Max (staves, bars, time signatures and even notes), that even the blank

page that greets the user bears the connotation of paper pages, a notion implicit in western

musical culture (Puckette 2002). Puckette expresses interest in seeing how these fundamental

assumptions can be further discovered and then ‘peeled away’. Overall, the literature forms a

view where initially interacting with a DMI is focused on exploring the affordances, but as this

develops through invested play learning the instrument is more about forming an innate mental

model of the constraints. This ultimately emphasises two well-researched areas of DMI design. The

presentation and description of affordances and constraints, and the relationship between different

implementation domains of a DMI; the controller, the mapping engine, and the sound engine.

2.3.3 Domains and the problem space of digital lutherie

Certainly, the domains required by the digital luthier are vast and at times disparate. Puckette

observes, ‘. . . computer music software most often arises as a result of interactions between artists

and software writers. (occasionally embodied in the same person. . .)’. Today, a better understand-

ing of artist programmers has formed (McLean 2011) and it can be assumed that through the

proliferation of technology, this trend will grow. Of course, digital lutherie incorporates elements of

computer science, software, electronics and physical design, merging many independent domains,

that stretch the capabilities of even the polymath that is an artist programmer.

In his talk at the 2017 Audio Developers Conference, Zicarelli describes the desire to work

in the problem space rather than in code (David Zicarelli 2017). In essence, Zicarelli advocates

for remaining in the problem space when designing sound. That is to say, work with a graph

representing an audio signal and the parameters that are applied to it, rather than considering

how to manipulate the computing constructs (audio buffers, pointers and memory) that are used

to implement the desired signal processing. Rather than straddling multiple problem domains

simultaneously, the designer can focus on the problem space they are approaching and a simplified

mapping stage to the device they are using. We might consider this in the context of the design

problem space as reducing the number of sub-components being incorporated into the problem,

effectively simplifying the required solution. Modern programming language design and their

implementations are responsible in a large part for removing the burden of implementation details

from programmers as discussed previously.

Programming DMIs has many performance requirements and implications (McPherson, Jack,

29

and Moro 2016; Jack et al. 2018) and while we might not supose that DMIs are ‘mission critical’

systems in the way that a car safety system is (requiring formal verification of code for example),

it is still unacceptable to have failures and glitches in a performance, and many of the approaches

and innovations made in mission critical programming are being absorbed into the ecosystem of

digital lutherie (Turchet and Fischione 2021).

While many typical hard realtime systems however are purely utilitarian, for DMIs the greatest

capacity for expression and creativity are demanded, with users desiring that their instruments

inspire them. These two sides alone begin to show the crossdisciplinary nature of DMI design with

the role of the programmer covering the domain of design and HCI as well as necessitating the

rigoured control of a well-seasoned engineer that can extract all the run-time performance their

platform has to offer. This typically necessitates a vast range of specialism and naturally, through

the leveraging of social creativity community-focused projects to bring the more challenging engi-

neering tasks have introduced strong platforms to address the performance engineering challenges

of the audio domain (Moro et al. 2016; Turchet and Fischione 2021; McPherson 2017; McPherson

2017). At the other end of the spectrum, to address the highly nuanced and expressive power, we

also see the use of domain-specific programming languages used to limit the scope of the problem

space for the designer. Faust demonstrates one of the most compelling examples of a DSL for

audio processing that can be used to program DMIs (Orlarey, Fober, and Letz 2009; Michon et al.

2020a). Other relevant DSLs used in DMIs include Supercollider and to a lesser extent, newer

languages such as Stride (Tilbian and Cabrera 2017; Tilbian et al. 2017) and Chuck (Wang, Cook,

and Salazar 2015). These examples demonstrate a growing ecosystem and potential for DSLs to be

used in digital lutherie however, it is only graphical programming languages Max and Pure Data

that have truely taken a share of developers from using general purpose languages (Puckette 2002).

2.3.4 Tools For DMI design

Whilst the relationship between performer and their tools for performance is studied extensively,

the relationship between the digital luthier and their tools is typically studied from the performer’s

perspective (Blackwell and Collins 2005; Magnusson and Mendieta 2007) or otherwise focuses on

the luthier’s processes and intended outcomes (McPherson and Lepri 2020; Cook 2001; Magnusson

2006; Armitage and McPherson 2019). This is perhaps owing to the multifaceted role of the digital

luthier, often performing the tasks of a designer, builder and performer (Jordà 2005). It is then

true that, as Cheatle and Jackson put it, artists “. . . act as creative and critical users of tools –

both computational and otherwise – whose practice has the potential to reveal new insights and

understandings about the world in which we live. . . ” (Cheatle and Jackson 2015).

To design a DMI, an instrument designer can no longer consider only how they will form the

physical instrument itself, but rather, they must consider both the physical hardware elements,

along with the software and algorithms that take the place of physics for interaction and sound

generation. The learned skills and intuitions of the traditional instrument builder that manipulates

materials, gives way to the electrical engineer and the programmer. These skills appear further

removed from musicality. As Magnusson phrases it “Code as material is not musical; it does not

vibrate; it is merely a set of instructions turned into binary information converted to an analogue

electronic current in the computer’s soundcard.” Magnusson (2009). The materials of DMI design

become silicone chips, circuitry and the more complex, technological artefacts built from them. The

tools become programming languages, operating systems and design patterns and the suggestion

is that this removes the intuitive sense of musicality from this design process. Software tools for

DMI creation exist at a number of levels of abstraction. User-centred software such as digital audio

workstations or VST plugins capture sound or instruments at a level that closely resembles the

domain of music. Highly configurable music programming environments, such as Cycling74’s Max,

30

look to provide a near-endless supply of programmatic potential, whilst remaining closely focused

on the problem domain. At the very least, the Max family of languages decouple the engineering

of the underlying implementation and the use of musical constructs they create, though there exist

limitations in this approach. Software frameworks and libraries tend to offer a more powerful level

of control for the creation of DMIs, but are closest to the implementation of digital systems and as

such, present the same challenges typically associated with programming computers. Limitations

in designing digital instruments quickly arise when considering the use of user-oriented software.

Through the combination of standalone controllers and virtual musical instruments running on a

computer (Mulder 1994), instruments that match the model initially seen in Figure 2.1 can be

produced, offering a vast world of sound synthesis potential. These instruments tend to be a passive

controller such as a MIDI keyboard tethered to a laptop, however, for many this is an undesirable

and cumbersome characteristic. Whilst having a full personal computer constitute a component of

a DMI does fit some models of a ’digital instrument’, in reality, it is not ideal in a practical sense,

particularly for practice or performance unhindered by a complex setup phase. Further, the reliance

on a personal computer brings with it email, a browser and perhaps a semblance of work that

performers do not want in their instruments. For this reason, DMIs are often based on the use of

embedded computers and microprocessors which can be used to create a singular artefact. With the

rise of the ‘Maker’ scene, a culture of ‘do-it-yourself’ (Vallg̊arda and Fernaeus 2015) and knowledge

exchange, a number of technology platforms and support for them have emerged as the technology

has developed, increasing accessibility and decentralisation (Kuznetsov and Paulos 2010). Perhaps

the greatest example of this is the Linux OS (Torvalds 1999).In contrast to an engineering team with

a complementary set of skills that solve DMI creation as a broader engineering task, open-source

software must be considered the single digital luthiers greatest asset (Fitzgerald 2006). DMI design

has largely taken the form of leveraging the Linux environment, providing the opportunity to use

OS-dependent high-level programming environments such as Pure data (Puckette 1996) to describe

audio processes. By adding appropriate audio I/O and general-purpose I/O, the Bela platform

sets the bar for creating a comprehensive embedded Linux platform for creating DMIs (Moro et

al. 2016). Bela meets the challenging real-time requirements of a DMI (McPherson, Jack, and

Moro 2016) and reduces friction in the design of instruments through excellent support, tooling

and integration with other platforms (Morreale et al. 2017). Despite these benefits, as Michon

et al. (2020b) observe, there are also limitations associated with this OS-dependent approach.

Namely the increased costs, complexity and reduced efficiency for both hardware and software.

Whilst Bela provides an effective solution for many DMI design scenarios, there are cases when an

embedded system is more appropriate (Chowdhury 2020). Due to resource constraints (memory

and clock speed), embedded systems can be a challenging environment to work in. Michon et al.

(2019) provide a compelling demonstration of how effective programming for microcontrollers can

be achieved using Faust, where environments such as that of Faust (Orlarey, Fober, and Letz 2009),

Stride (Tilbian et al. 2017) and the ubiquitous open-source microcontroller Arduino (Bianchi and

Queiroz 2013), demonstrate the relevance of embedded systems in creating instruments.

The understanding and appreciation of musical context and culture and how they influence

design are given due attention (Lepri and McPherson 2019) and the open-source community around

DMI design provides a unique and notable observation of social influences on design (Morreale et

al. 2017). This work demonstrates the complex landscape of the designer-tool relationship and

suggests many contributing factors at play. However, less work has been done to look at these

relationships from the perspective of contemporary practitioners of digital lutherie, despite support

for their apparent influence (McPherson and Lepri 2020).

In the wider human computer interaction (HCI) community, we see Stolterman and Pierce

examine the designer-tool relationship more directly (Stolterman and Pierce 2012). They suggest

that, in the HCI community, there is a tendency to focus on end-users (user-centred design).

31

Similarly, in the digital lutherie community, considerable attention is given to the processes and use

of tools (Inie and Dalsgaard 2017; Frich et al. 2019; Koch et al. 2020). Research on the motivations

for choosing tools remains sparse. As such, this work looks to contribute to Stolterman and Pierce’s

suggestion that “. . . there is a need for more developed understandings of how practicing designers

use, understand, and interact with their tools” by exploring this designer/tool relationship as

a means to better understand the design practice (Goodman, Stolterman, and Wakkary 2011).

This thesis examines a group of digital luthiers, with differing perspectives, backgrounds and

motivations and seeks to understand the challenges they face and the tools they use to overcome

these challenges. This includes meeting the performance demands of real-time systems (McPherson,

Jack, and Moro 2016; Jack et al. 2018) and the complex interaction goals (Wessel and Wright 2002)

amongst many other individual challenges.

Stolterman and Pierce study the relationship between tool and designer concerning interaction

design (Stolterman and Pierce 2012), noting the nearly infinite combination of tools that the de-

signer may pick to support their approach. While superficially, characteristics such as ‘efficiency’

or ‘ease of use’ may motivate selecting a specific tool, they contend that the reality is more com-

plicated and involves the social, cultural and material contexts in which design occurs. They look

to Argyris’ theory of action (Argyris and Schön 1974) as an explanation whereby the idealized

way the designer wishes to approach the problem contrasts reality.

In the context of digital lutherie, we see many interesting relationships between designers and

their tools. If we look to the field of ‘live coding’, where performers use programming languages to

manipulate audio and music in real-time (Collins et al. 2003), we can see a tendency of performers to

write their own programming languages (McCartney 2002; Wang, Cook, and Salazar 2015; McLean

2014; Magnusson 2010b; Bovermann and Griffiths 2014). Within this community, this is recognised

to the extent that work is actively exploring the facilitation of creating new languages (Bernardo,

Kiefer, and Magnusson 2020). We also see a similar niche fulfilled using machine learning (Fiebrink

and Cook 2010), with both cases deferring some design component to the performer. These all

represent individual components of end-user development (Fischer 2021), which empowers users

to continue the develop technology through a variety of means. The concept of meta-design is

presented as a socio-technical framework to address the nature for digital systems to interface with

the real world, facilitating users’ needs in real-world conditions which are unpredictable and require

improvisation, evolution, and innovation (Fischer and Scharff 2000). It is common to see strategies

involved in end-user development and meta-design present and deliberately employed in DMIs.

Through work in this thesis, this connection is both demonstrated and built upon to suggest that

for the digital luthier, the capacity for end-user development may in fact be critical, as in many

cases for expressive musical interfaces, some component of the the specification is deferred to the

user. This deferred design component may be a controller mapping to synthesizer parameters, for

example, which can be approached in a variety of ways (Laguna and Fiebrink 2014).

Ultimately, the role of a digital luthier provides a rich insight into digital craft, with well-

established communities, research and technological ecosystem.

2.3.5 Summary

The notion that combining both instrument maker and performer is a key point of the definition

of digital lutheir by Jordà (2004b), and is corroborated by studies which in a survey demon-

strated exceedingly high percentages of performers of NIME’s who were involved in instrument

creation (Morreale, McPherson, and Wanderley 2018). McPherson and Tahiroğlu examine many

of the languages and frameworks for the development of DMIs, observing this potential influence on

the instruments they create (McPherson and Tahıroğlu 2020). Their study suggests a bi-directional

relationship between the DMI designer and the instrument, with these influences impacting how

32

designers select their tools. As the set of tools and technology accessible to the digital luthier

develops, the relationship between them and their tools is of growing relevance and interest to the

research community. As programming remains a significant aspect of digital lutherie, there are

many developments in the wider research on programming languages that stand to offer benefits to

the digital luthier both in the expressivity of the code they write and ensuring that code is correct

and less error-prone.

33

Chapter 3

Exploring Languages for Digital

Lutherie

At the outset of this journey, the intention was to build a new programming language for digital

lutherie. This led to a series of conceptual programming languages that targeted domain-specific

problems and looked to pair programming features or paradigms to target the domain of each

problem, with the potential to isolate and compose domains to build up a complete language that

was domain-oriented and potentially visible more as a collection of miniature DSLs, rather than

one langauge. The proposal for this design could be described as a system of small languages, with

interfaces defined for composition of the languages depending on the target instrument.

In order to rationalise the design choices of a language such as this, it became a consideration

that design choices needed to be well motivated and testable and as such, these explorations

developed to prioritise asking the question of how one would go about designing a new language for

digital lutherie. This chapter will document some of these explorations in programming language

design, primarily to provide a context and motivation for answering these questions but also to

demonstrate some of the novel ideas that developed in this line of thinking. What is presented

here are the more relevant results of exploratory work over the period of 2 years, considering the

design of musical programming languages. They are presented chronologically and demonstrate

the development of structures for the modelling of musical systems in programming languages,

first in the description of tuning systems and then expressing rhythmic structures. These ideas are

then explored in the context of mapping to digital instruments, which remains an ongoing work

but was deferred in order to better inform the design through a better understanding of the needs

of the digital luthier.

3.1 Exploring Programming Idioms for Expressing Tuning

Systems

Despite the many approaches to DMI design and music creation through programming langauges,

general purpose (GP) languages still dominate the development of DMI. As discussed in Section

2.1.5, these GP languages tend to inherit programming language features as language communities

converge on shared idioms for solving particular problems. This section explores the programming

construct of ‘list comprehensions’, derrived from set builder notation 1, and demonstrates them as

a highly expressive and idiomatic way to work with musical tuning systems, which could be useful

in defining tunings, and by extension, scales for Digital Musical Instruments.

1https://en.wikipedia.org/wiki/Set-builder notation

34

3.1.1 Introduction

Many musical traditions settled on the compromise of twelve-tone equal temperament (12-TET)

and it has since become the de facto standard for composition and musical instrument design (Duf-

fin 2008).

Many instruments are physically bound by an inability to tune or modulate between just into-

nations in a practical setting, and as such, the use of this form of harmony is constrained for most

ensembles. The legacy of these physical restrictions means it is uncommon for extensive support for

alternative temperaments with discrete-pitched instruments, digital controllers or software instru-

ments. As such, composers typically meet many challenges in exploring this form of harmony in a

manner that is intuitive or supports rapid, iterative experimentation. Furthermore, with 12-TET

deeply ingrained in the harmony of many musical cultures, many theoretically acceptable harmonic

relations no longer have the same effective perceived quality in an alternative temperament.

For the most part, the details of tuning and temperament remain a hidden layer upon which

music systems sit. Given the mathematical foundations on which alternative systems of tempera-

ment are built and the ease these calculations can be performed on modern computational systems,

we can expect that there is a way to describe different tunings in a way that is both clear and

allows for accessible, creative exploration.

As the concept of a scale or tuning naturally fits the data structure of a list, a functional

language such as Haskell (Marlow 2010) provides an excellent set of tools and concepts for

programmatically manipulating these ideas.

This section aims to examine the potential ways for existing tunings to be expressed and, beyond

that, how functional programming may present a foundation for exploring new tunings and, by

extension, harmony. The results allow scales to be created from a base tuning and ultimately

applied within digital instruments, laying the foundations for a reimagining of temperament in the

context of digital instrument design and domain-specific languages.

3.1.2 Tuning and Temperament

There are a number of ways to describe the relationship between notes. Due to the ubiquity of

twelve-tone equal temperament (12TET), the most common unit tends to be cents, a logarithmic

unit adopted and developed by Alexander J. Ellis for his work comparing tunings from around

the world (Ellis 1885) that uses 12 TET cornerstone. This unit sees an octave within the 12-TET

system divided into a geometric sequence of 12 divisions, each equal to 100 cents, referred to as a

semitone. This approach is widely adopted in music technology, such as by the MIDI specification.

The MIDI specification and the majority of compatible synthesisers adopt this model to describe

alternate temperaments as a deviation (in cents) from 12TET.

As this approach requires making adjustments to each note, tuning becomes a time-consuming

exercise that raises the potential for mistakes and requires a precalculated target value of what

frequencies to select, stifling the ability to make intuitive decisions about the tunings or to iterate

and make changes in an explorative space quickly. Largely, the exploration of tunings on many

modern instruments couples the domain of musical tuning with the technical domain of configuring

the instrument. Due to the exponential nature and unfamiliar approach to discussing frequency in

a musical context, the instrumentalist or composer is left to solve tuning as a technical problem

that does not relate directly to their musical intentions.

An alternative approach defines tunings as a ratio to the first scale degree, as shown in table

3.1. Whilst this method lacks the anchor point of 12TET deviation, it gives a far more elegant

representation of the scale. Just intonations, in particular, are represented clearly in this way due

to their inherent use of natural numbers for ratios.

35

Table 3.1: Pythagorean tuning
Note G♭ D♭ A♭ E♭ B♭ F C G D A E B F#
Ratio 1024:729 256:243 128:81 32:27 16:9 4:3 1:1 3:2 9:8 27:16 81:64 243:128 729:512
Cents 588 90 792 294 996 498 0 702 204 906 408 1110 612

Equal Temperament

Equal temperament creates a perceptually consistent width interval 2 between each note. This

creates a harmonic compromise with partials from each note close enough to integer multiples to

be perceived as harmonic, without creating larger gaps that are perceived as inharmonic3 at other

points in the chromatic scale.

This tempering system works by dividing an interval range (typically an octave) into equal

divisions. In Western traditional theory, this is typically twelve subdivisions following the formula:

12
√
2 = 2(1/12) ≈ 1.05946309436

It is possible to divide the octave into more than twelve notes, and this is the most typical

choice for exploring microtonal music in the 21st century. Again temperament, by its compromise,

facilitates the use of the full scale and, therefore, key changes for physical instruments. The concept

of tempering a scale is a compromise in the harmonic accuracy of all scales, such that they are

all equally usable without having to retune the instrument. Whilst equal temperament has been

the dominant and widely adopted tuning system for much of the music of the world, there is still

debate around alternatives that DMI provide the perfect platform to explore (Hinrichsen 2016).

Just Intonation

Just intonation refers to tunings where the fundamental frequency of each note is related as an

integer ratio to some common reference pitch. This concept creates a set of harmonics that align

in an audibly consonant way and is, by strict definition, what is considered the most ‘in tune’.

As this series of notes is built on integer ratios, this relationship only holds for the current

key4. Just intonation is more accurately conceptualised as a collection of relationships rather than

a single rigid tuning. There are variations such as Pythagorean Tuning (table 3.1) and Five-limit

tuning, handling different scale degrees with different ratios, creating subtly different qualities.

3.1.3 Current interactions with instrument tuning

Currently, there are a number of synths that support the ability to create alternate tunings.

Whilst there is support for altered tunings within the MIDI standard (via SysEx message), it

is the accessibility and quality of digital instruments that present the best way to overcome the

physical tuning limitations of traditional instruments.

The major limitation in tuning arises from the limited ways to derive, experiment and configure

tunings rapidly enough to fulfil creative needs. Tuning by deviation from 12TET has been used

by the likes of Terry Riley in “Songs For The Ten Voices Of The Two Prophets” (Riley 1983) to

explore tuning in a more contemporary context, using Prophet 5 Synthesisers. Riley’s work is an

experimental piece that goes to deliberate efforts to explore the harmony not typically associated

with keyboard instruments. It is an excellent example of what can be achieved, but generally,

the process is demanding on the composer’s technical capacity in overcoming the conventions of

typical keyboard controllers and in finding support for arbitrary tuning systems before they even

2Equal to 100 cents
3Referred to as wolf note - the limiting factor in key modulation when using just intonated tunings.
4Even then, for some intonations, more than 12 notes are required, meaning enharmonic notes that are not

equivalent.

36

begin to explore the expanded potential space for composition beyond 12 TET tuning systems.

We see work that aims to make this task more accessible, for example through digital fabrication

methods and modelling microtonal tunings for 3D printed flutes (Dabin et al. 2016).

Further, Hayward (2015) presents an interface to describe just intonations as a lattice. This

demonstrates the use of visualising abstract relationships in just tunings, thereby demonstrating an

opportunity to explore them creatively. However, their work focuses exclusively on just intonations,

which presents as more of an analysis tool than a tool that can be used directly for practical

applications or integrations to physical DMIs. There is also work that explores the opportunity

for dynamic tuning. For example, Milne presents an isomorphic controller that facilitates tuning

adjustments during performance (Milne, Sethares, and Plamondon 2007). Milne’s work certainly

allows for tonal exploration however, the price for this power is a technically challenging controller,

which may not meet the coveted ‘low barrier to entry’.

3.1.4 Expressing Temperament

Many functional programming languages have an idiomatic and highly ergonomic approach to

working with lists. Haskell, thanks to higher-order functions, has the ability to perform a number

of generalised actions over lists, such as; mapping, zipping and filtering. These can allow a pro-

grammer to quickly but also arbitrarily describe and interact with lists representing tunings. This

is highly beneficial as results can be computed and applied far faster than manually tuning each

note, helping encourage the iterative, conductive workflow for creative and intuitive exploration.

Given the fact that there are a number of ways to describe a tuning, a generic tool such

as a programming language actually offers the designer the opportunity to approach tuning an

instrument from a number of perspectives. Whereas for many instruments (in particular keyboard

instruments), tuning is bound to at least a variation on 12TET, generating lists through a series

of expressions or application of a set of helper functions allows more compatible and unified access

to other tuning systems that depend on other intonations or divisions of the octave, for example.

Formulaic Expression

For generating equal temperaments, creating an expression that divides the desired interval is a

simple and effective method for creating a tuning.

Equal temperament takes the interval of an octave and splits into twelve perceptually equal

parts.

This takes the form:

r = n
√
p

Where r is the ratio, p is the interval and n is the number of divisions.

This relationship can be used to create an expression that gives the frequency of a note given

a scale degree d and a reference pitch R:

2(d/n)R

To this extent, exploring equal tempered scales should be trivially simple as variations of this

formula. Typical microtonal music can then be explored given any expression where n > 12.

Ratios and Lists

It is well recognised that ratios are a powerful tool for describing tunings, a good example being

Wright’s book on the mathematics of music (Wright 2009).

37

Whilst for equal temperament, an expression is an effective and simple way of expressing a

scale, due to the variation in interval size, this is not so simple to work with for just intonations.

An alternative to formulaic expression is to describe a scale by its intervallic spelling, that is a

list where each interval that constructs the scale is explicitly described as a ratio.

A = 1024/729, 256/243, 128/243...242/128, 729/512

If this list5 is evaluated what remains is a set of coefficients that can be multiplied with a

reference frequency R to calculate the tuning.

f = RAn

This presents a very intuitive way of experimenting with very strong harmonic tunings in a

way that suits the human inclination for seeing patterns.

12TET deviation

Whilst we consider deviation from 12TET to be a limiting method for tuning, as this approach

is general, it is easy to include it, for both completeness and familiarity. Below n is equal to the

number of cents up from the reference pitch.

f = R(21/1200)n

3.1.5 Practical Examples

Given its light, mathematical syntax, these formulas translate conveniently into functional lan-

guages such as Haskell or languages that inherit these idioms (such as Python).

We present several very simple implementations here based upon Haskell’s list comprehensions,

where given a list of the desired scale degrees, a list of frequencies are returned.

A list comprehension is a powerful programming construct, found in languages such as NPL,

Miranda, and Haskell, that enables the concise and expressive construction and transformation of

lists (Turner 1986).

A list comprehension can replicate the formula for generating an equal tempered scale of twelve

chromatic notes with the expression below. The named constants make it a simple change in order

to recreate the scale from a different reference point, for example, to tune to the popular alternative

reference pitch like A = 432Hz.

r e f e r en c eP i t ch = 432

f req 12te t = [2 . 0 ∗∗ (n /12 . 0) ∗ r e f e r en c eP i t ch | n <− [0 . . 1 3]]

In the same form, a Pythagorean circle of fifths can also be generated using a list comprehension.

freq PT = [r e f e r en c eP i t ch ∗ (3/2) ∗∗ n | n <− [0 . . 1 2]]

To create a scale using an intervallic spelling, a list of ratios can be used. This is then evaluated

to be used in the list comprehension, giving a similar overall feel. The resulting list of coefficients

can then be used either in another list comprehension or using a function such as filter, to select

only notes from a scale.

To further demonstrate this strategy of list manipulation an auxiliary function is also demon-

strated here that can be mapped over a scale to shift the scale up by an octave.

octaveUp x = x ∗ 2

5Pythagorean temperament described as a list.

38

r a t i o s j u s t = [1 , 25/24 , 9/8 ,6/5 , 5/4 , 4/3 , 45/32 , 3/2 , 8/5 , 5/3 ,

↪→ 9/5 , 15/8 , 2]

f r eq ju s t = [r e f e r en c eP i t ch ∗ (r a t i o s j u s t ! ! (n − 1)) | n <−
↪→ [1 . . 1 2]]

f r eq ju s t2 = map octaveUp f r eq ju s t

3.1.6 Applications

Scale Generation

Based on the presented examples, it is possible to interface with a number of existing Haskell

harmony libraries and frameworks (such as Haskore (Hudak et al. 1996)), taking the lists generated

and using higher-order functions such as a filter to select or remove notes according to diatonic

patterns found in those libraries. Alternatively, the lists found in these libraries could also be used

in the list comprehension itself to create predicate conditions or to select only values from the list

of diatonic notes, such that scale notes are the only frequencies created.

Digital Instrument Tuning

Applying these concepts are intended as part of an ongoing work however it would be simple to

apply the output of the implementation proposed here to an OSC system or even for use with

MIDI. For example, the output could be formatted into a SysEx message that can be sent to

configure a MIDI device that supports the MIDI standard’s tuning.

3.1.7 Conclusion

This approach to programmatically describing tunings can empower the digital luthier to more

deeply explore and support tuning systems in an instrument and potentially create user-facing

approaches and tooling for configuring the instrument through this style of strategy. One might

imagine a model for example, where the instrument tuning is configured through the evaluation of

an expression in the form of a list comprehension which generates a static file residing on the DMI

itself, configuring the tuning of the instrument. When language features such as this have such a

natural fit to problems associated with the domain, there is a powerful potential to create idioms

within the language that significantly reduce the cognitive burden and allow programmers to solve

musical problems with ergonomic and ultimately expressive strategies that can develop into the

kind of idioms that become a shared language in programming communities.

Conceptually, a DSL that utilises the ideas from this work would resemble the code fragment

shown in Figure 3.1, where a 4 by 4 grid is created and mapped onto a generated 12TET diminished

blues scale.

A related hardware controller could then be configured using the output from this program.

g r id = Button 4 <+> Button 4
r e f e r en c eP i t ch = 440
freq 12tet dimBlues = [2 .0 ∗∗ (n / 12 . 0) ∗ r e f e r en c eP i t ch | n <−

↪→ dimin i shedBlues]
applyToGrid g r id freq 12tet dimBlues

Figure 3.1: A DSL to map tempered scales to interfaces

Given the basic premises outlined here, it is hoped that these ideas can be applied when

considering the design of new digital musical instruments,to further facilitate the exploration of

tonality. Exposing this level of functionality is highly beneficial given the number of people engaging

39

with digital instruments and computers. Composing and creating on an intuitive level need not be

bounded by the conventional theory that has underpinned, but perhaps constrained, 100 years of

music.

3.2 Exploring DSLs for Expressing Musical Patterns

Rhythm is the sequencing of musical events in time. These events are set apart by a time step

dictated by our sensory threshold to synchronize with these events. Repp suggests this inter-

onset interval is between 100-120ms (Repp 2003). Variations around this duration contribute

ornaments and nuanced variation, such as grace notes and the fluctuation in meter commonly

referred to as ‘feel’ (Polak 2010). Western music theory describes music at a rate of beats per

minute (BPM) as an isochronous sequence with an equally spaced, periodic pulse (Fitch 2013)6.

Beyond the periodic groupings referred to as meter, the emergence of pulse, the feeling of intense

and weaker beats, is implied within the time signature of a musical piece and, as such, leans

towards specific, almost idiomatic approaches to notating rhythm in traditional Western notation.

Whilst traditional notation is expressive and information-dense, looking towards more complex

manipulations of musical time, digital systems tend to struggle to manage and represent this well.

Most notably, this is a challenge in a number of software notation programs, where expressing

two-time signatures in parallel (polymeter) or working with concurrent time (polyrhythm) is not

generally well supported, and so requires undesirable workarounds in order to express these ideas,

hindering the creative process.

In this Section, we build upon the notion of cyclic time as described by Tagg (1997), looking at

alternative ways cycles can be expressed, drawing inspiration from Tidal Cycles (McLean 2014), a

DSL for Live Coding of musical patterns.

There are many examples of DSLs used in music creation and performance (Magnusson and

McLean 2018) and for the processing of audio (Puckette 1997; Orlarey, Fober, and Letz 2009).

However, these DSLs have not been widely applied to the design of Digital Musical Instruments,

particularly in the context of the complete instrument, for example, Magnusson’s aforementioned

Instrument ModelMagnusson (2010a). Expanding on Magnusson’s definition of a DMI, an instru-

ment can be viewed through the lenses of different domains, each with its own nuances. Therefore,

the design of these instruments can be composed over these domains, avoiding being tied down

with or hindered by implementation details.

This section introduces a small functional Domain Specific Language for manipulating musical

patterns and sequences. This use of a DSL for musical patterns provides the building blocks

for working with sequence-based musical constructs encapsulated in cycles. We go on to provide

abstractions that apply polyrhythmic and polymetric rhythms to our representation of time.

To demonstrate the practical benefits of our system, we describe a DMI designed for the ex-

ploration of polyrhythm, utilising tools from the Muses Project7. The DSL, pat, described in

Section 3.2.2, is used to create a tangible, interactive instrument that applies an approach similar

to Varney’s ‘Wheel Method’ (John Varney 2014) to spread polyrhythms around a circle. This

allows polyrhythms to be expressed using physical rings, as seen in Figure 3.2.

More details about the project, implementation, and examples are publicly available from

https://muses-dmi.github.io/.

6Though there are examples of non-isochronous music, which can be identified by the clapping test, described
by Arom (2004).

7https://muses-dmi.github.io/pat/overview/

40

https://muses-dmi.github.io/

Figure 3.2: A 3 against 4 polyrhythm with cycles represented with circles.

3.2.1 Traditional Expression of Rhythm

Whilst comprehensively covering the music theory relating to rhythm is beyond the scope of this

thesis, we briefly introduce and illustrate the topics we will focus on in order to demonstrate the

incorporation of these concepts, which are often difficult to express in computer notation packages

and digital instruments.

Musical notation is an information-dense medium that lends itself well to transferring musical

information to a performer. Whilst superficially, a mathematical equivalence can be shown between

two methods for notating a rhythm, the choice of notation contains inferred information concerning

meter and pulse for a performer to act upon. As such, it is occasionally appropriate to notate

work using concurrent staves with different timing to portray the intended pulse of the piece

elegantly. This can be viewed from two perspectives; ideally in one respect; allowing a composer to

effectively express how a rhythm should ‘feel’ 8 to the performers in order to realize the piece fully.

Alternatively, in some performance situations, the composer’s realization may be compromised in

order to notate a piece in a way that reads more idiomatically, allowing players that may be sight

reading to read a more familiar part.

The result of these differences are subtle, constituting minor fluctuations from the strict sub-

division that is notated or articulations of a musical event based on the position within the bar,

but we argue for the former, which facilitates the expression of intention.

In order to avoid overly quantised playback of sequences, a digital system requires an implemen-

tation that balances a comprehensible representation with a playback system capable of applying

the more nuanced variations eluded to in this work. As an important facet of performance, an

abstraction that allows expression over this is desirable and factors into the design considerations

of the approach presented in this thesis, though deeper consideration of rhythmic feel and micro

timing will be deferred to future work.

Beyond the musical feel embedded in a rhythm, there are also other concepts that are typically

not well presented to users of digital systems. Both polyrhythm and polymetric rhythms are

concepts that are incorporated into many specialized devices and applications. However, many

mainstream digital systems do not typically facilitate their use in an expressive idiom.

In the following sections, these concepts are presented using short meters, allowing the concepts

8where the pulses/strong beats of different instrumental parts should be and how they line up against other
parts

41

Figure 3.3: Polymetric passage of 3/4 over 4/4, notated in 4/4 with accents indicating the first
beat.

Figure 3.4: Polymetric passage of 3/4 over 4/4, notated in with dual time signature.

to be clearly displayed and fit well on the page, however, these principles extend for other values.

Polymetric Rhythms

Consider a simple example that notates a polymetric phrase. Phrases are constructed using note

durations rooted in the same tempo, but using different rhythmic meters (time signatures). This

concept is often expressed by notating the parts in a common time signature, perhaps providing

articulations that are suggestive of the ‘feel’ of a different meter. This is demonstrated in Figure 3.3,

where the first beat of a phrase is accented.

In some cases, a composer may wish to work directly in the time signatures that the work was

intended to be in, producing a notation similar to that shown in Figure 3.4. This allows idiomatic

writing for both parts and implies the feel of each part individually. Despite, fairly common

use, this is not supported by many mainstream digital systems, and often when it is, there are

restrictions that prevent a complete sense of expressibility.

Polyrhythmic Rhythms

Figure 3.5, shows two approaches to expressing a polyrhythm. In the first measure,a four over

three polyrhythm is expressed as a 4/4 measure, at a tempo of 100BPM. This is demonstrated as

being equivalent to the second measure, notated in a different meter and tempo.

Using traditional notation, these phrases are expressed quite well, indicating how these rhythms

anchor against each other. In more complex examples, however, it may be beneficial to conceptually

42

Figure 3.5: A polyrhythm of 4 against 3,demonstrating a notational equivalence

Figure 3.6: 4 against 3 polyrhythm simplified to quarter notes at related tempo and time signa-
ture.

43

work with tempo and time signatures applied against each other rather than having some parts

entirely in tuplets9. This is mainly, the case where polyrhythms form the basis for an entire piece,

and further, the intention may be to apply both different tempo and pulse. Figure 3.6 demonstrates

how this may be notated, where the implied pulse from each time signature should be considered.

Rate

In Western notation, the rate at which a rhythm is performed is represented in a relative manner,

with durations for notes given as subdivisions of a measure of time (a bar). This measurement

is made absolute by providing the number of beats per minute (BPM). While BPM allows a

performer to approximate tempo in relation to seconds, the approach described in Section 3.2.3

assumes the rate to be given as the duration of the sequence. It is, therefore, essential to consider

this relationship where a measure’s duration (in seconds) can be calculated from beats per minute

(BPM) with the following equation, with B representing the number of beats in the measure.

60
BPM ×B

As mentioned previously, traditional notation leaves perturbations in tempo to be inferred

based on the notation (time signature, articulation and style), but it is recognized that variation

of the interonset interval between notes also significantly contributes to the ‘feel’ (Gouyon 2007).

This is typically contextual, with proficient performers modulating the tempo based on the style

of piece being performed.

Limitations in Expression

Many electronic instruments and software do facilitate the expression of these rhythmic ideas,

however, it is observable that there are often hurdles in expressing complex rhythmic relationships

that require working against the functionality of the application or device. Further, a common

complaint levied against digital systems is the lack of ‘feel’. This is due to many implementations

of metre and pulse lacking the continuous modulation a human performer adds. While there are

systems that aim to capture this, there is a lack of work that abstracts these ideas in a transferable

and expressive way. This, therefore, motivates the approach laid out in this work.

These issues are beginning to be addressed in different systems, but a consolidated approach

that affords expressivity to the composer or performer is missing.

3.2.2 Describing Time with Tidal influenced Patterns

Programming languages, particularly those from the live coding movement (Collins et al. 2003)

offer another method for exploring sequences, with a focus on sequencing being a staple part of

many live coding languages (Magnusson and McLean 2018; Aaron and F. Blackwell 2013). Within

these languages, code is used to express a sequence during performance. The ideas presented in

this work draw from and are influenced by these languages, later drawing on them within the

context of Digital Musical Instrument design.

Whilst several programming languages have been built to express musical ideas, Tidal Cycles

captures rhythmic expression in a way that is transparent when working with rhythmic sequences

and is syntactically light.

Due to the density of musical information that traditional notation presents, it is difficult

to provide a rich and expressive representation of music as a text based programming language.

Focusing on music based on patterns in time, Tidal Cycles excels. Sequences are expressed as

cycles, analogous to bars or measures, though they do not inherently suggest a meter. A single

9In practice this may require musicians to perform using individual metronomes in order to realize the inten-
tion effectively.

44

Figure 3.7: An example pattern featuring subdivisions down to 16th notes.

cycle is a length of time into which some number of events may be distributed. Musical events

are distributed equally throughout a cycle and any single event may be further subdivided by

providing subdivisions (described as nested lists) of musical events.

We derive a variation of Tidal cycles syntax for describing patterns, where a pattern is a string

delimited by white space. Further subdivisions are expressed using a notation for nested lists,

incorporating the most fundamental ideas of Green’s cognitive dimensions for notating lists (Green

1989) 10. This syntactically allows, for example, expressing the pattern of two sixteenth notes, one

eighth note and three quarter notes as seen in Figure 3.7, using the following pattern11:

[[bd bd] bd] bd bd bd

Whilst Figure 3.7 notates the pattern above in 4/4 we should consider that the pattern, unlike

the notation, has no implication of how the pulse of the part should feel. In the context of this

work, pulse and meter may be considered functions that act on a pattern and as such are not

represented in the pattern itself which will be built upon in future work.

3.2.3 Notions of Time

This section describes an abstraction for musical time, providing an underlying data structure

that can be used by digital systems for performance and playback, termed sequences. Further,

constructs for the manipulation of patterns are provided. The notation described in Section 3.2.2

is used for patterns, showing how they are translated to ‘flattened’ sequences.

The approach presented here is intended as a conceptual model rather than a strict format

specification. As such, each sequence may be extended with front matter or meta data to encode the

articulation and phrasing applied to the sequence and other implementation-specific requirements.

A complete implementation based on the ideas presented in this section can be found on the

project’s Github page12.

3.2.4 Representing Sequences

A sequence is a series of events, taking the form of a data structure that approximates Schaeffer’s

definition of a sound object (Schaeffer 2017), with a collection of functions which are able to

manipulate them.

A sequence of events in time is represented as an ordered list13, where each element represents

the onset of a given set of events:

E = [e1 , e2 , . . . , en]

10We use Haskell’s list notation, [] for empty lists and [x1 ,..., xn] for lists containing n elements, where xi

could also be a list.
11Technically this should be written ” [[bd bd] bd] bd bd bd”, but quotes are ommited when clear from con-

text.
12https://github.com/muses-dmi/pat/
13As already noted, we use Haskell’s list notation, [x1 ,..., xn], to represent an ordered set.

