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A B S T R A C T   

In most domestic buildings, gas and electricity are supplied by energy and utility companies through centralised 
energy systems. This often results in a high burden on central management systems and has adverse effects on 
energy prices. Blockchain-based peer-to-peer energy trading platforms can deliver strategic operation of 
decentralised multi-energy network among multiple domestic buildings to reduce global greenhouse gas emis-
sions and address global climate change issues. However, prevailing blockchain-based energy trading platforms 
focused on system implementation for peer-to-peer electricity trading while lacking predictive control and en-
ergy scheduling optimisation. Therefore, this paper presents an integrated blockchain and machine learning- 
based energy management framework for multiple forms of energy (i.e., heat and electricity) allocation and 
transmission, among multiple domestic buildings. Machine learning is harnessed to predict day-ahead energy 
generation and consumption patterns of prosumers and consumers within the multi-energy network. The pro-
posed blockchain and machine learning-based decentralised energy management framework will establish 
optimal and automated energy allocation among multiple energy users through peer-to-peer energy transactions. 
This approach focuses on energy-matching from both the supply and demand sides while encouraging direct 
energy trading between prosumers and consumers. The security and fairness of energy trading can also be 
enhanced by using smart contracts to strictly execute the energy trading and bill payment rules. A case study of 4 
real-life domestic buildings is introduced to determine the economic and technical potential of the proposed 
framework. In comparison to prevailing approaches, a key benefit from the proposed approach is an improved 
computational load/failure of a single point, energy trading strategy, workload, and capital cost energy. Findings 
suggest that energy costs reduced between 7.60% and 25.41% for prosumer buildings and a fall of 5.40%-17.63% 
for consumer buildings. In practical applications, the proposed approach can involve a larger number of pro-
sumer and consumer buildings within the community to decentralise multiple energy trading, thus significantly 
contributing to the reduction of greenhouse gas emissions and enhancing environmental sustainability.   

1. Introduction 

1.1. Background and motivation 

In 2020, energy use in buildings accounted for 42 % of Europe’s 
overall energy consumption and 35 % of energy-related greenhouse gas 
emissions [1]. Many greenhouse gas emissions reduction strategies have 
been proposed at the individual building level, which include strategi-
cally scheduling energy appliances within the building [2] and retro-
fitting buildings with energy-efficient measures [3–8]. Beyond 
individual building optimisation, there has also been an urgent need to 

address climate change challenges at the community level so that local 
resources such as solar energy can be optimally harnessed while 
reducing the overall peak energy demand. Although some operating 
strategies have been proposed for collectively optimising the energy 
distribution among multiple users, a centralised agent is required to 
collect a heavy load of user information and determine energy schedules 
for each user. These operating strategies may face challenging issues 
such as user-privacy issues, scalability, and single point of failure. 
Moreover, the centralised energy management method may become 
quite complex when several flexible energy resources need to be 
considered. 
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1.2. Research aim and paper structure 

To overcome the limitations of conventional centralised energy 
management methods, the aim of this study is to propose an innovative 
blockchain and machine learning-based decentralised energy manage-
ment framework for peer-to-peer trading of multiple energy within the 
local energy network. Each end-user has a local optimisation agent to 
determine its optimal schedule of multiple energy resources and energy 
trading rates. 

The second section presents an overview of the state-of-the-art 
blockchain-based energy trading platforms, along with the identified 
research gaps and proposed research contributions. The third section 
illustrates the detailed design of the proposed blockchain and machine 
learning-based framework for decentralised multi-energy network 
management. The fourth section presents a case study to demonstrate 
the technical and economic potential of the proposed framework. The 
fifth section presents the practical implications and limitations of the 
conceptual framework, while the last section discusses the main 
research findings. 

