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Abstract Heterogeneous chips that combine CPUs and FPGAs can distribute pro-
cessing so that the algorithm tasks are mapped onto the most suitable processing
element. New software-defined high-level design environments for these chips use
general purpose languages such as C++ and OpenCL for hardware and interface gen-
eration without the need for register transfer language expertise. These advances in
hardware compilers have resulted in significant increases in FPGA design productivity.
In this paper, we investigate how to enhance an existing software-defined framework
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to reduce overheads and enable the utilization of all the available CPU cores in parallel
with the FPGA hardware accelerators. Instead of selecting the best processing element
for a task and simply offloading onto it, we introduce two schedulers, Dynamic and
LogFit, which distribute the tasks among all the resources in an optimal manner. A new
platform is created based on interrupts that removes spin-locks and allows the pro-
cessing cores to sleep when not performing useful work. For a compute-intensive
application, we obtained up to 45.56% more throughput and 17.89% less energy
consumption when all devices of a Zyng-7000 SoC collaborate in the computation
compared against FPGA-only execution.

Keywords FPGAs - Heterogeneous - Interrupts - Dynamic scheduler - LogFit
scheduler - Performance improvement - Energy reduction

1 Introduction

Heterogeneous systems are seen as a path forward to deliver the required energy and
performance improvements that computing demands over the next decade. In hetero-
geneous architectures, specialized hardware units accelerate complex tasks. A good
example of this trend is the introduction of GPUs (graphics processing units) for gen-
eral purpose computing combined with multicore CPUs. FPGAs (field programmable
gate arrays) are an alternative high-performance technology which offer bit-level par-
allel computing in contrast with the word-level parallelism deployed in GPUs and
CPUs. Bit-level parallel computing fits certain algorithms that cannot be parallelized
easily with traditional methods. Recently, the traditional entry barrier of FPGA design,
low-level programming languages, has started to being replaced with high-level lan-
guages such as C++ and OpenCL successfully [1]. These new programming models
and the acceleration capabilities of FPGAs for certain tasks have increased the interest
in computing systems that combine CPUs and FPGAs; significant efforts are done not
only by FPGA manufactures but also other players such as Intel with their HARP pro-
gram [2], Microsoft with their Catapult framework [3] and IBM introducing coherent
ports for FPGA acceleration in OpenPower [4].

In a typical configuration, the host CPU offloads work onto the FPGA accelerator
and then it idles until the accelerator completes the task. In this research, we investigate
a cooperative strategy in which both the CPU and FPGA perform the same task on
different regions of input data. The proposed scheduling algorithms dynamically dis-
tribute different chunks of the iteration space between a dual-core ARM CPU and an
FPGA fabric present in the same die. The objective is to measure if simultaneous com-
puting among these devices could be more favorable from energy and/or performance
points of view compared with task offloading onto FPGA, while the CPU idles. The
FPGA and CPUs are programmed with the same C/C++ language using the SDSoC
(software-defined SoC) framework that enables very high productivity and simplifies
the development of drivers to interface the processor and logic parts. The novelty of
this work can be summarized as follows:

1. Two scheduling algorithms which monitor the throughput of each computing
device (CPU cores and FPGA) during the execution of the iteration space and
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use this metric to adaptively resize iteration chunks in order to optimize overall
throughput and prevent under-utilization and load imbalance;

2. A productive programming interface based on an extension of parallel for
template of TBB (Threading Building Blocks) task framework and its integration
with the SDSoC framework to allow its exploitation on heterogeneous CPU-FPGA
chip processors;

3. A novel solution to the limitations of the SDSoC framework with a new interrupt-
based platform eliminating CPU active waiting, reducing energy and clock cycle
wasting.

The rest of this paper is organized as follows. Section 2 presents an overview of
related work in the area of heterogeneous computing. Section 3 introduces the details
of the novel SDSoC simultaneous multiprocessing platform and Sect. 4 the sched-
uler and programming interface. Section 5 presents the considered benchmarks and
their implementation details, and delves into the performance and energy evaluation.
Finally, Sect. 6 concludes the paper.

2 Background and related work

The potential of heterogeneous computing to achieve greater energy efficiency and
performance by combining traditional processors with unconventional cores such as
custom logic, FPGAs or GPGPUs has been receiving increasing attention in recent
years. This path has become more attractive as general purpose processors have been
unable to scale to higher performance per watt levels with their instruction based archi-
tectures. Energy studies have measured over 90% of the energy in a general purpose
von Neumann processor as overhead [5] concluding that there is a clear need for other
types of cores such as custom logic, FPGAs and GPGPUs. Current efforts at integrating
these devices include the Heterogeneous System Architecture (HSA) Foundation [6]
that offers a new compute platform infrastructure and associated software stack which
allows processors of different types to work efficiently and cooperatively in shared
memory from a single source program. The traditional approach of using these sys-
tems consists of offloading complex kernels onto the accelerator by selecting the best
execution resource at compile time. Microsoft applied their reconfigurable Catapult
accelerator which uses Altera FPGAs to a large-scale datacenter application with 1632
servers [3]. Each server contains a single Stratix V FPGA, and the deployment is used
in the acceleration of the Bing web search engine. The results show an improvement
in the ranking throughput of each server by a factor of 95% for a fixed latency distri-
bution. SnuCL [7] also proposes an OpenCL framework for heterogeneous CPU/GPU
clusters, considering how to combine clusters with different GPU and CPU hardware
under a single OS image.