45

https://github.com/muses-dmi/pat/

Figure 3.8: Sequence structure

Events at a given point in time happen simultaneously and, therefore, do not require ordering.

Specific representations of events are undefined and left to a particular implementation, ex-

amples include MIDI14 or OSC15 messages. This structure, called a sequence, is assigned the

following type, where τ is the type for events and is supplied by an implementation16:

sequence : [[τ]]

The position of events in the list represents events in time, with the gaps between considered

the inter-onset interval, analogous to the interval explored by Madison, for the perception around

inter-tap interval (Madison 2001). The sequence can be naively played by stepping between each

element of the list with a fixed time interval. Modulation of this playback interval remains an

exciting opportunity for future work.

In order for a sequence to be played, the inter-onset interval must be supplied as a function

of the patterns used to generate it. Therefore, an implementation requires a sequence and an

inter-onset interval derived from some notion of rate (cycle duration or tempo) in order to operate.

Figure 3.8, provides a visual representation this17.

Tempo calculations

Devices utilizing this representation are required to calculate and manage tempo. Separating the

management of interonset intervals from the sequence of events, such that the tempo is free to

be modulated without the need to operate on the sequence itself. This provides a opportunity to

reflect real world variations in time such as those described by BartonBarton, Getz, and Kubovy

(2017).

Given a target cycle duration, the interonset interval can be calculated as follows, where T is

the length of time a cycle lasts and N is the number of cycles. These values are then divided by

14https://www.midi.org/
15http://opensoundcontrol.org/
16A expression of the form x : τ , states that x has type τ .
17Observe that if MIDI or a similar mechanism is used and a sequence is being used as a loop, the note off will

be required to be on the starting note of the ‘next conceptual cycle’, meaning an unpaired note off will be sent on
the first beat of the first playback of the cycle, as seen in this case.

46

https://www.midi.org/
http://opensoundcontrol.org/

Figure 3.9: The process of expanding a pattern’s subdivisions.

the total number of steps in the sequence to provide the interonset interval, defined as follows:

i n t e r v a l = T×N
Steps

Translating Patterns to Sequences

As described above patterns form an ordered list, where sub-lists represent nested subdivisions.

Non list elements, i.e. elements that are not subdivisions, represent musical events in time.

Translating patterns to sequences, with explicit quantization, is the process of ‘flattening’ a

pattern such that it contains no subdivisions and is correctly spaced with respect to time. This

process is straightforward in the case of a single pattern, but requires a different approach for

polyrhythmic and/or polymetric composition of multiple patterns. We first consider the case of

‘flattening’ a single pattern to a sequence and then use this to account for multiple patterns,

including polyrhythmic and/or polymetric composition.

Flattening Subdivisions

In order to create the ordered list of events that represents a sequence the subdivisions of the input

patterns must be ‘flattened’, such that each step between elements represents the smallest possible

interonset interval that can represent the list.

Consider as an example the notation from Figure 3.7, which is described by the following

pattern:

[[bd bd] bd] bd bd bd

The smallest subdivision used is a sixteenth note, which implies that the sequence must be

flattened to the following:

47

The expansion of subdivisions is a function from a pattern to a sequence (i.e. pattern →
↪→ sequence). This translation results in a sequence that has a length equal to the least common

multiple of every subdivision in a pattern, multiplied by the length of the pattern itself. This

operation is demonstrated over a pattern in Figure 3.9.

Handling Polyrhythmic and Polymetric

We now consider the creation of sequences that combine patterns in either a polyrhythmic or

polymetric manner, utilizing the previously discussed method for expanding subdivisions.

3.2.5 Polyrhythmic Merge

Polyrhythmic merge is the process of first expanding the subdivisions for both sequences and then

creating a new list that is n elements in length, where n is the least common multiple of the

‘flattened’ pattern’s length, e.g.:

lcm (f l a t t e n l) (f l a t t e n r)

where l and r are short for left and right, respectively. Each element is then inserted into the

new list, at intervals of i, calculated for left and right independently as:

i L e f t = n / (length (f l a t t e n l))

iR ight = n / (length (f l a t t e n r))

The process is shown diagrammatically in the following example:

Polymetric Merge

The process of merging a polymetric phrase creates a new sequence extending to the point where

the input sequences synchronize. This is calculated by multiplying the length of both sequences

prior to flattening, which is achieved by repeating the list.

This is demonstrated in the following diagram:

48

The resulting sequences are then combined such that each element becomes a list of lists, where

the nested list contains the events on that subdivision, as demonstrated in the following diagram:

Patterns can then be be subdivided as described previously.

3.2.6 An example DSL for expressing notions of time

To demonstrate the use of our representation this section explores using DSLs (as described by

Hudak (1996)) in the context of Digital Musical Instrument Design. A tiny DSL, called pat, for

creating patterns in time’ with a syntax inspired by Tidal Cycles is presented, whose grammar

is specified in Figure 3.10. We assume a symbolic representation for events, e.g. alpha numeric

sequences such as bd and snare, etc. The binary operations |:| and −:− represent polyrhythmic

and polymetric merge, respectively.

pat can express sequences with a light touch. For example, consider the following, terse,

description producing a 3 : 4 : 7 polyrhythmic pattern:

[a c e] a a | : | a c a c | : | g g g g g g g

Further, these combinators can be used together to create complex, evolving patterns. The

following expression generates twenty four steps of evolving musical material18:

18This example can be heard on https://muses-dmi.github.io/pat/listen

49

https://muses-dmi.github.io/pat/listen

⟨event⟩ ::= identifier

⟨pattern⟩ ::= ⟨event⟩
|

[⟨pattern⟩ { , ⟨pattern⟩ }]
|

⟨pattern⟩ |:| ⟨pattern⟩
|

⟨pattern⟩ -:- ⟨pattern⟩

Figure 3.10: Pattern grammar

[a c e] a a [a c e] a a

−|− a c a c

| : | g [g c] g [g c] g [g c] g

A practical realisation, as given on the project’s Github and outlined in Section 3.3, must

provide concrete representations for events and other implementation details omitted here, for

ease of presentation.

3.3 Applications for DMI

Given the DSL pat, we now briefly discuss how it might be utilized in the design of a novel instru-

ment that facilitates the ability to both describe constraints (in the form of rhythmic sequences)

and also the ability to perform. We provide an example of two instruments, one virtual and one

physical.

The Muses Synth and Pat

A combination of the Muses Synth19 and pat can be used to describe a virtual instrument.

In order to operate with the Muses Synth we transpile from our representation into a JSON file

representing a sequence. The Muses Synth implements the ability to parse and perform a sequence

as described in Section 3.2.4. This provides the ability to define a rhythmically complex Virtual

DMI using pat expressions. This instrument can be downloaded and explored at the project’s

website.

Polyrhythmic Ring Sequencer

The ‘Polyrhythmic Ring Sequencer’ is an instrument that provides an exploration of polyrhythm,

inspired by the ‘Beat Bearing’ (Bennett and O’Modhrain 2008). Namely:

• Accessible - requiring little technical proficiency

• Playable - can be played in real time, constituting a performance that requires input from a

performer.

• Visually represents polyrhythm in an intuitive manner.

Figure 3.12 shows the instrument produced for this purpose. This instrument is a circular step

sequencer with three channels, represented by three concentric rings. It is implemented using a

19https://muses-dmi.github.io/pat/synth

50

https://muses-dmi.github.io/pat/synth

Figure 3.11: Screen shot of Muses Audio Application.

51

Figure 3.12: A novel instrument for polyrhythmic expression with marbles.

Sensel Morph20, a touchpad capable of measuring force, and uses marbles to represent musical

events. A cycle is represented from 12 o’clock, around 360◦.

pat is used for the description of the rings with a set of functions that use ImplicitCAD21 to

produce an STL, a 3D model format for 3D printing. We allow the | : | combinator to be used but

restrict the use of polymetric merge (−|−) due to limitations of the system. This implementation

is provided on the project website, alongside tools to generate new rings based on pat.

3.3.1 Conclusion

This section presents a method for representing musical sequences as an ordered set containing

musical events. An event may be considered analogous to Schaeffer’s definition of a sound ob-

ject (Schaeffer 2017), where some representation describing a musical event is provided.

This method is motivated by a desire to be able to manipulate the sequence to represent complex

notions of time, such as polyrhythm and polymeter. A process for merging sequences inline with

these concepts is provided, producing a sequence of events that represents merging the provided

sequences.

A conceptual overview of how sequences may be merged both polyrhythmically and polymet-

rically is demonstrated as alongside how time is represented within this context. This is presented

at a high level in anticipation of further work, where this method produces a suitable digital

representation to explore more complex and expressive manipulations of time.

In order to explore this concept, a small language was presented to express patterns in time,

inspired by the language Tidal Cycles (Magnusson and McLean 2018). This facilitates the expres-

sion of a polyrhythmic pattern of seven snare hits over a ‘four on the floor’ bass drum pattern, in

the following manner:

bd bd bd bd | : | sn sn sn sn sn sn sn

20https://sensel.com/pages/the-sensel-morph
21http://www.implicitcad.org/

52

https://sensel.com/pages/the-sensel-morph
http://www.implicitcad.org/

To provide real-world examples, and to position future work on the topic, two digital musical

instruments were introduced, that incorporate the use of our pattern language in their design.

These instruments are made available for further exploration of how this overall approach may be

implemented in a digital system.

3.4 Exploring Embedded DSLs for Dynamic Grid Controller

Layouts

This section provides an overview of the final exploratory work that prompted the decision to

understand better how new programming languages for digital lutherie can be designed with a more

informed strategy. This work began to introduce a functional programing language for describing

grid-based control interfaces. The intention of this language was to improve the composability

of components used to create musical interfaces, such that functional catamorphisms 22 could be

applied to the interface to make mapping things like tunings and other controls more expressive.

3.4.1 Embedded Domain Specific Languages

Language design is a non-trivial problem that requires a considerable investment of time. In

particular, whilst cited as having many benefits of general-purpose languages, DSLs lack strong

development guidelines and underpinning research, meaning that it can be difficult to know how

effective a DSL design will be until it is built and used. We have already discussed the nature

of languages to need to evolve and adapt to its niche, meaning that it is unlikely for a design to

be correct the first time. Hudak (1998) discusses a solution for avoiding this by embedding DSLs

inside of a host language, inheriting the features and many of the semantics of the host language.

Som languages are particularly good for this due to features such as algebraic data types (Maguire

2018), as they are able to effectively model and work with structures such as abstract syntax trees

(ASTs) idiomatically.

To build a small embedded language for laying out common control widgets such as buttons

and sliders, we explored the use of EDSLs in Haskell 23 through the use of pretty printing (Hughes

1995). This allowed for the embedded language to be used to express interfaces which could then

generate outputs for different target architectures, where we target littlefoot for defining interfaces

on the Roli Blocks, and openSCAD for defining physical widgets that could be 3dPrinted.

3.4.2 Transpilation Strategy

Transpilation is a process that involves the conversion of source code into the source code of a

different target language. Part of the reason for selecting the Roli Block as an initial target for

this language was its support for dynamic reprogramming of the controller’s layout through an

interpreted programming language called littlefoot. This C like programming language included a

simple API for access to the main features of the Roli Block and could be compiled into a bytecode

that is stored and run on a Roli Block.

To work with littlefoot in a functional style an Abstract Syntax Tree built around the following

grammar is used and manipulated by a variant of the language termed ‘functional-littlefoot’.

Given an AST in Haskell implementing this grammar, a small library was built up to work with

the Roli Block API and a set of combinators for composing widgets together were implemented.

22operations such as map, filter, reduce and zip
23https://www.haskell.org/

53

⟨id⟩ ::= [a-z]+

⟨Int32 ⟩ ::= [0-9]+ ⟨Float⟩ ::= [0-9]+ ’.’ [0-9]+ ⟨Bool⟩ ::= ’true’ | ’false’ ⟨Word8 ⟩ ::= [0-9]+

⟨Type⟩ ::= ‘int’ | ‘float’ | ‘bool’ | ‘void’

⟨Literal⟩ ::= Int32 | Float | Bool | Word8

⟨Binary Operator⟩ ::= ‘+’ | ‘-’ | ‘%’ | ‘/’ | ‘*’ | ‘=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘!=’ | ‘&&’ | ‘||’ | ‘&’ | ‘|’

⟨Unary Operator⟩ ::= ‘!’ | ‘~’

⟨Expression⟩ ::= ⟨Literal⟩ | ⟨Binary Operator⟩ ⟨Expression⟩ ⟨Expression⟩ | ⟨Unary Operator⟩
⟨Expression⟩ | ⟨Type⟩ ⟨Expression⟩ | ⟨id⟩ ⟨Expression⟩ | ⟨id⟩

⟨Statement⟩ ::= ’if’ ⟨Expression⟩ ⟨Statement⟩ | ’for (’ ⟨Expression⟩ ’;’ ⟨Expression⟩ ’;’
⟨Expression⟩ ’)’ ⟨Statement⟩ | ’while (’ ⟨Expression⟩ ’)’ ⟨Statement⟩ | ’return’ ⟨Expression⟩
’;’ | ⟨Type⟩ ⟨id⟩ ’;’ | ⟨Type⟩ ⟨id⟩ ’=’ ⟨Expression⟩ ’;’ | ⟨id⟩ ’=’ ⟨Expression⟩ | ⟨Expression⟩ ’;’
| ’’ ⟨Statement⟩ ’’ | ’;’

⟨Definition⟩ ::= ⟨Type⟩ ⟨id⟩ [(⟨Type⟩, ⟨id⟩)] [⟨Statement⟩] | ⟨Type⟩ ⟨id⟩ ’;’

Figure 3.13: Littlefoot grammar

⟨id⟩ ::= [a-z]+

⟨Colour⟩ ::= ⟨Word8 ⟩ ⟨Word8 ⟩ ⟨Word8 ⟩ ⟨Word8 ⟩ ⟨Data⟩ ::= ⟨Word8 ⟩ ⟨Size⟩ ::= ⟨Word8 ⟩

⟨Midi Message⟩ ::= ⟨Status⟩ ⟨Word8 ⟩ ⟨Word8 ⟩ | ’MessagePair’ ⟨Midi Message⟩ ⟨Midi Message⟩

⟨Widget⟩ ::= ’Tile’ ⟨Size⟩ | ’Button’ ⟨Size⟩ ⟨Midi Message⟩ | ’Slider’ ⟨Size⟩ ⟨Midi Message⟩

⟨Interface⟩ ::= ⟨Widget⟩ ⟨Colour⟩ | ⟨Interface⟩ ’⟨+⟩’ ⟨Interface⟩ | ⟨Interface⟩ ’⟨ˆ⟩’ ⟨Interface⟩

Figure 3.14: Gridlang grammar

3.4.3 Modelling with Types

Through this exploration, we embed a small language referred to as GridLang in the functional

language Haskell. This language provides a set of primitives, modelled in the Haskell type system,

for describing widgets that might be used in a typical musical controller. To remain simple, this

version of the language features blank tiles, buttons and sliders for the creation of interfaces.

A grammar for this system is provided below.

3.4.4 Horizontal and Vertical Composition

In a similar style to the toy language pat, described in Section 3.2 provides two new combinators

for working with GridLang types. These combinators, <+> and <^> represent horizontal and

vertical placement of widgets, respectively. This allowed for a means for expressing controllers

through the composition of arranged widgets referred to in the grammar as interfaces. Through

this recursive definition, these interfaces could be organised by the user and recombined to work

with higher-level building blocks for defining grid-based interfaces. Figure 3.15 demonstrates the

layout of a simple interface on the Roli Block using GridLang, the code for which follows.

buttonSize = S i z e 4 4

54

spacer = (S i z e 12 12) none

s l i d e r S i z e = S i z e 4 9

ccCh1 fu l l = (Message 176 39 127)

ccCh1ni l = (Message 176 39 0)

b1 = Button buttonSize (MessagePair (Message 144 67 127) (Message 128

↪→ 67 127)

b2 = Button buttonSize (MessagePair (Message 144 69 127) (Message 128

↪→ 69 127)

b3 = Button buttonSize (MessagePair (Message 144 70 127) (Message 128

↪→ 70 127)

s l i 1 = S l i d e r s l i d e r S i z e (MessagePair (Message 176 39 127) (Message 176

↪→ 39 0))

s l i 2 = S l i d e r s l i d e r S i z e (MessagePair (Message 176 42 127) (Message 176

↪→ 42 0))

s l i 3 = S l i d e r s l i d e r S i z e (MessagePair (Message 176 1 127) (Message 176

↪→ 1 0))

buttons = (b1 red) <+> (b1 blue) <+> (b1 green)

s l i d e r s = (b1 green) <+> (b1 red) <+> (b1 blue)

layout = button <ˆ> spacer <ˆ> s l i d e r s

3.4.5 Motivating a Study on the Designer Tool Relationship

The exploration of GridLang was started as an investigation into using EDSLs to rapidly design

and test language design ideas for digital lutherie. Through the use of embedding in Haskell,

once again a language was rapidly produced to test a set of ideas. Further, these design patterns

provided the option of targeting multiple different ecosystems to work with through the use of

code generation techniques such as pretty printing. Evaluating the basic functionality of GridLang

implied the need to use some strategy to constrain the definition of interfaces such that they could

transfer between targets. As formulating a new set of programming language features was explored,

it became apparent that it was difficult to imagine which features would be most desirable and how

to prioritise them. This presents little issue in defining a small toy language to experiment with,

however, developing new languages that are impactful and have the potential for real-world use

is a significant undertaking and requires considerable investment. This suggests a clear benefit to

understanding the nuanced nature of selecting programming language features and characteristics

and goes on to motivate this thesis.

Digital lutherie where there is so much nuanced stuff to study and limited time and resources,

there needs to be other effective tools. Qualitative methods offer a far broader invertigative tool

55

Figure 3.15: An interface on the Roli block defined using GridLang, showing three buttons and
three sliders that can be interacted with. The code for this layout is shown and discussed in Sec-
tion 3.4.4

.

capable of exploring multiple areas and angles at the same time that potentially offers a much more

holistic picture capable of capturing a complex world. Having been introduced to the inductive ap-

proach of grounded theory, this appeared an effective research tool to contextualise more targeted

exploration of our understanding of programming language use. As a study was designed, through

examination of suitable qualitative methods, thematic analysis stood out as a more accessible tool

for qualitative research. Through the design and implementation of this study, many methodolog-

ical considerations and implications for this area of research were found and as such, in a later

chapter this thesis also explores and makes recommendations for methodological approaches for

this kind of research.

3.4.6 Summary

In summary, this chapter presents a series of ideas that explore programming language design

as it relates to expressing musical ideas. Though this section is primarily provided to motivate

the need to inform design through the inclusion of digital luthiers, this work is highlighted as it

provides examples that are later somewhat supported and highlighted by the findings of the user

study presented in the following chapters. These contributions include the following ideas, which

are introduced here and stand as a basis for future work. Through the work on tuning systems,

this chapter demonstrates the importance of programming constructs and abstractions that fit the

paradigm of music programming. In Particular, Section 3.1 demonstrates the application of the

functional paradigms ergonomics around list abstractions and the value this offers for working with

tuning systems. In Section 3.2, this is further emphasised in the use of rhythmic sequences. These

sections demonstrate the use of language features such as list or set comprehensions, catamor-

phisms and function composition through combinators as expressive tools for music programming.

56

In Sections 3.2 and 3.4, the use of DSLs is presented to programmatically specify static components

of instruments that can then be used for performance. This includes the dynamic interface of a

programmable surface controller but also the physical components of a ring-based step sequencer

where the components are modelled programmatically and printed on a 3D printer. This work

presents these ideas as an initial exploration and base for the idea. Importantly, this concept ties

into the strategy of using an intermediate representation in the form of a programming language

and typically a data model, such as an abstract syntax tree. This strategy is used throughout

this section and provides an implementation-specific starting point for future work that may look

to build upon this in relation to the design guidelines presented in Chapter 7. Throughout this

chapter, the influence of functional programming is clear, and ideas from the functional program-

ming paradigm appear to fit musical systems well. While the implications and potential of this are

more specifically explored later in the thesis in the form of programming paradigms, this chapter

and the projects it documents demonstrate some ideas and examples of functional programming

concepts in digital lutherie. In addition to those already mentioned, these include strong typing

and imply the use of dependent types as a system of constraint. It is important to add that the

ideas presented here remain exploratory and primitive as a full realisation of such ideas would be

a considerable task and, therefore, require a full understanding of their role and value to digital

luthiers before they are pursued more fully.

57

Chapter 4

Study Methodology

This chapter introduces the methodolgy used for the study culminating in the publication ‘Studying

How Digital Luthiers Choose Their Tools’. 1

This study explores the perspectives of digital luthiers with a range of different motivations

using reflexive thematic analysis as introduced by Braun and Clarke (Braun and Clarke 2006). In

order to best demonstrate rigour in our approach (Cockburn, Gutwin, and Dix 2018; L. Haven and

Van Grootel 2019) and to encourage further development of this work, we refer to a prepublication

of our study, presented ahead of undertaking analysis (Renney et al. 2021). Essential information

is summarised below. Further details can be found in the related prepublication.

This methodology somewhat contrasts the approach typical of similar research based on grounded

theory (Braun and Clarke 2019), omitting the need for peer-validated coding for example. In this

study, two primary coders Familiarised themselves with and inductively coded the transcripts.

Throughout the process, the research team met regularly to discuss and iterate around the anal-

ysis process (described below). This approach aimed to draw on the knowledge and experience

of the research team to examine and generate themes (Braun and Clarke 2020), utilizing reflexive

practice (Alvesson, Hardy, and Harley 2008).

Based on Braun and Clarke’s process for reflexive thematic analysis, the approach followed

these steps:

1. Data familiarization period for reviewers

2. Data coding

3. Generation of themes

4. Discussion between researchers on themes, reflection and development

5. (Iteration around steps 2-4)

6. Refining and naming themes and development of themes

7. Writing paper; discussion of themes

In line with Braun and Clarke’s (Braun and Clarke 2019) description of reflexive thematic

analysis, we recognise that as researchers we play a role in the generation of qualitative information

(Gough and Madill 2012). Initial codes were generated by N. Renney along with Gaster who

assisted in a first phase of code generation, creating around five percent of the codes. The research

team primarily contributed to coding in providing iterative discussion, exploring and evolving the

codes, and ultimately in forming and discussing the themes. This work was heavily driven and

1https://github.com/muses-dmi/dmi-design-study

58

https://github.com/muses-dmi/dmi-design-study

Figure 4.1: The Blade Axe, Electronic Khipu , The Ladies Glove, OTTO, Reactable, EMG
based instrument

lead by N. Renney but drew on the experience and ideas of the whole team in interpreting and

contextualising the themes. Researcher backgrounds and more information to contextualise our

stance can be found in the prepublication (Renney et al. 2021). Ethical approval for this study

was granted by the authors’ Faculty Research Ethics Committee. Participants provided written

consent for the information provided to be used in this work and provided in a raw format for

future works. Prior to the publication of the data, participants were offered the opportunity to

make amendments or redact any part of their transcripts.

4.1 Motivations

This work is motivated to explore the relationship between tools and the designers of high-

performance devices for human-computer interaction. Digital lutherie represents a well-developed

example of such a community, typically centred around the NIME conference (Marquez-Borbon

and Stapleton 2015). In particular, we seek to explore how digital luthiers choose the tools that

facilitate the digital components of their craft, with a primary interest in how the interactions

of programming instruments occur. We recognise that digital lutherie has become a rich oppor-

tunity for the development of new programming languages (McPherson and Tahıroğlu 2020). In

particular, domain-specific languages (Hudak 1997) such as those that underpin the live-coding

community (Collins et al. 2003). However, this area of research is missing an extensive analysis of

how people come to settle on the programming languages (and other tools) that allow them to build

complex systems. We provide further context to our motivations in our prepublication (Renney

et al. 2021).

4.2 Participants

Participants were directly invited according to a purposeful sampling strategy based on their

contributions to a range of novel digital musical instruments or association with an organisation

that produces novel DMIs. Participants were approached online and invited to participate or

recommend a suitable participant. A subset of these instruments are listed in Section 4.3, and a

selection is illustrated in Figures 4.1 4.2 and 4.3.

Categories of Commercial, Research, Community and Artist backgrounds were defined as a

basis to select participants. Commercial and Research categories describe instruments for either

59

Figure 4.2: Gechologic Loopsynth, Push, Polaron, Orba, The D-Box, Linnstrument, Mutable
Instruments Beads, Bastl Kastle Drum

commercial production or coupled to a research process, respectively. Community instruments

broadly encompass open source projects, small teams or individuals, independently making instru-

ments in low volumes. The Artist category represents instrument designers who build instruments

to support their artistic endeavours. Of course, there is significant overlap between these defini-

tions; however, drawing evenly from these groups helped to vary the sample of the community.

Purposeful sampling was also selected to more deliberately distribute perspectives across gen-

ders in search of a more gender diverse representation (Morreale et al. 2020; Xambó 2018;

Mathew, Grossman, and Andreopoulou 2016). We acknowledge a lack of cultural diversity in

this study, another important facet of diverse study populations that should be accounted for in

future work (Williams 2014). These factors could be improved with a broader call in conjunction

with the selection process used here, such that selection is not limited to the networking capacity

of the researchers.

For this study, 27 participants were interviewed. A demographic of the population is provided

in Table 4.1, and a selection of the participant’s self-described roles can be seen in Section 4.2.1.

Further, information gathered on the participants includes the programming languages and the

tools they use and a rudimentary metric of experience in the form of years spent in the field and

the number of instruments they have designed. We emphasise that this is a metric of limited

insight that can poorly characterise the experience. However, attention was given to incorporating

a range of experience levels when sampling participants in the selection process. For further details

on the data set (including the published dataset), see the prepublication (Renney et al. 2021) (also

included in Appendix B and refer to Appendix A to view participant data within this thesis.

Appendix A includes tables displaying correlated participant information and a labelled diagram

of the instruments presented which may be useful when reading through the thematic analysis in

later chapters.

60

Gender Ethnicity Age
Male 14 White 21 18 - 24 1
Female 8 Asian 1 25 - 34 12
Non Binary 1 Latinx 1 35 - 44 6
Prefer not to say 4 Brazilian 1 45 - 54 2

Prefer not to say 3 55 - 64 4
Prefer not to say 2

Table 4.1: Participant demographics (N = 27)

4.2.1 Participant Roles

• Music Technology Researcher and

Professor.

• Digital Artist/Performer/Composer

• Artist

• Software Engineer

• Software Engineering Manager

• CEO

• Composer

• Founder

• Researcher and Lecturer

• Assistant Professor of Music Technology

• Composer & Instrument Builder

• Audio Developer

• Researcher, Designer, Performer

• Software Developer

• Professor

• Electronic musician

• DSP Engineer

• Professor of Media Computing

• Hardware and Software Engineer

• Lead Designer

• Composer and Interactive

Hardware Developer

• Creative Director

4.3 Instruments

The instruments created by this group of designers represent a range of novel devices with a signif-

icant digital component. The sampling strategy aimed to incorporate many modes of interaction

and motivations for instrument development. Instruments include open source and proprietary

instruments, with some instruments representing a hybrid of the two (for example, open-source

software only). Instruments also vary from bespoke instruments designed for a limited project to

instruments intended for commercial mass-market production. This is often reflected in the de-

signer’s role; however, it is notable that many designers themselves work on multiple instruments

that have very different use cases, decoupling the role of any one instrument and the designer.

The instruments included in this study are intended to generally represent the work of the digital

luthier and may include instruments that were developed with others or individually. It should be

noted that the interviews were conducted around the holistic experience of the participants and not

focused on the design of single instruments for the most part. The instruments listed are shared

to help to represent the motivations and context in which the participants operate and therefore

the kind of perspectives they may share.

Participant Designed Instruments

61

Figure 4.3: Knurl, Soft Revolvers, Concertronica, The Däıs, Claravox, Alpha Sphere, Roli
Seaboard

1. Soft Revolvers

2. Alpha Sphere

3. Knurl

4. Artiphon Orba

5. Reactable

6. The Blade Axe

7. Mutable Instruments Beads

8. Claravox

9. Polaron

10. The Ladies Glove

11. Linnstrument

12. Concertronica

13. Abelton Push

14. Roli Seaboard Grand

15. OTTO

16. Electronic Khipu

17. The Däıs

18. EMG instruments

19. Gechologic

Loopsynth

20. Bastl Kastle Drum

21. The D-Box

4.4 Interviews and Analysis

Following an internal pilot study with peers with DMI design experience, standardised open-ended

interviews were conducted with 22 participants engaging with an interviewer via video call and

five via email. Interviews had a duration of 20 - 60 minutes at the discretion of the participant.

Interviews took place between 25th January 2021 and 1st April 2021. Participants were provided

with a copy of the questions to use as a reference during the interview. The lead author carried

out all interviews.

Interviews were recorded (audio only) and transcribed verbatim, then processed to ensure

appropriate confidentiality and IP protection. In the case of email interviews, emails were formatted

62

to match transcripts.

Due to the overall scope and the open-ended nature of this study, it was clear whilst forming

the themes for this work that in order to inductively construct a shared narrative of participants,

the themes first needed to be focused around a more broad research question, before potentially

being focused onto other questions later on. Motivated to explore the explicit semantics presented

by participants it became apparent that the initial theme generation should focus on the designer-

tool relationship and how digital luthiers select tools in a broader sense, creating a formative base

to build from. This allowed for a second analysis to draw on coding in related areas that could

build upon prior themes, further exploring programming languages more specifically. As a result

Chapter 5 explores the initial analysis which is followed by a secondary analysis in Chapter 6 which

narrows the research scope toward programming languages.

It is notable to suggest that following the second analysis there are still groupings from the

coding that can be further explored in other contexts as they were largely not incorporated into

themes in this work and these will likely be explored in a future publication focused on the design

philosophies of digital luthiers.

63

Chapter 5

How do Digital Luthiers Choose

Their Tools?

From the 27 participants interviewed, three themes were generated that provided narratives to per-

spectives of the digital luthiers that address the research questions of this study. To contextualise

quotes, we reference the participant ID found in the transcripts (e.g P7 for participant 7). Where

relevant, we will mention data provided by the participant that is accessible as metadata in the

transcripts or within the data repository1. For more details on the published data and metadata,

see the prepublication. Excerpts from transcripts may be edited from the verbatim transcripts

for ease of reading (whilst maintaining meaning), with square brackets indicating notable edited

words.

5.1 Theme 1: ‘The Pragmatist’

‘The Pragmatist’, captures the prevalent tool selection approach conveyed by many participants.

Participants tended to see themselves as having pragmatic motivations for tool selection, such as

choosing the tool or programming language best supported on their target platform. In contrast,

the pragmatic choice for others is using a language in which they are proficient, which may be less

suitable for the platform but saves time overall. This theme portrays the shared experience that

designers tend toward making decisions with a cost-benefit analysis based on their own experience

and the technology they interact with.

The theme takes its title from P1, who referred to being pragmatic throughout the interview:

“So I would say I’m very pragmatic with that. If the question is why, I mean, it depends

[on] so many things, on what’s available and what you can do.” (P1)

P23 also shares this terminology, describing their pragmatic decision-making process.

“No, I think, my choice of language at that moment, I must say, it’s very pragmatic.

And it’s, it perhaps isn’t for the elegance of the coding act, but for interoperability,

platform independence. And so there’s a natural tendency to go towards just tried and

true languages like C or C++. It’s been very interesting to see how a slightly higher

level language like Python has really evolved in the past few years to become a kind of

standard for signal processing.” (P23)

P1 and P23 both use the term ‘pragmatic’ to identify their motivations but focus on different

technical requirements demonstrating that each project requires the weighing of specific charac-

teristics rather than a common path of least resistance for all instruments. For example, P23, a

1https://github.com/muses-dmi/dmi-design-study

64

researcher, notes that platform independence is valued in their tools. P1 is also a professor but

notes that due to the time in which they worked on their instruments, the primary consideration

was what technology was available and could meet the required goal at all. In their interview, P1

goes on to suggest that there is much more choice for tools now. P15 builds on this, also referencing

interoperability, this time in the context of the now rich existing ecosystem of technologies that

already exist. When asked why they chose their tools, p15 mentions:

“But also because of how it integrates with other tools like Max, for instance, because

you can write your own externals in C or C++, like, audio plugin API’s and so on.

Right. So this would be the main reason why I, or people I work with continue using

C++, I believe.” (P15)

Aside from performance reasons, P15 suggests that C and C++ are pervasive in digital musical

technology in large part due to interoperability. They also provide more personal insight, suggesting

that fluency is highly valued.

“The other one would be Python. Because first of all, I think this is still the most

relevant reason, I am fluent in it.” (P15)

This suggests two sides to the pragmatic designer. One that accounts for technical requirements

of the system they are working with, such as those introduced by P1 and P23, and one that considers

the individual capabilities of the designer (or designers), such as existing skills and knowledge. We

look at these as the ideas of technical and individual pragmatism, respectively, representing two

sides to the pragmatic designer described in this theme. Participant 15 emphasises the point that

this fluency is a powerful motivation in choosing a tool that speaks to the capacity of being able

to express ideas using the tools available efficiently, a principle that resonates with many other

participants:

“. . . the properties of the language lead you to be able to be expressive and create an

instrument of different expressivity more directly and so I think the choices are deeply

related.” (P19)

“I think I’ve talked about my main goals in digital musical instrument design are to be

immediately expressive and is the reason i choose to make digital musical instruments

as opposed to analogue.” (P26)

“As I said, a language or something for C++ or something that is [performant], but

still plug and play and very expressive for audio would be would be great.” (P17)

“. . . not much profound to say here, it is kind of familiarity causes productivity.” (P16)

Across a number of participants, expressivity resonates as a strong motivation for their tool

choice. P16 phrases this as a capacity to be more productive, whilst P19 emphasises that this

capacity leads to a deeper intimacy with the instrument that is produced, even implying that the

expressive power of these tools can directly impact the instrument’s expressivity.

We see these two sides of pragmatic decision making weighed up by P26, who considers the

investment learning a new system takes against the potential returns.

“. . . but they call them programming languages for a reason and learning each new

language or each new interface takes more time and so if the i guess the main thing

is if the promise of the efficiency of the new device or platform is worth the time and

energy it takes to learn it. . . ” (P26)

65

Many participants couple their expressivity with efficiency, ultimately suggesting that they

benefit from better productivity when familiar with their tools. This implies an apprehension to

use tools that feel less familiar due to potential loss of productivity. We see P16 grapple with this

when working with the programming language Faust, which offered value; however, due to less

familiarity, it ultimately lost productivity when working with the predominantly C++ codebase

of their instrument OTTO.

“But like I mentioned Faust, like, yes, it would be it’s great to prototype. prototype.

But at the end of the day, when I then have to translate that to C++, and it’s not just

it can’t be, it can never be a one to one translation, having to redo a bunch of things,

makes it so that I don’t really end up saving any time compared to just making it in

C++ from the beginning.” (P16)

Participants tendency to make pragmatic choices appears to be primarily driven by one major

perceived constraint on their design process. Whether the limitation is a deadline for a commercial

release or is the desire to be rewarded by a sense of rapid expressivity as described above, partici-

pants across backgrounds appear to make practical choices that improve their efficiency. Therefore,

a significant component driving pragmatic decision-making is the limitations of time.

“But ultimately, the biggest challenge of making an instrument is, is time. Everything

else follows after that, like building something good enough that someone else wants to

play it again is a function of time.” (P16)

“Another important point in the approach to a new project is the time. This is the

first time I’m working without deadlines.

In the past I’m just working by the deadline. ” (P21)

“. . . and therefore, in the biggest challenge is usually time you have a lot of ideas, but

then when you need to, make both mechanics and electronics and software, all that

stuff takes a long time. . . ” (P22)

Interestingly, this core constraint is shared across the backgrounds of participants. It therefore

becomes a pragmatic choice to employ tools that offer efficiency in use. Participants such as P16

demonstrate the relationship between the individual pragmatism of utilising their skills and time.

They present a view on how the maturity of documentation and learning resources can actively be

a barrier to tool selection:

“. . . if Faust was as developed as it is now when I started doing my PhD, I probably

would have like, played around more with domain specific languages .”(P16)

Expertise is a limitation relating to time mentioned by many participants in that it takes

considerable time to learn new skills relevant to DMI design. Accessible and well-documented

technology provides a well-represented solution for this to the participants in the study:

“I use Bela and Arduino because they are very well documented” (P18)

“[On documentation] Yeah, yeah. It has to be also very elementary, like, really basic

level so that, because even when you understand stuff, oh, what’s a sample rate. All

right. I know that in another context that you are in a flow or, you know, it’s it can

be a bit too much sometimes.” (P27)

“Beyond that, well-typed and well-documented APIs are really important. That’s one

reason I love Rust, it has great documentation tooling and a culture of aggressive

documentation. . . ” (P20)

66

In summary, ‘The Pragmatist’ provides a narrative shared across backgrounds in which the

participants pick their tools according to a cost-benefit analysis of what practically impacts the

project. We describe two distinct sides to this: one that prioritises technical choices, typical in

more commercial settings, and one that prioritises the individual’s practical limitations. For all

backgrounds, we see that both sides are factored in and considered, and the exact criteria for the

pragmatic choice are motivated to address the perceived constraints. This theme indicates there

is a clear appreciation that participants choose tools to support these practical considerations and

address the predominant constraint of time.

5.2 Theme 2: ‘A Product of our Environment’

This theme examines how environments such as schools, communities or industry practices in-

fluence designers’ tool choices. Irrespective of background, participants were very aware of their

environment’s influence on their choices, and many attributed their educational institution to be

a significant factor in the tools they use, particularly in the context of their education.

“I’ve learned C and C++ at the university around the year 1996 and thankfully it’s

still the most widely used language in embedded systems.” (P24, Hardware & Software

Engineer)

I’m finishing a second master program in Electronic Arts and we must learn about all

these tools, so this is the handiest world I have right now. And of course, this is a

discussion and influence in how I form my work (P21, Artist)

For P11, the influence of their educational institution leads to their early adoption of the

programming language Faust. Whilst two other participants also mention Faust, P11 is the only

one that mentioned Faust being taught at their educational institution. Faust is a language based

on the functional programming paradigm and a domain-specific language for audio processing.

The functional paradigm is a departure from many more common languages digital luthiers use,

which are more general-purpose, imperative languages. Whilst this does not suggest much about

the suitability of these paradigms, the use of a tool that contrasts the tools others use helps to

make the influence of education quite distinct.

“So I think I started using Faust for geographical reasons. Because I did my undergrad

in France, at the birthplace where Faust was created.” (P11)

P16 and P17 both mention using Faust. However, neither adopted it long term, despite speaking

highly of it. Ultimately, P11 developed into a role as a language developer for Faust. As such, the

environmental pressures for using that tool have led to them using it extensively.

A reluctance to change their tools from the ones they learned initially seems common. Having

been introduced to tools through education, P26 found little motivation to change the tools as the

current tools serve their needs, though they do allude to the curiosity of other technologies. We see

across these participants an exploration of affordances and constraints similar to those described

by Magnusson (Magnusson 2006), largely presented in this context by the environment.

“. . . I haven’t used Bela because the tools that I learned, particularly when I was an

undergrad just continue to work for me, but I am curious about other platforms. . . ”

(P26)

Much like educational communities, the open-source community represents a highly influential

environment that impacts participants. We see that open source tools represent an ideology with

which participants identify. Both P11 and P27 share their preferences for open source tools.