2. Literature review 

2.1. Overview of the state-of-the-art blockchain-based energy trading 
platforms 

Some researchers have investigated the feasibility of using block-
chain in building energy management. For instance, Armon et al. [9] 
proposed a building heating management strategy to reduce the peaks- 
to-average ratio and energy consumption as well as improve thermal 
comfort in community buildings. A thermodynamic model was devel-
oped to reflect the transient energy consumption of each building. The 
key parameter (probability of the next hour) was shared on the block-
chain, while smart contracts were adopted to access energy data from 
their neighbourhoods and determine the optimal operating schedule of 
boilers in order to decrease the peak-to-average ratio of load shape. The 
smart contract is a program running on a blockchain executed by mul-
tiple distributing nodes, without the need for a trusted third party, and 
relies on data to drive transactions. Armon’s study adopted blockchain 
as the energy information sharing network to manage the energy con-
sumption of neighbourhoods. Chenxi et al. [10] evaluated the frame-
work of the wireless sensor network in the intelligent building energy 
management system, with a focus on designing a dynamic key man-
agement plan for smart buildings. 

Apart from energy data sharing and dynamic key management, most 
recent research efforts have been contributing to using blockchain 
technology in peer-to-peer energy trading. For example, Olivier et al. 
[11] developed a decentralised framework for electrical energy man-
agement in a community of smart buildings and local renewable energy 
systems. The framework consisted of local optimisation processes and a 
smart contract to let participants collaboratively decide on a planning 
profile. A generic building model was developed to forecast building 
electricity demand based on the building load consumption from non- 
controllable parts and flexible parts, which was a simplification of the 
dynamic and complex energy performance. Meanwhile, based on 
different electricity tariffs, a local optimisation process was adopted to 
determine how much electricity could be bought from local electricity 
and power grid respectively. The Ethereum private blockchain was 
adopted as the energy trading platform. Yu-tian et al. [12] built a per-
missioned blockchain-based platform for peer-to-peer trading of 
renewable energy within the microgrids using Hyperledger Fabric. 
Hyperledger is the enterprise blockchain foundation’s fundamental 
infrastructure, while the fabric design consists of highly scalable and 
flexible components such as ledge and smart contracts. The proposed 
platform can automate renewable electricity trading payment and set-
tlement activities, as well as reduce trading clearing time and delivery 
loss. Yu-tian’s study focused on fabric and the Paillier algorithm for 

energy trading and processing automation. Conversely, Eung et al. [13] 
delivered an automated decentralised renewable electricity trading 
platform within the microgrid using Ethereum blockchain. Don et al. 
[14] developed a peer-to-peer energy trading platform using Ethereum 
private blockchain, in which the double auction principle was adopted 
to enhance the vitality of the energy market. The major concern of 
Eung’s [13] and Don’s [14] studies was to develop a robust smart con-
tract in facilitating closed bidding, energy exchange, settlement, and 
payment while building energy modelling and planning are not 
addressed. Similarly, Longze et al. [15] proposed a dynamic energy 
management strategy for distributed energy systems with high pene-
tration of renewable energy using the Ethereum blockchain. Longze’s 
study focused on developing a new consensus mechanism in blockchain, 
through energy contribution value to characterise credible transactions, 
emission reduction, demand response, and system operation contribu-
tion of energy prosumers. Qing et al. [16] developed a blockchain-based 
virtual power plant energy management platform to model energy 
trading and network services for domestic buildings with various loads, 
energy storages and local renewable energy generation devices. The 
sensor measurement was directly adopted to capture actual building 
energy consumption, while auxiliary variables and dual variables were 
adopted to reflect the electricity consumption of different energy de-
vices. The buildings mainly relied on PV panels, the main grid, and a 
virtual power plant for electricity; thus, the optimisation was to deter-
mine the energy rate from the main grid, virtual power plant, and 
electricity storage, respectively. Using smart contracts, Abdullah et al. 
[17] proposed a microgrid market model to manage peer-to-peer elec-
trical energy transactions. The prime concern of Abdullah’s study was to 
develop a secure smart contract to facilitate participants to trade extra 
electricity with other participants. Price settlement between electricity 
providers and energy consumers was conducted on the basis of the mid- 
market method and supply-to-demand ratio-based pricing scheme. 
Miguel et al. [18] proposed a blockchain-based two-layer energy man-
agement strategy for community microgrids. The first layer managed the 
energy exchange among community members, while the second layer 
changed the network topology to reduce the energy injections to the 
main electricity power grid. Miguel’s study sought to design an aperi-
odic execution flow to manage the smart contracts in a number of 
building clusters, while the real consumption data is directly used for 
testing purposes. Aparna et al. [19] developed a blockchain-based 
platform for peer-to-peer energy transactions among different houses. 
Aparna’s study focused on designing the workflow of blockchain-based 
energy trading, such as request for energy trading, purchase of tokens 
from a controller node, pre-trading communication, as well as trans-
action creation and settlement. Based upon game-theoretic market rules 
and a blockchain-based transaction infrastructure, Moein et al. [20] 
developed a proof-of-concept for a peer-to-peer solar energy trading 
marketplace. The optimal power dispatching and price discovery pro-
cess was determined by assuming that users were always willing to 
consume as much electricity power as needed to meet their demand. 
Based on cooperative game theory and blockchain technology, Md et al. 
[21] proposed an electricity trading platform to let users store renew-
able energy credits as assets in the blockchain and trade them with 
others. Existing dataset of electrical energy consumption was directly 
adopted to test the performance of blockchain for electricity trading, 
while game theory was adopted to select the appropriate prosumer for 
purchasing electricity. Yuling et al. [22] and Jingya et al. [23] proposed 
a distributed energy trading scheme based on consortium blockchain 
and game theory. However, their studies’ approach was to develop an 
energy transaction matching mechanism and select optimal consumers 
and prosumers using different game theories. Using blockchain, Zixiao 
et al. [24] proposed a multi-microgrid electricity bidding trading model 
for a multi-seller and multi-buyer competitive spot market. Ant colony 
algorithm was adopted to determine the optimal energy flow among 
multiple microgrids. Xiaodi et al. [25] proposed a blockchain-based 
scheme for energy trading in a smart community. Conversely, Xiaodi’s 
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study focused on the multi-peer interaction process, including buyer 
request, seller reply, trading negotiation, community network valida-
tion, transaction settlement, and verification. A typical IEEE 13 bus 
system was adopted in Xiaodi’s case study. 