The idea of selecting a device at run-time and performing load balancing has been
explored in the literature mainly around systems that combine GPUs and CPUs. For
example, selection for performance with desktop CPUs and GPUs has been done
in [8], which assigns percentages of work to both targets before making a selection
based on heuristics. Energy-aware decisions also involving CPUs and GPUs have
been considered in [9], requiring proprietary code. Other related work in the context
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of streaming applications [10] considers performance and energy when looking for
the optimal mapping of pipeline stages to CPU and on-chip GPU. The possibility
of using GPU, CPU and FPGA simultaneously and collaboratively has also received
attention in diverse application areas such as medical research [11]. The hardware
considered uses multiple devices connected through a common PCle backbone, and
the designers optimized how different parts of the application are mapped onto each
computing resource. Data are captured and initially processed in the FPGA and then
moved to the CPU and GPU components using DMA engines. This type of hetero-
geneous computing can be considered to connect devices vertically since the idea
is to build a streaming pipeline with results from one part of the algorithm moving
to the next. The heterogeneous solution achieves a 273 speed up over a multicore
CPU implementation. A study of the potential of FPGAs and GPUs to accelerate
data center applications is done in [12]. The paper confirms that FPGA and GPU
platforms can provide compelling energy efficiency gains over general purpose pro-
cessors, but it also indicates that the possible advantages of FPGAs over GPUs are
unclear due to the similar performance per watt and the significant programming
effort of FPGAs. However, it is important to note that the paper does not use high-
level languages to increase FPGA productivity as done in this work, and the power
measurements for the FPGA are based on worst-case tool estimations and not direct
measurements.

In this research, we explore a horizontal collaborative solution. Similar work to ours
is done in [13] that presents a tool to automatically compose multiple heterogeneous
accelerator cores into a unified hardware thread pool. In comparison, our approach
includes host CPU for task execution too and relies on commercially available tools
to abstract drivers and run-time creation and focuses on performance enhancements
and scheduling. The work closest to ours is [14] that focuses on a multiple device
solution and demonstrates how the Nbody simulation can be implemented on a het-
erogeneous solution in which both FPGA and GPU work together to compute the
same kernel on different portions of particles. While our approach uses a dynamic
scheduling algorithm to compute the optimal split, in this previous work the split is
calculated manually with % of the workload assigned to FPGA and the rest to GPU.
The collaborative implementation is 22.7 times faster than the CPU-only version.

In summary, we can conclude that the available literature has largely focused on
advancing the programming models to make the use of FPGAs in heterogeneous
systems more productive, comparing the performance of GPGPUs, FPGAs and CPUs
for different types of applications in large-scale clusters, and creating systems that
manually choose the optimal device for each part of the application and moving data
among them. In contrast in this paper we select a state-of-the-art high-level design flow
based on C/C++ for single-chip heterogeneous CPU 4 FPGA and extend it to support
simultaneous computing performing dynamic workload balancing. The selected off-
the-shelf devices integrate CPUs and FPGAs and future work will extend this work to
integrated GPUs when silicon becomes available.
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3 Simultaneous multiprocessing SDSoC platform
3.1 Hardware description

The SDSoC environment generates a hardware acceleration block that can integrate
DMA engines to autonomously transfer input/output data without host intervention
[15]. The host starts the execution of this block using memory mapped registers accessi-
ble with an AXI_LITE slave interface. The host monitors the contents of these registers
to determine when the IP block has completed its operation. Additional master inter-
faces are typically implemented in the acceleration block to communicate input/output
data with main memory as it is processed. Depending on the pragmas used at C/C++
level, different types of DMA engines, e.g., DMA_SIMPLE or DMA_SG, are imple-
mented in the programmable logic to stream data from memory to the device and
back and require that the data-accesses by algorithm are sequential in virtual mem-
ory. The mapping between virtual/physical addresses must be physically contiguous
when using DMA_SIMPLE, and memory must be allocated with the SDSoC construct
sds_alloc, whereas the more complex DMA_SG (Scatter/Gather) does not have
this restriction and is used with the standard malloc.