67

“. . . And it’s just like something that needs to be 3d printed, for example, then I will

use [it] and, I am an open source person, you know, like so. So I prefer to to use open

source tools. . . . ” (P11)

“I choose because it’s open source mostly. It’s also what’s my education has given to

me in the conservatoire.” (P27)

We see that the open-source community’s influence and surrounding ideology plays into the

environmental influence to which the individual is exposed. P27 is very aware of how their par-

ticular environment influences their tool choice. They observe that their environment is made up

of various influences, implying that it can be challenging to move from the initial tool introduced

through education, even balanced against an ideology to use open source tools.

“Relating to hardware, you may [say] it was a consequence of environments mostly.

I am aware [that] Fusion [360] is not an open source thing, although I said in the

beginning I want to use open source. So it’s more emotionally about my environments

right now as I say. . . ” (P27)

It is clear then that there is a complex interplay between many factors of an individual’s

environment that have a significant hold on the tools participants might use. We see that for

participants such as P26, the ability of open-source culture to facilitate knowledge exchange is

the most important aspect, further blurring the boundaries between educational communities and

open source.

“. . . I think open source culture is really important and I have the career that I do

because of google, like hands down, I wouldn’t know anything that I know if it wasn’t

for the internet... . . . ” (P26)

Participant 3 describes two external influences on tool choice, community and University, re-

spectively. This further demonstrates that the environment is, of course, not a homogenous entity,

but a blend of the environments to which the designer is exposed.

“And also, I went to university in Ohio, and there were classes in Python and in pure

data. So I guess, like, the fact that I was exposed to those things at school, like made

it easy for me to use them in my projects as well...

...And yeah, like the Fab Labs, in Montreal, were sort of my way in. And then like,

from getting into those communities. And also with like, people around me there, were

also interested in like, doing 3d stuff and whatnot. I learned about different software.”

(P3)

Participants often make decisions based on the availability of technology. Particularly in the

case of participants who were working early in the history of DMIs, the idea that ‘it was what was

available’ was a common sentiment, meaning designers used whatever the most suitable, available

tool for the job was at the time.

“However, in the 80s I was using C because that’s the only computer I had. And the

only compiler I had was a floppy of the C language.” (P1)

“In fact, in the early days of my early machines, I used only assembly language. But

then C finally became barely fast enough around for embedded processors around the

1990s. So I would say that, pretty much everybody just uses C, with a lot of optimiza-

tion of loops and things like that.” (P9)

68

However, availability remains relevant in more recent examples too. Notably, P2 qualifies that

they chose the ‘only mature’ language, combining their environmental challenges with those of

pragmatism and a need for reliability that participants refer to in Section 5.1.

“C/C++ was the only mature programming language available on STM32F when I

started developing the Eurorack line” (P2)

Despite the developments and richer ecosystem now available, this suggests that even today, the

range of tools is quite heavily constrained by the technology the designer works with, necessitating

the selection of tools from a suitable range. For P19, this relates to their workflow; beginning

their process by considering the technology available to them, they immediately impose a set of

constraints on the available tools.

“And so I look at the environment in which that instrument has to sit, you know, it’s

got to be able to deal with MIDI, and it’s got to be able to do this, and it’s got to have

and the constructs of like, well, what position does it take in the musicians Arsenal?

Do I have the luxury of building like a two by four box made out of steel, that’s gonna

be the centrepiece or is this, like, you know, something that’s guitar pedal size, I mean,

these things have an influence on your hardware. And then working back your hardware

generally dictates a very limited choice of software environments in which to work in.”

(P19)

The sense of availability described by participants appears to relate to the environment of the

digital luthier rather than to the global availability of technology. But for some participants the

tools and technology available are more than adequate:

“I think the tools available nowadays are very solid and well designed, both from the

users’ and developers’ perspective.” (P18, Professor)

“I don’t feel that anything is seriously lacking among the tools we have. For each task

there are multiple choices / providers so it is easy to replace what is not working.”

(P24, Hardware & Software Engineer)

“I’m just pretty satisfied with what I have. I mean, I could complain for hours with

how are you using it?” (P4, Artist)

” I think it’s the best time so far in the whole world to do this stuff as an individual.”

(P5, Software Engineer (open source))

Artistically, P8 notes that this itself can be distracting. As they discuss setting out with a clear

intention in mind, they see tools tending to cloud artistic intention, causing them to get lost due

to the available options.

“. . . there’s all these new advances endlessly. And technology’s fascinating. So you end

up going down endless streams. . .

. . . I already think all in their nature, all the software tools probably lie on the negative

side of the previous point that was made there. There’s that whole idea of artistic

limitations being a sort of thing that we should embrace.” (P8)

Another substantial environmental influence on tool choice is industry. ‘Industry standard’ is

a prevalent term indicative of the impact industry has on digital luthiers, particularly those with

commercial backgrounds such as P7, P12 and P10. We see that these participants look to industry

practices to support their decisions around tool choice.

69

“It mostly comes down to accessibility, familiarity, and cost. We look for tools that

would be considered the standard for that task, within our specific industry.

. . . Due to the above mentioned options, STM32 has become somewhat of an industry

standard for DMI, further perpetuating itself as the ideal solution due to devs familiarity

with the platform, and the plethora of example projects.” (P7, CEO)

“I’ve continued to use like, different IDE’s, because, like, you know, the industry stan-

dards for the various use cases that we’re looking at. Right.” (P12, CEO & Founder)

“In members of the team who were used to, you know, who are doing aerospace or, or

other even industrial kind of firmware, and so C was a shared language there on the on

the app side. . .

. . . it was honestly just about the personnel, the people in our network or on the team

and their familiarity.(P10, CEO & Founder)”

“C++ has also been the language I used the most previously in my career.” (P2,

Company Owner)

When specific features of technology such as performance is highly valued, there tends to be

a convergence on tools within the industry. This has formed a consistent image of what tools are

appropriate across participants. We suggest this common focus may contribute to a feedback loop

where more adoption leads to more development and support, further entrenching the sense that

a tool is industry standard.

This is suggested by P6, who indicates how only given considerable development can a new tool

become viable when discussing their delayed adoption of the programming language Swift. For

P6, a designer with a commercial background, reliability is critical in the tools used in a software

engineering role at a large instrument company.

“I’ve gravitated towards maintainability. Because whenever you create any type of

product that is software based, you will spend way more time dealing with the life

cycle of the product and with the initial creation spike. So even though I have a natural

affinity to cool stuff, and like emerging languages and new new ideas, I’ve been bitten

quite a bit in my early career by choosing tools that weren’t completely safe, stabilised,

and then having to spend a lot of time dealing with problems that are introduced just

to to evolve in programming languages or programming platforms.” (P6)

Clearly, support for tools also factors into this sense of industry-standard, whether that be from

hardware vendors or the open-source community. This support directly influences the industry

standards:

“Software tools are usually supplied by chip manufacturer, in my case all necessary

compilers and IDE were freely available from STMicroelectronics & Atollic, Espressif,

or as a free open-source software from 3rd party (Eclipse).” (P24)

In summary, we see that participants have unique social and cultural environments in which

they work. Some of the clear examples of these include education, open-source communities and

industry. The environment presents a set of pressures that have a significant influence on tool

selection and we suggest that these environments also act as a buffer that preserves an intuition

of the affordances and constraints of a tool, giving rise to notions such as industry standard.

70

5.3 Theme 3: ‘Intentions’

Inevitably, there are unique pressures on tool selection related to the intention of the digital

instrument being designed. This theme, titled ‘Intentions’, reflects how each designer also makes

special considerations in tool choice related to the purpose for which the instrument is being

designed. Here we see the stories of designers converge on the requirements dictated by how they

intend to use the instrument they are creating. In this theme, we see that some of the ideas

presented are outside the design problem space and focus on more peripheral issues with creating

digital instruments.

P12 describes their goal to have a ”mastery of production”, explaining how tool choice ex-

tends beyond the design space and facilitates more typical manufacturing and collaborative design

processes through communication.

“And I want to do is like to have mastery of like, production, right, like, but production,

I mean, like mass production. So, some of the tools are even like that communication

with the people that run the factories . . . I consider that as part of the, that’s part of

the instrument, that you’re ultimately putting into people’s hands.” (P12)

We see others from commercial backgrounds build on this using a large variety of tools to

coordinate and collaborate even in remote settings, emphasising the importance of selecting tools

that facilitate their specific requirements for long-distance collaboration that operate in real time.

“we are pretty much always on video, and in collaborative documents as we’re doing

the design. So it is a very real time design and development process for the team.

Compared to just handing over documents, you know, as explicit files, these are usually

collaborative real time documents. I think it makes a big difference.” (P10)

“These challenges together comprise the project management aspect of designing some-

thing. Tools vary, but it is important to use some sort of task management sys-

tem(Trello, Asana, etc.) and a calendar.” (P7)

In team settings, to meet an instrument’s goals, additional communication and collaboration

tools supplement more specialised design tools to enable operation that allows more people to work

together more quickly.

Typically, for individual digital luthiers, their role tends to be less clearly defined. As an artist,

P4 describes the challenge of managing the time spent between designing and working on the

instrument and performing with the instrument. This is particularly relevant to those designers

who are both performers and inventors of the instrument, an attribute that is common in the

digital lutherie community (Jordà 2004b).

“So it’s really hard because you have to really focus on what you want to do. You

know, I cannot, you know, I have to really be very careful. Do I spend more time in

design and writing software? Or do I spend more time in actually applications of the

software for performance?” (P4)

In particular, we see that the boundaries between the design tools they choose and the instru-

ment itself are often blurred. For artists, tools are often part of the process, as P3 notes, where

the idiosyncrasies of tools can help to guide the design.

“So and I like that process of going through the difficulties of and also like, each

platform has his idiosyncrasies that direct a bit, how are you going to use it, and I like

that aspect of like, working with the code or working with a programming platform,

and then like, it co constitutes to kind of work that you’re going to be doing on those

platforms.” (P3)

71

This relationship can make it challenging to provide a taxonomy of roles for the tool de-

signer, instrument designer and performer. However, it does imply interesting considerations of

meta-design in this relationship whereby design choices are deferred between roles, allowing more

multidisciplinary roles as discussed in the context of Armitage and McPherson’s work (Armitage

and McPherson 2018). This is well exemplified in the context of P23’s research and instrument

design, who works to expose low-level features at a high level, such as ”signal processing, feature

extraction, [and] some machine learning”.

“...we’re working with people who create tools, and we try to design those tools so that

they’re available to the musician in the high level environments.” (P23)

In particular, we see those with artistic motivations to be leveraging this deferred capacity for

design the most, utilising visual patching languages that act like musical ecosystems (McPherson

and Tahıroğlu 2020) and also machine learning such as in the work of P3. These tools allow the

performer to take charge of design elements of the instrument, blurring the capacity of where the

tools stop and the instrument begins.

“I think that the neural net thing is, is a great improvement for me, I can feel. I feel

like I react to what is there.” (P3)

P11’s research work directly involves the design of tools for creating DMI, in their case, working

on the audio digital signal processing language Faust. This supports the image of the multifaceted

roles digital luthiers have, and P11’s deep adoption of the tool they work on demonstrates how

many digital luthiers develop a deep understanding of their tools and the musical intentions of

their work, but also how other designers might work.

“But like, mostly I write things and Faust because, it’s quicker for me to write them

in Faust than in C++” (P11)

We see many other participants reflect this component of tool design and instrument design

as they work on their software libraries. For many, the intent of their work becomes not only

producing instruments for performance but also as a means of developing and sharing tools. This

likely relates to the way participants identified regarding open-source culture.

“So I have this, this library that I use, which is actually my own prototyping library

that I made in C++. And [...] gives you like, real time audio, in one line of code pretty

much, and then a super simple UI library, so that I can quickly prototype my audio

algorithms.” (P22)

While for some artists or researchers, the instrument they designed served a singular or personal

role, the broader adoption of an instrument was the intention for many instrument designers.

Participants describe this as a significant challenge for digital instrument designers.

“The reception by the public of anything that is not directly

recognizable as a Moog/Buchla adaptation. The weight of the tradition,

and ‘groupthink’ embedded in clichés and concepts such as ’menu

diving’, ‘digital coldness’, ‘presets’.” (P2)

As such, participants emphasize incorporating user feedback into the design process.

“Third step is to make an early demo, share it around, and get feedback from potential

users, which often makes us to rethink it - add or remove a thing or two. They often ask

questions that show us what is exciting, what nobody cares about and what is missing

- at this stage there us usually enough time to improve and fix most of these things.”

(P24)

72

P15 describes how this requirement factors into tool choice and describes how a means for easily

exporting their work into a common and widely supported format would be desirable in their tools.

“Could be like, I don’t know, like, maybe even something that quickly enables me to

export my prototypes to like a plugin in a known format is already useful, right? So

because also, for me, it’s like, then it can be distributed to many users quickly for

testing with users. Getting frequent user feedback is super important to me.” (P15)

This is motivated by a desire to be able to ”drop the idea when it’s not good early”. This user-

focused design is an important motivation recognised by many participants who intend to create

an instrument to be used and adopted more widely. In order to get feedback on their open-source

development, P17 has leveraged social media platforms as a tool to help with both feedback and

the future adoption of their project.

“That that the the open source has been a joy. Yeah, for sure. Yeah, yeah. It’s also

the like, we’ve been mentioned a bunch of times on Reddit, like on the synthesisers

subreddits and stuff and which has gotten us some attention.” (P17)

For a researcher such as P16, instrument design can be a process for explorations in the in-

struments’ craft. They describe their tools as facilitating different capacities to explore the design

space from a more abstract perspective.

” What does that mean in a, in a digital lutherie context. So you know, you need, you

really need tools that can access that level of resolution that you’re interested in. So

and the majority of research and platforms have all been at a higher level, at a lower

level of fidelity than that, until recently, I would say in the main, you know, Arduino,

and Teensy, and whatever they are low resolution platforms, but they’re cheap and

quick and dirty, and they allow you to explore like, the breadth of the design space as

opposed to the depth of the design space” (P16)

As a researcher, participant 23 also reflects on an intention for their work that relates to

the digital component of their work. As with other digital technologies, digital instruments are

susceptible to so-called bit rot (Król and Zdonek 2019). P23 recognises that to achieve their goals,

their work should be reproducible ”in another era by other people.” This provides an essential

motivation for tool choice that relates to making pragmatic decisions for interoperability described

in Section 5.1.

“...that’s why the tools. [...] Why is that? That they’re nice, I can describe the kind of

interoperability over time, in that I have to perform a concert programme, sometimes

with works that are over a decade old, alongside a piece that I’ve just written the other

day, and they and they have to load up and don’t have accounts to work with more

than one system.” (P23)

This theme describes the participants’ unique tool choice requirements that serve the long term

goals of the instrument they are designing. For commercial development, extra attention is given

to more generally used tools that aid the realisation of ‘products’ capable of production at scale.

These strategies are also employed to a lesser extent in their group work scenarios, where the

skills of a team can be effectively employed and integrated through the use of tools that support

collaboration. Other goals such as exploration of instruments in research and realisation of artistic

intentions can lead to influences on tool choice that runs counter to productive outcomes, where

limitations can become part of the workflow. Motivations for the instrument a participant is

working on range from the development of digital lutherie tools themselves to many other forms

of music-making (Small 1998). These narratives represent motivations for tool choice that track

directly with the motivation for creating the instrument.

73

5.4 Discussion

Through an iterative and reflexive approach, we took transcripts from 27 interviews and provide a

discussion and interpretation of the perspectives shared by the participants. Working inductively,

we found many compelling observations that generalised from different participant backgrounds.

We focused on the perspectives shared across participants with different motivations for design,

aiming to address our research questions.

In summary, we see in Section 5.1 ‘The Pragmatist’, a narrative is described whereby designers

make their decisions based on analysis and their experience with a problem space (Goel and

Pirolli 1992), selecting tools with attributes that solve the most significant challenges to them.

These challenges are often problem-specific, so the value of attributes such as performance or

maintainability is skewed according to the designer’s requirements. For example, we see that those

in commercial settings place explicit value on tools that support easily maintainable products,

particularly when discussing code. Alternatively, those with limited technical expertise, such as

an artist exploring instrument design, may prioritise well-documented tools as this facilitates an

accessible form of support to help them achieve their goals. Across the study, we see that these

pragmatic choices hinge around some of the following points:

• Performance

• Interoperability

• Ease of use

• Accessibility

• Availability

• Familiarity/efficiency of use

We also present the theme ‘A Product of our Environment’, where we interpret that external

cultural, societal and institutional influences all impact on a designer’s choice of tool. We see how

notions such as ‘industry standard’ impact tool choice for those managing a team in an industry set-

ting, but also in other contexts. There are examples where industry standards influence the choice

of programming language at educational establishments, and ultimately, this popularity influences

the available support from a mature community. We also see how open source as a community and

shared ideology (although complex and open to interpretation) provide an environmental influence

that is drawn on and used across design motivations. All of these environmental factors provide a

push and pull influence that substantially impacts the tools used by the participants in this study.

Ultimately, it is apparent that the tools provided by a university or endorsed by a community tend

to affect tool selection significantly, and we suggest that this may be the overruling factor.

Our final theme, ‘Intention’ accounts for the salient challenges presented in the domain of

digital musical instrument design. Despite the focus on addressing technical challenges through

pragmatic tool choice, very few suggested these domain-specific problems constituted the most

relevant challenge in DMI design. While considering the latent meaning of some interviews suggests

there are prevalent challenges and demands of DMI design related to the interaction of controlling

the instrument, we focus on the more explicit semantics presented in this study. This suggests that

the most significant challenges digital luthiers face are related to how the instrument is intended to

be used. This can motivate tool selection in a project-specific capacity. For those working in teams,

tools may needed to either support collaborative features or be supplemented by other tools that

do. For those looking for widespread adoption of their instrument, tools that allow for integrated

user testing become critical, and intentions for artistic output can require tools that can facilitate

74

the reproducibility of technology in the distant future. For many, the capacity for some component

of the instrument’s design to be deferred to the user are also desirable. ‘Intention’ describes the

pressures on tool selection that are unique to each project and driven by the motivations of the

digital luthier to build an instrument.

5.4.1 Why and how do Instrument designers pick their tools?

Our themes show that across different contexts, the motivation for tool selection can be described

with three shared narratives. Much like Stolterman and Pierce (2012), our study finds that a

primary factor reported for tool selection is a rationalised selection process. They describe this

as following a model “in which one selects an appropriate tool based on a clear understanding of

the design situation, the desired outcome of the situation, the types of activity needed to reach that

outcome, and the types of tools that can satisfy the desired outcomes of the situation.”

Our narrative around pragmatism very much corroborates this finding, where terms such as

interoperability, performance, accessibility and efficiency highlight the rationalised decisions made

by the designer concerning their problem. In addition to this, we find a second narrative comparable

to Stolterman and Pierces findings. Stolterman and Pierce discuss environmental factors in a

more specific capacity, considering community, culture and branding in relation to the designer’s

identity. Our interpretation frames the environment as external influences that incorporate the

cultural and personal identity, but also includes more overt external influences. A strong example

found in this study is the impact that educational institutions have on tool choice. Whether due to

simple availability or increased accessibility due to pedagogical support, educational institutions’

presentation of tools accounted for the initial use of tools and continued use of the tool in many

cases. We see some scenarios where the tool is not expressive enough and is therefore outgrown (for

example, using graphical programming environments for programming). However, the consensus

demonstrated by participants is that designers tend to stick with a tool offered up by environmental

factors as long as it meets their pragmatic requirements.

Together we see these pressures form a set of both affordances and constraints, a concept well

established in HCI literature, based on work by Gibson (Gibson 2014) but reformed for use in

design by Norman (Chong and Proctor 2020). Whilst in HCI, this term has mostly been used to

explore the affordances objects offer to users; considering affordances as it evolved from ecological

psychology, we see that the theory of affordances has been discussed in the context of proper-

ties and environments before. Chemoro’s definition of affordances demonstrates the relationship

between the features offered by the environment and a person (Chemero 2003). In light of our

themes, we suggest that affordances are a valid way to analyse the tool choice of participants.

The work of Magnusson has extended this potential and examined DMI design in the context of

its limitations (Magnusson 2010a), which was a more prevalent topic in our study. Magnusson

suggests that whilst learning a new DMI, people explore affordances. However, the majority of

the time, learning the instrument ”involves building a habituated mental model of its constraints.”

We suggest that whilst most digital luthiers in this study were likely experienced beyond the stage

of initially exploring their tools affordances, the constraints of tools are preserved and shared by

communities in the form of tacit knowledge. As such, we suggest that how digital luthiers (de-

signers of DMIs) select their tools can also be considered in a similar capacity to how performers

select their instruments.

A digital luthier may explore the affordances and constraints of their tools, evaluating them

in order to meet the practical criteria that the instrument requires. Where the tool is widely

understood to have a set of affordances or constraints, the community preserves and shares this

knowledge, influencing tool choice for other digital luthiers in turn. For example, the idea that C++

is good for performance. It is not new to see this kind of application of the affordances moved to a

75

different level of the design process as DeNora examines it in the case of music sociology, considering

what is afforded to the listener (DeNora and Adorno 2003). We see that both affordances and

constraints should also be relevant for considering the designer-tool relationship of digital luthiers.

Stolterman and Pierce interpret designers’ tool choices using the concepts of espoused theory

and theory in use (Beck and Stolterman 2016). The manner in which we see environmental factors

‘complicating’ designers’ espoused theory of ‘pragmatism’ may add support to this interpretation.

The self-reporting nature of this study allows participants to inaccurately reflect their motivations,

offering the potential for developing espoused theories of the designer-tool relationship, that do

not fully reflect the reality of why they choose them. This study does indicate that digital luthiers

do reflect on their tool choices and, due to their relation to projects they currently work on, do

describe scenarios that suggest theory in use:

“And because I’m working in an embedded environment for my instruments, it’s their

C/C++. Not because I really like them or not, not even that I’m really strong at them.

But I think it’s just more or less the only way I can get the results that I want.” (P5)

Our observations show that digital luthiers tend to be particularly aware of the environmental

influences that affect their tool selection, implying less disparity between their espoused theory

and theory-in-use. We see an example of this when P27 reflects that they currently use a tool that

goes against their ideology of using only open-source software (as discussed in Section 5.2). This

self-awareness and reflection only complicates the relationship between designer and tool and is

essential to consider in future work.

5.4.2 What distinct problem spaces do instrument designers consider to

be involved in instrument design?

In answer to this research question, we have focused on the challenges faced by participants and

how they related to their tool choices, a first step in building a model of the problem spaces that

digital luthiers face (Goel and Pirolli 1992) when designing DMIs. Despite the differences between

participants and the instruments they design, we have primarily presented shared narratives that

are developed from this study. Of course, each instrument and the context in which it is developed

has many unique factors affecting tool choice. We found that where these focuses differ, they are

mostly tailored by the major challenges they face outside the domain or designing the instrument

itself. Many participants use tools for support outside of collocated settings, typically finding

additional tools to fill this role. For example, commercial teams and research teams discuss needing

tools for collaboration. We see this observation reflected in wider HCI literature across disciplines,

showing that the importance of social design should be reflected in a designer’s tools (Jung, Lim,

and Kim 2017; Alcántara, Markopoulos, and Funk 2015) Tools could therefore benefit by better

supporting this workflow or integrating with other tools that do.

This need for remote collaboration extends beyond structured ‘team members’, however. Due

to the importance of meeting the demands of the performer, user-focused design is vital for any

instrument, a perspective clearly shared by participants. Of course, co-design, participatory design,

and user experience are well-explored facets of DMI literature (Fyans et al. 2012; Brown, Nash, and

Mitchell 2017). The importance of these considerations leads digital luthiers to call on their tools to

facilitate the interaction between the user and themselves. Much like working in an industry team,

those looking to engage with their instruments end-user require a seamless collaborative process.

For participants designing instruments intended to be played by others, they clearly indicate a need

to support social creativity (Fischer et al. 2005) in their tools in order to realise those instruments

effectively. Fischer et al. recognise that individual and social creativity represents a continuum

that should be integrated for solving complex design problems. The combination of challenges in

76

user experience and facilitation of social creativity culminates in digital lutherie situating itself as

an ideal candidate for meta-design (Fischer and Scharff 2000). Due to the way digital luthiers tend

to take many roles as designer and performer, Fischer’s description of meta-design as a “coadaptive

process between users and a system” seems an ideal fit. Meta-design allows for components of a

systems design to be deferred to the user. P9 approaches this by making parts of their instrument

open source to support this relationship.

“One of the problems is it’s such a new idea and so flexible, but a lot of people want

to make it into the ideal instrument. So early on, I decided to make the software open

source. And I wanted to make open source development as easy as possible.” (P9)

DMI tools are often developed to encourage and facilitate meta-design (Calegario et al. 2020).

For some participants, graphical patching tools such as Max and Pure Data can be considered a part

of the instrument rather than just a tool, exposing the capacity for the instrument to be redesigned

continually. This is particularly common for artists, such as P4 and P26, who are challenged by

continually finding ways to express their artistic intent for new ideas and works. It is common in

DMI literature to represent a DMI abstractly as a controller and sound generator with a mapping

between the two. Many projects look to expose this relationship, constituting a meta-design

relationship between the tool and digital luthier, who, as Jorda describes, typically embodies the

instrument maker and the performer (Jordà 2004b). We consider that the field of digital lutherie

might be one of the most developed examples of meta-design and that it naturally addresses some

of the most significant issues faced by digital luthiers. Fischer’s work on meta-design sees it as a

tenet of end-user development which is described as a “society-changing invention” (Fischer 2021).

This is clearly paralleled in the DMI community, and we suggest these two areas of research support

each other and would do well to cross-pollinate.

Participants also indicate that limitations of time, resources and expertise are also some of the

most limiting factors they face. We see that these challenges are largely coupled to the practical

motivations in tool choice set out in Section 5.1. Participants search for tools that offer efficiency

and accessibility in response to these limitations.

Finally, for some participants, the greatest challenge represents the steps beyond the creation

of the instrument. The adoption of new DMI is something already considered in the litera-

ture (Marquez-Borbon and Martinez-Avila 2018; Jack, Harrison, and McPherson 2020; Morreale

and McPherson 2017). In commercial settings, this can involve marketing, communication with a

community, and even breaking down preconceptions of the user base (as in the case of P2). As

this study focuses on the designer-tool relationship grounded in digital lutherie, these aspects are

difficult to build upon. However, participants introduced these as prominent issues, which could

be further investigated in future work.

5.4.3 How do instrument designers define a digital musical instrument?

Of course, the challenges in defining a digital musical instrument are well considered in the lit-

erature (Morreale, McPherson, and Wanderley 2018), and this ambiguity is well reflected in the

participants of this study. Participants tended to create an ad hoc definition that they often recog-

nised as contrived or quickly contradicted. There was a strong tendency to note that providing a

definition does not matter. Any boundaries are quickly blurred by the continuum that represents

controllers, interfaces, and instruments. A deep dive into this topic is beyond this work; however,

drawing on the analysis from this study, we note some interesting and related points. Many partic-

ipants value the observation that DMIs are not bound by physical properties, with P6 suggesting

there is no limit to their potential.

77

Some participants view the digital component of DMI to be just another material used to create

an instrument. Participants also considered aspects such as idiomaticity, expressivity, feedback and

virtuosity, of importance in DMIs, which are well explored in literature (Moro and McPherson 2021;

McPherson and Kim 2013; Nash and Blackwell 2011; Tahiroglu, Gurevich, and Knapp 2018; Berger

2010; Brown, Nash, and Mitchell 2018).

We also see many participants make a comparison of DMIs to a mathematical function. P2

provides us with the notion of y = f(x):

“So in the end, it is just about evaluating a big outputs = f (inputs) function. (P2)”.

This is possibly expanded by comments that suggest that DMIs are more than simply the

combination of controller and sound generator (P1, P6), suggesting there is importance to the

process of mapping between input and output. In this chapter we have focused on the designer-

tool relationship where this question was formed to help understand what digital luthiers were

motivated to create. We see through this analysis that not only is the taxonomy of DMIs difficult

to define but also, the taxonomy of digital luthier itself is not clearly seperated between tool

designer, instrument designer and performer, with some participants spanning all of these roles.

Ultimately, this question does little to provide a taxonomy of digital musical artefacts, but we

suggest these transcripts offer useful perspectives that would be well explored in future works that

explore this question more deeply.

5.5 Conclusion and Future Work

The relationship between digital designers and their tool choice is complex and continues to call for

more attention to be better understood. Despite the different settings in which digital instruments

are developed, we find that digital luthiers share many motivations for choosing tools. Through

our inductive approach, we come to a set of narratives that supports the work of Stolterman and

Pierce who observe similar themes of ‘rationalised reasoning’ and ‘the social, material, and cultural

context in which the design process takes place’. We see these as pragmatic decision making and

the influence of the environment, respectively. Stolerman and Pierce consider Argyris’ theory

of action (Argyris and Schön 1974) and relates the pragmatic process to espoused theories and

the environmental aspects to relate to theories in use. We suggest this is a good opportunity

for future work to explore through observational study as our findings further complicate this

relationship. We find the digital luthiers in this study to demonstrate an awareness of how their

espoused theories and theories in use interact, understanding that the environmental influences

often override their espoused theories of tools. We also consider these influences in the context of

affordances offered by both the tools and the environment in which they exist (Gibson 2014). Much

as Magnusson has found in the use of DMIs, we find that participants focused on the constraints

of the tools they use to design DMIs (Magnusson 2010a). Therefore, we find that in analysing the

designer-tool relationship, designers engage with a tool’s affordances and constraints. In light of

the environmental context in which tools exist, our study suggests that the community preserves

and shares knowledge where a tool is widely understood to have a particular set of affordances or

constraints.

Where we do see specialisation in tools, our findings imply these relate most notably to the

instrument’s intentions. For a majority, DMI design is socially collaborative. This may be in the

case of a team of digital luthiers, but often this is directly the users (performers) providing feedback

or further developing a design themselves. For those instruments, Fischer’s recommendation of

integrating social creativity and individual creativity is demonstrated in the tool choices digital

luthiers make (Fischer et al. 2005). This included using domain-specific tools that supported

78

social creativity as well as supplementing them with more general-purpose collaborative tools.

Those focused on individual creativity specialised their tools towards efficiency and accessibility.

This, too, engages social creativity less directly, engaging with quality documentation and mature

tools provided by communities such as industry or the open-source community.

Finally, through understanding the challenges designers face and how this influences their tool

choice, we recognise digital lutherie as a rich example of meta-design (Fischer and Scharff 2000).

The literature surrounding digital lutherie and DMIs describes the fluid nature of the roles digital

luthiers and DMIs have (Jordà 2004b; Morreale, McPherson, and Wanderley 2018). For many, the

ability to defer an instrument’s design components to the performer is a defining feature of a DMI.

This has seen the use of many of the principles that Fischer (Fischer 2021) describes as EUD (End

User Design) being applied in this craft (Fiebrink and Cook 2010; Calegario et al. 2020). This

study suggests that these features are important considerations for designing new tools for digital

lutherie.

Much like Stolterman and Pierce, we continue to show the complexity of the designer-tool

relationship and continue the trend of prompting more questions. However, we see that the per-

spectives shared by digital luthiers present many directions for enquiry relating to how we interact

and design digital systems. We emphasise that this work presents a foundation for further enquiry

into the designer-tool relationship for digital luthiers and encourage others to utilise the transcripts

available to supplement other methods that explore these ideas.

79

Chapter 6

What do Digital Luthiers value

from their programming

languages?

This chapter further analyses the study outlined in Chapter 4 pertaining more specifically to

programming languages. These themes are yet to be featured in a publication. This analysis uses

the same approach as previously detailed, primarily considering the explicit semantic meaning of

the participant’s comments; this time, focusing on coding around programming languages that did

not feature so heavily in the previous analysis. This analysis inductively explores the question,

‘What do Digital Luthiers value from their programming languages?’

This question looks to encapsulate the qualities or characteristics of programming languages

that are desirable for digital luthiers and, as such, may be valuable to consider when designing

new languages. Three themes are presented, which describe the role that digital luthiers expect

the programming language to play or the requirements they facilitate. These themes are then

interpreted in the context of existing literature and begin to develop ideas around how programming

language constructs, features, and paradigms fit these desirable language qualities.

6.1 Theme 4: ‘A Guiding Force’

This theme titled ‘A Guiding Force’ emphasises how the influential qualities of a programming

language and its associated ecosystem is a highly valued language component. Through enforcing

practices, educating the programmer or inspiring specific approaches to problem-solving, users

shared the notion that the language should guide and support the development of their instruments.

Often the language can be viewed as a collaborator that assists the digital luthier. Further, the

shared idioms and community knowledge embedded in the language further influences and guides

the programmer. The capacity of the language to direct the programming work of the digital

luthier is often directly related to choosing a language.

P19 describes this influence and guiding force of the language as rigour that encourages writing

more resilient code:

“. . . i think it’s really really important to be deeply rigorous about the code you write

for musical instruments because you’re going to ask that code to be stretched, that

musician is going to ask that code to stretch.

. . . in other kinds of programming, there is often a very practical engineering middle

ground of, like I know this task needs to only do this so the fact that my code can

80

only handle you know 10,000 rows and not 10 million rows. . . in music, you do have

physical constraints, but they’re often really . . . wide, like I want this low-frequency

oscillator to be either like five hertz but you know the user might want it to be five

kilohertz and that’s three orders of magnitude which is a lot of difference in a piece of

code. And so rigour in your programming language helps you get that right. If you do

stuff in less rigorous programming languages, you tend to end up with sloppy timing

and crappy stuff.” (P19)

Often utilising languages that provide this stricter sense of guidance requires changes in the

problem-solving approach. P20 describes the Rust type system as an example of this, which con-

trasts their experience with Python, ultimately leading to code that has more desirable outcomes:

Despite the fact that a stricter programming language is described as

“Rust, on the other hand, is all about correctness. It has a robust and very strict type

system - where in Python it’s easy to get code to run, but might require a lot of testing

to get it right, in Rust the type system constrains which programs are valid to a large

extent. This means that one must put in a lot more thought up front, but the program

that comes out the other side of the design and development process is much less likely

to be buggy, and is almost certainly really fast.” (P20)

Later in their interview, we see that P20 also incorporates the Rust environment as an extension

of the language, describing how programming language features such as strong typing reflect the

Rust community’s attitude. Where strong typing represents a strict set of conditions being enforced

in code, P20 suggests this rigour is mirrored in the culture of supporting the programmer’s use of

the language through tooling and knowledge exchange.

“Beyond that, well-typed and well-documented APIs are really important. That’s one

reason I love Rust; it has great documentation tooling and a culture of aggressive

documentation, though sometimes to the exclusion of good tests.” (P20)

Where characteristics such as performance or correctness are considered most important, some

participants suggest the languages capacity to guide the developer does not have to be the path of

least resistance:

“So I think we have definitely chosen the performance, as opposed to the ease of de-

velopment. So that’s the, that’s the main reason we have, we haven’t used other more

domain-specific languages before.” (P17)

P17 demonstrates that they have no aversion to managing a more complex language to meet

their project’s needs, in this example, meaning they avoid using a potentially more expressive

environment for development. For other participants, this is demonstrated by their use of more

complicated language features in order to defer some programming processes to the language. P2

provides an example of using C++ over C to benefit from RAII to assist in preventing memory

clean-up mistakes or the need to cover all code paths explicitly:

“I favour C++ over C for several features:

. . . Scoping. There are a few cases in the codebase where cleanup code(especially code

that puts back hardware into a default state) isexecuted when a variable goes out of

scope. This makes sure that, forexample, the CS line of a SPI device goes back to high

no matterthrough which path we leave the block of code.” (P2)

81

Many participants desire features that help guide their programming by constraining their

potential to make errors, checking assumptions or implicitly handling program elements. But

participants also shared mechanisms for programming to guide their way of thinking. In the purest

example, we see that the influence of learning to program allows for transferable, programmatic

thinking that can be reapplied.

“yes, know I did put Java, but in that very little level. This is my basic level to help

me . . . yes, the basis has helped me to do something but at the end of the day, I must

research again and look how can I meet its logic. Okay, I know a little bit but it’s

helpful. It helped me to me, for example, if I try to do something in supercollider also,

of course, is not the same language but all these structures helped me to create or to

build something.” (P21)

“Yeah, I think any kind of language not to just programming but also talking about

language in general, they, they are translation already of something they they kind of

belong to certain mindset. So in these when you’re also doing music, you kind of filter

your ideas” (P27)

This can also develop to the point where the language constraints can be instructive, acting as

an educational steering force. For P17, this is particularly apparent as they describe their use of the

Faust programming language as having heavily influenced their approach to and understanding

of digital signal processing (DSP) for audio, despite not using the language directly for their

instrument.

“I will definitely say that Faust was a tool that helped me even though we’re not using

it anymore. So I am the one doing the most most of the DSP programming . . . I have

a lot of like, numerical programming experience, but like audio programming and DSP

programming. . . I’ve never really gotten into that. So as a tool for understanding, like

filters and different effects, how they work and that sort of thing, something like Faust

where I could, where you can even make, like a practical view of how a reverb effect

looks, and you see the see the delay lines feeding back on each other. Right. That’s

that, that that was perfect for me. And it’s that really kick started my understanding

of this field.” (P17)

This educative effect of programming languages is also described by P16, who describes how

the functional live coding language tidal cycles have influenced their approach across programming

in general.

“Tidal has really influenced my understanding of programming and other things in a

way that definitely bleeds over to like how I approach other languages like c++” (P16)

P3 appears to exploit the educating capacity of languages and the idioms that are present

in different ecosystems, even embracing the limitations and shortcomings of a language and its

environment for positive outcomes:

“Yeah, I saw that question. And I, I don’t have an answer for you. . . There’s nothing

like really that I’m just like, Oh, this is really frustrating. I wish this could do that.

Because most of the time, like you find ways to bridge it, and through finding ways

to bridge those gaps, you learn new techniques. . . each platform has its idiosyncrasies

that direct a bit, how are you going to use it. . . it constitutes the kind of work that

you’re going to be doing on those platforms. And like I like using for that reason kind

of like many platforms and renewing myself.” (P3)

82

We also see that for some participants, the graphical paradigm acts as an introduction to

programmatic thinking, guiding participants to be able to create highly customised instruments or

leading to the use of text-based programming languages.

“I guess I started more from like pure data. I mean, I should have written that also in

the list, but I don’t use it anymore. But yeah, I started by pure data, I guess. Because

like, it’s very accessible when you’re not like a programming when you’re like starting

to try to programme or do things that are not afforded by like your regular DAW. So

yeah, and I guess, like the visual programming at first.” (P3)

“There was a module in that called Live electronics that that looks at max MSP. So

that’s that sort of, as far as any kind of formal education I’ve had, I’ve had in it. But

I really loved the flexibility of Max and, and how it sort of, you know, allowed me to

try and build something that didn’t already exist.” (P14)

Interestingly, both P17 and P16 refer to functional programming languages when describing the

languages that have significantly affected their understanding of programming. This could suggest

the introduction of new paradigms and, therefore, ways of thinking about problems as being a

strong influence that allows languages to direct the users toward solutions. In some sense, this

may be best presented as paradigms being a good fit for a particular domain (as is the case with

the functional paradigm and the domain of DSP for which function composition is an excellent fit

for representing audio graphs), but also may suggest that the idiomatic uses of languages also help

inform the approach of programmers.

To finish this theme, we look at one final dimension of the guiding influence of programming

languages. P1, who chooses between languages to suit different stages of their design process,

mentions needing the programming language to inspire them. Despite many constraining factors

on what features they require from their languages, P1 leverages tools which guide them toward

their goals, and as these goals are different throughout the design lifecycle, so too are the desired

characteristics of the language they choose.

“I would say that with three tools I could do anything. I would choose PD because I

prefer pd towards max for prototyping audio. I would choose Python for dealing with

more with with data, and I would choose c++ for going beyond prototypes.