Previous work concerned with multi-energy management was 
mainly based on centralised control of distributed energy resources. For 
example, Valery et al. [26] developed a multi-agent approach to model 
an integrated energy system, where the complex multi-energy system 
was represented by a set of agents with their own individual behaviour. 
The agents interact with each other to determine the optimal operating 
schedule of each energy device. Similarly, Bin et al. [27] proposed a 
multi-agent method for interconnected multi-energy microgrid energy 
management. In the bottom layer, each agent operated independently to 
satisfy local customised energy demand, while the upper layer adopted a 
model predictive control method to determine the optimal power dis-
patching between microgrids and the main power grid. 

2.2. Research gaps 

These existing and emerging research efforts demonstrated the in-
terest in blockchain technologies to secure data transmission and 
decentralization in electric energy systems and microgrids. Despite these 
efforts, the following research gaps have persisted:  

(1) The thrust of efforts in this field focused primarily on electrical 
energy trading, thus neglecting or ignoring energy trading among 
multiple types of energy [11–25], such as heat. In reality, multi- 
energy systems can involve both heating and electrical energy 
types, while multi-type energy transmission can further reduce 
overall energy consumption and greenhouse gas emissions. For 
example, a cogeneration system can utilise exhaust heat from 
electricity generation to satisfy heating and cooling demand. If 
one building requires high electricity demand, while the other 
needs high heating energy demand, cogeneration system can be 
operated to supply electricity demand, while the exhaust heat can 
be traded to the other building with high heating demand. 
However, the existing research regarding decentralised multi- 
energy management mainly adopted a multi-agent method and 
was heavily based on a centralised control. 

(2) Mainly because most of the previous research focused on devel-
oping and demonstrating the feasibility of using the blockchain- 
based platform for peer-to-peer energy trading, energy model-
ling was not considered [12–15,17,19,20,22,23]. Although en-
ergy modelling was adopted in some of the previous studies, they 
used generic thermodynamic models of hypothetical buildings to 
represent their real energy consumption [9,11], or assumed that 
future energy consumption patterns of real buildings were similar 
to their historical energy consumption profiles [16,18]. Existing 
databases [21,24] and IEEE bus systems [25] were also adopted 
for testing purposes. However, in practical applications, it is 
challenging to develop thermodynamic models for each individ-
ual building, while future energy consumption scenarios may also 
diverge from historical profiles, due to varying weather condi-
tions and climate change. 