Streaming data using DMA engines is generally the most efficient way of FPGA
processing; however, this is not applicable if data must be accessed non-sequentially
in virtual memory or it must be read multiple times. Another problematic case is
if large dataset must be copied to scarce internal FPGA BRAM memory with a hard
limit of 16 KB imposed by the tools. Under these circumstances, zero_copy pragma
can be used to read data directly from external memory when needed using AXIMM
interfaces. In our proposed platform, a dedicated AXIMM interface is used to enable
the acceleration hardware block to generate interrupts to the host once processing has
completed. This removes the need for the host to constantly monitor the status of
the hardware registers for completion using the default slave interface and effectively
frees one processor for other tasks. This circumstance arises because, in principle,
calling a function mapped to hardware in SDSoC means that the host must wait until
the function completes before further processing is possible. SDSoC offers async
and wait pragmas to enable asynchronous execution so that the hardware function
returns immediately and the host thread can perform other functions until the wait
statement is reached causing the host to enter into a spin-lock that keeps it busy waiting
for the hardware operation to complete. This is rather inefficient since the CPU cannot
perform any useful work and consumes energy with 100% utilization. To perform
useful work until the wait statement is reached requires that the correct amount of
work is accurately allocated to the host thread to avoid load imbalance. To address
this problem, this work proposes extending the SDSoC framework with an interrupt
mechanism so that the host thread is put to sleep before the wait statement is reached
and will only wake up once the hardware accelerator has completed its task. During
this sleep time, the schedulers proposed in Sect. 4 are able to allocate useful work
to all the available CPUs. To implement this approach, a new hardware platform is
proposed consisting of an additional IP block capable of generating shared interrupts
to the main processor as illustrated in Fig. 1.
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Fig. 1 SDSoC multiprocessing platform

The proposed IP is based on an AXI GPIO block whose interrupt line connects
through a concatenate block to the processor interrupt inputs. The concatenate block
is a requirement of SDSoC since the tool itself will use interrupts when more than
one accelerator block is present. The Linux device tree is modified to inform the
Linux kernel of the presence of this hardware block and its capability to generate
level sensitive interrupts. The processing system configuration has to be modified to
enable interrupts and inform the system which interrupt lane is being used. The Linux
kernel driver created by SDSoC for the GPIO is replaced with a custom kernel driver
capable of putting the host thread to sleep when requested by the user application.
Once the hardware block completes its operation, it writes an AXI GPIO register that
generates the interrupt that wakes up the host thread. The function in line 2 of Fig. 2
puts the host thread to sleep, and it is executed by the driver when the user application
calls IOCTL after launching the FPGA execution. Once the interrupt takes place, the
interrupt service routine present in the driver executes line 3 to wake up the host thread
and continue execution.

3.2 Hardware interrupt generation

A critical step is how to get the software-defined hardware accelerator to write the
AXI GPIO block and generate interrupts. A direct hardware interface between both
blocks is not a feasible option since SDSoC is geared toward communication with
main memory using the variables and arrays part of the function prototype. The direct
I/0 mode available in SDSoC is used to move large amounts of data to the FPGA
pins using AXI streaming interfaces and is not useful in this case. Our requirement is
writing a single value which triggers interrupt generation. Lines 6—12 of Fig. 2 show the
function declaration and calling style for a hardware function called mmult_top. The
first three parameters of mmul_ top are pointers identifying the input/output memory
areas used to receive/send data, and size defines how much data in these memory
areas must be processed. When using async/wait pragmas for hardware function
calls, SDSoC constraints require that the function prototype cannot contain a return
value. An additional parameter must be supplied, called scalar in this example, that
will be modified by the hardware function. scalar is implemented using AXI_LITE
interface and read by the host thread to learn when hardware processing has completed.

@ Springer



4084 J. Nunez-Yanez et al.

//Linux hardware driver sleep call:
wait_event_interruptible(wqg, flag != 0);
wake_up_interruptible (&wq) ;

//Hardware function declaration and calling style:

//.h

void mmult_top (float xin_a, float *in_b, float xout_c, int size, int =xscalar,
int xinterrupt, int enable);

8 //.cpp

9 #pragma SDS async (1)

10 mmult_top(in_a, in_b, out_c, line_count, scalar, interrupt, enable);

11 ret_value = ioctl(file_desc, IOCTL_WAIT_INTERRUPT, O0);

12 #pragma SDS wait (1)

13

14 //Hardware AXIMM interface for interrupt generation:

15 #pragma SDS data zero_copy (interrupt[0:1])

16

17 //Virtual to physical address translation:

18 file_desc = open("/dev/my_driver", O_RDWR);

19 ...,

20 sds_mmap ( (void %)HW_ADDR_GPIO_INT, 4, (void x)interrupt);

21

22 //Hardware interrupt trigger:

23 if (enable == 1) //enable interrupt generation

24 ~interrupt = OxFFFFFFFF; //trigger interrupt

25

26 //Interrupt generation with parallel hardware accelerators:

27 enable = 0; //disable

28 #pragma SDS async (1)

29 aes_enc_hw(statel, cipherl, ekey, block_count, scalar, interrupt, enable);

30 enable = 1; //enable

31 #pragma SDS async(2)

32 aes_enc_hw(state2, cipher2, ekey, block_count, scalar, interrupt, enable);

33 ret_value = ioctl(file_desc, IOCTL_WAIT_INTERRUPT, O0);

34 #pragma SDS wait (1)

35 #pragma SDS wait (2)

N o oA W N e

Fig. 2 Interrupt mechanism implementation

Having slave interface type AXI_LITE means that this parameter cannot be used to
generate the interrupt since it will only be read during the execution of wait pragma.
The Boolean enable parameter is used to enable/disable interrupt generation by the
IP block. The mechanism for interrupt generation itself needs a master interface that
can write the GPIO register without host intervention. Therefore, an additional pointer
is introduced in the function prototype called interrupt that must be implemented
as an AXIMM master interface. To generate this interface, the zero_copy pragmain
line 15 is added for interrupt, which creates the correct interface so that changes
to interrupt pointer are reflected directly as desired, without internal buffering.
interrupt points to the AXI GPIO register that controls interrupt generation to the
processor and is written by the IP once processing has completed.

In the code snippet for mmult_top we can also see the Linux IOCTL function,
line 11, which asks the kernel driver to put the host thread to sleep. The user application
opens the device associated with the AXI GPIO peripheral and obtains a virtual address
for it using an mmap operation. This opening of the kernel driver is part of the main
function and is shown in line 18. It enables the association of a shared processor
interrupt with the AXI GPIO device and the use of IOCTL to communicate with the
driver. This virtual address is then passed to the hardware function as the interrupt
parameter. The SDSoC run-time must translate this virtual address into a physical one
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to be usable for the FPGA logic. The mapping between the two addresses must be
made explicit to SDSoC with sds_mmap in line 20. The first parameter is the physical
hardware address for the interrupt registers, the second is the size of the mapping in
bytes and the last is the virtual address obtained with the mmap operation for the same
registers. Without sds_mmap, the SDSoC run-time would not know the mapping
between the physical and virtual address. The end result is that the hardware block
can write to the interrupt register of the AXI GPIO block simply with the code shown
in lines 23-24 which must be located at the end of the hardware function.

Selectively enabling interrupt generation is useful when the FPGA implements
several hardware accelerators working in parallel. In this case, only one has its interrupt
generation capabilities enabled. The code in lines 27-35 shows an example with a
configuration of more than one accelerator. Only the second core generates interrupts,
and it is expected to be the last one to complete its operation since it is activated after
the first core. Even if this was not the case, functionality will not be affected since the
wait statements will correctly synchronize the accelerator execution with the rest of
the algorithm.

4 Programming environment

In this section, we introduce our heterogeneous building blocks (HBB) library APIL
HBB is a C++ template library that facilitates the configuration and use of hetero-
geneous computing units by automatically partitioning and scheduling the workload
among the CPU cores and the accelerator. It builds on top of SDS (Xilinx SDSoC
library) and TBB libraries and offers a parallel_for () function template to run
on heterogeneous CPU-FPGA systems. HBB could also be developed on top of Fast-
Flow [16] instead of relying on TBB. However, TBB is more suitable to our needs as
the task-based work-stealing feature of TBB improves load balance and avoids over-
subscription when composing or nesting different parallel patterns. Figure 3 shows
an MPSoC with one FPGA and two CPU cores (CCs) as the system used in our
experimental evaluations. The FPGA itself can contain a number of hardware accel-
erators or FPGA compute units (FCs), depending on resource availability and FPGA
configuration.

User Application
parallel_for(begin, end, body);

Iteration Space
HBB library [Cchunk Jchnk[chnk] chunk | remaining (1)

class Body, class Scheduler <Dynamic, LogFit>
Y 4 o ([icken ‘y-h 2
ntokens

Threading Building Blocks (TBB)

R CFrere— | chunkFPGA

52

Threads (O.S. dependent) |

FPGA CPU CPU chunks' fime - =~
cu) (cu) (cu) (cu Core Core
(FC)) ((FC)) \(FC)) (FC)) [ (CC) (cc)