I like PD. . . . [I] just have an idea and I can make it in five minutes. And so I think

that’s an inspiring tool. I wouldn’t, I would never call C++ an inspiring tool.” (P1)

In this theme, we see two ways in which the language and the environment it exists in support

and guides the programmer. Some participants seek their language to be a collaborator that

can take charge of some tasks and guide them to a more robust solution through constraints.

Participants also seek guidance from their programming languages through the idioms embedded

in the language, shaping their code.

6.2 Theme 5: ‘The Mutable Instrument’

This theme is based on the common account of participants seeking languages and means to

support an ongoing design process where an instrument is often never considered truly ‘finished’.

Participants described their instrument design process as integrating continuous feedback and

requiring a capacity for easy sharing and distribution of the instrument, often extending to using

decoupled and distributed components of an instrument. This is demonstrated by P25 discussing

the ‘V2’ or ‘version 2’ of their instruments, suggesting a natural and uncapped iteration of the

83

instrument. Participants highlight a process to share an instrument once an acceptable quality is

satisfied, then further develop it based on ‘real’ user interactions.

“Recently, we’ve been . . . doing a lot of v2, or like, you know, second iteration of

the design idea, basically taking an existing design the v1, let’s say it was successful

in some ways, and then like seeing like, Okay, what would the does the user base

usually complain about what we don’t like about it? So then it’s like, very, like market

informed. And you have, you have a lot of data from the user base.” (P25)

“And then choosing the most convincing path, building an MVP, and constantly refining

it. And then I think was also very important is to leave some leave it open ended. So

making sure that it’s structured in a way that allows extensibility that it can get better

over time. Like, can be refined after being released to the public.” (P15)

P20 builds upon the ongoing evolution of an instrument through a desire to distribute control

of its continued development and introduces the term mutable to describe DMI. They emphasise

their desire for DMI to be left unrestricted by the creator, allowing for the users to have a role in

mutating the instrument, a sentiment shared by P19:

“So, to me, a”digital” musical instrument is one that is, for lack of an unused term,

mutable, without interference from its creator. Once you bake the software in, with

closed source applications or chips that are under NDA, you’ve left the realm of what’s

interesting to me in a digital instrument.” (P20)

” you can build your own little musical instrument with this thing so do it . . . it’s

unprecedented that digital music instruments can open that up so much. So I wish

people would do it . . . explore it see what it’s like to build your own little sequence

here, don’t rely on you know a pile of stuff coming out.” (P19)

This is also reflected in the comments of P9, who describes the open-source approach to Linnstu-

ment making full programmability available for the end user to continue extending the instrument,

despite being a commercial product. This depends on accessible tooling and language support such

as the Arduino IDE and is suggested as a significant contributor to the instrument’s success.

“So early on, I decided to make the software open source. And I wanted to make open

source development as easy as possible. So I use the Arduino development system. My

software developer **** says that, in his opinion, this is the modern day equivalent of

taking your guitar or violin to a craftsman to adjust the action or adjust the the wolf

tones . . . And so these days, because there is such a large DIY culture, people found it

very attractive. And in fact, I would estimate that . . . my sales for linnstrument have

increased 20% because the software is open source” (P9)

Whilst the ongoing evolution of the instrument is considered a part of the digital essence

of DMIs, participants also require their programming languages to facilitate engaging the user

interactively and facilitating fast iterations. P15 explains a need to validate ideas quickly by

engaging users directly:

“. . . being able to validated the idea, as soon as possible and move on, And but then

what’s equally important is to be able not to only evaluate the idea myself, but also be

able to distribute the prototype to other people. And it’s, this is tricky, because like. . .

I have to bundle it in a plugin, . . . have a working max or max for live device, which

is already somewhat polished. But like, if this process could be sped up, then I think

this would be the biggest one for me.” (P15)

84

Participants such as P19 also discuss the need to be able to test ideas out quickly.

Like, you can come up with dream aspects, like, you know, seven days a week of things

that would be cool, without really knowing what it is you’re dreaming about. Right?

And the problem is that when you start diving into half of those, they’re just they

make no sense at all. (P19)

Exploring ideas in the context of highly interactive systems like DMIs present challenges to

simplified simulations for testing.

“. . . I would not really work with a simulator and clicking buttons with the mouse. So

for me, like being able to create the physical product, try it out improve it. tools that

are needed for for this they helped me most in my process.” (P5)

As mentioned by P15 previously, a certain level of polish and tangibility are required, meaning

that prototyping tools must focus on supporting the final target hardware for implementation. P15

comments on their need to be able to distribute components of their system for users to use, with

enough ‘polish’ to not detract from the experience. They later go on to describe how good support

of interoperability and modularity are required to achieve this.

“So if that if like, the design and implementations is created in a way that allows

actually quickly like exploring different ideas, different corners, and quickly changing

these things, I think the overall product . . . benefits from it a lot. . . . I could call

modularity also for that, like, you know, that this, like, totally having this, like, loosely

coupled components is what makes things way easier.’ ’ (P15)

“But yes, that really that ability to take that raw data and then convert that into

something that’s like standardised for music producers, I Max for live object inside

Ableton.” (P8)

MIDI is presented as a critical component of decoupling systems by P10, who describes it

as a universal musical language that facilitates interaction with other systems and highlights the

importance of robust, modularised abstractions.

“Well, I haven’t said MIDI yet somehow have I. So that would, that is definitely the

biggest tool that has enabled this. . . so that the mobile revolution was one thing but

none of that would have been possible without MIDI tying all this stuff together. And

that’s, that’s really the foundation that we’ve used this whole time is MIDI as this

pretty universal musical language means that we can design new ways to translate

human gestures into MIDI, and then allow for the 1000s of applications, you know,

that people can do with that.” (P10)

This is a common theme for other participants and demonstrates the way in which participants

expect their tools to support this decoupled architecture that allows components to be swapped,

changed and easily shared.

But for me, it’s not the language that’s important. So much is but the manner in which

it’s exposed at a higher level environment. (P23)

I was able to, for example, lend one of my instruments to a friend of mine, for them to

use in their Ableton set, and they didn’t have, you know, they can literally just plug

it in, and it just appears straight as a MIDI device in Ableton that was actually quite

groundbreaking in my mind when that when that happened, because it always felt like

to be able to get this stuff to work. (P14)

85

As P23 points out, this modularity is expected to be a design decision in the languages they

use, allowing them to work within their environment at a high level, suggesting deep ties between

the programming languages and the technological ecosystem it exists in. Here MIDI provides a

prime example of the intermediary technology that supports this.

The problems involved in digital lutherie are substantial, and this modularised set of abstrac-

tions is presented as a means for participants to focus on the important components of their DMI,

as well as test and develop components in isolation.

“A craftsperson is someone who understands the entire process from beginning to end,

from growing the tree, to tensioning, the violin, they understand it all . . . it’s not

possible for one person to understand the whole thing . . . it’s not possible for one

person to understand all the things that matter for the instrument . . . But the other

way to do that is to create like, new representations of complex things that are much

more efficient for people to parse.” (P16)

“Norns for instance is a platform. I didn’t know any lua going into programming for

norns but the platform is used by so many people now and is so robust it’s supported

by supercollider so I can also create my own engines for that . . . I started learning

because i saw all this potential you know it’s a lot of shortcuts it takes care of a lot of

the work that I had to do whenever I would try to make an embedded instrument it’s

like they they take care of a lot of that stuff already. . . ” (P26)

Given the nature of DMI and, more generally, software, participants note the tendency of

software to ‘rot’ if left unattended or become obsolete as platforms develop and themselves improve.

“. . . there’s something that I’ve been calling software rot, where it just just letting it

sit there the rot sets in, and you it it creeps into everything and all of a sudden, like

after a few years, it becomes dysfunctional, even though the code is exactly the same.”

(P6)

“because digital instruments can, you know, they can become obsolete, because the

technology changes. . . ” (P25)

This further emphasises the need for DMIs to be continually evolving. P6 suggests that lan-

guages and ecosystems that support the maintenance of the instrument are critical attributes as

more effort is spent maintaining an instrument than initially creating it.

“There’s various reasons I’ve gravitated towards maintainability. Because whenever

you create any type of product that is software based, you will spend way more time

dealing with the lifecycle of the product and with the initial creation spike” (P6)

For more collaborative participants the capacity for a language to quickly allow new program-

mers to be productive is an important side of maintenance. P7 includes familiarity and ease of

reading as reasons for choosing C++, features which make maintaining code more futureproof as

teams grow or change.

“. . .Most programmers are already familiar with C++, which allows for quick onboard-

ing of new programmers” (P7)

P23 views the challenge of maintenance in connection with the art the DMI produces, seeking

a means to sustain the reproducibility of their art, despite the tendency of software to degrade.

They focus on preserving their programming tools as part of the community, where the systems

being used are maintained through popularity and a need for backward compatibility.

86

“It is something, as a musician, I’ve, I’ve sought to have a long standing relationship, or

a kind of longevity in my work, that means that old pieces need to be performed decades

later. That means creating new pieces that will have potential to be reproduced later,

in another era by other people . . . I don’t think I had that any vision in mind when I

set out 35 years ago, but the tools that I did choose did stick in the community. But I

was thinking about longevity already back then. So if then today, it’s a computer based

system that’s doing signal processing, taking live gestural input, the actual device may

have changed quite a bit, but surprisingly little about the way the signal is acquired,

processed and mapped to sound.” (P23)

Identifying DMI as highly mutable and evolving systems, participants expect software to sup-

port means for the continuous adaptation and development of both their own and other instru-

ments. Participants appear to converge on heavily decoupled, modular approaches to programming

and expect their programming languages to support this and deeply integrate with their environ-

ments. Practises such as open source and communities of sharing are integral to developing software

for DMIs, both in the evolutionary development of instruments and in maintaining them. This

culture even permeates commercial settings, with users pressuring for more control over the in-

strument’s lifecycle. Even less permissive, proprietary devices supporting open standards, such as

MIDI, to decouple their components and support the mutable nature of instruments contribute to

this expectation of participants.

6.3 Theme 6: ‘Expressing My Ideas’

Whilst we have seen in the analysis in Chapter 5 (Theme 1) that pragmatism is a defining factor

in tool choice, this theme captures the more optimistic and idealised narrative around what pro-

gramming characteristics participants pursue. Participants share the mutual position of seeking

a low-friction environment that grants expressive control over the instrument they are building.

In many respects, this theme avoids focussing on the decisions forced through pragmatism, where

participants aim to have their tools most effectively serve their use case and capture as many

requirements as possible whilst minimising the complexity with which they must work. Instead,

‘Expressing my ideas’ explores the narrative of participants who seek tools as an extension and

component of their thinking. The theme takes its title from P22, who describes their programming

language of choice as ‘my main way of expressing my ideas’.

“So most of my instruments are which in C++. And the reason why I use that is

because it’s the language I have always used. Very, very comfortable with C++. It’s

like, my main way of expressing my ideas” (P22)

Participants appear to seek languages that match their thinking and approach to problem-

solving.

“But it’s also because I consider supercollider for example one of the between worlds of

between programming and music production so and I feel quite liberating to use code

instead of Max MSP or pure data” (P27)

“I’m getting into Rust now because of how efficient and tiny it can be. And also, it’s

just, you know, as I’m learning to code it, it feels it just feels really nice to write in.”

(P26)

Using languages and programming paradigms that support a participant’s mental models and

problem domain provides a more ergonomic fit for them to express their ideas. In their interview,

87

P19 presents their preference for functional languages, suggesting that they are more expressive

paradigms for instrument behaviour, though they notably find that this is practically limiting due

to pragmatic constraints.

“. . . because these functional languages i hesitate to call them modern since most of

them have been around for 20 years or more really allow great expressivity. . . on

that conceptual side of being able to express what you want the instrument to do,

but on the other hand a lot of my most recent work is in something as dull as c++

because ultimately if you’re going to run it on an arduino or an arduino like processor

like that’s your choice you know the other choices is micro python which just isn’t

practical. . . (P19)

A core component of expressivity, as implied by P22’s initial quote, introduces a common

factor among participants aiming to achieve low-friction programming: proficiency. This emphasis

on familiarity and experience is a common trend, often rooted in the pragmatic rationale for

time-saving and not needing to invest time in learning new concepts.

“The other one would be Python. Because first of all, I think this is still the most

relevant reason, I am fluent in it . . . if you’re comfortable in it, and I’m fast in it, and

this is important to me to be able to prototype fast. . . ” (P15)

“So as a computer scientist, I felt more comfortable with c++ and probably more in

control of what I was what I was doing.” (P11)

“There’s no time to learn things and do things really well in dedicate a lot of time so

of course, you’re going to try to approach one language that fits into your lifestyle and

your way that you thinK” (P27)

But this familiarity can also be reapplied to new contexts, where language families can make

new tooling feel more immediately approachable, even when crossing problem domains. We see

this example from P22, who demonstrates how familiarity can be exploited to cross into other

problem domains that are perhaps less natural to some digital luthiers, in this case, transferring

programming constructs to the application of 3D modelling the physical instrument. This is

interestingly also an experience shared by P11.

“. . . whenever I’ve been doing my mechanical drawings and 3d modelling, I have been

using something called OpenSCAD. And which is Do you know it? Yeah, so that is kind

of, I think it comes from my love of, I’m really comfortable with writing code as text.

And it has kind of looks kind of like Python or C. So it’s like a very familiar syntax

and stuff. So rather than burning some like really advanced 3d CAD programme, I can

just write code. And I can use all of the concepts and all of my like, my like patterns

or thought patterns while doing my 3d design, just the same as when I write my code.”

(P22)

The experience of P17 provides insight into how participants juxtapose the desire for expres-

sivity with the requirements of their project. In their interview, P17 discusses the challenges of

translating between prototyping and production code, stating that there is little time saving work-

ing this way compared to working in the final intended programming language, which they find

ultimately less expressive. They state that:

. . . if there was a way to get around that which, incidentally,the language Julia has

sort of been for the scientific community. . . where I could write something that in a

88

language, which is super expressive, and just easy to get something up and running

really quickly. But it’s also performant. Enough to like being able to run on our

embedded system, and also can have the interoperability that we lacked from Faust.

Like, if there was a thing that could give me all of that, like that would be like, that

would be the Holy Grail.” (P17)

In an ideal scenario, P17 describes their aim to program with maximum expression while

working with a language suitable for their embedded performance requirements. They describe a

clear set of limitations that prevent them from working with other languages and ultimately settle

on using the language that offers the most benefits with the least friction. They describe the ‘Holy

Grail’ in language as the combination of expressivity, performance and interoperability. Ultimately,

however, most prioritise the pragmatic need for performance and interoperability. When offered

to propose a speculative language that would suit their needs, P17 described the possibility of a

domain-specific language built with first-class C++ support, coupling the goal of solid domain-

specific support with the broader capabilities of a mature general-purpose programming language.

Interviewer: Feel free to propose something more hypothetical. . .

P17: Well, yeah. As I, as I said, a language or something for c++ or something that is

performance, but still plug and play and very expressive for for audio would be would

be great. . . If it was a DSL implemented in C plus? If it was a DSL for c++, but not

as that transparent language?

For many, this level of expression is suitably captured in a language’s ecosystem through li-

braries and frameworks with a deep domain focus.

“. . . there’s a lot of DSP libraries, which make it easy to kind of plug together something

which you can use. . . mutable instruments git repository, which is like full of brilliant

stuff, which you can just take and stick together in new ways and have a filter after

something.” (P5)

“. . . or set up kind of an abstraction or pattern based on something that I’m doing, then I

can replicate,again, at a higher level. And in doing so, still allow musical components,

musical modules, and elements that are created to berecombined in different ways.”

(P23)

“It forms the perfect compromise between processing efficiency and high level design.”

(P7)

“it was like really quickly, developing a lot of interesting libraries to get things done

quickly. So that was a platform of choice.” (P25)

“And I also would say I use Max. Also, because how it because it gives me a lot of

tools out of the box and modules that I can freely connect with each other in the way

I want.” (P15)

Participants seek high-level abstractions in libraries allowing flexible and highly composable

programming. In some cases, we see this composability between languages where for example, P11

can be more domain focused by using Faust for DSP and then integrating this within the broader

environment with more general-purpose languages like C++.

“So usually what I do is that I use a combination of Faust and c++. I write my DSP

in Faust. And, and then I use c++ to sort of put it all together, basically. it’s

quicker for me to write them in Faust than in C++.” (P11)

89

The narrative shared by participants tends to focus on the practical need to integrate with their

platforms environment, and this leads to a desire to find both deep domain-oriented and inspiring

tools that integrate with the project’s environment.

“I would, I would prefer it if Faust was a library for c++. So there was no, no transpiling

step.” (P17)

“On the software side, I think having more projects like CircuitPython, and having

those projects explicitly focus on audio DSP, would be wonderful.” (P20)

I like PD. Because it, it’s very good not only for prototyping, but for brainstorming,

or for just trying something I mean for Yeah, just have an idea. And I can make it in

five minutes. And so I think that’s an inspiring tool.

Some participants gravitate towards other tools to increase their expressivity and break free

of languages that cause them friction. The most extreme example of this is found by participants

aiming to remove the need for programming almost completely, aiming to express their intentions

primarily through domain-specific tools:

“Well, I’m in a quest, and I think in in various aspects of life to have the tools disappear.

For example, software development, I’m a fan of the no code movement.” (P9)

“We, you know, not not just for instrument design, but app design in general, I think

we’re there’s there’s a, there’s a moment that feels like it’s about to happen, where

these tools are gonna get much simpler. And it’s it’s like it’s almost been there every

year where people who aren’t hardcore coders can get in and do even like Adobe XD,

like doing UX and UI kind of workflows.And, and I’ve seen a few things pop up that

are going to make that easier, but we haven’t yet. We haven’t yet use them. We’ve

kind of still been doing it the hard way. I do think that that’s gonna really change.”

(P10)

“And a website is should be about design. So I would say in in so many aspects of

software development, coding, you shouldn’t have to do, you shouldn’t be able to focus

on design, particularly websites. You know, you can have objects, you just load in pre

made objects, and then you just do your design. And I think that day is coming but

it’s not here, yet.” (P9)

For certain digital luthiers with less technical backgrounds, programming in the traditional

sense is also a barrier which they seek tools to remove.

“I can only spend that much time going to the root of it, I’d love to do my own

programming and learn C, you know, or whatever I need to learn or, but, you know, I

I’m still an artist that needs to use this to, you know, to make music and performance.”

(P4)

Participants show that techniques such as machine learning can be leveraged to express design

intention, with less programming, exemplified by P4’s use of the machine learning tool Wekinator,

which plays a role in programming their instruments.

“But I did not write software from scratch. I use max MSP and I use that for creating

interfacing the hardware to the music to the software. So people’s idea of like writing

software, yeah, I do write my own programmes, but they’re all in max MSP, except

in the case of like Wekinator, which I started using two years ago, no more six years

90

ago, what connaitre also was not written by me, obviously, but Rebecca Fiebrink. And

we did work together for like user interface and how to develop it for herself and for

myself. So yeah, so I programmed myself but I did not write the software, what I call

writing the software, I do not write objects, and I do not write C plus plus Java” (P4)

Participant 23 further expands on the use of machine learning to describe their extensive explo-

ration and development of using machine learning to create intuitive strategies to map interfaces

to sound generation.

And if we take the task of mapping, as an example, and nothing is presented, in an

interface as a bunch of sources, and a bunch of destinations, that reduces it to this

rather straightforward and limited linear task. On the other end of the spectrum, by

using things like machine learning, we might make the process more intuitive, creating

what we call mapping by demonstration. (P23)

This narrative presents a more idealised outlook on what participants desire from programming

languages. Overall, this theme hints toward the preferred modes of expression for participants,

who are ultimately constrained by the practicality and challenges of digital lutherie. Currently,

languages are mainly chosen as a compromise and do not reflect the full intent of what the luthier

is looking for:

“ We chose C++ for a number of reasons:- It forms the perfect compromise between

processing efficiency and high level design.” (P7)

“. . . You know, I use things like Haskell when I can I use C++ when it makes sense.”

(P19)

We see that participants seek means to support their expression, work in abstract composable

blocks, and use paradigms that match their approaches to problem-solving and thinking, result-

ing in ergonomic and familiar patterns for them to create DMIs. We also see the expectation

that programming can be further streamlined by using more specialised domain-focused tools and

integrating machine learning to help address the challenges of digital lutherie.

6.4 Discussion

Building upon the initial analysis that explored the question ‘How and why digital luthiers pick

their tools?’ a secondary inductive and reflexive analysis has created three more shared narratives

which add nuance to this initial question and explore the desirable attributes of the programming

languages that digital luthiers search for. The first theme introduces the participant’s search for

languages that play the role of ‘A Guiding Force’. This again fits into the model of affordances

in design (Chong and Proctor 2020), where the language provides a set of affordances to work

with. Theme 6 also complements the constructivist view of creating programming knowledge

through constructed models that adequately abstract the problem space, allowing the participant

to work with this model to solve problems (Ben-Ari 1998). The Digital luthiers examined in

this analysis represent diverse experience levels, with experience creating DMIs ranging from one

to 40 years and participants having worked on between one and approximately 100 instruments.

With such a diverse population, this theme captures the guiding forces of languages on both

novice and experienced programmers. Where programming pedagogy examines the construction

of knowledge, it focuses on forming functional models of the computer or programming language.

This study discusses constructing these models in the context of a range of experience levels in

digital luthiers. This suggests that smaller, more focused, so-called ‘toy’ programming languages

91

can have a pedagogic role in digital lutherie, acting as creative playgrounds for learning new

concepts and constructing new models. This also implies the need for mature, general-purpose

languages to offer flexible support for programming styles and paradigms, both in language design

and through the libraries and ecosystem it represents, to ultimately lead to the most expressive

approach to the problem (Filippidis, Murray, and Holzmann 2016). While this is true for many

mainstream languages, there can be implications in this space that are incompatible with other

requirements of digital lutherie, such as performance challenges which are a longstanding and

ongoing challenge for certain programming paradigms (Page 2001; Arora, Westrick, and Acar

2023).

A novice looks to and utilises programming languages, especially in exploring new paradigms,

to form new models for thinking. More experienced programmers look to form models that can

abstract away entire categories of errors, exchanging a potentially more complex model of the

language for assurances around errors such as memory management. We see the example of this

discussed in the context of Rust, which integrates a strict type system with a memory management

system called the borrow checker. This is widely cited as a challenging model to adopt; however,

once this model is internalised, it prevents many potential bugs entirely with minimal cost to

runtime performance.

Theme 5 pertains to a technical and social solution that responds to the architectural nature of

digital musical instruments. By the definition provided by participants and supported by existing

literature (Magnusson 2010a; Wessel and Wright 2002; Wanderley 2001), DMIs are fragmented,

continuously evolving and highly modular entities that link across domains. P8, a composer who

builds tools for personal use describes a DMI as.

“Input and input-conversion and output. Yeah, gestural input.” (P8)

This gives us a minimal description of a DMI that can be described by the function Y = f(X)

where X is the domain of gestural input, Y is the domain of audio, and the function f is a

mapping between domains 1. This theme demonstrates the need for the technology to mirror this

decoupled model, creating distributed solutions that can be built across the community (Fischer

2004) and that digital luthiers can compose together to create complex systems. The clearly

defined boundaries between domains X and Y also support the capacity for DMIs to remain highly

extensible to the users. Participants describe this extensibility as an expectation and inherent

component of a DMI. This community factor is discussed in the context of the ‘second performer

problem’ where an instrument is not used beyond the digital luthier who created it (McPherson

and E. Kim 2012). For those concerned by the wider adoption of their instrument, participants

suggest that the capacity to adapt and utilise subcomponents of an instrument are also critical

dimensions of a community of use. Fukuda et al. (2021) provide a supporting project for this

interpretation, where a group of composers work with their instrument ‘The T-Stick’, developing

new modes of interaction through evaluation and modification.

The final theme in this analysis portrays the goal to achieve expressivity through the digital

luthiers programming language(s) as an extension of their thinking, minimising the ways in which

the tool limits them. We see that, in reality, this is an aspiration that is often compromised by the

requirements captured in the previous theme ‘The Pragmatist’.

Relating to findings in Chapter 5, we can further contextualise the digital luthiers espoused

theory vs theory in use here, framing this theme as the participants espoused theory. The notable

point in this interpretation is that largely, digital luthiers demonstrate awareness of where their

espoused theory starts and ends. The compromise that participants make relates to the project

management concept of the triple constraint, typically defined with variables such as time, quality

1A function also described by P2 and mentioned in the previous chapter

92

and cost (Van Wyngaard, Pretorius, and Pretorius 2012). While the value of the triple constraint,

in particular in relation to these variables, is debatable (Baratta 2006), the triple constraint is

recognised as a practical framework for describing tradeoffs to stakeholders. It may therefore be

possible to devise such triple constraints for digital luthiers.

6.4.1 What do Digital Luthiers value from their programming languages?

6.4.2 Constructivist Models

When we begin to observe the relationship between these themes, we see that, in particular, Themes

4 and 6 both relate to participants’ mental models of the problems they are solving. Participants

seem to look for programming languages to fit their models of thinking and provide support in their

problem-solving, in particular, focusing on abstracting problems such as memory management into

different models that can be learnt and then utilised. In some examples, we see this presented as

using less abstraction in the design in order to gain more control and more closely work in the

domain of the computer hardware (Hoc and Nguyen-Xuan 1990) in search of coveted runtime

performance characteristics (Wessel and Wright 2002; McPherson, Jack, and Moro 2016).

So the programming languages I use on an everyday basis are c++ for performance

reasons. . . . And yeah, you can take control over your own memory layout. (P15)

I felt more comfortable with c++ and probably more in control of what I was what I

was doing. (P11)

In others, we see that more abstraction with a more complicated model that abstracts the

computer is permitted:

In Rust the type system constrains which programs are valid to a large extent. This

means that one must put in a lot more thought up front. . . (P20)

And so it’s just more time and energy but rust for its quickness, efficiency and also

ability to run an embedded devices. (P26)

In the example of using the Rust programming language, participants express their appreciation

for the mechanisms of concurrent memory safety embedded in the langue through its ownership

and lifetime model (Zhu et al. 2022).

Suspending the need for pragmatism, we see that the programming language’s embedded models

of knowledge are some of the most desirable attributes for language selection. Participants look

to utilise the embedding of knowledge within a language as a cognitive store, where knowledge is

part of its semantics, libraries, or even its ecosystem of tools and resources 2. Magnusson (2009)

makes the observation that musical instruments are epistemic tools that implicitly store musical

and cultural knowledge. This perspective is also observed by McPherson and Tahıroğlu (2020)

to be true of programming languages. Work by McPherson and Lepri (2020) contextualise this

work on the influence on the DMIs that digital luthiers create. These ideas are reflected in many

ways by participants (as seen below in a quote from P1), once again suggesting a high level of

self-reflection and introspection being present in the culture of digital lutherie, although given that

much of the digital lutherie community centres around the NIME (New Interfaces for Musical

Expression) conference, where such reflections are disseminated, it should still be asked to what

extent this influence is understood by digital luthiers not engaged with the likes of NIME.

“On the other side, I have the convenient, I mean, I’m totally convinced that the tools

are never natural. They are natural in the sense that you can do terrible and terribly

good, but they condition very much what you can do with them.” (P1)

2such as documentation and community forums

93

Alongside this embedded knowledge, participants describe a desire for cognitive harmony, where

the model matches or easily extends their existing mental models. Existing work supports the

observation of this approach in novice programmers and further suggests their use of analogy and

reapplication of previous models to construct further models based on language semantics (Hoc and

Nguyen-Xuan 1990; Abtahi and Dietz 2020). Participants search for cognitive shortcuts, such as

reapplying familiar concepts to facilitate faster adoption of new languages and applications in new

domains, which further supports this previous work. This approach to learning and working with

mental models to solve problems relates heavily to expressivity with the language. We find that

participants appear to be advocating for languages that complement their capacity to express their

ideas through their models of understanding, implying the use of fragments of known solutions to

problem solve (Spohrer and Soloway 1989; McCauley et al. 2015).

As discussed above, participants looked for their language to direct them through a system of

constraints. In some cases, participants seek the language to constrain their design using language

semantics around areas established as error-prone and challenging, such as the control flow of

memory cleanup. Others also express their desire to actively express constraints by modelling

their problem space using mechanisms such as strong static types, which provide a programmable

system capable of enforcing and extending the knowledge embedded in a programming language.

Lubin and Chasins (2021) explores the use of static types in the context of the functional

programming paradigm. They describe the scenario where participants in their study use the

compiler as an assistant, providing corrective and directive support. Statically typed functional

programmers were observed to utilise the compiler to provoke feedback on their current code, using

error messages to examine their progress on a problem. This was also observed in the process of

code refactoring, where the compiler was used as a checklist of things to update. This suggests

an approach to development that is primarily suited to statically typed languages, as tooling such

as this is difficult without static types. Future work might explore the role of the compiler as a

tool to support the guidance within digital lutherie given the overwhelming use of statically typed

languages3 discussed by participants from the study in this thesis.

Through this discussion of Themes 4 and 6, the desire for languages as vehicles for embedding

knowledge is established. We see that the semantics and tooling of a language form an epistemic

tool that a digital luthier can select in order to match their mental models of a problem space and

rely on to enforce some correctness within their work, using the language and tools as a collaborator.

Digital luthiers also require mechanisms to further embed knowledge in their tools, such as static

type systems, which allow further collaboration, and the development of paradigms and idioms

which can be shared between users, typically that subscribe to the same mental models for problem-

solving, suggesting design through constraints. Through comparison to related literature, we also

see the nature of these guiding factors in digital lutherie as influencing the final DMI. As such, work

should be done to make explicit the influence of tools, as it seems likely impossible to reconcile the

luthiers hope for guidance through constraint without converging towards certain outcomes.

6.4.3 The Pluggable Architecture

Theme 2 provides a description of the need for the implementation of a DMI to match the DMIs

nature, a modular abstraction, providing the highest level building blocks with which to make

instruments and separate the domains that constitute a DMI. For digital luthiers, the DMI rep-

resents a highly collaborative and social artefact with a distributed architecture. Considering

the role that extensible tools play in digital lutherie, the previous analysis observes the role of

meta-design in this field, identifying digital lutherie as a prime example of meta-design in use (Sec-

tion 5.4.2). When revisiting the meta-design framework ten years after its introduction, Fischer,

3C++ (24 participants) and C (12participants) in particular

94

Fogli, and Piccinno (2017) sets the perspective of meta-design, stating ‘design and use mutually

shape one another in iterative, social processes.’ This view aligns well with perspectives around

DMI design, where for example, we see that evaluation through performance is considered a core

component of the design process (O’Modhrain 2011; Cannon and Favilla 2012). Motivated by

this approach to design, participants indicated a need for programming languages to support this

decoupled architecture, through sharing, often in the form of subcomponents of an instrument.

Through our analysis we see that participants describe processes that can be interpreted through

the model of ‘Interaction and Co-Evolution (ICE)’ (Costabile et al. 2006). This model proposes

a cyclic process ‘in which system usage induces an evolution in the user knowledge, culture and

socio-organizational contexts, which in turn induces the evolution of the system functionalities

and possibly some changes in the technology on which the system is based.’ It emphasises the

importance of communication channels between the designer and the user. Also, it advocates for

interactive systems to be built from networks of software environments to allow the evolution to

happen with the user. Digital luthiers have an expectation to be able to explore and adapt the

instrument (McPherson et al. 2016), and participants highlight this as perhaps one of the most

important motivations around their tooling. Fischer, Fogli, and Piccinno (2017) describes inte-

grating meta-design as a transformation of culture from closed to open systems, facilitated through

what Lessig (2009) describes as ‘read/write’ cultures as opposed to ‘read only’ cultures, where an

economy of evolution and ‘remixing’ is permitted and encouraged. With technologies such as MIDI

and OSC4, digital lutherie strikes a good balance between standardisation and freely modifiable

source code which Fischer and Giaccardi (2006) one of the challenges in supporting meta-design,

framed as a juxtaposition between standardisation vs improvisation. In digital lutherie, standards

such as MIDI are typically used to provide connections between subsystems (Loy 1985) that divide

the problem space along domain boundaries. This makes it easy for proprietary and open-source

systems to interoperate.

Digital luthiers are describing a need to support meta-design in their languages through tech-

nologies and practices supporting their artefacts’ co-evolution (DMI). A rich set of examples exists

for this, but the support for these attributes is identified here as factors in programing language

adoption. Along with the need for the embedding and expressing of knowledge constructs through

their language, we can see that overall, digital luthiers place a heavy emphasis on the socio-techno

environment in which a language exists (Fischer et al. 2005). These interpretations are supported

by the observations of Morreale et al. (2017), who also derive the term ‘pluggable communities’

to describe the interactive and decoupled system. Not only does this facilitate the connection of

technologies, but also the connection of different sub-communities that themselves contain embed-

ded knowledge in their communities and tools, which matches Fischer’s notion of social creativity,

a precursor to the support of meta-design (Fischer 2004).

4https://en.wikipedia.org/wiki/Open Sound Control

95

96

Chapter 7

Selective Pressures: Toward

Design Guidelines for

Programming Languages in

Digital Lutherie

97

This Chapter takes the analyses presented in Chapters 5 and 6 and derives a set of design

guidelines, through a discussion of exisiting literature and the experience developed from work

outlined in Chapter 3. Influenced by the work of Chatley, Donaldson, and Mycroft (2019), this

work frames these design guidelines through the lens of the evolutionary analogy that they use to

describe the development of programming languages. As the findings of this work lead toward a

similar take this approach serves to emphasise the need to consider the wider ecosystem, social,

and human factors which influence language requirements and adoption. This chapter aims to be

thought-provoking and idea-rich reading for the future implementers of the next ’700 programming

languages’ for digital lutherie. In Chapters 5 and 6, the results from the analysis of the study are

discussed and, through reflexive thematic analysis, used to present a total of six themes. The first

analysis creates themes about what motivates tool selection for digital luthiers, finding that partic-

ipants select tools for a combination of pragmatic reasoning, environmental influences, and to meet

the intentions of their use. As digital lutherie is a multifaceted discipline, this study incorporates

digital tools such as CAD design software, graphics packages, programming languages and even

more generalised tools such as business management software and web tools. On the other hand,

this also incorporates physical tools such as soldering irons and maker staples such as laser cutters,

CNC machines and 3D printers. The second analysis narrows this focus to what digital luthiers

look for in the programming languages they use, finding that participants prioritise languages that

fit the mental models they construct for problem-solving, allowing them to be expressive and rely

on the broader knowledge and approaches enforced by the language. Participants also indicated

preferring languages that support the capacity for the co-evolution of DMI with users.

As is discussed in Chapter 6, when designing programming languages is critical to consider

them in light of the broader environment of the tools and ecosystems that are used. Together

these analyses provide a foundation for stimulating further research around this topic and creating

an informative and potentially influential discussion of programming design that can be used

in motivating approaches to designing new programming languages and related tools for digital

lutherie. This research’s inductive nature means that these themes and developed ideas present

hypotheses that can be developed beyond this work and explored more specifically.

This chapter draws together the discussion from the analysis of the study presented in Chapter 4

with the ideas developed exploring language design in order to stimulate a series of ideas that

may be relevant in addressing the concerns of digital luthiers and provide hypotheses for future

research and programming language design. Continuing the evolutionary analogy of Chatley,

Donaldson, and Mycroft (2019), this chapter begins by deriving a set of selective pressures which

we interpret as impacting programming language choice in digital lutherie. This chapter then

presents a series of contemporary programming language ideas in a similar vein to Landin (1966)

addressing the identified selective pressures. Finally this chapter presents how we can continue

to join the worlds of programming language design and HCI (Chasins, Glassman, and Sunshine

2021), further developing research that empowers digital luthiers with the ability to continue to

evolve digital musical instruments.

7.1 Selective Pressures for Programming DMI

Chatley, Donaldson, and Mycroft (2019) observes the evolution of programming languages, con-

structing an analogy to Darwinian evolution. Not only does this provide a reasonable and effective

structure for understanding how languages develop, but many mechanisms they suggest for the

longevity of programming languages correlate well with findings from the inductive exploration of

digital luthier’s language choices. By exploring the themes generated in this thesis, a set of ‘selec-

tive pressures’ have been created to describe the needs defined by participants in the study. In this

98

section, these selective pressures are summarised and mapped to the themes from which they were

derived to allow for mapping between this chapter and the previous discussions that add nuance

and context to their relationship to digital lutherie. This set of selective pressures stands alone

as a set of requirements for programming languages in digital lutherie, derived from an inductive

qualitative study of digital luthiers that supports and adds connections to a rich body of existing

literature. Programming language designers may use these selective pressures as motivation and a

framework for exploring their language offerings.

To provide an exploration of future language design theory that may be influential to the next

generation of programming languages (for digital lutherie), this chapter then introduces contem-

porary language design ideas in the style of Chatley, Donaldson, and Mycroft (2019) and Landin

(1966) in order to present potential motivating and inspiring ideas that may signpost and inspire

ideas on how we might address these selective pressures.

99

7.1.1 Themes

1. The Pragmatist

2. A Product of our Environment

3. Intentions

4. A Guiding Force

5. The Mutable Instrument

6. Expressing My Ideas

7.1.2 Overview of Selective Pressures

Selective Pressure Related Themes
Essential Requirements 1 ,6
Social Influence 2,4,6
Cognitive Fit 4,6
Epistemic Languages 2,4,5,6
Domain Ergonomics 3,5,6
Open to Entry 2,4,6
Propagation 3,5
Stability 1,2,3
Composability 3,5

Essential Requirements describe the pressure explored through the theme ‘The Pragmatist’.

This is discussed as the overruling characteristic of a digital luthier’s decision-making, where given

a set of more idealistic desires for a language (such as those described in Chapter 6) which may

form an example of the triple constraint, a luthier is compelled to priotise these functions over any

other desirable language attributes. This may manifest as a need for real-time performance on an

embedded system or capability with an existing platform or other software for example.

Social Influence is introduced in the theme ‘A product in our environment’ where the social

and cultural influences of a languge motivate the use of a given language. Enviroments such as

academic instituions and online communities represent a strong selective force for programming

languages and this influence on language adoption is reinforced by the tendency for models of

thinking to be built up as a novice and condition the digital luthiers ergonomics of the language -

where the lagnuage fits the mental models they use for problem solving.

The Cognitive Fit describes the reflection of a digital luthiers constructed understanding of

their problem-space in their programming language. This pressure is prevalent in a number of

themes for example, representing the pragmatic needs for familiarity and speed, the expressive

power that this affords and availability of the technology. Manifested as familiarity and a sense of

proficiency with a language, however this also incorporates the dissonance and friction associated

with trying to use languages which do not fit the digital luthiers constructed models.

Epistemic Languages represents the embedding of knowledge within the programming lan-

guage and how digital luthiers are supported, harmonise with and are influenced by this knowledge.

Languages also need to support the extension of embedding knowledge.

Domain Ergonomics outlines the digital luthiers requirements for tools to effectively model

the DMI, a decoupled system of composable elements, each representing a different problem-

space. Whilst not all luthiers need to address all of the components that make up a DMI, luthiers

depict specific attibutes that suit the different problem spaces and prefer libraries, languages and

approaches that fit the domain effectively.

Open to Entry incorporates the accessibility and educational appropriateness of a program-

ming language, along with the capacity for incremental learning. Digital luthiers continually learn

through their craft and represent a wide range of experiences. The potential for an easy initial

uptake and adoption of a language is a crucial selective pressure for programming languages.

100

Propagation is the capacity for the language to support sharing. The iterative and feedback-

oriented nature of digital lutherie emphasises a need for streamlined sharing of high-fidelity pro-

totypes and DMI.

Stability describes the resilience of a language to time. Digital Luthiers note the importance

of maintenance and preservation of the DMI and depend on technological communities to support

these needs. As such, more mature and well-adopted languages are biased for this pressure as they

represent stable and more easily maintainable languages.

Composability is the capacity for the language to support decomposition and composition

with other systems and sub-systems, relfecting the dynamic and modular nature of DMI.

7.1.3 Signposting Ideas to Address the Selective Pressures on Langauges

for Digital Lutherie

This discussion aims not to make predictions but to highlight ideas in language design that offer

the most to support the digital luthier’s requirements. Clearly, languages such as C and C++, like

Max and Pure Data, have well-established niches within digital lutherie. However, digital luthiers

make decisions on languages using some system of compromise. As such, there is an opportunity to

reduce these tradeoffs, and this section explores programming language design in the hope it may

stimulate ideas for use in designing programming languages that support digital lutherie. These

strategies acknowledge that creating entirely new general-purpose programming languages may be

challenging, though this should not be ruled out completely. There are many possibilities for new

languages to integrate into existing language ecosystems, including transpilation, targeting shared

run-times, or embedding in an existing language

This section signposts ideas that support the Selective Pressures (SPs) derived from the the-

matic analysis and resultant discussion from the previous two chapters.

This section then closes with some observations on the potential of Rust to play a substantial

role in these considerations and suggests its role in digital lutherie may be something we see develop

in the future.

Essential Requirements

The essential requirements SP is built upon the largely prevalent theme of ‘The Pragmatist’, where

instruments must meet a specific performance constraint or work on a particular platform. This

results in a compromise in language choice, often leading to a language that fits their theory-in-use

rather than their idealised espoused theory. Language designers should minimise this tradeoff by

using techniques that allow digital luthiers to continue utilising the languages and ecosystems that

solve these requirements. One such strategy is transpilation, which has become very popular in

web development (Japikse, Grossnicklaus, and Dewey 2017).

Transpilation is a source-to-source strategy of compilation, where source code in one language

is compiled and transformed into another. This has many advantages, such as benefiting from

another language’s features, ecosystem and tooling. We provide an exploration of this approach to

language design in Chapter 3, where we form a simple language for describing grid-based layouts

and transpile it to the C-like language littlefoot (Jules Storer 2016), to access the functionality of

the Roli Blocks1. This strategy was also employed by Max (David Zicarelli 2017) and represented

an approach to meeting the essential requirements of the Blocks platform, where Littlefoot provides

the only native way to interact with the Roli Block in standalone mode. With this transpilation

strategy, alternative targets can also be made, meaning that a language can support multiple

platforms through a relationship demonstrated in Figure 7.1.

1https://en.wikipedia.org/wiki/ROLI

101

Figure 7.1: Using an abstract syntax tree (AST) to provide different backends to support differ-
ent platforms.

Faust provides a more mature example of this strategy where, through transpilation to C++,

Faust has a compelling means to integrate in a performant way with other technologies, providing

a technical solution to the selective pressures of essential requirements and composability due to

its excellent performance and interoperability (Michon et al. 2019; Michon et al. 2020b). It should

be noted that in our study, Participant 17 did not find this approach to meet their requirements

for composability. This can likely be attributed to their lack of familiarity with this transpilation

strategy and the non-standardisation of C++ build systems (Miranda and Pimentel 2018). This

suggests future work for better integration and education on this workflow, which is demonstrably

effective in web development. This is likely due to the far more modern and widely adopted build

tools within the web community.

An alternative strategy to integrate with well-adopted and supported general-purpose languages

is through embedded domain-specific languages (EDSLs) (Hudak 1996). This strategy allows

for a DSL to be more integrated with an existing programming language and its ecosystem, poten-

tially avoiding some of the adoption and tooling challenges of transpilation. However, in this case,

the tradeoff is that embedding within a language depends on the support for language embedding

available in that language. We explore the use of EDSLs in Chapter 3, Section 3.2, where we define

a Tidal-like language for expressing complex rhythmic structures. This EDSL uses Haskell due to

its flexible overloading and powerful Algebraic type system, making it an excellent host language

for a DSL (Gill 2014).

As the prominent language for digital luthiers, EDSL implementation in C++ is generally

fairly limiting, essentially being highly idiomatic and opinionated libraries that utilise operator

overloading. In some contexts, upon reaching a high enough level of abstraction, a library maybe

seen as equivalent to a shallow EDSL (Zhang and Oliveira 2019), where new semantics are given

to express domain-specific ideas. This currently appears to be supported well in the context of

DSP libraries, where digital luthiers have access to or build libraries in this manner.

Social Influence

The social influence on tool selection is demonstrated in theme 5.2, where community recommen-

dations and shared opinions influence a digital luthier’s choice of tools. This selective pressure is

less related to languages directly and more to the communities that form around them. Partici-

102

def r e c u r s i v e f a c t o r i a l (n) :
i f (n == 0) :

return 1
return n ∗

↪→ r e c u r s i v e f a c t o r i a l (n −1)

def i t e r a t i v e f a c t o r i a l (n) :
r e s u l t = 1
for i in range (2 , n + 1) :

r e s u l t ∗= i
return r e s u l t

Figure 7.2: Alternative solutions showing an iterative and a recursive idiom for calculating facto-
rial in a Python-styled language.

pants found the community around education institutions, open-source communities, and indus-

try heavily influenced their tools, including programming languages. When learning to program,

knowledge is understood to be constructed through models of either the computer or programming

language being taught (Ben-Ari 1998), tightly linking programmers’ understanding and capacity

to problem-solve with a programming language. This presents a significant barrier to new lan-

guages in digital lutherie. Communities need to be formed around the language to be introduced

to new digital luthiers and for an ecosystem of support to develop. This area is under-explored,

though Morreale et al. (2017) demonstrates its importance as a community begins to develop

around the Bela platform. Much like our theme finds that social factors supersede technical ones,

Morreale et al. also find that social factors such as community needs and accountability ‘in all parts

of design, development and delivery’ stand out over ‘technical merit, user experience and release of

open-source’. To understand this relationship better, we advocate for exploring mature examples

of languages and tools in digital lutherie in this manner, considering the social and pedagogical

factors in adopting languages and tools. We recommend language designers consider community

building as a language design priority.

The Cognitive Fit

The cognitive fit of a language ultimately creates the sense of an expressive language that helps

the programmer to reason about their code and express their intentions through models of their

understanding. Through analysing Themes 6.1 and 6.3, the discussion in this work finds the

constructivist description of knowledge creation to explain this factor of digital luthier’s needs

effectively. If a digital luthier understood how to solve a problem using loops, however, a language

provided only recursion, we may describe the language as having a poor cognitive fit because

the knowledge constructed by the luthier cannot be effectively applied - despite a solution being

possible using either approach.

This selective pressure is often best fulfilled when the embedded knowledge within a language

either aligns with a participant’s existing understanding or allows them to build on their knowledge

constructs in order to learn new models and solve the problem they are working on, often in the form

of building or having familiar idioms for writing code. This is most often present in a language

through libraries, where, as mentioned previously, a library may be the equivalent of an EDSL

(Zhang and Oliveira 2019). At this point, a strong idiom or programming paradigm is established

within the library, and the programmer can think in a highly abstract way, using more abstract

models of reasoning. This characteristic is shown to be highly desirable from participants in our

study and has interesting implications when considering the influence of these highly idiomatic

approaches on their output (McPherson and Tahıroğlu 2020).

This cognitive fit is best achieved through domain specialisation, such as DSLs and EDSLs.

Participants often describe moving between an expressive DSL such as Max/MSP to prototype,

where the cognitive fit allows for freely expressing ideas before implementing their ideas using

C++, where they can focus on their essential requirements and the computing domain more.

103

An interesting topic in support of this is the concept of Bi-directional code transformation

(Chugh 2016). This concept, currently explored in the context of vector graphics design through

programmatic and direct manipulation (Hempel, Lubin, and Chugh 2019) presents many potential

benefits to supporting digital luthiers. In the case of this selective pressure, previous work with

Faust demonstrates the value of such a strategy, allowing different idioms to be used to express

problems through translation between paradigms (Gaster, Renney, and Mitchell 2018).

Epistemic Languages

The epistemic nature of programming languages is discussed in relation to many of the themes in

this work, where through different perspectives, the knowledge can be embedded in languages to

support digital luthiers (Section 6.1), it can work in harmony to improve the expressivity of the

digital luthier (Section 6.3), it can also be shared through artefacts and embedded in the DMI

itself, as described by (Magnusson 2009) and relating to Section 6.2. The community can also act

as a store of knowledge (Section 5.2).

Programming languages are examples of social creativity, co-evolving with the ideas of multiple

stakeholders through communities of shared interest (Fischer 2001). The very nature of develop-

ing new languages to create DMI itself implies the embedding of knowledge into tools for digital

luthiers. Through efforts such as (Bernardo, Kiefer, and Magnusson 2020), we see that empow-

ering the digital luthier with the capacity to specify new languages furthers this approach. What

appears to be an essential consideration in the design of new epistemological tools is to consider

how the paradigms and idioms developed impact the output (McPherson and Tahıroğlu 2020).

As McPherson and Tahıroğlu points out, ‘The main difference with low-level languages is not the

presence or absence of hidden scripts, but the extent to which they are concealed from the designer

on first encounter.’ In designing new languages, it is important to consider in what sense these in-

fluences are made explicit. We suggest that the notions of influence from a programming language

extend beyond aesthetic influences on the musical output and impact all forms of problem-solving,

where idioms form the grounds for the solutions that a language guides its user towards. Par-

ticipants in our study suggest that these effects are primarily positive, supporting them in their

process. Ultimately, the need for digital luthiers to have epistemic languages are complex and call

for further research. While many of the technical characteristics we have discussed help support

throughout this chapter support the embedding of knowledge, in response to this selective pressure,

language designers should instead look to contextualise how they are embedding domain knowledge

in there language, and to what extent should that knowledge be made explicit, to provide digital

luthiers paradigms and idioms that work toward their goals. We suggest that this requirement

warrants more research to support the development of new tools and to support meta-design in

digital lutherie further (Fischer and Giaccardi 2006).

Domain Ergonomics

Domain ergonomics describes the selective pressure of a language’s capacity to express specific

problems. The capacity for a language to suit the domain through ergonomic and idiomatic

expression underlies a number of the selective pressures in table 7.1.2. Throughout the study,

participants discussed the need for languages to model the domain sufficiently. This was possible

for general-purpose languages as well as Domain Specific Languages (DSLs), where well-designed

libraries could provide idiomatic means for expressing domains such as the C and C++ DSP

libraries mentioned by participants. While the importance of good library design should not

be understated, ultimately, libraries are limited by the paradigms, semantics and syntax of the

language they are written in.

For example, the control of memory and its impact on performance cannot be specified in

104

Python. On the other hand, participants describe Python as being better for working with data,

over C and C++. Of course, for DMI design, the value of DSLs is once again apparent, where

a DSL can have semantics designed around concepts important to digital lutherie. Chuck, for

example, provides tight integration with expressing timing as it relates to sample rate, a semantic

that is easy to express and functions in a sample-accurate way that suits the processing of audio

(Wang, Cook, and Salazar 2015). Given the value of building these highly nuanced and concise

languages, deep EDSLs (Gill 2014) or full standalone DSLs are typically required to achieve such

significant features.

Programming languages also offer features to allow the programmer to model domains and

create a system of constraints with which they can work: type systems. There is currently no

strong suggestion that cognitive load is impacted by statically typed languages when compared to

dynamically typed languages (Koeppe 2018). The development of code using types takes on an

approach where a programmer alternates between modelling the domain of their problem through

types and then using expressions to solve the problem (Lubin and Chasins 2021). How this

differs from programming with dynamic programming is not yet examined; however, participants

expressed through Theme 6.1 that the capacity for the language to take an active role in guiding

and preventing errors is one that Lubin and Chasins describe the statically typed functional

programmers as using the compiler for, often invoking the compiler to use the type system to

guide them and test assumptions. Type systems seem to present a feature to support domain

modelling that the programmer can use interactively and should be explored further.

Open to Entry

DSLs are often cited as being both easier to learn and more expressive in the domain Hudak

(1997). Typically, as it needs to cover less use cases (and has not evolved over many years as a

general purpose language, accruing legacy design decisions), a new DSL can have a much simpler

grammar. This improves the capacity to learn the language due to less complexity in expressing

ideas, and the semantics of the language are typically well suited to the domain, making the

idiomatic way to achieve something more obvious. Simple grammars allow for the easier use of

parser generators, which make tokenisation of the source language far simpler and positively affect

language development and maintenance (Parr and Quong 1995; Parr and Fisher 2011).

Where digital luthiers may use a general-purpose language, the support for exploration of li-

braries and code is an important one that type systems may also provide benefits for. While it is

still debated, through communities such as the Type Script community (Fischer and Hanenberg

2015) and functional programming communities (Lubin and Chasins 2021), there is a strong advo-

cation for well-typed languages providing better documentation and tooling (Mayer et al. 2012),

lowering barriers to entry.

Much like in the case of the social influence SP, community plays a major role and community

building once again presents a critical design consideration for lower barriers to entry. Morreale

et al. (2017) describes two factors to lowering barriers to entry, initial setup time and learning

curve. They suggest streamlining setup time through frictionless development environments such

as browser-based programming tools, a strategy used by Faust, lowering the set-up time enough

for use in a school setting (Michon et al. 2021). Morreale et al. also suggests that the learning

curve of their platform is addressed by using familiar programming languages. For the language

designer, this implies that, as discussed throughout our themes, familiarity is a powerful component

in language design, where familiar syntax and idioms help improve the learning curve. This also

suggests a dependency on the selective pressure of social influence.

Digital lutherie also represents a design community with an established relationship to social

creativity. In considering the ways in which barriers can be turned into opportunities, Fischer

105

(2004) present examples for facilitating social creativity, which they provide in Table 7.1.3. Lan-

guage designers can facilitate community formation through the same mechanisms that support

social creativity, in particular facilitating the interconnection of sub-communities that Morreale

et al. refer to as pluggable communities, accelerating and diversifying community formation.

Barriers Opportunities
Spatial Face-to-face supports maxi-

mal bandwidth; face-to face
limits number of participants

Involving larger communi-
ties (“the talent pool of the
whole world”); exploiting lo-
cal knowledge

Temporal Communication through ar-
tifacts; inherent difficulty of
collaboration between people
who do not know each other

Building on the work of the
giants before us

Conceptual Focus solely on communica-
tion; group-think

Making all voices heard; in-
tegrating diversity

Technological Focus on what is technologi-
cally doable; requires formal-
ization

Things are available all the
time; computer-interpretable
structures enable support
mechanisms

Propagation

In new languages, the challenge of generating outputs that can be easily propagated from the

designer to users (in support of feedback and sharing) creates a challenge in supporting and main-

taining multiple integrations with different technologies. Whether this is the target operating

systems, architectures or even other runtime environments such as plugin formats, this barrier

often forces new languages into smaller niches, such as supporting only one desktop environment.

As such, it is recommended that language designers aim to separate their language into a

front end and a back end, a common strategy in compiler design (Aho, Sethi, and Ullman 2003).

Typically this involves creating some intermediate representation that can be transformed into

multiple outputs supporting a range of target architectures.

This idea can also be realised through both transpilation and EDSL design, where the lan-

guage is transformed into, or embedded in, a language that already targets the desired platforms or

ecosystems. Once again, Faust provides a good example of this, however, other relevant examples

in digital lutherie include the use of OSC as an intermediate representation in both Tidal cycles

and Norns to use supercollider as a runtime environment for sound synthesis.

Propagation of technology largely orients around the technical requirements of targeting various

devices, a challenging goal for which solutions are continuously evolving. This is best supported

through the developing practises of separation of concerns and tools that separate the language from

the device on which it runs, where examples such as WASM2 and provide a compelling technology

that may be useful in realising these needs (Gaster and Cole 2020; Gaster and Challinor 2021).

Stability

The effects of time on software are hard to predict and a challenge for digital culture on many

levels.

Information storage and file reading which are relevant to the configuration and storage of

many tools in digital lutherie are affected by the bitrot phenomenon (Król and Zdonek 2019).

Participants presented the need for their instruments to remain functional years into the future

and are motivated to use more popular tools, often grounded in other disciplines, to ensure that

2https://webassembly.org/

106

the community continues to maintain the technologies they rely on. This motivates two things

in the design of new languages for digital lutherie. Support for the continued co-evolution of the

instrument, where factors like opensource code reassure users that all stakeholders maintain the

project, rather than depending on a single ‘owner’.

Because technology is a continually evolving medium of interconnected technologies, the root

cause of bit rot in the first place, the social role in digital lutherie is not only in creating but also

preserving the DMI.

This necessitates a maintenance culture supported by documentation and tooling that can

support the ongoing maintenance and onboarding of new maintainers. While approaches such as

type systems, as discussed previously, may encourage and support this, we also see the value of

translation, facilitated through semantic first design, as having value here. This would present

the possibility of automatically translating source code for instruments for which there is no longer

a functional runtime or target (Mariano et al. 2022). The design of languages through more formal

language design allows for many benefits for digital lutherie. As Bartha, Cheney, and Belle (2021)

describe, rarely are programming languages designed with a formalised semantic model in place.

As such, many tools must first construct a model of the given language before they can offer the

intended benefits whereas, drawing on a semantics-first approach to language design allows for

deeper and more rapid integration with tools, as well as improving paths to translations that can

provide analysis of software correctness or translate code into alternative paradigms or languages

altogether.

Composability

Digital luthiers emphasise a need for their tools to support the decoupled and composable nature

of DMI, offer them domain-specific expression, and support sharing and performance on different

platforms. In software design, loosely coupled and modular design is considered a common goal,

however, it also tends to increase complexity. Where languages interact using runtimes, proto-

cols such as MIDI or OSC provide the current standard for interoperation, decoupling through a

messaging-based model (Figure 7.3). This typical model tends to require the tighter coupling of

the mapping engine and sound engine as described in the instrumental model (Magnusson 2010a).

For deeper integration, foreign function interfaces provide an option. In particular, the use

of the hourglass model (Beck 2019), where an interface written in C 3 separates the underlying

implementation and the calling system, creating a common, minimal interface. This is an ap-

proach explored in Gaster and Cole (2020) and Gaster and Challinor (2021)’s AudioAnywhere

work, as well as an established model for implementing foreign function interfaces in programming

languages (Stefanus DuToit 2014).

Cross-language composition may also be a desirable strategy to mirror the composability of

DMI, and there are a number of possible ideas that may help with this challenge. This approach

may be described at a high level through the diagram shown in Figure 7.5. Cross-language com-

position describes the potential of different languages through some form of interface, allowing the

high-level ‘puzzle-like’ construction, where given the correct interface, languages can be joined.

While this design is challenging and requires considerable planning, some of the strategies intro-

duced here may help to realise this goal, where future work may consider this approach through the

use of extra ‘adapter pieces’, that act as converters to allow the interfaces to connect. This opens

up further experimental ideas such as type propagation between languages (Patterson and Ahmed

2017). Approaches such as this further support the need for defined semantics for languages and tie

in the previously discussed expressive benefits of type systems with the compositional properties

discussed here.

3Using the C Application Binary Interface (ABI)

107

Figure 7.3: Decoupling through a protocol such as OSC or MIDI.

Figure 7.4: The hourglass model, using the Application Binary Interface (ABI) for foreign func-
tion interface.

The previously mentioned strategies of Transpilation and EDSLs (Dinkelaker, Eichberg, and

Mezini 2010), discussed in Chapter 3, can provide a solution to composing domains through uni-

fication in a single host language. These approaches provide highly integrated and achievable

approaches to improving composability between domains for new DSLs. Transpilation allows for

108

Figure 7.5: A model of the composition of languages per domain, where languages are com-
posed together to each manage one domain of the instrumental model.

the generation of libraries for use in a wider codebase (Figure 7.6, where languages are unrestricted.

We see this model already in use by Faust. The pattern using EDSLs is currently less common, but

one we have explored previously and suggest is a powerful pattern to consider in future. Where

languages support it, EDSLs provide the most seamless experience, acting as highly custom li-

braries and integrating with a codebase in the most idiomatic way (Figure 7.7). Languages such

as OCaml, Haskell and Rust provide exceptional support for this approach.

Figure 7.6: A model for composing domains through a shared transpilation target language.

109

Figure 7.7: A model for composing domains through embedding in a single target language.

7.1.4 Summary

In response to the selective pressures presented in this chapter, this section introduces a selection

of programming language development strategies that support the needs of digital luthiers. The

implementation of domain-specific languages (DSLs) are discussed through transpilers, a common

and growing trend, and embedded domain-specific languages (EDSLs), both of which provide

patterns that address multiple selective pressures. The value of designing languages with a semantic

first approach is introduced to provide a more robust and stable foundation for language design,

supporting better integration and tool support in a new language. This feeds into the need for

community building for new languages, where tools and features such as static types act as a bridge

between the language and community, aiding in maintenance and education. This semantics first

design also facilitates strategies such as bi-directional code translation, where source code can be

moved between paradigms and languages, supporting new ways of reasoning and potentially a

strategy for futureproofing work through translation to contemporary languages. Additionally,

a series of patterns for supporting the composition of DSLs was described. Given the mutable

nature of DMIs, discussed in Section 6.2, a system for supporting the domain-specific expression

of instruments in this manner offers many advantages, mainly where high levels of optimisation or

the target environment is resource-constrained yet still represents the entire coupled model of the

instrument 4.

Many of these ideas can be related to work in Chapter 3 where, given the ideas developed

through this study and analyses, there is a clearer direction for these explorations to build upon.

Whilst they were initially explored based on intuition, certain approaches used in exploring lan-

guage design clearly relate to the findings in this work. Transpilation techniques and the use of

DSLs are well supported in the pursuit of composable and expressive tools for example. However,

the implementation of ideas in Chapter 3 may be misaligned with other selective pressures identi-

fied in this section. Whilst the embedding of a DSL is a powerful concept that aligns with many

4for example, in fully stand-alone embedded instruments such as Artiphons Orba or the open source OTTO

110

selective pressures, social influence, cognitive fit and epistemic languages all present a challenge

when leveraging unfamiliar ecosystems of technology, which, in the case of this work, relates to the

use of Haskell for these implementations. We see that the use of new paradigms and unfamiliar

languages can create friction in language adoption. This suggests the contributions in Chapter 3

could be developed to further align with the selective pressures outlined in this chapter in order to

further explore tools for digital lutherie. In particular, as is outlined in Section 3.4.6, many of the

ideas presented in this early work apply ideas from the functional paradigm to digital lutherie. This

implies a different form of epistemic knowledge within the language and may therefore, suggest

developing such knowledge within the digital lutherie community. Future work developing from

Chapter 3 will therefore build upon a better understanding and develop the role of paradigms and

idioms within programming languages for digital lutherie.

Rust as a Candidate for Digital Lutherie

Much like in digital lutherie, the C/C++ combination of languages dominates the niche of performance-

oriented programming, such as systems programming and embedded systems. (Chatley, Donald-

son, and Mycroft 2019) discuss the potential of new languages to replace C and C++, given their

‘unsafe features’. They concede that there is unlikely to be enough inertia in new languages to

remove such as dominant presence. As discussed in Chapter 5, digital luthiers show preferences

toward familiarity and pragmatism and languages with a well-established niche, such as C and

C++, represent a presence that even potentially ‘fitter’ languages in the evolutionary sense would

struggle to replace. Perhaps as a reflection of the wider programming community, we see that

the Rust programming language has become a newer language to warrant some exploration from

digital luthiers. By design, DSLs are poorly placed to provide the digital luthier access to the

systems-level programming that is often required. Rust presents one of the most contemporary

options in this space that combines enough maturity in the ecosystem to be of value to the dig-

ital luthier. Rust provides effective and contemporary solutions to many selective pressures for

languages in digital lutherie.

Rust meets many of the pragmatic considerations, being highly performant and modular both

in its language design and through tooling such as its powerful package manager, Cargo. These

features alone address many pressures, such as stability, propagation and composability, whilst

lowering barriers to entry. Rust also has a powerful macro system, suitable for building EDSLs

and has a powerful type system. Interestingly, whilst the language is multiparadigm, allowing for

the expression of ideas in a number of ways, in light of the discussion on epistemic languages, Rust

also represents both a fairly opinionated language and community. Along with many technical

ideas, this makes it an exciting candidate to further explore the idiomaticity of programming

languages further in the context of digital lutherie.

7.2 The Next Steps: Understanding the needs for Digital

Luthiers

In inductively exploring the craft of digital lutherie and the relationship of digital luthiers and their

tools, we have contextualised our interpretation in light of a number of key pieces of literature.

We suggest that future studies may look to investigate some of the following ideas, testing the

hypotheses formed through the thematic analysis presented here.

111

7.2.1 What are the Implications of Influential Programming Languages?

Gaver (1991)’s models of affordances are a longstanding approach to understanding interactions

with technology. In context of the use of DMIs Magnusson (2010a) presents the users’ exploration

of DMIs through constraint, where after an intial exploration of affordances, users spend their

time internalising the constraints of a system. Similarly, we see that participants described an

active interest in systems of constraint. Features such as type systems and highly idiomatic,

domain-specific libraries provide excellent examples of the pursuit of constraint in programming,

with Magnusson (2010b)’s observations as an example, partially being contextualised in their live

coding language.

Digital lutherie spans many different practices of programming (Bergström and Blackwell 2016),

from software engineering to tinkering and hacking. Digital lutherie is predominantly a form of

programming tightly related to creativity in much the same way its output (the DMI) is. Analysing

digital lutherie in the context of constraints has clear implications on the DMI that are created

(McPherson and Tahıroğlu 2020), where languages impart a bias and influence that may be difficult

to avoid. While participants in this study showed awareness of this influence of their tools, for the

most part, this impact was framed as a positive guide to better solutions. McPherson and Tahıroğlu

suggests that it is the cultural and creative influence that may be implicit in the tool that needs

consideration, where even the western notion of a ‘page’ presented by an empty MAX/MSP window

can suggest some bias (Puckette 2002). This motivates developing a better understanding of what

the impact of these influences is, and how they can be made explicit such that the digital luthier

can factor them into their use.

7.2.2 How can PLs Support EUD In Digital Lutherie?

The analyses in the previous two chapters have drawn particular attention to the need to sup-

port End User Development (EUD) in digital lutherie. Participants identified DMIs as inherently

evolving artefacts constructed through loosely coupled components. The co-evolution of DMIs is a

largely social endeavour, and language design can address and support EUD in many ways. Fischer

(2021) describes EUD as a ‘suitcase word’, stating that they are ‘words carrying many meanings

so researchers and practitioners can talk about complex issues in shorthand’. They describe many

domains of EUD, including many relevant to the field of digital lutherie including meta-design,

remixing and read/write cultures, social productions and cultures of participation. Primarily, this

research identified two key components of EUD that require reflection in programming languages

for digital lutherie. First, and perhaps most obviously, is its relationship to social creativity. In

providing the early definition of digital lutherie Jordà (2005) described a role alternating between

‘edit-mode’ and ‘run-time-mode’ where the musician is a luthier-composer focused on the design

of the instrument, then changes to the improviser-composer who need find answers to the ‘ques-

tions posed by the luthier-composer’. As the relationships in digital lutherie have led to a more

distributed network of roles, these questions are presented through

The language designer must consider this process as a core component of their language design,

finding means to facilitate the dialogue of social creativity through their tools. Cultures of reuse

and remixing can be seen to be developed through communities, in particular, through allowing so-

called ‘pluggable communities’ where the ability to support well-established existing technologies

facilitate faster and more diverse forms of community (Morreale et al. 2017). Further, we can see

that cultures of sharing and remixing develop in ecosystems where the tools imply open-source and

sharing in their design. The javascript ecosystem, in particular, package managers such as NPM
5 implicitly encourages a ‘read/write culture’, where sharing source code, reuse and remixing is

the primary mode for the tool. Distributing closed or hidden code is a far higher friction way to

5https://en.wikipedia.org/wiki/Npm (software)

112

work in these environments; therefore, it is simply not the default (Lertwittayatrai et al. 2017).

Our findings support this view emphasised through themes in both analyses and ultimately in the

selective pressures derived from them, where community formation should be a primary and first-

class focus for language designers. To address this issue, we suggest that language designers aim to

build their own ‘pluggable community’ and engage in the ecosystem that mirrors the composable

nature of DMI.

The second key tenet of EUD that we find in digital lutherie is meta-design. Fischer, Fogli, and

Piccinno (2017) calls for: ‘new theoretical frameworks, new discourses and shared languages about

concepts, assumptions, values, stories, metaphors, design approaches, and new learning theories,

such as those aimed at promoting computational thinking.’ We suggest that the literature on

digital lutherie provides an excellent foundation for this already, where work such as that of the

D-Box explores ideas around meta-design (McPherson et al. 2016; Zappi and McPherson 2018).

Artificial intelligence (AI) plays a crucial and developing role in meta-design (Fischer 2021).

With the recent implications in the field of AI, in particular, that of large language models, there

is the potential for new paradigms within programming and EUD to emerge, extending the tools of

the programmer with powerful new modes of expression through natural language. We already see

examples of this with the AI programming tool CoPilot(Imai 2022). This field is a very emerging

side of HCI that needs attention to understand the implications for HCI but also the ethics of such

tools.

From the study discussed throughout this work, and the selective pressures we define, we find

that a number of design guidelines provided by Fischer, Fogli, and Piccinno (2017) are pertinent to

the support of meta-design in digital lutherie. Fischer, Fogli, and Piccinno advocate for supporting

domain specialists, who are interested in solving their own problems, rather than the problems of

computing. Throughout this chapter we have presented some technical solutions that may support

this. In particular, we note how the use of embedded DSLs in powerful languages such as Rust

or transpilation to common targets like C++ may allow for strong integration between domain-

specific problem-solving and the essential requirements of a system, engaging the more focused

domain specialist being directly engaged in the meta-design process without the need to consider

implementation details. Beyond this and considering EUD more generally, supporting this practice

within digital lutherie focuses more on social aspects. As in the example above, technical ideas

should be introduced to serve a role within the community, addressing many of the other design

guidelines set out by Fischer, Fogli, and Piccinno (2017) and reflected in work in the digital

lutherie community (Morreale et al. 2017) by facilitating accessibility and engaging communities

with different perspectives and knowledge bases.

To language designers, we point to the selective pressures in Section 7.1, which, when combined,

support end-user development. To researchers, we advocate for the value in further understanding

how all stakeholders in digital lutherie can benefit from the languages used to create DMIs.

7.2.3 How can we Avoid Compromise in Digital Luthiers Tool Choices?

Through our first analysis, we found the digital luthier’s pragmatic requirements to significantly

influence tool choice, aligning with the work of (Stolterman and Pierce 2012). Where Stolerman

and Pierce consider Argyris’ theory of action (Argyris and Schön 1974) to suggest that pragmatism

represents espoused theories and the environmental aspects to relate to theories in use. We found

this did not hold for digital lutherie. Digital luthiers in this study demonstrate an awareness of how

their espoused theories and theories in use interact, where we later develop the espoused theories

as a set of themes around idealised languages they might use. Digital luthiers largely describe

their theories in use as compromises that often require pragmatic choices, or follow familiarity

and, therefore, convenience, prioritising working toward an outcome. For the adoption of future

113

languages, it will be important to understand this process further in digital lutherie, such that

languages can become closer to the espoused theory and meet more of the requirements of the

digital luthier. Much like DMIs, new languages for digital lutherie are faced with challenges in

adoption, where more familiar or lower friction languages are preferred. In developing a better

understanding of these tradeoffs, we believe it may be possible to move towards languages that

are more enjoyable to work with and offer more idealised features that participants in our study

discussed, converging on what may otherwise remain espoused theories.

7.2.4 Contributing to HCI Research on DSLs

As highlighted in Section 2.1.7, the field of research into DSLs lacks research on their evaluation

and use. Given the varied and engaging ecosystem, we suggest that digital lutherie can contribute

significantly to this. The range of DSLs used in digital lutherie includes many different paradigms

and different use cases; Faust for generating DSP processing that can be used in other contexts

from on platforms such as Bela or even microcontrollers. As Chasins, Glassman, and Sunshine

(2021) suggests, the world of programming language theory would benefit significantly from cross-

disciplinary collaboration with HCI, of which the broader DMI and digital lutherie community

clearly are. While more nuanced research relating to the musical and artist craft is nurtured in

conferences such as NIME, researchers should also look to contextualise the study and evaluation

of DSLs in the wider HCI context and incorporate these findings in venues that help make the

wider HCI community aware of these developments.

7.2.5 Mapping Problem

While this was not touched on directly in this thesis, inspired by early language explorations

and codes from the interviews that did not feature so heavily in these analyses, a number of

participants highlighted the so called ‘mapping problem’ in digital lutherie (Hunt, Wanderley,

and Paradis 2002; Tanaka 2010; Van Nort, Wanderley, and Depalle 2014). There exist many

domain-specific solutions to DSP in the world of computer music, however the mapping problem

continues to be a challenge. There are of course, many approaches to this problem (Fiebrink and

Cook 2010; Brown, Nash, and Mitchell 2018), however through exploration of paradigms such as

function programming (Wadler 1992), and in particular functional reactive programming (Elliott

and Hudak 1997; Helbling and Guyer 2016) there is a lot that programming language design can

offer in this space, potentially leading to new idioms for understanding the mapping problem. In

pursuit of providing good domain modelling for every domain of digital lutherie, new expressive

paradigms to map interactions to sound suggest a compelling area for future work and one that

can be explored in harmony with the other ideas introduced in this work.

114

Chapter 8

Methodologies

8.1 Designing Studies to better understand PL and HCI

Qualitative research is a key methodology in researching complex human interactions that reflect

the real world. There are many popular methodologies for qualitative analysis including thematic

analysis (TA), grounded theory, ethnography and interpretative phenomenological analysis often

referred to as IPA.

Qualitative methods offer the potential to examine people’s experiences, an ideal tool for HCI

research, however, conducting qualitative research requires an extensive background in understand-

ing the chosen methodology, with many implications relating to philosophies such as positivism,

constructivism and critical theory. Whilst the popularity of these methods are growing in fields

outside of sociology and psychology, it is not obvious that these methodologies are being effec-

tively used in disciplines such as Computer Science and HCI. This has motivated work on tools

and frameworks to assist researchers (Gauthier and Wallace 2022), and for approaches to the prac-

tice and publications of researchers in this field to be examined (Hoda, Noble, and Marshall 2011;

Bowman et al. 2023).

On examining methodologies suitable for this work, it became apparent that, quite rightly, a

considerable range of strategies and methodologies are used in HCI. In particular, and likely due

to the highly cross-disciplinary nature of the field, many papers present both technical work and

studies in a single paper. By combining qualitative analysis with the evaluation of technology in

short conference papers minimal space is reserved for the clear description and transparency of the

studies that are performed, which raises considerable methodological questions about the rigour

of the work. This is particularly typical in examples of HCI work where technical development is

followed by evaluation, most often through a user study. This condensing of work is common in

science, where the pressure to turn over ideas and maintain a high output of papers that demon-

strate positive results leads to the potential for poorer quality research (Fanelli 2010). This has

resulted in a counter-movement, aiming to promote rigour and transparency in research (Robson

et al. 2021).

As a field of Computer Science, HCI work requires a highly varied skillset incorporating elements

of psychology and sociology. These skills need to be built through cross-disciplinary teams or

taught programs, however, HCI practices are still a developing field of computer science in this

respect (Ramirez V et al. 2021), and while there is, of course, good progress and research being

done in the field, there is still significant room for improvement in the application of qualitative

analysis (Matavire and Brown 2008; Gauthier and Wallace 2022; Braun and Clarke 2019; Bowman

et al. 2023), particularly in programming languages research (Chasins, Glassman, and Sunshine

2021).

Having attempted to apply a rigorous methodology whilst remaining faithful to the reflexive

115

TA defined by (Braun and Clarke 2020), this section documents ideas that can combine reflexive

TA with other approaches inspired by other fields of science and even open-source software culture

to provide a call to action for HCI research to develop and be open to rigorous qualitative analysis.

As such we present a brief overview of our practice and experience to help stimulate and propagate

best practices for the field of HCI.

8.2 Promoting Rigour in Qualitative Research

Much like ongoing efforts across science to improve methodological approaches, this section shares

strategies for improving rigour in qualitative work. There are often criticisms of the value of

qualitative methods in science due to the challenges of interpretation and the nature of being

inseparable from human tendencies. Of course, science as a collective endeavour is in the hands

of humans, and quantitative methods depend on rigorous application just as much as qualitative

methods should.

Through the course of working with reflexive thematic analysis, a number of ideas to aid in

ensuring rigorous and accountable TA were identified, largely borrowing ideas from the emerging

best practices which address methodological issues in quantitative methods. In particular, problems

such as P-hacking (Bruns and Ioannidis 2016) and ‘HARKing’ (Cockburn, Gutwin, and Dix 2018)

are primarily approached through transparency and easily audited documentation of their method.

Not only do these approaches benefit the validity of research, but they also improve the capacity

for replication. We suggest these as opportunities which also benefit qualitative analysis, where

strategies such as data sharing and prepublication can improve the validity of interpretation and

stimulate secondary interpretations and, therefore, a deeper understanding. This is particularly

important in a qualitative study, as inherently, researchers impart their own biases on research,

which must be factored into any results interpreted in a study.

8.2.1 Transparency

Transparency in methodology is crucial in science, allowing readers to understand the biases and

overall context of the work, empowering them to make gauge validity. We argue that this trans-

parency must also be reflected in the qualitative analysis process. This reasoning is twofold; this

allows for further exploration by peers who may challenge the conclusions of the authors, a process

that is particularly important in qualitative research where interpretation is fundamental to the

process. Further, this also opens the door for peers to extend and reevaluate work. This allows for

accessible analysis of the information, uncoloured by the initial analysis and further allows for the

development of alternative interpretations, creating a richer and more nuanced discussion of the

source material. Other’s have observed the need for transparency in related fields such as design

(Meyer and Dykes 2020)

Borrowing a strategy from other areas of science, in undertaking this study we chose to pre-

register the methodology for the study before undertaking analysis (Yamada 2018; Bastian 2014;

Lauer, Krumholz, and Topol 2015). We chose to use this strategy of pre-registering the method

to increase transparency and provide an extra point of contact that could provide more in-depth

detail on the method, which can be easily referenced in the final publication, saving space without

sacrificing transparency (Bowman et al. 2023). This method is also seeing adoption in fields

conducting empirical research, such as psychology, with the journal ’Psychological Science’, even

going as far as promoting this method by presenting ‘Open Science Badges’ for pre-registered

studies (Pham and Oh 2021).

Though there is some push-back against the pre-registering of studies, we believe these issues

can be resolved as the practice becomes better understood and more widespread. Pham and Oh

116

(2021) suggest that, amongst other things, preregistration can lead to a false sense of transparency,

with authors ‘running long calibration tests’ or suggesting they ‘specify the hypotheses to be tested

and analyses to be performed in loose terms’. We argue that the potential for abuse doesn’t

completely undermine the system and that the benefits far outweigh the costs. They go on to

suggest that ‘open data access, self- and independent replications, and multiverse analyses’ would

all be more useful. We found the use of pre-registration to aid with these tasks when performing

qualitative analysis such as TA and therefore can only suggest they present additional benefits in

such a system.