Fig. 3 Our heterogeneous scheduling design
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The left part of Fig. 3 shows the software stack that supports the user application.
Our library (HBB) offers an abstraction layer that hides the initialization and manage-
ment details of TBB and SDS constructs; thus, the user can focus on the application
instead of dealing with thread management and synchronization. The library includes
a heterogeneous scheduler that takes care of splitting the iteration space into chunks
and processes each chunk on a CC or an FPGA device. In the more complex version of
such scheduler, the size of the chunks offloaded to the FPGA or processed on the CCis
adaptively computed so that it fully utilizes the computational resources while maxi-
mizing the load balance among the CCs and FPGA. The right part of this figure shows
that the internal engine managing the parallel_for () function is a two-stage
pipeline, Stage; (S1) and Stage, (S2), implemented with the TBB pipeline template.
The iteration space consists of the chunks already assigned to a processing unit and the
remaining iterations waiting to be assigned. An execution of the pipeline with three
tokens (1 FPGA + 2 CCs) is also shown. The tokens represent the number of chunks
of iterations that can be processed in parallel on our computing resources (FPGA and
2 CPU cores). S1 is a serial stage so it can host just a token at a time, whereas S2
is parallel so there can be several tokens in this stage simultaneously. Once a token
enters in S1, the FPGA device is checked; if idle, it is acquired and initialized with a
FPGA chunk. Otherwise a CPU core is idle and is initialized with a CPU chunk. In
either case, the partitioner extracts the corresponding chunk of iterations from the set
of remaining iterations, r. Then, the token proceeds to S2 where the selected chunk is
executed on the corresponding computing resource. When S2 finishes the computation
of a token on FPGA, it releases the FPGA by changing its status to idle and allowing
other tokens to acquire it. The processing speed of an offloaded chunk on the FPGA
will depend on the number of FCs implemented, and this number is transparent to our
schedulers. The time required for the computation of each chunk on the FPGA or CPU
core is recorded and used to update the relative speed of the FPGA w.r.t. a CPU core,
called f. Factor f is used to adaptively adjust the size of the next chunk assigned to
a CPU core.

A major advantage of this parallel_for implementation is its asynchronous
mode of computing [17] because each computing resource hosts one of the tokens
that traverses the pipeline, independently carrying out the corresponding work. Thus,
unnecessary synchronization points between computing resources with different per-
formances are avoided. In contrast, other state-of-the-art approaches [18,19] suffer
from load imbalance due to use of fork-join patterns with implicit synchroniza-
tion points between CPU and accelerator.

4.1 Parallel_for template and HBB classes

Before using the parallel_for () function, the user must define a Body class, the
body of the parallel loop, as shown in lines 2—11 of Fig. 4. This class should implement
two methods: one that defines the code which each CPU core will execute for an
arbitrary chunk of iterations, and the same for the FPGA device using a C++ function
call. The operatorCPU () method (lines 4-7) defines the CPU code of the kernel
in C++, and the operatorFPGA () method (lines 8—10) calls a hardware function
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//Definition of Class Body:

class Body{

public:

void operatorCPU (int begin, int end) {

for (i=begin; i!=end; i++)

cli] = a[i] % b[i];

}

void operatorFPGA() (int begin, int end) {
9 int result = kernelVectorMul ((float*) a, (floatx) b, (floatx) c, begin, end);
10 }
1}

[N I N A

14 //Using the parallel_for() function template
15 #include "hbb.h"

17 int main(int argc, charx argv([]) {

18 Body body;

19 Params p;

20 InitParams (argc, argv, &p);

21 //Instantiate task scheduler

22 //Dynamic x hs = Dynamic::getInstance (&p);
23 LogFit x hs = LogFit::getInstance (&p);

25 hs->parallel_for (begin, end, body);
26 .
27}

Fig. 4 Applying parallel execution

that has already been implemented in the FPGA using the SDSoC development flow.
The array pointers passed to the FPGA are normally shared between CPU and FPGA,
and the preferred option to connect the FPGA accelerator to the processing system is
to use the ACP coherent port.! Using this approach, SDSoC automatically manages
the data movement from global memory to the FPGA and back.

Orchestrating the body execution and handling heterogeneous devices require a
Scheduler class that provides methods isolating the parallel_ for () func-
tion template and the scheduling policies from device initialization, termination and
management. The compartmentalization simplifies the adoption of different devices
and more importantly enables the programmers to focus on scheduling policies, such
as the Dynamic and LogFit policies described in Sect. 4.2. Instead of implementing
error prone low-level management tasks such as thread handling or synchronization
operations, the Scheduler leverages TBB for them.

A main function is shown in lines 17-27 of Fig. 4 with required component
initialization to make the parallel_for () function template work. This is the
main component of the HBB library, made available by including hbb . h header file.
The user has to create a Body instance (line 18) that will later be passed to the
parallel_for () function. Program arguments such as the number of threads and
scheduler configuration can be read from the command-line, as seen in line 19. The
benchmarks that we evaluate in Sect. 5 accept at least three command-line arguments:
<num_cpu_tokens>, <num_fpga_tokens> and <sch_arg>. The first one
sets the number of CPU tokens, which translates into how many CPU cores will be
processing chunks of the iteration space. The second one can be set to 0 or 1 to dis-

! The ACP port allows FPGA and CPU cores to access the shared L2 cache.
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able or enable the FPGA as an additional computing resource. The last argument is
a positive integer setting the size of iteration chunks to be offloaded onto the FPGA.
The CPU chunk sizes are adaptively computed as described in the next section. The
parallel_for () function template receives three parameters (line 25): the first
two parameters, begin and end, define the iteration space, and the third one is the
Body instance which has the implementation of the CPU and FPGA body loop.

4.2 Scheduler implementation

This section explains how the chunk sizes for execution by the CPU cores and the
FPGA are calculated. We have designed and implemented two scheduling methods:
Dynamic and LogFit.

With Dynamic scheduler, the FPGA chunk size is manually set by the user (S5 =
<sch_arg>), whereas the CPU chunk size is automatically computed by a heuristic.
This heuristic aims to adaptively set the chunk size for the CPU cores. To that end,
the model described in [17] recommends that: each time that a chunk is partitioned to
be assigned to a compute unit, its size should be selected such that it is proportional
to the compute unit’s effective throughput. This heterogeneous Dynamic scheduler
is a combination of the OpenMP dynamic scheduler [20] for the FPGA chunks and
the OpenMP guided scheduler for the CPU chunks. Therefore, if r is the number of
remaining iterations (initially » = n), the computation of the CPU chunk, S, is:

Se=min | —, ——— (1)
f f+nCores

where f represents how faster the FPGA is with regard to a CPU core, and it is
recomputed each time a chunk is processed, as explained in Sect. 4. In other words, S,
is either (S7/f) (the number of iterations that a CPU core must perform to consume
the same time as the FPGA) when the number of remaining iterations, r, is sufficiently
high, or r/(f + nCores) (a “guided self-scheduling strategy” [21]), when there are
few remaining iterations (this is when r/(f +nCores) < S¢/f).

The Dynamic scheduling has the limitation of requiring the user to input the FPGA
chunk size which might not result in the best performance. LogFit scheduler [22]
avoids this limitation by dynamically computing the FPGA chunk size at run-time.
LogFit consists of three phases:

1. Exploration phase: the throughput for different FPGA chunk sizes is examined
and a logarithmic fitting is applied to find the FPGA chunk size that maximizes
the FPGA throughput. CPU chunk sizes which balance the load are also computed
in this phase by Eq. 1.

2. Stable phase: FPGA throughput is monitored and adaptive FPGA chunk sizes are
re-adjusted following the previously computed logarithmic fitting. CPU chunk
sizes are accordingly computed using Eq. 1 in order to keep the load balanced.

3. Final phase: When there are not enough remaining iterations to feed all comput-
ing resources, the best possible partitioning to minimize the computation time is
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estimated. In this phase, these remaining iterations are assigned only to the CPU,
only to the FPGA, or to both, depending on which configuration is the fastest one.

The overhead of our Dynamic and LogFit schedulers can be measured as the time
consumed in Stage|, which in our experiments is always less than 0.2% of the total
execution time.

5 Experimental evaluation

The Dynamic and LogFit schedulers introduced in this article are evaluated with four
benchmarks that vary in terms of compute and memory intensity. Every benchmark is
coded in C/C++ for both CPU and FPGA targets; g++ (of GCC) and sds++ (of Xilinx
SDSoC) compilers are used to compile for CPU and FPGA, respectively.

The Advanced Encryption Standard (AES) is a cryptographic algorithm for the
encryption of electronic data widely used in embedded systems. Our implementation
of AES uses a 256-bit key length and every block consists of 16-bytes. Four basic byte
manipulation functions are employed according to the standard: subbytes, mixcolumn,
addroundkey and shiftrow, that repeat for a total of 15 rounds. In our evaluation, we
encrypt a 16MB file which results in a parallel_for with 1048576 iterations.

HotSpot is a stencil algorithm that has been extracted from the Rodinia benchmark
collection. This algorithm estimates the temperature propagation on the surface of a
chip through thermal simulation which iteratively solves a series of differential equa-
tions. We simulate a chip discretized in 1024 x 1024 points, and the parallel for
traverses the outermost loop with 1024 iterations. This experiment is repeated 50 times.
The FPGA implementation is based on the shift register pattern (SRP) optimization
that is known to deliver near optimal performance [23].