8.2.2 Reproducibility & Replication

In quantitative studies, the reproducibility of results is an important step in establishing a valid

result. These replication studies are uncommon in qualitative work and arguably qualitative studies

cannot be reproduced (Meyer and Dykes 2020). However, when performed correctly, sharing data

from qualitative studies can be a valuable contribution. This is not without its risk, where the

decontextualisation of the data can impact the interpretation (van den Berg 2008). But in the

correct settings, there is growing recognition of the potential for better data sharing around in

qualitative research (Alexander et al. 2020). A considerable amount of work already goes into

collecting and preparing data for qualitative analysis, potentially suggesting that adding to this

will make research harder. But with the technological improvements both in the handling of

data and in the storing of social bandwidth, there are many ways in which workflows can be

made easier and sufficient context can be stored. While we see the sharing of data extracting

further value from the effort of data collection, it also has the benefit of enforcing better practices

and preventing shortcuts and bad habits as data becomes auditable (Nosek et al. 2015). It also

encourages a better post-publication culture, improving the capacity for peer review beyond just

the publishers (Bastian 2014). While Pham and Oh (2021) do not believe that pre-registration is

an effective means for improving this culture of review, they do advocate for it in the context of

data-sharing.

In order to share data, there are, of course, significant ethical considerations that need to be

factored in, which likely have been a limiting factor for data sharing in many cases (Feldman

and Shaw 2019). In particular, Feldman and Shaw discuss the implication of sharing data from

vulnerable groups or even being granted consent for use with future unknown researchers. We

certainly cannot advocate for data-sharing practices lightly and without due consideration for these

factors. However, with good methodological design, the development of supporting technologies

and considering this practice early, data sharing practises can be a highly beneficial addition to

qualitative research in HCI in many cases.

8.3 Reflexive Thematic Analysis as a tool for Programming

Language HCI

Thematic analysis is a popular research method for its unrestrictive relationship to philosophies

and other theoretical commitments (Clarke and Braun 2017). TA can be applied with respect to a

number of these theoretical frameworks, research paradigms and fields. As a research method, TA

is an accessible means for analysing a range of qualitative data through the generation of codes

which are used to form themes that interpret the shared narrative of people’s experiences, allowing

for reporting, analysis and observation. While a range of qualitative methods are used in HCI, our

research and experience suggests that TA, and in particular, reflexive TA (Braun and Clarke 2006;

Braun and Clarke 2012; Braun and Clarke 2019), provides an exceptionally flexible and powerful

tool for conducting qualitative research in the field of HCI.

117

Many areas of HCI can benefit from the more holistic approach to the observation that reflex-

ive TA offers. As an example, the topic of this thesis, the HCI of programming languages, has

traditionally been focused on evaluating usability through small user studies, often isolating small

groups or language features to observe. Often, this is not reflective of the natural setting and use

of programming languages but observing the work of hundreds of programmers remains practically

challenging, and surveying using course questionnaires yields expectedly unconvincing results.

Studies, therefore, often turn to methods such as grounded theory and TA. As these methods

become more popular, the value of such methods becomes apparent, producing far more nuanced

observations of populations of programmers (Lubin and Chasins 2021).

However, these methods are often lacking in rigour, where often the practices used are under-

reported, and the role of reflexivity is under-emphasised (Bowman et al. 2023). As the practice of

using TA develops (and other qualitative methods), we suggest a need for a better presentation of

the method and analysis in the pursuit of transparency and in order to support open science (Nosek

et al. 2015). We suggest that practices such as preregistration and data-sharing, in particular,

would considerably improve the quality of research in the field of HCI and further suggest that a

review of existing analysis, in light of Braun and Clarke (2019)’s more recent work is warranted,

to discuss and share best practices in the use of this method.

118

Chapter 9

Conclusion

In 1966, Landin (1966) published the paper ‘the next 700 programming languages’. Then 53

years later Chatley, Donaldson, and Mycroft (2019) followed up with the paper ‘The next 7000 pro-

gramming languages’. Much like these papers, this thesis set out to consider the human-computer

interaction and evolution of programming languages. Through an inductive qualitative study and

reflexive thematic analysis, this thesis begins to provide an understanding of the relationship be-

tween digital luthiers and their programming languages. Building upon the evolutionary analogy

that Chatley, Donaldson, and Mycroft construct, we contextualise the discussion from this study

119

as a set of selective pressures that influence the digital luthier’s motivations for the selection and

use of programming languages. These selective pressures provide a set of ideas to further explore

in future research and to provide a partial answer to the primary research question of this thesis:

How do we design the next generation of programming languages used in Digital

Lutherie?

Of course, due to the inductive nature of this work, this research question is not answered in

as much as it is used to motivate a discussion and exploration of ideas that provide a foundation

for us to build and research new languages for digital lutherie.

This chapter summarises the contributions of this work in the following sections.

9.1 Explorations of New Music DSLs

In the early stages of this thesis, the design of a number of DSLs for use in digital lutherie were

explored, presenting a number of techniques that were later offered as provocative ideas for language

design that relate to the selective pressures derived from our themes.

Some of these ideas are presented in Chapter 3 and were featured in the following papers:

• Return to temperament (In digital systems) (Renney, Gaster, and Mitchell 2018)

• Digital Expression and Representation of Rhythm (Renney and Gaster 2019)

Further, the ideas developed through this time went on to influence and contribute to the

following related works:

• Outside the block syndicate: Translating Faust’s algebra of blocks to the arrows frame-

work (Gaster, Renney, and Mitchell 2018)

• Fun with Interfaces (SVG Interfaces for Musical Expression) (Gaster, Nathan, and Carinna

2019)

Alongside exploring technical approaches to DSL design, these explorations also contributed

novel approaches to encoding musical ideas that lie largely outside (or at least peripheral to)

the current Western classical tradition of music. As such, they may present a starting point for

exploring new idioms in programming languages for digital lutherie and, more broadly, musical

expression.

9.2 Study Analysis: How do Digital Luthiers Choose Their

Tools?

Following interviews with 30 prominent digital luthiers, described in Chapter 4, a reflexive the-

matic analysis was conducted generating three themes in response to the research question ‘How

do Digital Luthiers Choose Their Tools?’ Themes titled ‘The Pragmatist’, ‘A Product of Our

Environment’ and ‘Intentions’ where presented, contextualising the designer tool relationship of

digital luthiers. These themes indicated that digital luthiers are aware of their ‘theories in use’ (Ar-

gyris and Schön 1974) and largely make choices through systems of compromise, rather than for

idealistic qualities in their tools. These themes also introduced the challenges of meta-design in

digital lutherie, the design of tools that are used by designers (Fischer and Scharff 2000).

120

9.3 Study Analysis: What do Digital Luthiers Value from

their Programming Languages?

A secondary analysis using the same approach and focusing on programming languages was con-

ducted following the previous analysis. The themes ‘A Guiding Force’, ‘The Mutable Instrument’

and ‘Expressing My Ideas’ were generated. These themes related their selection and use of pro-

gramming languages to the constructed knowledge used to solve problems

(Ben-Ari 1998; Allen, Donham, and Bernhardt 2011) and how languages mirror these models

through paradigms, idioms and domain-oriented design. These themes also point to the design of

epistemic tools, where domain knowledge is embedded in the programming language to be leveraged

by the user (Magnusson 2009). The theme ‘The Mutable Instrument’ also clarifies the roles of social

creativity and meta-design in the programming languages digital luthiers use, demonstrating a need

to support an ongoing co-evolution (Costabile et al. 2006) of the artefact (DMI) that is created,

where programming languages play a critical role (Fukuda et al. 2021).

9.4 Selective Pressures on Programming Languages for Dig-

ital Lutherie

Through the analysis and discussion of the thematic analyses alongside existing literature, a set

of selective pressures has been produced to explain the needs of digital luthiers. These selective

pressures are described in Section 7.1.2, and Figure 9.1 visualises how the themes produced through

the previous thematic analysis relate to these selective pressures. These selective pressures are

presented to motivate design considerations for meeting the requirements of digital luthiers when

creating new languages. They incorporate both technical and social requirements, and through

Chapter 7, a number of ideas to address these pressures are presented. Transpilation strategies

and the use of embedded DSLs are described to support the design of new DSLs, alongside some

architectural patterns that allow for the composition of languages across the domains of digital

lutherie. The use of well-formed semantics is also discussed as a cornerstone of language design

that offers better support for tooling, learning and the potential for translating languages between

paradigms, supporting alternative approaches to problem-solving.

9.5 Directions for Future Works

Following the inductive exploration of digital lutherie, four significant directions for future work

have been created, where the ideas established in this thesis may be further and more deeply

understood. In conclusion, we present three new research questions:

What are the implications of influential programming languages?

How can PLs Support EUD In Digital Lutherie?

How can we avoid compromise in digital luthiers tool choices?

In addition, we call the designers of new domain-specific languages (DSLs) for digital lutherie

to consider contributing to the deficit in HCI research studying DSLs. Likely due to the inherent

domain focus of DSLs, much of our understanding remains siloed in the niche that the DSL targets.

However, much like we suggest that digital lutherie is a rich, real and well-researched field of digital

lutherie, so too is the work on DSLs. We suggest that through collaboration with the wider PL/HCI

community (Chasins, Glassman, and Sunshine 2021), music DSLs can contribute to the broader

understanding and value of DSLs.

121

Figure 9.1: The mapping of themes to selective pressures, established in Chapter 7.

122

9.6 Reflexive Thematic Analysis

Alongside contributions to digital lutherie, this thesis aims to demonstrate the value of reflex-

ive thematic analysis and attempts to provide a rigorous and transparent demonstration of the

methodology. Currently, a number of qualitative analysis methods are used in the study of DMIs

and in the wider HCI community. We suggest, however, that these methods often tend towards

a ‘lightweight version’, which does not extract the most value from the methodology being used.

In Chapter 8, a discussion around how the method may be developed within the HCI research

community is presented. Through the experience of this work, it is suggested that further work

is required in effectively using these methodologies and, in particular, highlights the suitability of

reflexive thematic analysis (TA) as an appropriate methodology for HCI researchers. Chapter 8

discusses the practice of reflexive TA along with drawing together a number of practices that

contribute to improving methodology in the space of HCI and potentially even further afield.

9.7 Final Words

The thesis changed from a journey to build a programming language to seeking to understand

and motivate building better programming languages. In doing so, I found that building new

languages is as much about people as it is about technical ideas. In much of language design,

despite the construction of impressive and inspiring ideas that allow us to express our intentions

in technology, too often, the human is forgotten or not given due attention. Digital lutherie

represents an exceptional field. Music has always been a deeply creative endeavour, supportive of

many technological cultures, art, composers and performers, never been constrained by existing

music, nor has it shied away from adopting and experimenting with new technology, arguably being

on the forefront and even potentially a motivator of technology. Having had the opportunity to

speak to and work with such exceptional digital luthiers I am more motivated and equipped to be

a part of the evolution of technology that it perfectly embodies. To those people, thank you. And

to those looking to add to the collective knowledge and ecosystem of technology that is digital

lutherie, I hope some of these ideas provide inspiration and guidance.

123

Appendix A

Participant Data

124

ID
R
o
le

E
x
p
e
rie

n
c
e

In
stru

m
e
n
ts

C
re

a
te

d
E
x
a
m
p
le

In
stru

m
e
n
ts

L
a
n
g
u
a
g
e
s

1
M
u
sic

T
ech

n
o
lo
g
y
resea

rch
er

a
n
d
p
ro
fesso

r.
3
0

1
0

F
M
O
L
,
rea

cta
b
le

(a
n
d
m
a
n
y
m
o
re)

C
+
+
,
P
d

2
O
w
n
er

o
f
M
u
ta
b
le

In
stru

m
en
ts

1
1

3
5

M
u
ta
b
le

In
stru

m
en

ts
S
h
ru
th
i,

A
n
u
sh
ri,

A
m
b
ika

,
M
ID

Ip
a
l,
E
u
-

ro
ra
ck

lin
e

C
+
+
,
P
y
th
o
n

3
D
ig
ita

l
a
rtist/

p
erfo

rm
er/

co
m
p
o
ser

1
0

4
S
o
ft

R
ev
o
lv
ers,

B
a
llistics,

a
u
-

to
p
sy.g

la
ss

S
u
p
erco

llid
er,

M
a
x
,
P
y
th
o
n
,
O
p
en

-
S
ca
d
,
T
o
u
ch
d
esig

n
er,

P
ro
cessin

g
,

J
ava

scrip
t

4
A
rtist

3
0

3
P
erso

n
a
l
o
n
es

-
th
e
la
d
y
’s

g
lov

e,
th
e

S
p
rin

g
sp
a
re

M
a
x
M
S
P

5
S
o
ftw

a
re

E
n
g
in
eer

6
3

P
o
la
ro
n
a
n
d
o
th
er

p
ro
to
ty
p
es

C
,
C
+
+
,
(J
ava

/
J
ava

scrip
t
fo
r
n
o
n

D
M
I
w
o
rk
)

6
S
o
ftw

a
re

E
n
g
in
eerin

g
M
a
n
a
g
er

1
1

8
+

E
ig
en

h
a
rp
,
L
in
n
S
tru

m
en

t,
G
E
C
O
,

A
n
im

o
o
g
,
M
o
d
el

1
5
A
p
p
,
M
in
im

o
o
g

M
o
d
el

D
A
p
p
,
M
o
o
g
O
n
e,

C
la
rav

ox

O
b
jectiv

e-C
,
C
+
+
,
S
w
ift,

C
,
B
a
sh
,

P
y
th
o
n

7
C
E
O

8
1
0
0

E
u
ro
ra
ck

M
o
d
u
la
r,

D
esk

to
p
S
y
n
th
,

E
ff
ects

P
ed

a
ls,

A
u
d
io

D
ev

b
o
a
rd

C
+
+
,
P
y
th
o
n
,
C
so
u
n
d
,
A
rd
u
in
o

8
C
o
m
p
o
ser

4
2

N
o
p
u
b
lish

ed
p
ro
d
u
cts,

to
o
ls

fo
r

p
erso

n
a
l
u
se

N
o
n
e
in

rela
tio

n
to

th
is

9
L
in
n
stru

m
en
t

C
,
C
+
+

1
0

C
E
O

&
F
o
u
n
d
er

1
0

5
A
rtip

h
o
n
IN

S
T
R
U
M
E
N
T

1
;
A
r-

tip
h
o
n
O
rb
a
;
p
ro
jects

in
d
ev
elo

p
-

m
en
t

C
,
C
+
+
,
A
p
p
le

M
eta

l

1
1

R
esea

rch
er

a
n
d
L
ectu

rer
1
0

2
0

T
h
e
B
la
d
eA

x
e,

th
e
P
la
teA

x
e,

th
e

C
h
a
n
fo
rg
n
o
p
h
o
n
e,

th
e
G
ra
m
o
-

p
h
o
n
e,

N
u
a
n
ce,

a
n
d
m
a
n
y
m
o
re.

F
a
u
st,

P
u
reD

a
ta
,
C
+
+
,
O
b
jectiv

e-
C
,
W
eb

A
ssem

b
ly

1
2

C
E
O

&
F
o
u
n
d
er

1
3

3
A
lp
h
a
S
p
h
ere,

B
eta

L
o
o
p
,
N
U
S
IC

C
+
+
,
K
o
tlin

,
P
y
th
o
n

1
3

A
ssista

n
t
P
ro
fesso

r
o
f
M
u
sic

T
ech

n
o
lo
g
y

1
1

8
D
M
Is

b
a
sed

o
n
a
u
d
io
/
v
isu

a
l
p
h
y
si-

ca
l
m
o
d
elin

g
,
h
a
cka

b
le

D
M
Is

co
m
-

b
in
ig

d
ig
ita

l
a
n
d
a
n
a
lo
g
elctro

n
ics,

im
m
ersiv

e
v
irtu

a
l
D
M
Is,

co
lla

b
o
ra
-

tiv
e
n
etw

o
rk
ed

D
M
Is

C
/
C
+
+
,
A
ssem

b
ly,

G
L
S
L
,
P
u
re

D
a
ta
;
m
o
re

ra
rely

S
u
p
er

C
o
llid

er,
M
a
x
/
M
a
x
F
o
r
L
iv
e,

C
#

[U
n
ity

],
m
isc

scrip
tin

g
la
n
g
u
a
g
es

1
4

C
o
m
p
o
ser

&
In
stru

m
en
t
B
u
ild

er
1
0

2
0

L
ig
h
td
o
m
e,

co
n
certro

n
ica

,
eg
g
io
-

p
h
o
n
e,

th
e
ch
ro
m
a
tic,

th
e
so
n
ic

b
o
n
n
et

a
n
d
m
o
re

A
rd
u
in
o
,
M
a
x

125

ID
R
o
le

E
x
p
e
rie

n
c
e

In
stru

m
e
n
ts

C
re

a
te

d
E
x
a
m
p
le

In
stru

m
e
n
ts

L
a
n
g
u
a
g
e
s

1
5

S
o
ftw

a
re

en
g
in
eer

/
A
u
d
io

d
ev
elo

p
er

6
5

A
b
leto

n
L
iv
e,

A
b
leto

n
P
u
sh
,
A
b
le-

to
n
S
im

p
ler

/
S
a
m
p
ler

/
W
av
eta

b
le

C
,
C
+
+
,
P
y
th
o
n

1
6

R
esea

rch
er,

d
esig

n
er,

p
erfo

rm
er

1
2

8
R
O
L
I
S
ea
b
o
a
rd

G
R
A
N
D
,
S
ea
b
o
a
rd

R
IS
E
,
a
n
d
B
lo
ck
s,

S
ten

o
p
h
o
n
e,

a
series

o
f
”
U
n
fi
n
ish

ed
In
stru

m
en

ts”
fo
r
m
y
P
h
D
.
If

y
o
u
a
re

co
u
n
tin

g
D
M
I
p
la
tfo

rm
s:

B
ela

C
/
C
+
+
,
J
ava

S
crip

t,
P
y
th
o
n
,

H
a
sk
ell,

S
u
p
erC

o
llid

er,
P
u
re

D
a
ta
,

B
a
sh

1
7

S
o
ftw

a
re

D
ev
elo

p
er

4
1

M
a
in
ly

O
T
T
O

-
a
g
ro
ov
eb

ox
w
ith

sy
n
th
s,

m
id
i
fx

a
n
d
a
u
d
io

fx
C
+
+

1
8

P
ro
fesso

r
2
0

1
5

m
a
in
ly

p
h
y
sica

l
m
o
d
elled

b
a
sed

C
,
C
+
+

1
9

electro
n
ic

m
u
sicia

n
4
0

1
2
+

a
sa
m
p
le:

6
5
0
2
b
a
sed

8
-b
it

in
stru

-
m
en
t,

A
p
p
le

][
b
a
sed

d
ig
ita

l
co
n
tro

l
fo
r
S
erg

e
M
o
d
u
la
r,

M
a
c
a
u
d
io

+
M
ID

I
so
ftw

a
re,

R
P
i
b
a
sed

eff
ects

u
n
it

+
M
ID

I
to
o
ls,

M
C
U

b
a
sed

m
etrica

l
clo

ck
,
M
C
U

b
a
sed

lo
o
p
er

+
C
V

co
n
v
erter

A
ssem

b
ly,

C
,
C
+
+
,
P
y
th
o
n
,

H
a
sk
ell,

E
lm

,
J
ava

scrip
t,

S
u
p
er-

C
o
llid

er
S
C
L
a
n
g

2
0

S
o
ftw

a
re

E
n
g
in
eer

1
2
-3

”
S
eq
P
a
l”

a
n
d
”
D
ru
m
B
u
d
”
fo
r
th
e

W
in
terb

lo
o
m

S
o
l,
a
n
d
th
e
W

in
-

terb
lo
o
m

S
o
l
itself.

P
y
th
o
n
,
R
u
st

2
1

A
rtist

3
2

E
lectro

n
ic

K
h
ip
u

J
ava

2
2

D
S
P

E
n
g
in
eer

4
5

T
h
e
D
ä
ıs,

M
a
g
ritto

p
h
o
n
e,

sev
era

l
u
n
p
u
b
lish

ed
C
+
+
,
C
,
P
y
th
o
n
,
M
a
tla

b
,
F
a
u
st

2
3

P
ro
fesso

r
o
f
M
ed

ia
C
o
m
p
u
tin

g
3
5

5
E
M
G

in
stru

m
en

ts
lik

e
th
e
B
io
M
u
se

a
n
d
th
e
E
A
V
I
E
M
G
,
a
n
d
h
av
e

m
a
d
e
m
u
sica

l
in
stru

m
en

ts
o
u
t
o
f

co
n
su
m
er

d
ev
ices

lik
e
th
e
T
h
a
lm

ic
L
a
b
s
M
y
o

C
,
C
+
+
,
P
y
th
o
n

2
4

H
W

a
n
d
S
W

en
g
in
eer

3
6

G
ech

o
lo
g
ic

L
o
o
p
sy
n
th
,
P
h
o
n
-

icb
lo
o
m
’s

G
lo

P
o
ly
p
h
o
n
ic

W
h
a
le,

M
M
X
X

T
-a
p
e,

W
in
g
d
ru
m
,
L
o
o
p
-

sty
ler,

D
o
n
Ig
u
a
n
o

C
/
C
+
+
,
P
y
th
o
n
,
p
h
p
,
J
ava

scrip
t

2
5

L
ea
d
d
esig

n
er

1
2

3
0
+

th
e
w
h
o
le

B
a
stl

In
stru

m
en

ts
p
ro
d
-

u
ct

lin
e

C
+
+
,
A
rd
u
in
o

2
6

C
o
m
p
o
ser

a
n
d
in
tera

ctiv
e
h
a
rd
w
a
re

d
ev
elo

p
er

1
5

1
0
+

C
u
sto

m
in
terfa

ces
fo
r
liv

e
p
erfo

r-
m
a
n
ce

M
a
x
/
M
S
P
,
S
u
p
erco

llid
er,

A
rd
u
in
o
,

P
y
th
o
n
,
L
u
a
,
R
u
st

2
7

C
rea

tiv
e
d
irecto

r
2

1
K
n
u
rl

C
+
+
,
S
u
p
eco

llid
er,

J
ava

scrip
t

126

ID
T
o
o
ls

(S
o
ftw

a
re

)
T
o
o
ls

(H
a
rd

w
a
re

)
P
la
tfo

rm
s

1
S
en

so
rs,

ca
m
era

s,
p
ro
jecto

rs...
It

rea
lly

d
ep

en
d
s
o
n
th
e
in
stru

m
en
t.

I
h
av
e
a
lso

d
esig

n
ed

m
a
n
y
m
o
u
se-

b
a
sed

o
r
to
u
ch
-screen

b
a
sed

in
stru

-
m
en
ts.

L
in
u
x
,
O
S
X
,
W

in
d
ow

s,
A
n
d
ro
id
,

IO
S

2
v
im

,
m
a
k
e,

g
cc,

O
p
en

O
C
D

S
T
M
icro

electro
n
ics

D
iscov

ery
b
o
a
rd
s,

O
lim

ex
A
R
M
-U

S
B
-O

C
D

S
T
M
3
2
F

3
F
u
sio

n
3
6
0
,
B
len

d
er,

A
b
leto

n
,
E
a
g
le

m
o
d
u
la
r
sy
n
th
s,

C
N
C
,
la
ser

cu
tter,

3
D

p
rin

ter,
x
-io

,
A
rd
u
in
o

S
u
p
erco

llid
er

4
m
a
x
m
sp

M
A
C

p
ow

er
b
o
o
k
,
M
o
tu

u
ltra

lite
m
a
x
m
a
p

5
V
isu

a
l
S
tu
d
io

C
o
d
e
/
T
een

sy
d
u
in
o

M
a
in
ly

T
een

sy
/
tried

o
th
ers

lik
e

B
ela

/
R
a
sp
b
erry

/
A
x
o
lo
ti

T
een

sy

6
X
co
d
e,

E
lectro

a
co
u
stic

T
o
o
lb
ox

,
M
IO

C
o
n
so
le

3
D
,
G
ra
p
h
er,

C
u
rv
e-

E
x
p
ert

P
ro

C
o
m
p
u
ters,

M
o
b
ile

IO
U
L
N
-8
,
va
r-

io
u
s
M
ID

I
C
o
n
tro

llers,
h
ea
d
p
h
o
n
es

o
f
va
rio

u
s
q
u
a
lities,

sp
ea
k
ers

o
f
va
r-

io
u
s
q
u
a
lities,

a
co
u
stica

lly
trea

ted
ro
o
m

m
a
cO

S
,
W

in
d
ow

s,
L
in
u
x

7
M
a
x
/
M
S
P
,
E
A
G
L
E

C
A
D
,
A
b
leto

n
L
iv
e,

A
u
d
a
city

o
scillo

sco
p
e,

b
en

ch
m
eter,

a
u
d
io

m
ix
er,

so
ld
erin

g
iro

n
,
sp

ectru
m

a
n
a
ly
zer

A
rd
u
in
o
,
D
a
isy,

R
a
sp
b
erry

P
i

8
F
o
r
th
is

p
ro
ject:

M
a
x
R
ea
k
to
r
V
a
-

riety
o
f
sa
m
p
le

b
a
sed

sy
n
th
esisers,

O
m
n
isp

h
ere

fo
r
ex
a
m
p
le

It
u
ses

A
b
leto

n
a
s
h
o
st/

m
ix
er/

m
id
i
ro
u
ter

F
o
r
cu

rren
t
p
ro
ject:

S
en

sel
M
o
rp
h

V
a
riety

o
f
co
n
v
en
tio

n
a
l
m
id
i
co
n
-

tro
llers,

F
a
d
erfox

etc
O
cta

tra
ck

M
a
c
W

in
d
ow

s

9
R
h
in
o

N
o
t
p
rov

id
ed

A
rm

127

ID
T
o
o
ls

(S
o
ftw

a
re

)
T
o
o
ls

(H
a
rd

w
a
re

)
P
la
tfo

rm
s

1
0

J
U
C
E
;
S
o
lid

w
o
rk
s;

V
a
rio

u
s
D
A
W

s
(L

o
g
ic

P
ro
,
A
b
leto

n
,
etc.)

3
D

p
rin

tin
g
;
la
ser

cu
tters;

C
N
C

m
a
ch
in
es;

so
ft-to

o
lin

g
;
m
a
ss

m
a
n
u
-

fa
ctu

rin
g
;
screw

d
riv

ers

C
o
m
p
a
tib

ility
:
M
a
cO

S
;
W

in
d
ow

s;
iO

S
;
A
n
d
ro
id

1
1

S
o
lid

W
o
rk
s
a
n
d
O
p
en

S
C
A
D

R
P
I,
th
e
T
een

sy,
E
S
P
3
2
b
o
a
rd
s,

Z
y
b
o
Z
7
,
A
n
d
ro
id

a
n
d
iO

S
d
ev
ices

A
n
d
ro
id
,
iO

S
,
L
in
u
x
,
F
ree

R
T
O
S
,

B
a
re

m
eta

l

1
2

V
S
co
d
e,

X
co
d
e,

A
n
d
ro
id

S
tu
d
io

In
jectio

n
M
o
u
ld
in
g

cro
ss

p
la
tfo

rm

1
3

M
a
in
ly

ID
E
s
a
n
d
P
u
re

D
a
ta
;
m
o
re

ra
rely

M
a
x
/
M
a
x
F
o
r
L
iv
e,

U
n
ity

G
P
U
s,

ch
ip

sy
n
th
s,

cu
sto

m
elec-

tro
n
ics

B
ela

a
n
d
cu

sto
m

p
la
tfo

rm
s
ru
n
n
in
g

o
n
reg

u
la
r
co
m
p
u
ters

a
n
d
so
m
e-

tim
es

o
n
m
o
b
ile

p
h
o
n
es

1
4

a
b
leto

n
,
m
a
x
,
teen

sy
lo
a
d
er,

a
r-

d
u
in
o

teen
sy,

a
rd
u
in
o
,
va
rio

u
s
b
rea

k
o
u
t

b
o
a
rd
s
+

sen
so
rs

a
rd
u
in
o
,
teen

sy

1
5

M
a
x
M
S
P

O
S
X

1
6

T
id
a
lC

y
cles,

S
u
p
erC

o
llid

er,
R
ea
k
-

to
r,

J
u
p
y
terL

a
b
,
S
v
elte.js

B
ela

,
T
een

sy
B
ela

1
7

V
isu

a
l
S
tu
d
io

C
o
d
e
G
C
C
/
C
la
n
g

a
n
d
va
rio

u
s
lib

ra
ries

S
o
ld
erin

g
iro

n
,
o
scillo

sco
p
e,

m
u
lti-

m
eter

H
W

:
A

R
a
sp
b
erry

P
i
3
A
+
,
S
W

is
co
m
p
letely

h
o
m
em

a
d
e

1
8

M
a
tla

b
,
J
u
ce,

U
n
ity

A
rd
u
in
o
,
b
ela

M
a
x
,
J
u
ce

128

ID
T
o
o
ls

(S
o
ftw

a
re

)
T
o
o
ls

(H
a
rd

w
a
re

)
P
la
tfo

rm
s

1
9

b
esid

e
co
m
p
ilers

a
n
d
in
terp

reters:
S
u
p
erC

o
llid

er
ID

E
,
V
isu

a
l
S
tu
d
io

C
o
d
e,

sp
rea

d
sh
eets,

E
a
g
le,

O
p
en

J
S
-

C
a
d

so
ld
erin

g
iro

n
,
b
rea

d
b
o
a
rd
,
m
u
lti-

m
eter,

o
scillisco

p
e

A
rd
u
in
o
,
S
A
M
D
2
1
M
C
U
,
L
in
u
x
,

M
a
c
O
S
;
in

th
e
p
a
st

A
p
p
le

][,
6
5
0
2

sy
stem

s

2
0

V
im

C
ircu

itP
y
th
o
n

M
icro

ch
ip

S
A
M
D

p
ro
g
ra
m
m
in
g

to
o
ls

(b
u
t
h
o
n
estly

S
ta
rg
irl’s

w
o
rk

o
n
th
e
W

in
terb

lo
o
m

m
o
d
u
les

m
ea
n
s
I
o
n
ly

h
av
e
to

u
se

th
e
n
a
-

tiv
e
to
o
ls

if
I
so
m
eh

ow
b
rea

k
th
e

m
o
d
u
le,

w
h
ich

I’v
e
d
o
n
e
o
n
ce.

O
th
-

erw
ise

it’s
ju
st

p
lu
g
in
,
ed

it
in

v
im

,
g
o
.)

V
a
rio

u
s
E
u
ro
ra
ck

m
o
d
u
les,

in
a
n
A
rtu

ria
6
U

ca
se.

L
in
u
x
;
M
icro

ch
ip

S
A
M
D

5
0
-series

a
n
d
S
A
M
D

2
0
-series

ch
ip
s

2
1

A
rd
u
in
o
-
p
ro
cessin

g
-
P
u
re

D
a
ta

-
M
a
x
/
M
S
P

-
S
u
p
er

co
llid

er
-
v
v
v
v

teen
sy

b
o
a
rd
s,

d
iff
eren

t
electro

n
ic

sen
so
rs,

A
rd
u
in
o
b
o
a
rd
s,

B
ela

sen
-

so
rs.

M
y
ow

n
p
h
y
sica

l
crea

tio
n
s,

M
ID

I
co
n
tro

llers
a
p
p
lied

-
A
b
leto

n

2
2

J
U
C
E
,
A
rd
u
in
o
,
P
ro
cessin

g
,
B
ela

ID
E

T
h
e
reg

u
la
r
electro

n
ics

to
o
ls

(so
l-

d
erin

g
iro

n
,
sn
ip
s
etc),

la
ser

cu
tter,

C
N
C

m
a
ch
in
e,

3
D

p
rin

ter,
va
rio

u
s

w
o
o
d
w
o
rk
in
g
m
a
ch
in
es.

B
ela

,
T
een

sy,
A
rd
u
in
o

2
3

M
a
x
,
P
u
re

D
a
ta

M
y
o
,
B
ea
g
le

B
o
a
rd
,
L
E
A
P

M
o
tio

n
,

A
rd
u
in
o
,
H
u
zza

h
M
a
x
,
T
I
B
io
sig

n
a
l
sig

n
a
l
p
ro
cessin

g
ch
ip
set,

O
p
en

B
C
I

2
4

S
o
ftw

a
re:

A
to
llic

T
ru
e
S
tu
d
io
,

C
u
b
eM

X
,
E
clip

se,
E
S
P
-ID

F
,
O
ra
cle

V
M

V
irtu

a
lb
ox

,
M
in
G
W

,
B
o
rla

n
d

C
+
+

B
u
ild

er;
P
C
B
s:

C
a
d
S
o
ft

E
a
-

g
le,

E
a
sy
E
D
A
,
G
erb

v
;
en

clo
su
re

&
m
ech

a
n
ica

l
elem

en
ts

d
esig

n
:
O
n
-

sh
a
p
e

3
D

p
rin

ter,
C
N
C

m
illin

g
m
a
ch
in
e,

so
ld
er

sta
tio

n
&

h
o
t
a
ir

fo
r
S
M
D

rew
o
rk
,
b
in
o
cu

la
r
m
icro

sco
p
e

S
T
M
3
2
F
4
,
E
S
P
3
2
(E

S
P
-ID

F
&

F
reeR

T
O
S
),

em
b
ed

d
ed

lin
u
x

(m
o
stly

A
llw

in
n
er)

2
5

E
clip

se,
A
rd
u
in
o
,
A
V
R
d
u
d
e,

g
ith

u
b

d
esk

to
p
,
ea
g
le,

illu
stra

to
r,

a
b
leto

n
liv

e

d
ig
ita

l
o
scillo

sco
p
e,

so
ld
erin

g
to
o
ls,

co
m
p
lete

m
u
sic

stu
d
io

fo
r
rea

l-
w
o
rld

s
testin

g

a
n
a
lo
g
,
av

r
ch
ip
sets,

a
rm

ch
ip
sets,

a
rd
u
in
o

2
6

A
rd
u
in
o
ID

E
,
S
u
b
lim

eT
ex
t,

L
in
u
x

J
A
C
K

N
o
rn
s,

va
rio

u
s
m
id
i
k
ey
b
o
a
rd
s,

va
r-

io
u
s
sen

so
rs

fo
r
a
rd
u
in
o
(m

o
st

re-
cen

tly
ov
er

I2
C
),

w
ifi

n
etw

o
rk
s

A
rd
u
in
o
,
T
een

sy,
E
S
P
3
2
,

M
a
x
/
M
S
P
,
S
u
p
erco

llid
er

o
n
R
a
sp
-

b
erry

P
i,
N
o
rn
s

2
7

F
u
sio

n
3
6
0
S
u
p
erco

llid
er

B
ea
g
le

b
o
n
e,

B
ela

129

130

131

Appendix B

Preregistration of Study

132

Data and Methodology : Exploring How Digital Luthiers Choose Their Tools

NATHAN RENNEY, University of West England, UK

BENEDICT R. GASTER, University of West England, UK

THOMAS J. MITCHELL, University of West England, UK

HARRI RENNEY, University of West England, UK

Digital luthiers (designers of digital musical instruments) work with a range of both software and hardware tools in order to realise
the instruments they build. A digital musical instrument is a highly performant piece of technology with which a performer may
interact. This leads to these devices being multifaceted artefacts that combine fields of design, user interaction, audio synthesis and
more. In this paper, we present the methodology and data for a study that explores how these digital luthiers choose their tools for
creating digital musical instruments.

Additional Key Words and Phrases: digital musical instruments, human computer interaction, programming languages

1 INTRODUCTION

This paper is published as a supplement to a study that explores how digital luthiers[8] (designers of digital musical
instruments) choose their tools, both software and hardware. It was intended to be pre-published ahead of the data
collection phase, however, due to time challenges related to the COVID-19 pandemic it is published following the
initial interviews and ahead of undertaking analysis. In this publication, we present the data that was collected and
the methodology that will be used to analyse this data. The data is formatted and presented to provide an element of
confirmability to the resulting study and further, to encourage research and analysis that builds upon this work.

This study was designed to collect perspectives from a range of prominent instrument designers from a diverse set
of backgrounds.

This study was ethically reviewed by the University of West England’s Computer Science and Creative Technology
Faculty Research Ethics Committee. Following approval, participants were invited to share their thoughts on digital
musical instrument (DMI) design in the form of a standardised, open-ended, online interview. Each participant was
issued with a comprehensive information pack describing the study and was able to withdraw from the study at any
time while it was active. Participants provided written consent and were able to review their transcripts following the
interview and before publication.

2 MOTIVATION

As our role as researchers inherently impacts qualitative data analysis we present our motivations. This study seeks to
explore ideas based on three research questions:

Why and how do Instrument designers pick their tools?

What distinct problem spaces do instrument designers consider to be involved in instrument design?

How do instrument designers define a digital musical instrument?

Authors’ addresses: University of West England, Bristol, UK.

133

Renney et al.

These questions stem from the larger context of our work, aiming to explore and develop more expressive tools
for the creation of digital musical instruments, particularly programming languages. The study was initially designed to
address the motivations for a PhD thesis, exploring topics that apply to the human-computer interaction (HCI) around
developers of specialised technology, how they choose the technologies they use and what challenges they face. This
work currently contextualises challenges faced by these developers in the notion of problem spaces as described by Goel
and Pirolli [5] and further with regards to domains [7]. An inductive research approach was chosen to help broaden
perspectives beyond the immediate research interests of the researchers, to identify the most salient issues identified by
digital luthiers.

The final question addresses the notion of what constitutes a digital musical instrument - a surprisingly contentious
topic that is exemplified by the debate as to whether the ‘I’ in ‘NIME’ (New Interfaces for Musical Expression) should
be Interface or Instrument [10]. While this question less directly contributes to the immediate research aims, the study
presents an opportunity to explore contemporary concepts, terms and attitudes that are present across the field. Whilst
the value in providing a specific definition for a DMI remains debatable, it provides a thought-provoking question to
explore in the context of an individuals perspective.

We view a qualitative research approach as the most effective method for understanding the very subjective aspects
of HCI research that relates to the selection and use of tools and programming languages relevant to the domain.

3 PARTICIPANTS

Participants were directly invited based on their contributions to a range of novel digital musical instruments or
association with an organisation that produces instruments. A subset of these instruments is listed in Section 3.2 and
a selection of them is illustrated in Figure 1. The selection process follows a purposeful sampling strategy, selecting
participants involved in designing novel digital instruments to capture a range of perspectives that are representative
of the DMI design community and the various motivations they incorporate.

A loose set of categories were defined as a basis to draw participants from, these were; Commercial, Research,
Community and Artist. Commercial and Research categories describe instruments whose motivations are for either
commercial ‘mass-market’ production or coupled to a research process respectively. Community instruments largely
encompass open source projects and small teams (or individuals) independently making instruments in low volumes.
The Artist category represents instrument designers who build instruments to support their artistic endeavours. Of
course, there is significant overlap with these definitions, however, drawing evenly from these groups helped to provide
a balanced view of the community and the intentions for instrument design they represent.

Purposeful sampling was also selected to better distribute perspectives across genders, resulting in a more represen-
tative set of perspectives of the actual digital luthiers themselves, an approach that is supported by an ever-growing
body of literature [9, 12]. This invite based selection process assisted in managing a more gender-balanced selection
across participants and a variety of experience levels, however, we acknowledge a lack of cultural diversity in this study
which is another important facet of this issue that should be accounted for in future work [11]. This could be likely be
improved with a broader call in conjunction with the selection process used here, such that selection is not limited to
the networking capacity of the researchers.

Participants were approached online and invited to participate or recommend a suitable participant.The sample size
was intended to be between 24 and 32 participants, drawn equally from our previously defined categories. During this
study, 27 participants were interviewed. A demographic of the population is provided in Table 1 and a selection of the
participant’s roles can be seen below (Section 3.1).

134

Data and Methodology : Exploring How Digital Luthiers Choose Their Tools

Gender Ehtnicity Age
Male 14 white 21 18 - 24 1
Female 8 Asian 1 25 - 34 12
Non Binary 1 Lantinx 1 35 - 44 6
Prefer not to say 4 Brazillian 1 45 - 54 2

Prefer not to say 3 55 - 64 4
Prefer not to say 2

Table 1. Demographic of participant population.