Nbody is a traditional high-performance physics simulation problem that computes
how a dynamic system of particles behaves under the influences of forces such as
gravity. We consider the brute force Nbody algorithm which is highly regular but has
a time complexity of O(n?), with n being the number of simulated bodies. Nbody is
run with 50K bodies in our experiments which coincides with the iteration space of
the parallel_for. For efficient implementation on FPGA, the particle data should
be buffered in the internal memories to avoid constant reloading of data from external
memories. For this application, because the same data must be accessed multiple times
and its size exceeds the 16 KB SDSoC limitation for internal memory, SDSoC DMA-
based approaches are not feasible and an AXI master interface is necessary which is
efficient as long as AXI bursts are generated.

General matrix multiplication (GEMM) is a dense matrix—matrix multiplication
application. The large matrix sizes considered (1024 x 1024 floating-point values)
prevent us from buffering the whole data in FPGA memory. Therefore, the implemen-
tation relies on the tiling optimization to exploit locality. We parallelize the outermost
loop that contains 1024 iterations. The interfaces are based on AXIMM that can also
be very high performance since the long burst modes available in AXI can be used
effectively by the created custom logic.

These benchmarks are evaluated on a ZC702 board equipped with a Zynq 7020
device. This board includes a PMBus (Power Management Bus) power control and
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monitoring system which enables the reading of power and current every 0.1 s. For the
power measurements, the power values corresponding to the processing system (CPU
cores), programmable logic (FPGA) and memory are measured and added together.
The overall energy consumption is obtained by integrating the power readouts during
the execution time of the benchmark.

Figure 5 shows the percentages of FPGA resource utilization for our benchmarks.
The implementations for Nbody and GEMM already use the available resources with
a single FPGA compute unit (1FC) configuration, but for AES and HotSpot, compute
unit replication is possible so we can implement 2 compute units (2FC) in these cases.
The GEMM benchmark has DSP capacity as its limiting factor, while for the other
benchmarks it is the slice utilization.

In the following, performance and power/energy results of the benchmarks imple-
mentations on ZC702 board are reported and discussed. For the Dynamic scheduler,
these results are given for each combination of the two available CPU cores (CCs)
and one or two FCs. For the LogFit scheduler, we only report the throughput obtained
when fully exploiting the platform (utilizing all CCs and FCs). In general, there are
several trends in the obtained results:

— The throughput of CPU-only implementations is independent of the block size, but
the overall performance is improved with larger blocks when the FPGA is involved.
The FPGA benefits with less overheads due to setting up the data movement and
filling the deep pipelines with large blocks.

— The performance and energy costs obtained by the LogFit scheduler are compara-
ble to the best performance and energy costs obtained by the Dynamic scheduler.

— As the number of cores increases the overall energy consumed generally decreases
despite the increase in power due to each extra core added to the configuration.

5.1 Performance evaluation

In Fig. 6, performance is reported as throughput (number of iterations processed per
second) in the y-axis, and the x-axis indicates the FPGA chunk size. For the Dynamic
scheduler, each line in the plot shows the achieved throughput for each platform config-
uration (only CPU —1CC, 2CC—, only FPGA —1FC, 2FC- and various heterogeneous
combinations) and for different fixed FPGA chunk sizes. The LogFit result is indicated
with a single green plus, “+,” sign that shows the resulting average throughput and
average FPGA chunk size, for the best platform configuration.
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Fig. 6 a AES, b HotSpot, c GEMM and d Nbody performance evaluation

AES performance results are shown in Fig. 6a. With Dynamic scheduler, a higher
performance is achieved as the number of participating cores and also chunk size
increase. In “2FC + 2CC”, 69% of the workload is performed by the FCs, achieving
45.56% higher throughput than the FPGA-only configuration (2FC). In contrast, “1FC
+ 2CC” configuration offloads only 53% of the workload to the FC and obtains 48.84%
less throughput than “2FC 4 2CC.” This figure also shows the high performance
obtained using the LogFit scheduler compared with the Dynamic scheduler.

HotSpot can run in a full streaming configuration and needs a very high bandwidth
access to main memory to maintain the execution units busy. This high bandwidth
demand represents a bottleneck when several cores compete for access. Moreover, the
filtering operation of HotSpot can be better accelerated in FPGA than CPU. Hence in
this memory-intensive application, the addition of extra CPU cores may not help with
the performance. Figure 6b shows the throughput evaluation of this application. The
“2FC” configuration has the best performance and adding extra CPU cores degrades
it by 24.49%. With “2FC + 2CC” configuration, 27% of the workload is assigned to
CCs. Since cache coherent interconnect (CCI) unit provides DDR memory accesses
for both CPU cores and the accelerator when ACP port is used, including CPU cores to
an already high bandwidth demanding FPGA overwhelms CCI with memory accesses
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that decreases overall throughput. For the “2FC + 2CC” configuration, the perfor-
mance obtained with LogFit is 28.15% higher than the Dynamic one. This is because
LogFit automatically detects that the FPGA is faster and offloads 93% of the iteration
space to the accelerator.

Figure 6¢ shows the performance gains for GEMM application resulting from the
heterogeneous execution and the benefits of assigning larger blocks for hardware
execution when Dynamic scheduler is used. The fastest configuration is “1FC 4 2CC”
where 75% of workload is assigned to FPGA and an improvement of 35.90% is
obtained w.r.t. FPGA-only solution.

The Nbody algorithm has a very high computational intensity, and its best FPGA
implementation outperforms its dual-core CPU one by a factor of ~ 35x. The hetero-
geneous solution of this application hardly improves the throughput due to the highly
efficient FPGA implementation, as shown in Fig. 6d. At the fastest “1FC + 2CC” con-
figuration, over 97% of the workload is assigned to the FPGA. In this case, offloading
the whole iteration space to the single FPGA core delivers the best performance.

In summary, a higher efficiency heterogeneous solution is observed when memory
access bottlenecks are not a factor and the computational efficiency of one device is
not marginal compared to the others.

5.2 Power and energy evaluation

Figure 7 illustrates the power dissipation and energy consumption evaluations for the
four benchmarks. Dynamic scheduling results are reported for all platform configu-
rations and the best FPGA chunk size. LogFit results are shown for the best platform
configuration.

For AES, the results of Fig. 7a indicate that energy reduces with faster configurations
despite the additional power costs of using the extra cores. For this benchmark, the
“2FC + 2CC” configuration results in 17.89% less energy consumption than “2FC”.
Regarding HotSpot, the evaluations in Fig. 7b show that the most energy efficient
configuration is “2FC” as this configuration has the best performance too. Energy use
increases for the most complex configurations due to the additional power requirements
which do not translate into significant faster execution. The power/energy values shown
in Fig. 7c for GEMM indicate that the energy costs are almost equivalent for all
configurations which use the FPGA and lower than the CPU-only configurations.
With respect to Nbody, the measurements in Fig. 7d confirm that the most energy
efficient solution is the FPGA despite the significant increase in power observed when
the FPGA core is used due to the high arithmetic intensity.

5.3 Impact of the interrupt implementation

The interrupt-enabled platform described in this paper provides an efficient utilization
of all the CPU cores. To show the impact of this technique on throughput and energy,
Tables 1 and 2 list the throughput and energy changes, respectively, when enabling
the utilization of the second CPU core with and without the interrupt mechanism for
the Dynamic and LogFit schedulers. While AES and GEMM evidently gain higher
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Fig.7 a AES, b HotSpot, ¢ GEMM and d Nbody power and energy evaluation
Table 1 Throughput change when the second CPU core is utilized
AES (%) HotSpot (%) GEMM (%) Nbody (%)
Dynamic with interrupt +17.49 —16.79 +17.85 +2.93
Dynamic without interrupt 0.00 —3.09 +2.61 —2.65
LogFit with interrupt +26.85 —16.17 +20.59 + 1.48
LogFit without interrupt —19.62 —9.05 +4.71 —0.07

Positive values indicate improvement in throughput. The higher the better

throughput exploiting the interrupt mechanism, HotSpot loses some throughput and
Nbody shows marginal improvement. These results indicate that freeing up CPUs with
the interrupt mechanism does not help performance if the CPUs are assigned tasks
which are executed extremely efficiently by the FPGA or if the algorithm memory
intensity introduces additional contention. The energy changes of the benchmarks
follow almost the same improvement pattern as the throughput changes.
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Table 2 Energy change when the second CPU core is utilized

AES (%) HotSpot (%) GEMM (%) Nbody (%)
Dynamic with interrupt —7.73 +22.93 —1.52 —1.64
Dynamic without interrupt —1.53 +2.14 +13.64 +11.67
LogFit with interrupt —19.51 +16.54 +2.87 +6.89
LogFit without interrupt +16.00 +10.16 +1.12 +7.59

Negative values indicate improvement in energy consumption. The lower the better

6 Conclusion

This paper introduces a multiprocessing methodology to dynamically distribute work-
loads in heterogeneous systems composed of CPU and FPGA compute resources. To
minimize execution time, the methodology tunes the amount of work each device
computes for each application depending on its compute performance.

We create two scheduling strategies and enhance the SDSoC framework with an
interrupt mechanism to signal task completion. Overall, we find that heterogeneous
execution improves throughput and reduces energy as long as the performance of
the FPGA is not significantly higher than the CPU cores and enough memory access
bandwidth is available for all the cores. Even with a modest amount of CPU par-
ticipation, e.g., 25% in GEMM, a noticeable performance gain can be achieved. The
single coherence port available in the Zynq family negatively affects memory-intensive
applications such as HotSpot. Our future work involves porting this methodology to
more capable devices such as the Zynq Ultrascale family that uses a quad-core 64-bit
configuration and provides additional cache coherent ports to access main memory.
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