3.1 Participant Roles

• Music Technology researcher
and professor.

• Digital artist/performer/composer
• Artist
• Software Engineer
• Software Engineering Manager
• CEO
• Composer
• Founder
• Researcher and Lecturer

• Assistant Professor of Music
Technology

• Composer & Instrument
Builder

• Audio developer
• Researcher, designer,
performer

• Software Developer
• Professor
• Electronic musician

• Software Engineer
• DSP Engineer
• Professor of Media Computing
• Hardware and software
engineer

• Lead designer
• Composer and interactive
hardware developer

• Creative director

3.2 Instrument List

• Soft Revolvers
• Alpha Sphere
• Knurl
• Artiphon Orba
• Reactable
• The Blade Axe
• Mutable Instruments Shruthi

• Claravox
• Polaron
• The Ladies Glove
• Linnstrument
• Cv
• Abelton Push
• Roli Seaboard Grand

• OTTO
• Winterbloom Sol DrumBud
• Electronic_Khipu_
• The daïs
• EMG instruments
• Gechologic Loopsynth
• Bastl Kastle Drum

Further, information gathered on the participants includes their familiarity with HCI literature and/or the NIME
community and lists of their significantly used programming languages, hardware and software tools. For further
details on the data set used (including the published data-set), see Section 6.

We also capture a rudimentary metric of experience in the form of years spent in the field and the number of
instruments they have designed. We emphasise that this is a metric of limited insight that can poorly characterise a
persons experience, however, in the selection process, attention was given to incorporating a range of experience levels
when sampling participants.

135

Renney et al.

Fig. 1. A selection of instruments from the study.

4 INTERVIEWS

Interviews were conducted as standardised open-ended interviews, with 22 participants engaging with an interviewer
via video call and five via email, following an internal pilot study with peers that had DMI design experience. Interviews
had a duration of 20 - 60 minutes at the discretion of the participant. Interviews took place between 25th January 2021
and 1st April 2021. Participants were provided with a copy of the questions to use as a reference during the interview.
All interviews were carried out by the lead author.

Standardised open-ended interviews were selected to allow extensive exploration of a small set of topics, with a
direction lead by the interviewee. The interviewing style focused on allowing the participant to explore the questions
with minimal interaction from the interviewer and questions were largely left open to interpretation by the participant.

136

Data and Methodology : Exploring How Digital Luthiers Choose Their Tools

If required, clarifications were made and included in transcripts. This approach was taken to allow for the data collected
to be reviewed in other styles whilst still working for our reflexive analysis approach, described in Section 5

Interviews were recorded (audio only) and transcribed verbatim, then processed to ensure appropriate confidentiality
and IP protection. In the case of email interviews, emails were formatted to match transcripts.

5 ANALYSIS AND METHODOLOGY

In this study analysis is based on a phenomenological perspective, exploring the personal perspective of digital luthiers.
Because of its fit with an inductive approach and its capacity to create a rich and nuanced view of these interviews,
reflexive thematic analysis based on Braun and Clarke’s framework [2] was selected as the methodology for analysis.
This study focuses on using a reflexive approach for analysis [1], exploring the perspectives of the many digital luthiers
that have introduced their ideas to this study in an approach Alvesson, Hardy and Harley describe as multi-perspective
practices. Notably, a varied set of perspectives and motivations have been captured in this data set and this study looks
to draw out ideas from these different perspectives. With quite broad questions presented in the interviews, this analysis
explores the topic largely inductively intending to explore the explicit semantic concepts introduced by participants,
though consideration will also be given to latent, underlying meaning where relevant.

In line with Braun and Clarke’s [3] description of reflexive thematic analysis, we recognise that as researchers we
play a role in the generation of qualitative information [6]. To support this we also provide a descriptive background of
the researchers taking part in this study at the end of this publication, aiming to make clear some of our biases. The
wealth of introspective resources and writing from Braun and Clarke help us as computer scientists better leverage
qualitative analysis [2].

5.1 Methodology

This methodology somewhat contrasts the peer validated approach typical of research based on grounded theory [3]. In
this study, two coders will analyse all transcripts. Coders will regularly meet to discuss codes throughout the coding
process and iteratively generate themes from the coded transcripts using the Quirkos software tool. Coders will also
periodically present and discuss these themes and narratives with the rest of the research team. This approach aims to
ensure we are generating codes and themes that draw on the knowledge and experience of the research team [4].

In line with Clarke and Braun’s process for reflexive thematic analysis, the approach for analysis follows the following
steps:

• Data familiarization period for reviewers
• Data coding using Quirkos software
• Generation of themes
• Discussion between researchers on themes, reflection and development
• Iteration around steps 2-4
• Refining and naming themes and developing of ideas around themes
• Writing paper; discussion of themes

137

Renney et al.

6 DATA

Interview transcripts and corresponding data are available from the following repository:
https://github.com/muses-dmi/dmi-design-study
This repository contains the transcripts as individual documents, a comma-separated value (.csv) file of quantified

data and any resources (scripts or guides) that are developed in the course of this study and may be of wider use.
Transcripts are formatted as Markdown, with a metadata section at the start formatted as YAML. An example can be
seen below that demonstrates the data related to each transcript. Participant numbers are randomly assigned numbers
suitable for referencing transcripts.

Note: This is a metadata section formatted in YAML.

participant: 1

role: Music Technology researcher and professor.

experience(years): 30

instrument_count: 10

instruments:

- FMOL

- Reactable

- Many more

langugaes:

- c++

- puredata

...

In the body of the transcript, questions are denoted with a single ‘#’ at the start of the line. These were read aloud to
the participant (but also provided in written form for reference).

Any communication from the interviewer is denoted with a single ‘>’ character at the start of the line. (When
rendered as markdown this will render the interviewers comments as a blockquote).

7 NOTES ON CONTRIBUTORS

Nathan Renney is a PhD student at the University of West England, Bristol, UK. His thesis explores how the devel-
opment of modern programming languages can be used to influence digital lutherie, the process of designing digital
musical instruments. With a background as a musician, his research interests include using programming languages to
be more expressive, both musically and beyond. As part of the Physical Computing Research Group at UWE, Nathan
primarily works with embedded and real-time systems with an interest in the application of functional programming
and type systems.

Dr Benedict R. Gaster is an Associate Professor at the University of West of England, he is the co-director of the
Computer Science Research Centre, within which he also leads the Physical Computing group. His research focuses

138

Data and Methodology : Exploring How Digital Luthiers Choose Their Tools

on the design of embedded platforms for musical expression and more generally IoT. He is the co-founder of Bristol
LoRaWAN a low power wide area network for Bristol city and is the technical lead for a city-wide project on pollution
monitoring for communities, having developed UWE Sense (a hardware platform for cheap sensing). Along with his
PhD students and in collaboration with UWE’s music tech department, he is developing a new audio platform based
on ARM micro-controllers using the Rust programming language to build faster and more robust sound! Previously
Benedict worked at Qualcomm and AMD where he was a co-designer on the programming language OpenCL, including
being the lead developer on AMD’s OpenCL compiler. He has a PhD in computer science for his work on type systems
for extensible records and variants.

Dr ThomasMitchell is an Associate Professor in Creative Technologies, at UWE Bristol where he leads the Creative
Technologies Laboratory. He is also an honorary scholar at the University of Bristol, resident at the Pervasive Media
Studio and a Member of the Computer Science Research Centre and Bristol Robotics Laboratory. He is a co-founder
of MiMU Gloves Limited, a technology start-up that he co-founded to enable musicians to perform with gestures.
Connecting physicality and sound, Tom’s work exploits new affordances of motion capture and extended reality
technologies to inspire questions about music, art and science.

Harri Renney is a PhD student studying computer science at the University of the West of England. Specialising
in the optimisation of digital audio processes for heterogeneous systems, he focuses on designing software tools for
mapping processes to Graphics Processing Units, a now nearly ubiquitous hardware acceleration device that uses
massively parallel processing architectures. Harri believes that with the advancing state of technology, powerful physical
modelling audio processes will become increasingly viable, opening up a whole new range of possibilities in the field of
digital audio.

8 CITATIONS

REFERENCES
[1] Mats Alvesson, Cynthia Hardy, and Bill Harley. 2008. Reflecting on Reflexivity: Reflexive Textual Practices in Organization and Management Theory.

Journal of Management Studies 45, 3 (May 2008), 480–501. https://doi.org/10.1111/j.1467-6486.2007.00765.x
[2] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101.

https://doi.org/10.1191/1478088706qp063oa
[3] Virginia Braun and Victoria Clarke. 2019. Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health 11, 4 (Aug.

2019), 589–597. https://doi.org/10.1080/2159676X.2019.1628806
[4] Virginia Braun and Victoria Clarke. 2020. One size fits all? What counts as quality practice in (reflexive) thematic analysis? Qualitative Research in

Psychology (Aug. 2020), 1–25. https://doi.org/10.1080/14780887.2020.1769238
[5] Vinod Goel and Peter Pirolli. 1992. The structure of Design Problem Spaces. Cognitive Science 16, 3 (July 1992), 395–429. https://doi.org/10.1207/

s15516709cog1603_3
[6] Brendan Gough and Anna Madill. 2012. Subjectivity in psychological science: From problem to prospect. Psychological Methods 17, 3 (Sept. 2012),

374–384. https://doi.org/10.1037/a0029313
[7] Lawrence A. Hirschfeld and Susan A. Gelman (Eds.). 1994. Mapping the mind: domain specificity in cognition and culture. Cambridge University

Press, Cambridge ; New York.
[8] Sergi Jordà. 2005. Digital Lutherie Crafting musical computers for new musics’ performance and improvisation. Ph.D. Dissertation. Universitat Pompeu

Fabra. https://doi.org/10803/575372
[9] Marlene Mathew, Jennifer Grossman, and Areti Andreopoulou. 2016. Women in Audio: Contributions and Challenges in Music Technology and

Production. Audio Engineering Society. https://www.aes.org/e-lib/online/browse.cfm?elib=18477
[10] Atau Tanaka. 2010. Mapping out instruments, affordances, and mobiles. In Proceedings of the international conference on new interfaces for musical

expression. Sydney, Australia, 88–93. https://doi.org/10.5281/zenodo.1177903 ISSN: 2220-4806.
[11] Joan C. Williams. 2014. Double jeopardy? An empirical study with implications for the debates over implicit bias and intersectionality,. Harvard

Journal of Law & Gender.
[12] Anna Xambó. 2018. Who Are the Women Authors in NIME?–Improving Gender Balance in NIME Research. In Proceedings of the International

Conference on New Interfaces for Musical Expression. Virginia Tech, Blacksburg, Virginia, USA, 174–177. https://doi.org/10.5281/zenodo.1302535

139

Bibliography

Aaron, Samuel and Alan F. Blackwell (2013). “From Sonic Pi to Overtone: Creative Musical
Experiences with Domain-Specific and Functional Languages”. In: Proceedings of the ACM
SIGPLAN International Conference on Functional Programming, ICFP. Volume 12. Taylor &
Francis, pages 35–46.

Abtahi, Parastoo and Griffin Dietz (2020). “Learning Rust: How Experienced Programmers Lever-
age Resources to Learn a New Programming Language”. In: Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems. CHI EA ’20. New York, NY, USA:
Association for Computing Machinery, pages 1–8.

Adelson, B. and E. Soloway (1985). “The Role of Domain Expenence in Software Design”. In:
IEEE Transactions on Software Engineering SE-11.11, pages 1351–1360.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman (2003). Compilers: Principles, Techniques, and
Tools. [Nachdr.], international ed. Addison-Wesley Series in Computer Science. Upper Saddle
River, NJ: Prentice-Hall.

Akritidis, Periklis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro (2008). “Pre-
venting Memory Error Exploits with WIT”. In: 2008 IEEE Symposium on Security and Privacy
(Sp 2008). IEEE, pages 263–277.

Alcántara, Jesús Muñoz, Panos Markopoulos, and Mathias Funk (2015). “Social Media as Ad
Hoc Design Collaboration Tools”. In: Proceedings of the European Conference on Cognitive
Ergonomics 2015. Warsaw Poland: ACM, pages 1–8.

Alexander, Steven M. et al. (2020). “Qualitative Data Sharing and Synthesis for Sustainability
Science”. In: Nature Sustainability 3.2, pages 81–88.

Allen, Deborah E., Richard S. Donham, and Stephen A. Bernhardt (2011). “Problem-Based Learn-
ing”. In: New Directions for Teaching and Learning 2011.128, pages 21–29.

Alvesson, Mats, Cynthia Hardy, and Bill Harley (2008). “Reflecting on Reflexivity: Reflexive Tex-
tual Practices in Organization and Management Theory”. In: Journal of Management Studies
45.3, pages 480–501.

Annab, Rachid (2021). CSIRAC: Our First Computer. https://cis.unimelb.edu.au/about/csirac.
Argyris, Chris and Donald A. Schön (1974). Theory in Practice: Increasing Professional Effective-

ness. 1st ed. San Francisco: Jossey-Bass Publishers.
Armitage, Jack and Andrew McPherson (2019). “Bricolage in a Hybrid Digital Lutherie Context:

A Workshop Study”. In: Proceedings of the 14th International Audio Mostly Conference: A
Journey in Sound. Nottingham United Kingdom: ACM, pages 82–89.

Armitage, Jack and Andrew P. McPherson (2018). “Crafting Digital Musical Instruments: An Ex-
ploratory Workshop Study”. In: Proceedings of the International Conference on New Interfaces
for Musical Expression. Edited by Thomas Martin Luke Dahl Douglas Bowman. Blacksburg,
Virginia, USA: Virginia Tech, pages 281–286.

Armitage, Jack, Fabio Morreale, and Andrew McPherson (2017). “The Finer the Musician, the
Smaller the Details: NIMEcraft under the Microscope”. In: Proceedings of the International
Conference on New Interfaces for Musical Expression. Copenhagen, Denmark: Aalborg Univer-
sity Copenhagen, pages 393–398.

Arom, Simha (2004). African Polyphony and Polyrhythm: Musical Structure and Methodology.
Cambridge university press.

Arora, Jatin, Sam Westrick, and Umut A. Acar (2023). “Efficient Parallel Functional Program-
ming with Effects”. In: Proceedings of the ACM on Programming Languages 7.PLDI, 170:1558–
170:1583.

Baratta, Angelo (2006). “The Triple Constraint, a Triple Illusion”. In: PMI® Global Congress
2006.

140

Bartha, Sándor, James Cheney, and Vaishak Belle (2021). “One down, 699 to Go: Or, Synthe-
sising Compositional Desugarings”. In: Proceedings of the ACM on Programming Languages
5.OOPSLA, pages 1–29.

Barton, Scott, Laura Getz, and Michael Kubovy (2017). “Systematic Variation in Rhythm Produc-
tion as Tempo Changes”. In: Music Perception: An Interdisciplinary Journal 34.3, pages 303–
312.

Bastian, Hilda (2014). “A Stronger Post-Publication Culture Is Needed for Better Science”. In:
PLoS medicine 11.12, e1001772.

Beck, Jordan and Erik Stolterman (2016). “Examining Practical, Everyday Theory Use in Design
Research”. In: She Ji: The Journal of Design, Economics, and Innovation 2.2, pages 125–140.

Beck, Micah (2019). “On the Hourglass Model”. In: Communications of the ACM 62.7, pages 48–
57.

Ben-Ari, Mordechai (1998). “Constructivism in Computer Science Education”. In: ACM SIGCSE
Bulletin 30.1, pages 257–261.

Bennedsen, Jens and Michael E. Caspersen (2005). “An Investigation of Potential Success Fac-
tors for an Introductory Model-Driven Programming Course”. In: Proceedings of the First
International Workshop on Computing Education Research. ICER ’05. New York, NY, USA:
Association for Computing Machinery, pages 155–163.

Bennett, Andy (2005). “In Defence of Neo-tribes: A Response to Blackman and Hesmondhalgh”.
In: Journal of Youth Studies 8.2, pages 255–259.

Bennett, Andy and Ian Rogers (2016). “Scene ‘Theory’: History, Usage and Influence”. In: Popular
Music Scenes and Cultural Memory. Edited by Andy Bennett and Ian Rogers. Pop Music,
Culture and Identity. London: Palgrave Macmillan UK, pages 11–35.

Bennett, Peter and Sile O’Modhrain (2008). “The BeatBearing: A Tangible Rhythm Sequencer”.
In: Proc. of NordiCHI. Volume 2008.

Berger, Michael (2010). “The GRIP MAESTRO : Idiomatic Mappings of Emotive Gestures for
Control of Live Electroacoustic Music”. In: Proceedings of the International Conference on
New Interfaces for Musical Expression. Sydney, Australia, pages 419–422.

Bergström, Ilias and Alan F. Blackwell (2016). “The Practices of Programming”. In: 2016 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 190–198.

Bernardo, Francisco, Chris Kiefer, and Thor Magnusson (2020). “A Signal Engine for a Live Coding
Language Ecosystem”. In: Journal of the Audio Engineering Society 68.10, pages 756–766.

Bianchi, André Jucovsky and Marcelo Queiroz (2013). “Real Time Digital Audio Processing Using
Arduino”. In: Proceedings of the Sound and Music Computing Conference, Stockholm, Sweden,
pages 538–545.

Bierman, Gavin, Mart́ın Abadi, and Mads Torgersen (2014). “Understanding Typescript”. In:
ECOOP 2014–Object-Oriented Programming: 28th European Conference, Uppsala, Sweden,
July 28–August 1, 2014. Proceedings 28. Springer, pages 257–281.

Blackshear, Sam, John Mitchell, Todd Nowacki, and Shaz Qadeer (2022). “The Move Borrow
Checker”. In: arXiv preprint arXiv:2205.05181. arXiv: 2205.05181.

Blackwell, Alan and Nick Collins (2005). “The Programming Language as a Musical Instrument”.
In: PPIG, page 11.

Blackwell, Alan F (2018). “A Craft Practice of Programming Language Research.” In: PPIG 2018
- the 29th Annual Workshop of the Psychology of Programming Interest Group. London.

Bovermann, Till and Dave Griffiths (2014). “Computation as Material in Live Coding”. In: Com-
puter Music Journal 38.1, pages 40–53.

Bowers, John and Phil Archer (2005). “Not Hyper, Not Meta, Not Cyber but Infra-Instruments”.
In: Proceedings of the 2005 Conference on New Interfaces for Musical Expression. NIME ’05.
SGP: National University of Singapore, pages 5–10.

Bowman, Robert, Camille Nadal, Kellie Morrissey, Anja Thieme, and Gavin Doherty (2023). “Us-
ing Thematic Analysis in Healthcare HCI at CHI: A Scoping Review”. In: Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. New York, NY, USA:
Association for Computing Machinery, pages 1–18.

Braha, Dan and Oded Maimon (2011). A Mathematical Theory of Design: Foundations, Algorithms
and Applications. Applied Optimization 17. Dordrecht: Springer.

Braun, Virginia and Victoria Clarke (2006). “Using Thematic Analysis in Psychology”. In: Quali-
tative Research in Psychology 3.2, pages 77–101.

— (2012). “Thematic Analysis.” In: APA Handbook of Research Methods in Psychology, Vol 2: Re-
search Designs: Quantitative, Qualitative, Neuropsychological, and Biological. Edited by Harris
Cooper, Paul M. Camic, Debra L. Long, A. T. Panter, David Rindskopf, and Kenneth J. Sher.
Washington: American Psychological Association, pages 57–71.

141

https://arxiv.org/abs/2205.05181

Braun, Virginia and Victoria Clarke (2019). “Reflecting on Reflexive Thematic Analysis”. In:
Qualitative Research in Sport, Exercise and Health 11.4, pages 589–597.

— (2020). “One Size Fits All? What Counts as Quality Practice in (Reflexive) Thematic Analysis?”
In: Qualitative Research in Psychology, pages 1–25.

Brown, Dom, Chris Nash, and Tom Mitchell (2017). “A User Experience Review of Music In-
teraction Evaluations”. In: Proceedings of the International Conference on New Interfaces for
Musical Expression. Copenhagen, Denmark: Aalborg University Copenhagen, pages 370–375.

— (2018). “Simple Mappings, Expressive Movement: A Qualitative Investigation into the End-User
Mapping Design of Experienced Mid-Air Musicians”. In: Digital Creativity 29.2-3, pages 129–
148.

Bruns, Stephan B. and John P. A. Ioannidis (2016). “P-Curve and p-Hacking in Observational
Research”. In: PLOS ONE 11.2, pages 1–13.

Burnham, Trevor (2015). “Coffeescript: Accelerated Javascript Development”. In: CoffeeScript,
pages 1–124.

Calegario, Filipe et al. (2020). “Probatio 1.0: Collaborative Development of a Toolkit for Functional
DMI Prototypes”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Edited by Romain Michon and Franziska Schroeder. Birmingham, UK: Birmingham
City University, pages 285–290.

Cannon, Joanne and Stuart Favilla (2012). “The Investment of Play: Expression and Affordances
in Digital Musical Instrument Design.” In: ICMC.

Chasins, Sarah E., Elena L. Glassman, and Joshua Sunshine (2021). “PL and HCI: Better To-
gether”. In: Communications of the ACM 64.8, pages 98–106.

Chatley, Robert, Alastair Donaldson, and Alan Mycroft (2019). “The Next 7000 Programming
Languages”. In: Computing and Software Science. Edited by Bernhard Steffen and Gerhard
Woeginger. Volume 10000. Cham: Springer International Publishing, pages 250–282.

Cheatle, Amy and Steven J. Jackson (2015). “Digital Entanglements: Craft, Computation and
Collaboration in Fine Art Furniture Production”. In: Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing. Vancouver BC Canada: ACM,
pages 958–968.

Chemero, Anthony (2003). “An Outline of a Theory of Affordances”. In: Ecological Psychology
15.2, pages 181–195.

Cherny, Boris (2019). Programming TypeScript: Making Your JavaScript Applications Scale. O’Reilly
Media.

Chong, Isis and Robert W. Proctor (2020). “On the Evolution of a Radical Concept: Affordances
According to Gibson and Their Subsequent Use and Development”. In: Perspectives on Psy-
chological Science 15.1, pages 117–132.

Chowdhury, Jatin (2020). “A Comparison of Virtual Analog Modelling Techniques for Desktop
and Embedded Implementations”. In: arXiv preprint arXiv:2009.02833. arXiv: 2009.02833.

Chugh, Ravi (2016). “Prodirect Manipulation: Bidirectional Programming for the Masses”. In:
Proceedings of the 38th International Conference on Software Engineering Companion. ICSE
’16. New York, NY, USA: Association for Computing Machinery, pages 781–784.

Clarke, Victoria and Virginia Braun (2017). “Thematic Analysis”. In: The Journal of Positive
Psychology 12.3, pages 297–298.

Cockburn, Andy, Carl Gutwin, and Alan Dix (2018). “HARK No More: On the Preregistration of
CHI Experiments”. In: Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems - CHI ’18. Montreal QC, Canada: ACM Press, pages 1–12.

Collins, Nick, Alex McLean, Julian Rohrhuber, and Adrian Ward (2003). “Live Coding in Laptop
Performance”. In: Organised Sound 8.3, pages 321–330.

Combette, Guillaume and Guillaume Munch-Maccagnoni (2018). “A Resource Modality for RAII”.
In: LOLA 2018: Workshop on Syntax and Semantics of Low-Level Languages, pages 1–4.

Cook, Perry R. (2001). “Principles for Designing Computer Music Controllers”. In: Proceedings of
the International Conference on New Interfaces for Musical Expression. Seattle, WA, pages 3–
6.

Costabile, Maria Francesca, Antonio Piccinno, Daniela Fogli, and Andrea Marcante (2006). “Sup-
porting Interaction and Co-Evolution of Users and Systems”. In: Proceedings of the Working
Conference on Advanced Visual Interfaces. AVI ’06. New York, NY, USA: Association for Com-
puting Machinery, pages 143–150.

Czaplicki, Evan (2012). “Elm: Concurrent FRP for Functional GUIs”. PhD thesis. Harvard Uni-
versity.

142

https://arxiv.org/abs/2009.02833

Dabin, Matthew, Terumi Narushima, Stephen Beirne, Christian Ritz, and Kraig Grady (2016). “3D
Modelling and Printing of Microtonal Flutes”. In: Proceedings of the International Conference
on New Interfaces for Musical Expression. Zenodo, pages 286–290.

David Zicarelli (2017). Code Generating Littlefoot (ADC’17). Audio Developers Conference 2017.
Davies, Simon P. (1993). “Models and Theories of Programming Strategy”. In: International Jour-

nal of Man-Machine Studies 39.2, pages 237–267.
Deardorff, Ariel (2020). “Why Do Biomedical Researchers Learn to Program? An Exploratory

Investigation”. In: Journal of the Medical Library Association 108.1.
DeNora, Tia and Theodor W. Adorno (2003). After Adorno: Rethinking Music Sociology. Cam-

bridge, New York: Cambridge University Press.
Dijkstra, Edsger W. (1972). “The Humble Programmer”. In: Communications of the ACM 15.10,

pages 859–866.
Dinkelaker, Tom, Michael Eichberg, and Mira Mezini (2010). “An Architecture for Composing

Embedded Domain-Specific Languages”. In: Proceedings of the 9th International Conference
on Aspect-Oriented Software Development. AOSD ’10. New York, NY, USA: Association for
Computing Machinery, pages 49–60.

Dot, Gem, Alejandro Mart́ınez, and Antonio González (2015). “Analysis and Optimization of
JavaScript Engines”. In: 1st Workshop on High Performance Scripting Languages, in Conjunc-
tion with 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP), San Francisco (USA).

Duffin, R.W. (2008). How Equal Temperament Ruined Harmony (and Why You Should Care). W.
W. Norton.

Eglen, Stephen J. et al. (2017). “Toward Standard Practices for Sharing Computer Code and
Programs in Neuroscience”. In: Nature Neuroscience 20.6, pages 770–773.

Elliott, Conal and Paul Hudak (1997). “Functional Reactive Animation”. In: Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming - ICFP ’97.
Amsterdam, The Netherlands: ACM Press, pages 263–273.

Ellis, Alexander John (1885). “On the Musical Scales of Various Nations”. In: From The journal
of the society of arts 33.1688, [485]–527 p.

Fanelli, Daniele (2010). “Do Pressures to Publish Increase Scientists’ Bias? An Empirical Support
from US States Data”. In: PloS one 5.4, e10271.

Feldman, Shelley and Linda Shaw (2019). “The Epistemological and Ethical Challenges of Archiv-
ing and Sharing Qualitative Data”. In: American Behavioral Scientist 63.6, pages 699–721.

Fiebrink, Rebecca and Perry R Cook (2010). “The Wekinator: A System for Real-Time, Interactive
Machine Learning in Music”. In: Proceedings of the Eleventh International Society for Music
Information Retrieval Conference (ISMIR 2010)(Utrecht). Volume 3.

Filippidis, Ioannis, Richard M. Murray, and Gerard J. Holzmann (2016). “A Multi-Paradigm Lan-
guage for Reactive Synthesis”. In: SYNT.

Fischer, Gerhard (2001). “Communities of Interest: Learning through the Interaction of Multiple
Knowledge Systems”. In: Proceedings of the 24th IRIS Conference. Volume 1. Department of
Information Science, Bergen, pages 1–13.

— (2004). “Social Creativity: Turning Barriers into Opportunities for Collaborative Design”. In:
Proceedings of the Eighth Conference on Participatory Design: Artful Integration: Interweaving
Media, Materials and Practices - Volume 1. PDC 04. New York, NY, USA: Association for
Computing Machinery, pages 152–161.

— (2021). “End-User Development: Empowering Stakeholders with Artificial Intelligence, Meta-
Design, and Cultures of Participation”. In: End-User Development. Edited by Daniela Fogli,
Daniel Tetteroo, Barbara Rita Barricelli, Simone Borsci, Panos Markopoulos, and George A.
Papadopoulos. Volume 12724. Cham: Springer International Publishing, pages 3–16.

Fischer, Gerhard, Daniela Fogli, and Antonio Piccinno (2017). “Revisiting and Broadening the
Meta-Design Framework for End-User Development”. In: New Perspectives in End-User Devel-
opment. Edited by Fabio Paternò and Volker Wulf. Cham: Springer International Publishing,
pages 61–97.

Fischer, Gerhard and Elisa Giaccardi (2006). “Meta-Design: A Framework for the Future of End-
User Development”. In: End User Development. Edited by Henry Lieberman, Fabio Paternò,
and Volker Wulf. Volume 9. Dordrecht: Springer Netherlands, pages 427–457.

Fischer, Gerhard, Elisa Giaccardi, Hal Eden, Masanori Sugimoto, and Yunwen Ye (2005). “Beyond
Binary Choices: Integrating Individual and Social Creativity”. In: International Journal of
Human-Computer Studies 63.4-5, pages 482–512.

143

Fischer, Gerhard and Eric Scharff (2000). “Meta-Design: Design for Designers”. In: Proceedings of
the Conference on Designing Interactive Systems Processes, Practices, Methods, and Techniques
- DIS ’00. New York City, New York, United States: ACM Press, pages 396–405.

Fischer, Lars and Stefan Hanenberg (2015). “An Empirical Investigation of the Effects of Type
Systems and Code Completion on API Usability Using TypeScript and JavaScript in MS Visual
Studio”. In: Proceedings of the 11th Symposium on Dynamic Languages. DLS 2015. New York,
NY, USA: Association for Computing Machinery, pages 154–167.

Fitch, W. Tecumseh (2013). “Rhythmic Cognition in Humans and Animals: Distinguishing Meter
and Pulse Perception”. In: Frontiers in Systems Neuroscience 7, page 68.

Fitzgerald, Brian (2006). “The Transformation of Open Source Software”. In: MIS quarterly,
pages 587–598.

Fleissner, Sebastian and Elisa Baniassad (2009). “The Culture of Programming Languages”. In:
Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications. OOPSLA ’09. New York, NY, USA: Association for
Computing Machinery, pages 1055–1056.

Floyd, Robert W. (1979). “The Paradigms of Programming”. In: Communications of the ACM
22.8, pages 455–460.

Frankjær, Raune and Peter Dalsgaard (2018). “Understanding Craft-Based Inquiry in HCI”. In:
Proceedings of the 2018 Designing Interactive Systems Conference. Hong Kong China: ACM,
pages 473–484.

Frich, Jonas, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose Biskjaer, and Peter
Dalsgaard (2019). “Mapping the Landscape of Creativity Support Tools in HCI”. In: Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems. Glasgow Scotland Uk:
ACM, pages 1–18.

Fukuda, Takuto, Eduardo Meneses, Travis West, and Marcelo M. Wanderley (2021). “The T-Stick
Music Creation Project: An Approach to Building a Creative Community around a DMI”. In:
NIME 2021.

Fyans, A. Cavan, Adnan Marquez-Borbon, Paul Stapleton, and Michael Gurevich (2012). “Eco-
logical Considerations for Participatory Design of DMIs”. In: Proceedings of the International
Conference on New Interfaces for Musical Expression. Ann Arbor, Michigan: University of
Michigan.

Gagniuc, Paul (2023). “Paradigms and Concepts”. In: An Introduction to Programming Languages:
Simultaneous Learning in Multiple Coding Environments. Cham: Springer International Pub-
lishing, pages 41–59.

Gamma, Erich, editor (1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Reading, Mass: Addison-Wesley.

Gaster, Benedict and Ryan Challinor (2021). “Bespoke Anywhere”. In: Proceedings of the Inter-
national Conference on New Interfaces for Musical Expression. Shanghai, China.

Gaster, Benedict and Max Cole (2020). “Audio Anywhere with Faust”. In: Proceedings of the 2nd
International Faust Conference.

Gaster, Benedict, Renney Nathan, and Parraman Carinna (2019). “Fun with Interfaces (SVG Inter-
faces for Musical Expression)”. In: 7th ACM SIGPLAN International Workshop on Functional
Art, Music, Modeling, and Design.

Gaster, Benedict R., Nathan Renney, and Tom Mitchell (2018). “Outside the Block Syndicate:
Translating Faust’s Algebra of Blocks to the Arrows Framework”. In: Proceedings of the 1st
International Faust Conference (IFC-18).

Gauthier, Robert P. and James R. Wallace (2022). “The Computational Thematic Analysis Toolkit”.
In: Proceedings of the ACM on Human-Computer Interaction 6.GROUP, 25:1–25:15.

Gaver, William W. (1991). “Technology Affordances”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems Reaching through Technology - CHI ’91. New Orleans,
Louisiana, United States: ACM Press, pages 79–84.

Gibson, James J. (2014). The Ecological Approach to Visual Perception: Classic Edition. 1st edition.
Psychology Press.

Gill, Andy (2014). “Domain-Specific Languages and Code Synthesis Using Haskell”. In: Commu-
nications of the ACM 57.6, pages 42–49.

Glass, R. L., I. Vessey, and V. Ramesh (2002). “Research in Software Engineering: An Analysis of
the Literature”. In: Information and Software Technology 44.8, pages 491–506.

Glass, R.L. (1994). “The Software-Research Crisis”. In: IEEE Software 11.6, pages 42–47.
Glass, Robert L., V. Ramesh, and Iris Vessey (2004). “An Analysis of Research in Computing

Disciplines”. In: Communications of the ACM 47.6, pages 89–94.

144

Goel, Vinod and Peter Pirolli (1992). “The Structure of Design Problem Spaces”. In: Cognitive
science 16.3, pages 395–429.

Goodman, Elizabeth, Erik Stolterman, and Ron Wakkary (2011). “Understanding Interaction De-
sign Practices”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Vancouver BC Canada: ACM, pages 1061–1070.

Gough, Brendan and Anna Madill (2012). “Subjectivity in Psychological Science: From Problem
to Prospect.” In: Psychological Methods 17.3, pages 374–384.

Gouyon, Fabien (2007). “Microtiming in ”Samba de Roda” Preliminary Experiments with Poly-
phonic Audio”. In: Brazilian Symposium on Computer Music January 2007.

Graafsma, Irene L., Serje Robidoux, Lyndsey Nickels, Matthew Roberts, Vince Polito, Judy D.
Zhu, and Eva Marinus (2023). “The Cognition of Programming: Logical Reasoning, Algebra
and Vocabulary Skills Predict Programming Performance Following an Introductory Computing
Course”. In: Journal of Cognitive Psychology 35.3, pages 364–381.

Green, T R G (1989). “Cognitive Dimensions of Notations”. In: Proceedings of the Fifth Conference
of the British Computer Society, Human-Computer Interaction Specialist Group on People and
Computers V. New York, NY, USA: Cambridge University Press, pages 443–460.

Grgic, H, Branko Mihaljević, and Aleksander Radovan (2018). “Comparison of Garbage Collectors
in Java Programming Language”. In: 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, pages 1539–
1544.

Gurevich, Michael (2016). “Diversity in NIME Research Practices”. In: Leonardo 49.1, pages 80–
81.

Gurevich, Michael and Jeffrey Treviño (2017). “2007: Expression and Its Discontents: Toward an
Ecology of Musical Creation”. In: A NIME Reader: Fifteen Years of New Interfaces for Musical
Expression. Edited by Alexander Refsum Jensenius and Michael J. Lyons. Cham: Springer
International Publishing, pages 299–315.

Halabi, Ammar and Basile Zimmermann (2019). “Waves and Forms: Constructing the Cultural in
Design”. In: AI & SOCIETY 34.3, pages 403–417.

Hanenberg, Stefan, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and Andreas Stefik
(2014). “An Empirical Study on the Impact of Static Typing on Software Maintainability”. In:
Empirical Software Engineering 19.5, pages 1335–1382.

Harlin, Ismail Rizky, Hironori Washizaki, and Yoshiaki Fukazawa (2017). “Impact of Using a Static-
Type System in Computer Programming”. In: 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), pages 116–119.

Hatchuel, Armand and Benoit Weil (2003). “A New Approach of Innovative Design: An Introduc-
tion to CK Theory.” In: DS 31: Proceedings of ICED 03, the 14th International Conference on
Engineering Design, Stockholm.

Hayward, Robin (2015). “The Hayward Tuning Vine: An Interface for Just Intonation”. In: Pro-
ceedings of the International Conference on New Interfaces for Musical Expression. Edited by
Edgar Berdahl and Jesse Allison. Baton Rouge, Louisiana, USA: Louisiana State University,
pages 209–214.

Helbling, Caleb and Samuel Z. Guyer (2016). “Juniper: A Functional Reactive Programming Lan-
guage for the Arduino”. In: Proceedings of the 4th International Workshop on Functional Art,
Music, Modelling, and Design - FARM 2016. Nara, Japan: ACM Press, pages 8–16.

Hempel, Brian, Justin Lubin, and Ravi Chugh (2019). “Sketch-n-Sketch: Output-Directed Pro-
gramming for SVG”. In: Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology. UIST ’19. New York, NY, USA: Association for Computing Machin-
ery, pages 281–292.

Hesmondhalgh, David (2005). “Subcultures, Scenes or Tribes? None of the Above”. In: Journal of
Youth Studies 8.1, pages 21–40.

Hinrichsen, Haye (2016). “Revising the Musical Equal Temperament”. In: Revista Brasileira de
Ensino de FÃsica 38.

Hirschfeld, Lawrence A. and Susan A. Gelman, editors (1994). Mapping the Mind: Domain Speci-
ficity in Cognition and Culture. Cambridge ; New York: Cambridge University Press.

Hoc, Jean-Michel and Anh Nguyen-Xuan (1990). “Language Semantics, Mental Models and Anal-
ogy”. In: Psychology of Programming. Elsevier, pages 139–156.

Hoc, J.M. (2014). Psychology of Programming. Computers and People Series Visual Studies. Else-
vier Science.

Hoda, Rashina, James Noble, and Stuart Marshall (2011). “Grounded Theory for Geeks”. In:
Proceedings of the 18th Conference on Pattern Languages of Programs. PLoP ’11. New York,
NY, USA: Association for Computing Machinery, pages 1–17.

145

Hudak, Paul (1986). “A Semantic Model of Reference Counting and Its Abstraction (Detailed Sum-
mary)”. In: Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
pages 351–363.

— (1996). “Building Domain-Specific Embedded Languages”. In: ACM Computing Surveys 28.4es,
196–es.

— (1997). “Domain-Specific Languages”. In: Handbook of programming languages 3.39-60, page 21.
— (1998). “Modular Domain Specific Languages and Tools”. In: Proceedings. Fifth International

Conference on Software Reuse (Cat. No.98TB100203), pages 134–142.
Hudak, Paul, Tom Makucevich, Syam Gadde, and Bo Whong (1996). “Haskore Music Notation –

An Algebra of Music –”. In: Journal of Functional Programming 6.3, pages 465–484.
Hughes, John (1995). “The Design of a Pretty-Printing Library”. In: Advanced Functional Pro-

gramming: First International Spring School on Advanced Functional Programming Techniques
B̊astad, Sweden, May 24–30, 1995 Tutorial Text 1. Springer, pages 53–96.

Hunt, Andy, Marcelo M. Wanderley, and Matthew Paradis (2002). “The Importance of Parameter
Mapping in Electronic Instrument Design”. In: Proceedings of the 2002 Conference on New
Interfaces for Musical Expression. NIME ’02. SGP: National University of Singapore, pages 1–
6.

Imai, Saki (2022). “Is GitHub Copilot a Substitute for Human Pair-Programming? An Empirical
Study”. In: Proceedings of the ACM/IEEE 44th International Conference on Software Engi-
neering: Companion Proceedings. ICSE ’22. New York, NY, USA: Association for Computing
Machinery, pages 319–321.

Inie, Nanna and Peter Dalsgaard (2017). “How Interaction Designers Use Tools to Capture, Man-
age, and Collaborate on Ideas”. In: Proceedings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems. CHI EA ’17. New York, NY, USA: Association for
Computing Machinery, pages 2668–2675.

Jack, Robert, Jacob Harrison, and Andrew McPherson (2020). “Digital Musical Instruments as
Research Products”. In: Proceedings of the International Conference on New Interfaces for
Musical Expression. Edited by Romain Michon and Franziska Schroeder. Birmingham, UK:
Birmingham City University, pages 446–451.

Jack, Robert, Adib Mehrabi, Tony Stockman, and Andrew McPherson (2018). “Action-Sound
Latency and the Perceived Quality of Digital Musical Instruments: Comparing Professional
Percussionists and Amateur Musicians”. In: Music Perception: An Interdisciplinary Journal
36.

Jacobs, Jennifer, David Mellis, Amit Zoran, Cesar Torres, Joel Brandt, and Theresa Jean Tanen-
baum (2016). “Digital Craftsmanship: HCI Takes on Technology as an Expressive Medium”.
In: Proceedings of the 2016 ACM Conference Companion Publication on Designing Interactive
Systems. Brisbane QLD Australia: ACM, pages 57–60.

Japikse, Philip, Kevin Grossnicklaus, and Ben Dewey (2017). “Introduction to TypeScript”. In:
Building Web Applications with Visual Studio 2017: Using .NET Core and Modern JavaScript
Frameworks. Edited by Philip Japikse, Kevin Grossnicklaus, and Ben Dewey. Berkeley, CA:
Apress, pages 241–280.

Jin, Wuxia, Dinghong Zhong, Zifan Ding, Ming Fan, and Ting Liu (2021). “Where to Start: Study-
ing Type Annotation Practices in Python”. In: 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 529–541.

John Varney (2014). A Different Way to Visualize Rhythm.
Jordà, Sergi (2004a). “Digital Instruments and Players Part II: Diversity, Freedom and Control”.

In: International Computer Music Conference.
— (2004b). “Instruments and Players: Some Thoughts on Digital Lutherie”. In: Journal of New

Music Research 33.3, pages 321–341.
— (2005). “Digital Lutherie Crafting Musical Computers for New Musics’ Performance and Im-

provisation”. PhD thesis. Universitat Pompeu Fabra.
Jules Storer (2016). Only an Idiot Would Write a New C-like Language in 2016, Jules Storer.

Audio Developers Conference 2016.
Jung, Young-Wook, Youn-kyung Lim, and Myung-suk Kim (2017). “Possibilities and Limitations

of Online Document Tools for Design Collaboration: The Case of Google Docs”. In: Proceedings
of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing.
Portland Oregon USA: ACM, pages 1096–1108.

Kaijanaho, Antti-Juhani (2015). “Evidence-Based Programming Language Design : A Philosophi-
cal and Methodological Exploration”. In: Jyväskylä studies in computing 222.

146

Kaltenbrunner, Martin, Sergi Jorda, Gunter Geiger, and Marcos Alonso (2006). “The reacTable*:
A Collaborative Musical Instrument”. In: 15th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE’06), pages 406–411.

Kantaros, Antreas and Olaf Diegel (2018). “3D Printing Technology in Musical Instrument Re-
search: Reviewing the Potential”. In: Rapid prototyping journal 24.9, pages 1511–1523.

Ko, Amy J. et al. (2011). “The State of the Art in End-User Software Engineering”. In: ACM
Computing Surveys 43.3, 21:1–21:44.

Koch, Janin, Jennifer Pearson, Andrés Lucero, Miriam Sturdee, Wendy E. Mackay, Makayla Lewis,
and Simon Robinson (2020). “Where Art Meets Technology: Integrating Tangible and Intel-
ligent Tools in Creative Processes”. In: Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems. Honolulu HI USA: ACM, pages 1–7.

Koeppe, Ian (2018). “An Investigation into the Imposed Cognitive Load of Static & Dynamic Type
Systems on Programmers”. PhD thesis. University of Nebraska at Omaha.

Kosar, Tomaž, Sudev Bohra, and Marjan Mernik (2016). “Domain-Specific Languages: A System-
atic Mapping Study”. In: Information and Software Technology 71, pages 77–91.

Król, Karol and Dariusz Zdonek (2019). “Peculiarity of the Bit Rot and Link Rot Phenomena”.
In: Global Knowledge, Memory and Communication.

Kuznetsov, Stacey and Eric Paulos (2010). “Rise of the Expert Amateur: DIY Projects, Com-
munities, and Cultures”. In: Proceedings of the 6th Nordic Conference on Human-Computer
Interaction: Extending Boundaries. NordiCHI ’10. New York, NY, USA: Association for Com-
puting Machinery, pages 295–304.

L. Haven, Tamarinde and Dr. Leonie Van Grootel (2019). “Preregistering Qualitative Research”.
In: Accountability in Research 26.3, pages 229–244.

Laguna, Christopher Patrick and Rebecca Fiebrink (2014). “Improving Data-Driven Design and
Exploration of Digital Musical Instruments”. In: CHI ’14 Extended Abstracts on Human Factors
in Computing Systems. Toronto Ontario Canada: ACM, pages 2575–2580.

Landin, P. J. (1966). “The next 700 Programming Languages”. In: Communications of the ACM
9.3, pages 157–166.

Lauer, Michael S, Harlan M Krumholz, and Eric J Topol (2015). “Time for a Prepublication
Culture in Clinical Research?” In: The Lancet 386.10012, pages 2447–2449.

Lepri, Giacomo and Andrew McPherson (2019). “Making Up Instruments: Design Fiction for
Value Discovery in Communities of Musical Practice”. In: Proceedings of the 2019 on Designing
Interactive Systems Conference. San Diego CA USA: ACM, pages 113–126.

Lertwittayatrai, Nuttapon, Raula Gaikovina Kula, Saya Onoue, Hideaki Hata, Arnon Rungsawang,
Pattara Leelaprute, and Kenichi Matsumoto (2017). “Extracting Insights from the Topology of
the JavaScript Package Ecosystem”. In: 2017 24th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 298–307.

Lessig, L. (2009). Remix: Making Art and Commerce Thrive in the Hybrid Economy. Bloomsbury
Publishing.

Levy, Steven (1984). Hackers: Heroes of the Computer Revolution. 1st ed. Garden City, N.Y:
Anchor Press/Doubleday.

Lindell, Rikard (2014). “Crafting Interaction: The Epistemology of Modern Programming”. In:
Personal and Ubiquitous Computing 18.3, pages 613–624.

Lohman, Kirsty (2017). “Theories of Punk and Subculture”. In: The Connected Lives of Dutch
Punks: Contesting Subcultural Boundaries. Edited by Kirsty Lohman. Palgrave Studies in the
History of Subcultures and Popular Music. Cham: Springer International Publishing, pages 23–
59.

Loy, Gareth (1985). “Musicians Make a Standard: The MIDI Phenomenon”. In: Computer Music
Journal 9.4, pages 8–26. JSTOR: 3679619.

Lubin, Justin and Sarah E. Chasins (2021). “How Statically-Typed Functional Programmers Write
Code”. In: Proceedings of the ACM on Programming Languages 5.OOPSLA, 155:1–155:30.

Madgwick, Sebastian and Thomas J. Mitchell (2013). “X-OSC: A Versatile Wireless I/O Device
for Creative/Music Applications”. In: SMC Sound and Music Computing Conference 2013.

Madison, Guy (2001). “Variability in Isochronous Tapping: Higher Order Dependencies as a Func-
tion of Intertap Interval”. In: Journal of Experimental Psychology: Human Perception and
Performance 27.2, pages 411–422. PMID: 11318056.

Magnusson, Thor (2006). “Affordances and Constraints in Screen-Based Musical Instruments”. In:
Proceedings of the 4th Nordic Conference on Human-computer Interaction Changing Roles -
NordiCHI ’06. Oslo, Norway: ACM Press, pages 441–444.

— (2009). “Of Epistemic Tools: Musical Instruments as Cognitive Extensions”. In: Organised
Sound 14.2, pages 168–176.

147

http://www.jstor.org/stable/3679619
http://www.ncbi.nlm.nih.gov/pubmed/11318056

Magnusson, Thor (2010a). “Designing Constraints: Composing and Performing with Digital Mu-
sical Systems”. In: Computer Music Journal 34.4, pages 62–73.

— (2010b). Ixi Lang: A Constraint System for Live Coding. Edited by Judith Funke, Stefan Rieke-
les, and Andreas Broeckmann. Berlin.

— (2019). Sonic Writing: Technologies of Material, Symbolic and Signal Inscriptions. New York,
NY: Bloomsbury Academic.

Magnusson, Thor and Alex McLean (2018). “Chapter 14: Performing with Patterns of Time”. In:
Oxford University Press, pages 1–17.

Magnusson, Thor and Enrike H. Mendieta (2007). “The Acoustic, the Digital and the Body :
A Survey on Musical Instruments”. In: Proceedings of the International Conference on New
Interfaces for Musical Expression. New York City, NY, United States, pages 94–99.

Maguire, Sandy (2018). Thinking with Types. Leanpub.
Mariano, Benjamin, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig (2022). “Automated Tran-

spilation of Imperative to Functional Code Using Neural-Guided Program Synthesis”. In: Pro-
ceedings of the ACM on Programming Languages 6.OOPSLA1, 71:1–71:27.

Marlow, Simon (2010). Haskell 2010 Language Report.
Marquez-Borbon, Adnan and Juan Pablo Martinez-Avila (2018). “The Problem of DMI Adoption

and Longevity: Envisioning a NIME Performance Pedagogy”. In: Proceedings of the Interna-
tional Conference on New Interfaces for Musical Expression. Edited by Thomas Martin Luke
Dahl Douglas Bowman. Blacksburg, Virginia, USA: Virginia Tech, pages 190–195.

Marquez-Borbon, Adnan and Paul Stapleton (2015). “Fourteen Years of NIME: The Value and
Meaning of ‘Community’ in Interactive Music Research”. In: Proceedings of the International
Conference on New Interfaces for Musical Expression. Edited by Edgar Berdahl and Jesse
Allison. Baton Rouge, Louisiana, USA: Louisiana State University, pages 307–312.

Marshall, Mark T. and Marcelo M. Wanderley (2006). “Vibrotactile Feedback in Digital Musical
Instruments”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Paris, France, pages 226–229.

Matavire, Rangarirai and Irwin Brown (2008). “Investigating the Use of ”Grounded Theory” in
Information Systems Research”. In: Proceedings of the 2008 Annual Research Conference of the
South African Institute of Computer Scientists and Information Technologists on IT Research
in Developing Countries: Riding the Wave of Technology. SAICSIT ’08. New York, NY, USA:
Association for Computing Machinery, pages 139–147.

Mathew, Marlene, Jennifer Grossman, and Areti Andreopoulou (2016). “Women in Audio: Contri-
butions and Challenges in Music Technology and Production”. In: Audio Engineering Society
Convention 141. Audio Engineering Society.

Mathews, Max V. and Curtis Abbott (1980). “The Sequential Drum”. In: Computer Music Journal
4.4, pages 45–59. JSTOR: 3679465.

Mayer, Clemens, Stefan Hanenberg, R. Robbes, É Tanter, and A. Stefik (2012). “Static Type
Systems (Sometimes) Have a Positive Impact on the Usability of Undocumented Software :
An Empirical Evaluation”. In.

McArthur, J.A. (2009). “Digital Subculture: A Geek Meaning of Style”. In: Journal of Communi-
cation Inquiry 33.1, pages 58–70.

McCartney, James (2002). “Rethinking the Computer Music Language: SuperCollider”. In: Com-
puter Music Journal 26.4, pages 61–68.

McCauley, Renée, Scott Grissom, Sue Fitzgerald, and Laurie Murphy (2015). “Teaching and Learn-
ing Recursive Programming: A Review of the Research Literature”. In: Computer Science Ed-
ucation 25.1, pages 37–66.

McLean, Alex (2011). “Artist-Programmers and Programming Languages for the Arts”. PhD the-
sis. Goldsmiths, University of London.

— (2014). “Making Programming Languages to Dance to: Live Coding with Tidal”. In: Proceedings
of the 2nd ACM SIGPLAN International Workshop on Functional Art, Music, Modeling &
Design - FARM ’14. Gothenburg, Sweden: ACM Press, pages 63–70.

McPherson, Andrew (2017). “Bela: An Embedded Platform for Low-Latency Feedback Control of
Sound”. In: The Journal of the Acoustical Society of America 141.5, pages 3618–3618.

McPherson, Andrew and Youngmoo E. Kim (2012). “The Problem of the Second Performer: Build-
ing a Community Around an Augmented Piano”. In: Computer Music Journal 36.4, pages 10–
27.

McPherson, Andrew, Robert Jack, and Giulio Moro (2016). “Action-Sound Latency: Are Our Tools
Fast Enough?” In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Volume 16. Brisbane, Australia: Queensland Conservatorium Griffith University,
pages 20–25.

148

http://www.jstor.org/stable/3679465

McPherson, Andrew and Giacomo Lepri (2020). “Beholden to Our Tools: Negotiating with Tech-
nology While Sketching Digital Instruments”. In: Proceedings of the International Conference
on New Interfaces for Musical Expression. Edited by Romain Michon and Franziska Schroeder.
Birmingham, UK: Birmingham City University, pages 434–439.

McPherson, Andrew, Fabio Morreale, and Jacob Harrison (2019). “Musical Instruments for Novices:
Comparing NIME, HCI and Crowdfunding Approaches”. In: New Directions in Music and
Human-Computer Interaction. Edited by Simon Holland, Tom Mudd, Katie Wilkie-McKenna,
Andrew McPherson, and Marcelo M. Wanderley. Cham: Springer International Publishing,
pages 179–212.

McPherson, Andrew and Koray Tahıroğlu (2020). “Idiomatic Patterns and Aesthetic Influence in
Computer Music Languages”. In: Organised Sound 25.1, pages 53–63.

McPherson, Andrew P., Alan Chamberlain, Adrian Hazzard, Sean McGrath, and Steve Benford
(2016). “Designing for Exploratory Play with a Hackable Digital Musical Instrument”. In:
Proceedings of the 2016 ACM Conference on Designing Interactive Systems. Brisbane QLD
Australia: ACM, pages 1233–1245.

McPherson, Andrew P. and Youngmoo E. Kim (2013). “Piano Technique as a Case Study in Ex-
pressive Gestural Interaction”. In: Music and Human-Computer Interaction. Edited by Simon
Holland, Katie Wilkie, Paul Mulholland, and Allan Seago. London: Springer London, pages 123–
138.

Meyer, Miriah and Jason Dykes (2020). “Criteria for Rigor in Visualization Design Study”. In:
IEEE Transactions on Visualization and Computer Graphics 26.1, pages 87–97.

Michon, Romain, Catinca Dumitrascu, Sandrine Chudet, Yann Orlarey, Stéphane Letz, and Do-
minique Fober (2021). “Amstramgrame: Making Scientific Concepts More Tangible Through
Music Technology at School”. In: NIME 2021.

Michon, Romain, Yann Orlarey, Stéphane Letz, and Dominique Fober (2019). “Real Time Au-
dio Digital Signal Processing with Faust and the Teensy”. In: Sound and Music Computing
Conference (SMC-19).

Michon, Romain, Yann Orlarey, Stéphane Letz, Dominique Fober, and Dirk Roosenburg (2020a).
“Embedded Real-Time Audio Signal Processing with Faust”. In: International Faust Conference
(IFC-20).

Michon, Romain, Daniel Overholt, Stephane Letz, Yann Orlarey, Dominique Fober, and Catinca
Dumitrascu (2020b). “A Faust Architecture for the ESP32 Microcontroller”. In: Sound and
Music Computing Conference (SMC-20).

Mikkonen, Tommi and Antero Taivalsaari (2007). Using JavaScript as a Real Programming Lan-
guage. Technical Report. USA: Sun Microsystems, Inc.

Milanesi, Carlo (2022). “Object-Oriented Programming”. In: Beginning Rust. Berkeley, CA: Apress,
pages 309–335.

Milne, Andrew, William Sethares, and James Plamondon (2007). “Isomorphic Controllers and
Dynamic Tuning: Invariant Fingering over a Tuning Continuum”. In: Computer Music Journal
31.4, pages 15–32.

Miranda, André and João Pimentel (2018). “On the Use of Package Managers by the C++ Open-
Source Community”. In: Proceedings of the 33rd Annual ACM Symposium on Applied Comput-
ing. SAC ’18. New York, NY, USA: Association for Computing Machinery, pages 1483–1491.

Miranda, Eduardo Reck and Marcelo M. Wanderley (2006). New Digital Musical Instruments:
Control and Interaction beyond the Keyboard. The Computer Music and Digital Audio Series
v. 21. Middleton, Wis: A-R Editions.

Moro, Giulio, Astrid Bin, Robert H Jack, Christian Heinrichs, Andrew P McPherson, et al. (2016).
“Making High-Performance Embedded Instruments with Bela and Pure Data”. In: International
Conference on Live Interfaces. University of Sussex.

Moro, Giulio and Andrew P. McPherson (2021). “Performer Experience on a Continuous Keyboard
Instrument”. In: Computer Music Journal 44.2-3, pages 69–91.

Morreale, Fabio, S. M. Astrid Bin, Andrew McPherson, Paul Stapleton, and Marcelo Wanderley
(2020). “A NIME of the Times: Developing an Outward-Looking Political Agenda for This
Community”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Edited by Romain Michon and Franziska Schroeder. Birmingham, UK: Birmingham
City University, pages 160–165.

Morreale, Fabio and Andrew McPherson (2017). “Design for Longevity: Ongoing Use of Instru-
ments from NIME 2010-14”. In: Proceedings of the International Conference on New Interfaces
for Musical Expression. Copenhagen, Denmark: Aalborg University Copenhagen, pages 192–
197.

149

Morreale, Fabio, Andrew P. McPherson, and Marcelo Wanderley (2018). “NIME Identity from the
Performer’s Perspective”. In: Proceedings of the International Conference on New Interfaces
for Musical Expression. Edited by Thomas Martin Luke Dahl Douglas Bowman. Blacksburg,
Virginia, USA: Virginia Tech, pages 168–173.

Morreale, Fabio, Giulio Moro, Alan Chamberlain, Steve Benford, and Andrew P. McPherson (2017).
“Building a Maker Community Around an Open Hardware Platform”. In: Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. CHI ’17. New York, NY, USA:
Association for Computing Machinery, pages 6948–6959.

Mulder, Axel (1994). “Virtual Musical Instruments: Accessing the Sound Synthesis Universe as a
Performer”. In: Proceedings of the First Brazilian Symposium on Computer Music, pages 243–
250.

Myers, Brad and Andrew Ko (2009). “The Past, Present and Future of Programming in HCI”. In:
Human-Computer Interaction Consortium (HCIC’09).

Nash, Chris and Alan F Blackwell (2011). “Tracking Virtuosity and Flow in Computer Music”. In:
Proceedings of International Computer Music Conference.

Newell, Allen (1993). “Reasoning, Problem Solving, and Decision Processes: The Problem Space
as a Fundamental Category”. In: The Soar Papers (Vol. 1) Research on Integrated Intelligence,
pages 55–80.

Norman, Donald A. (1999). “Affordance, Conventions, and Design”. In: Interactions 6.3, pages 38–
43.

Nosek, B. A. et al. (2015). “Promoting an Open Research Culture”. In: Science 348.6242, pages 1422–
1425.

Okon, Sebastian and Stefan Hanenberg (2016). “Can We Enforce a Benefit for Dynamically Typed
Languages in Comparison to Statically Typed Ones? A Controlled Experiment”. In: 2016 IEEE
24th International Conference on Program Comprehension (ICPC), pages 1–10.

O’Modhrain, Sile (2011). “A Framework for the Evaluation of Digital Musical Instruments”. In:
Computer Music Journal 35.1, pages 28–42.

Orlarey, Yann, Dominique Fober, and Stéphane Letz (2009). “FAUST : An Efficient Functional
Approach to DSP Programming”. In: New Computational Paradigms For Computer Music,
pages 65–96.

Page, Rex (2001). “Functional Programming, and Where You Can Put It”. In: ACM SIGPLAN
Notices 36.9, pages 19–24.

Parr, Terence and Kathleen Fisher (2011). “LL(*): The Foundation of the ANTLR Parser Gener-
ator”. In: ACM SIGPLAN Notices 46.6, pages 425–436.

Parr, Terence J. and Russell W. Quong (1995). “ANTLR: A Predicated-LL (k) Parser Generator”.
In: Software: Practice and Experience 25.7, pages 789–810.

Patterson, Daniel and Amal Ahmed (2017). “Linking Types for Multi-Language Software: Have
Your Cake and Eat It Too”. In: 2nd Summit on Advances in Programming Languages (SNAPL
2017). Edited by Benjamin S. Lerner, Rastislav Bod́ık, and Shriram Krishnamurthi. Vol-
ume 71. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 12:1–12:15.

Payne, Stephen J., Helen R. Squibb, and Andrew Howes (1990). “The Nature of Device Mod-
els: The Yoked State Space Hypothesis and Some Experiments with Text Editors”. In: Hu-
man–Computer Interaction 5.4, pages 415–444. eprint: https://www.tandfonline.com/doi/
pdf/10.1207/s15327051hci0504_3.

Pearce, Marcus and Geraint A Wiggins (2002). “Aspects of a Cognitive Theory of Creativity in
Musical Composition”. In: Proceedings of the ECAI02 Workshop on Creative Systems.

Pham, Michel Tuan and Travis Tae Oh (2021). “Preregistration Is Neither Sufficient nor Necessary
for Good Science”. In: Journal of Consumer Psychology 31.1, pages 163–176.

Polak, Rainer (2010). “Rhythmic Feel as Meter: Non-isochronous Beat Subdivision in Jembe Music
from Mali”. In: Society for Music Theory 16.4, pages 1–26.

Posch, Irene and Geraldine Fitzpatrick (2021). “The Matter of Tools: Designing, Using and Reflect-
ing on New Tools for Emerging eTextile Craft Practices”. In: ACM Transactions on Computer-
Human Interaction 28.1, pages 1–38.

Puckette, Miller (1996). “Pure Data: Another Integrated Computer Music Environment”. In: Pro-
ceedings of the second intercollege computer music concerts, pages 37–41.

— (1997). “Pure Data”. In: Proceedings of the 1996 International Computer Music Conference.
San Francisco: International Computer Music Association, pages 269–272.

— (2002). “Max at Seventeen”. In: Computer Music Journal 26.4, pages 31–43. JSTOR: 3681767.
Quille, Keith and Susan Bergin (2018). “Programming: Predicting Student Success Early in CS1.

a Re-Validation and Replication Study”. In: Proceedings of the 23rd Annual ACM Conference

150

https://www.tandfonline.com/doi/pdf/10.1207/s15327051hci0504_3
https://www.tandfonline.com/doi/pdf/10.1207/s15327051hci0504_3
http://www.jstor.org/stable/3681767

on Innovation and Technology in Computer Science Education. ITiCSE 2018. New York, NY,
USA: Association for Computing Machinery, pages 15–20.

Ramirez V, Gabriel M, Yenny A Méndez, Antoni Granollers, Andrés F Millán, Claudio C Gonzalez,
and Fernando Moreira (2021). “State of the Art of Human-Computer Interaction (HCI) Master’s
Programs 2020”. In: World Conference on Information Systems and Technologies. Springer,
pages 405–414.

Rastogi, Aseem, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris (2015).
“Safe & Efficient Gradual Typing for TypeScript”. In: Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 167–180.

Renney, Nathan, Benedict Gaster, and Tom Mitchell (2018). “Return to Temperament (In Digital
Systems)”. In: Audio Mostly. Edited by Hunt Samuel.

Renney, Nathan, Benedict Gaster, Tom Mitchell, and Harri Renney (2022). “Studying How Digital
Luthiers Choose Their Tools”. In: Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems. CHI ’22. New York, NY, USA: Association for Computing Machinery,
pages 1–18.

Renney, Nathan and Benedict R. Gaster (2019). “Digital Expression and Representation of Rhythm”.
In: Audio Mostly. Association for Computing Machinery (ACM).

Renney, Nathan, Benedict R Gaster, Thomas J Mitchell, and Harri Renney (2021). Data and
Methodology : Exploring How Digital Luthiers Choose Their Tools. Version 1.0.0.

Repp, Bruno H (2003). “Rate Limits in Sensorimotor Synchronization with Auditory and Visual
Sequences”. In: Journal of Motor Behavior 35.4, page 16.

Riley, Terry (1983). Songs for the Ten Voices of the Two Prophets. Germany.
Rist, Robert S. (1991). “Knowledge Creation and Retrieval in Program Design: A Comparison

of Novice and Intermediate Student Programmers”. In: Human-Computer Interaction 6.1,
pages 1–46.

Roads, C. and Max Mathews (1980). “Interview with Max Mathews”. In: Computer Music Journal
4.4, page 15. JSTOR: 3679463.

Robins, Anthony, Janet Rountree, and Nathan Rountree (2003). “Learning and Teaching Program-
ming: A Review and Discussion”. In: Computer Science Education 13.2, pages 137–172.

Robson, Samuel G. et al. (2021). “Promoting Open Science: A Holistic Approach to Changing
Behaviour”. In: Collabra: Psychology 7.1, page 30137.

Rossmy, Beat and Alexander Wiethoff (2019). “The Modular Backward Evolution — Why to Use
Outdated Technologies”. In: Proceedings of the International Conference on New Interfaces for
Musical Expression. Edited by Marcelo Queiroz and Anna Xambó Sedó. Porto Alegre, Brazil:
UFRGS, pages 343–348.

Sakulniwat, Tattiya, Raula Gaikovina Kula, Chaiyong Ragkhitwetsagul, Morakot Choetkiertikul,
Thanwadee Sunetnanta, Dong Wang, Takashi Ishio, and Kenichi Matsumoto (2019). “Visual-
izing the Usage of Pythonic Idioms Over Time: A Case Study of the with Open Idiom”. In:
2019 10th International Workshop on Empirical Software Engineering in Practice (IWESEP),
pages 43–435.

Sayago, Sergio (2023). Cultures in Human-Computer Interaction. Synthesis Lectures on Human-
Centered Informatics. Cham: Springer International Publishing.

Schaeffer, Pierre (2017). Treatise on Musical Objects : An Essay across Disciplines. Volume 20.
Univ of California Press, page 569.

Selic, Bran (2008). “Personal Reflections on Automation, Programming Culture, and Model-Based
Software Engineering”. In: Automated Software Engineering 15.3, pages 379–391.

Silva, Eduardo S, Jader Anderson O de Abreu, Janiel Henrique Pinheiro de Almeida, Veronica
Teichrieb, and Geber Lisboa Ramalho (2013). “A Preliminary Evaluation of the Leap Motion
Sensor as Controller of New Digital Musical Instruments”. In: Recife, Brasil, pages 59–70.

Silver, Mike (2006). “Towards a Programming Culture in the Design Arts”. In: Architectural Design
76.4, pages 5–11.

Sivaraman, Aishwarya, Rui Abreu, Andrew Scott, Tobi Akomolede, and Satish Chandra (2022).
“Mining Idioms in the Wild”. In: Proceedings of the 44th International Conference on Soft-
ware Engineering: Software Engineering in Practice. ICSE-SEIP ’22. New York, NY, USA:
Association for Computing Machinery, pages 187–196.

Small, Christopher (1998). Musicking: The Meanings of Performing and Listening. Music/Culture.
Hanover: University Press of New England.

Snape, Joe and Georgina Born (2022). “Max, Music Software and the Mutual Mediation of Aes-
thetics and Digital Technologies”. In:Music and Digital Media: A Planetary Anthropology. UCL
Press, pages 220–266. JSTOR: j.ctv2pzbkcg.11.

151

http://www.jstor.org/stable/3679463
http://www.jstor.org/stable/j.ctv2pzbkcg.11

Spohrer, James C and Elliot Soloway (1989). “Simulating Student Programmers.” In: IJCAI. Vol-
ume 89, pages 543–549.

Sprankle, Maureen (2003). Problem Solving and Programming Concepts. 6th ed. Upper Saddle
River, N.J: Prentice Hall.

Stacy, Webb and Jean MacMillan (1995). “Cognitive Bias in Software Engineering”. In: Commu-
nications of the ACM 38.6, pages 57–63.

Star, Susan Leigh (1989). “The Structure of Ill-Structured Solutions: Boundary Objects and Hetero-
geneous Distributed Problem Solving”. In: Distributed Artificial Intelligence. Elsevier, pages 37–
54.

Stefanus DuToit (2014). Hourglass Interfaces for C++ APIs. CppCon 2014.
Steffen, Bernhard (2019). “Methods, Languages and Tools for Future System Development”. In:

Computing and Software Science: State of the Art and Perspectives. Edited by Bernhard Steffen
and Gerhard Woeginger. Lecture Notes in Computer Science. Cham: Springer International
Publishing, pages 239–249.

Stolterman, Erik and James Pierce (2012). “Design Tools in Practice: Studying the Designer-
Tool Relationship in Interaction Design”. In: Proceedings of the Designing Interactive Systems
Conference on - DIS ’12. Newcastle Upon Tyne, United Kingdom: ACM Press, page 25.

Suh, Nam P. (1998). “Axiomatic Design Theory for Systems”. In: Research in Engineering Design
10.4, pages 189–209.

— (2001). Axiomatic Design: Advances and Applications. The MIT-Pappalardo Series in Mechan-
ical Engineering. New York: Oxford University Press.

Szabo, Claudia and Judy Sheard (2022). “Learning Theories Use and Relationships in Computing
Education Research”. In: ACM Transactions on Computing Education 23.1, 5:1–5:34.

Tagg, P (1997). Understanding Musical Time Sense: Concepts, Sketches and Consequences.
Tahiroğlu, Koray (2021). “Ever-Shifting Roles in Building, Composing and Performing with Digital

Musical Instruments”. In: Journal of New Music Research 50.2, pages 155–164.
Tahiroglu, Koray, Michael Gurevich, and R. Benjamin Knapp (2018). “Contextualising Idiomatic

Gestures in Musical Interactions with NIMEs”. In: Proceedings of the International Confer-
ence on New Interfaces for Musical Expression. Edited by Thomas Martin Luke Dahl Douglas
Bowman. Blacksburg, Virginia, USA: Virginia Tech, pages 126–131.

Tanaka, Atau (2010). “Mapping out Instruments, Affordances, and Mobiles”. In: Proceedings of
the International Conference on New Interfaces for Musical Expression. Sydney, Australia,
pages 88–93.

Tanenbaum, Theresa Jean, Amanda M. Williams, Audrey Desjardins, and Karen Tanenbaum
(2013). “Democratizing Technology: Pleasure, Utility and Expressiveness in DIY and Maker
Practice”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Paris France: ACM, pages 2603–2612.

Théberge, Paul (1997). Any Sound You Can Imagine: Making Music/Consuming Technology. Mu-
sic/Culture. Hanover, NH: Wesleyan University Press : University Press of New England.

Thomas, John C. and Michael L. Schneider, editors (1984). Human Factors in Computer Systems.
Human/Computer Interaction. Norwood, N.J: Ablex Pub. Corp.

Tilbian, Joseph and Andres Cabrera (2017). “Stride for Interactive Musical Instrument Design.”
In: NIME, pages 446–449.

Tilbian, Joseph, Andrés Cabrera, Steffen Martin, and Lukasz Olczyk (2017). “Stride on Saturn M7
for Interactive Musical Instrument Design.” In: NIME, pages 503–504.

Tilkov, Stefan and Steve Vinoski (2010). “Node. Js: Using JavaScript to Build High-Performance
Network Programs”. In: IEEE Internet Computing 14.6, pages 80–83.

Tod, Machover and Chung, J (1989). “Hyperinstruments: Musically Intelligent and Interactive Per-
formance and Creativity Systems”. In: International Computer Music Conference Proceedings
1989.

Torvalds, Linus (1999). “The Linux Edge”. In: Communications of the ACM 42.4, pages 38–39.
Trott, Peter (1997). “Programming Languages: Past, Present, and Future: Sixteen Prominent Com-

puter Scientiest Assess Our Field”. In: ACM SIGPLAN Notices 32.1, pages 14–57.
Turchet, Luca and Carlo Fischione (2021). “Elk Audio OS: An Open Source Operating System for

the Internet of Musical Things”. In: ACM Transactions on Internet of Things 2.2, pages 1–18.
Turner, D (1986). “An Overview of Miranda”. In: SIGPLAN Not. 21.12, pages 158–166.
University of Technology Sydney and Eindhoven University of Technology and Kees Dorst (2016).

“Design Practice and Design Research: Finally Together?” In: Design Research Society Con-
ference 2016.

152

Vallg̊arda, Anna and Ylva Fernaeus (2015). “Interaction Design as a Bricolage Practice”. In: Pro-
ceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interac-
tion. Stanford California USA: ACM, pages 173–180.

van den Berg, Harry (2008). “Reanalyzing Qualitative Interviews from Different Angles: The Risk
of Decontextualization and Other Problems of Sharing Qualitative Data”. In: Historical Social
Research / Historische Sozialforschung 33.3 (125), pages 179–192. JSTOR: 20762306.

Van Nort, Doug, Marcelo M.Wanderley, and Philippe Depalle (2014). “Mapping Control Structures
for Sound Synthesis: Functional and Topological Perspectives”. In: Computer Music Journal
38.3, pages 6–22.

Van Wyngaard, C. J., J. H. C. Pretorius, and L. Pretorius (2012). “Theory of the Triple Constraint
— A Conceptual Review”. In: 2012 IEEE International Conference on Industrial Engineering
and Engineering Management, pages 1991–1997.

Wadler, Philip (1992). “The Essence of Functional Programming”. In: Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’92.
New York, NY, USA: Association for Computing Machinery, pages 1–14.

Wan, Zhanyong, Walid Taha, and Paul Hudak (2002). “Event-Driven FRP”. In: Proceedings of the
4th International Symposium on Practical Aspects of Declarative Languages. PADL ’02. Berlin,
Heidelberg: Springer-Verlag, pages 155–172.

Wanderley, Marcelo M (2001). “Gestural Control of Music”. In: International Workshop Human
Supervision and Control in Engineering and Music, pages 632–644.

Wang, Ge, Perry R. Cook, and Spencer Salazar (2015). “ChucK: A Strongly Timed Computer
Music Language”. In: Computer Music Journal 39.4, pages 10–29.

Wessel, David and Matthew Wright (2002). “Problems and Prospects for Intimate Musical Control
of Computers”. In: Computer music journal 26.3, pages 11–22.

Williams, Joan C. (2014). “Double Jeopardy? An Empirical Study with Implications for the De-
bates over Implicit Bias and Intersectionality,” in: Harvard Journal of Law & Gender.

Winslow, Leon E. (1996). “Programming Pedagogy—a Psychological Overview”. In: ACM SIGCSE
Bulletin 28.3, pages 17–22.

Wright, D. (2009). “Mathematics and Music”. In: Mathematical World. American Mathematical
Society. Chapter 4, pages 45–46.

Xambó, Anna (2018). “Who Are the Women Authors in NIME?–Improving Gender Balance in
NIME Research”. In: Proceedings of the International Conference on New Interfaces for Musical
Expression. Edited by Thomas Martin Luke Dahl Douglas Bowman. Blacksburg, Virginia, USA:
Virginia Tech, pages 174–177.

Yamada, Yuki (2018). “How to Crack Pre-Registration: Toward Transparent and Open Science”.
In: Frontiers in psychology 9, page 1831.

Zappi, Victor and Andrew McPherson (2018). “Hackable Instruments: Supporting Appropriation
and Modification in Digital Musical Interaction”. In: Frontiers in ICT 5, page 26.

Zhang, Cheng and David Budgen (2012). “What Do We Know about the Effectiveness of Software
Design Patterns?” In: IEEE Transactions on Software Engineering 38.5, pages 1213–1231.

Zhang, Weixin and Bruno Oliveira (2019). “Shallow EDSLs and Object-Oriented Programming:
Beyond Simple Compositionality”. In: The Art, Science, and Engineering of Programming 3.3,
page 10. arXiv: 1902.00548 [cs].

Zhu, Shuofei, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song (2022). “Learning and Pro-
gramming Challenges of Rust: A Mixed-Methods Study”. In: Proceedings of the 44th Interna-
tional Conference on Software Engineering. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, pages 1269–1281.

Zoran, Amit (2011). “The 3D Printed Flute: Digital Fabrication and Design of Musical Instru-
ments”. In: Journal of New Music Research 40.4, pages 379–387.

153

http://www.jstor.org/stable/20762306
https://arxiv.org/abs/1902.00548

	Abstract
	Introduction
	Introduction
	Motivations (Prelude)
	Research Questions
	Overview
	Contributions

	Background
	The Programmer
	The Programmer as an Individual
	Novice Programmers
	Experienced Programmers
	Programmer Communities
	The Evolution of Programming Languages
	Paradigms and Idioms
	Domain Specific Languages
	Humans and Programming Languages
	Summary

	The Performer
	Summary

	The Digital Luthier
	Situating Digital Lutherie as a Design Domain
	Design of Digital Musical Instruments
	Domains and the problem space of digital lutherie
	Tools For DMI design
	Summary

	Exploring Languages for Digital Lutherie
	Exploring Programming Idioms for Expressing Tuning Systems
	Introduction
	Tuning and Temperament
	Current interactions with instrument tuning
	Expressing Temperament
	Practical Examples
	Applications
	Conclusion

	Exploring DSLs for Expressing Musical Patterns
	Traditional Expression of Rhythm
	Describing Time with Tidal influenced Patterns
	Notions of Time
	Representing Sequences
	Polyrhythmic Merge
	An example DSL for expressing notions of time

	Applications for DMI
	Conclusion

	Exploring Embedded DSLs for Dynamic Grid Controller Layouts
	Embedded Domain Specific Languages
	Transpilation Strategy
	Modelling with Types
	Horizontal and Vertical Composition
	Motivating a Study on the Designer Tool Relationship
	Summary

	Study Methodology
	Motivations
	Participants
	Participant Roles

	Instruments
	Interviews and Analysis

	How do Digital Luthiers Choose Their Tools?
	Theme 1: `The Pragmatist'
	Theme 2: `A Product of our Environment'
	Theme 3: `Intentions'
	Discussion
	Why and how do Instrument designers pick their tools?
	What distinct problem spaces do instrument designers consider to be involved in instrument design?
	How do instrument designers define a digital musical instrument?

	Conclusion and Future Work

	What do Digital Luthiers value from their programming languages?
	Theme 4: `A Guiding Force'
	Theme 5: `The Mutable Instrument'
	Theme 6: `Expressing My Ideas'
	Discussion
	What do Digital Luthiers value from their programming languages?
	Constructivist Models
	The Pluggable Architecture

	Selective Pressures: Toward Design Guidelines for Programming Languages in Digital Lutherie
	Selective Pressures for Programming DMI
	Themes
	Overview of Selective Pressures
	Signposting Ideas to Address the Selective Pressures on Langauges for Digital Lutherie
	Summary

	The Next Steps: Understanding the needs for Digital Luthiers
	What are the Implications of Influential Programming Languages?
	How can PLs Support EUD In Digital Lutherie?
	How can we Avoid Compromise in Digital Luthiers Tool Choices?
	Contributing to HCI Research on DSLs
	Mapping Problem

	Methodologies
	Designing Studies to better understand PL and HCI
	Promoting Rigour in Qualitative Research
	Transparency
	Reproducibility & Replication

	Reflexive Thematic Analysis as a tool for Programming Language HCI

	Conclusion
	Explorations of New Music DSLs
	Study Analysis: How do Digital Luthiers Choose Their Tools?
	Study Analysis: What do Digital Luthiers Value from their Programming Languages?
	Selective Pressures on Programming Languages for Digital Lutherie
	Directions for Future Works
	Reflexive Thematic Analysis
	Final Words

	Participant Data
	Preregistration of Study