(3) Existing research regarding blockchain-enabled peer-to-peer en-
ergy trading mainly focused on how to effectively utilise block-
chain for system development, including trading process and 
workflow [12,19,21,25], bidding price scheme [11,20,22–24], 
smart contract development [13,14,17,18] and consensus 
mechanism development [15]. There was no research that can 
guide buildings or participants to determine how much energy 
they should buy or sell. When a multi-energy system was adopted 
to satisfy multiple forms of energy, it would be challenging for 
building users to determine the operating capacity or status of 
each energy device. In other words, participants on the state-of- 
the-art blockchain energy trading platform might not be able to 

reach the optimal solution to reduce overall energy consumption 
and greenhouse gas emissions, without mathematical 
optimisation. 

2.3. Main contribution 

The aim of this paper is to develop a blockchain and machine 
learning-based framework for decentralised energy trading within the 
multi-energy network. To overcome the above-mentioned 3 research 
gaps, the following 3 features are proposed for the developed 
framework:  

1. Ethereum blockchain is used to facilitate peer-to-peer multi-type 
energy trading among different users. For example, if Participant A 
uses a cogeneration system to satisfy its peak electrical energy de-
mand, the extra heat from the cogeneration system can be exported 
to Participant B who has a relatively high heat demand. Meanwhile, 
if Participant B has extra electricity generation from its PV panel, 
participant B can also trade electricity to Participant A to satisfy its 
high electricity demand. 

2. Machine learning models are adopted to predict heating and elec-
trical energy demands from buildings based on their historical en-
ergy consumption data. These machine learning models can be 
adopted in practice to predict day-ahead energy demands to facili-
tate energy planning of the participating buildings. Therefore, no 
expertise or experience is needed in developing thermodynamic 
models for each participating building. By collecting historical en-
ergy consumption data from smart meters and the latest weather 
forecast from local weather stations, machine learning models can 
generate accurate energy predictions by identifying the latest 
changes in energy consumption patterns. 

3. Particle swarm optimisation (PSO) is adopted to help each partici-
pant select its optimal energy planning and operating schedule. For 
example, the prosumer can simultaneously use a PV panel and a 
cogeneration system, as well as import electricity from the main 
power grid and other prosumer buildings to satisfy its electrical en-
ergy demand. Meanwhile, prosumers can simultaneously use a solar 
heater, a cogeneration system, a biomass boiler, or import from other 
participants to meet their heating energy demand. Therefore, the 
PSO algorithm is adopted to determine the optimal energy schedule 
of different energy devices and resources. 

3. Blockchain and machine learning-based framework for 
decentralised energy management 

As shown in Fig. 1, the blockchain and machine learning-based 
framework mainly consists of 3 core parts, including the blockchain 
for peer-to-peer multiple energy trading, machine learning for multiple 
energy prediction, and PSO for energy scheduling optimisation. For each 
building, multiple machine learning models are developed for heating 
energy prediction, electrical energy prediction, PV electricity genera-
tion, and solar heater heating energy generation, respectively. Relying 
on collecting energy consumption and production data from smart me-
ters and weather forecast data from local weather stations, day-ahead 
energy demands from buildings and energy generations from renew-
able energy devices can be predicted. Each building is equipped with a 
PSO for scheduling the operating capacity of each local energy device, as 
well as proposing importation and exportation rates of electrical and 
heating energy. The predicted energy demands and generations from 
machine learning models are used as input datasets in PSO. The pro-
posed importation and exportation rates of each prosumer and consumer 
are communicated through the blockchain to determine the actual 
importation and exportation rates of each building. 
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Fig. 1. Framework of blockchain and machine learning-based decentralised energy management.  
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3.1. Multi-energy network 

The multi-energy network consists of distributed prosumer buildings 
and consumer buildings. Consumer buildings do not have renewable 
energy generation devices and heavily rely on consuming primary en-
ergy (i.e., natural gas or biomass), importing electricity from main 
power grids, and importing energy from other prosumer buildings. 
Prosumer buildings are able to both generate and consume energy. As 
rooftop PV panels and solar heaters have been demonstrated to have 
good life-cycle performance under UK weather conditions [5], they are 
adopted to convert buildings from consumers to prosumers. To enhance 
building energy efficiency and transform conventional buildings to-
wards renewable energy, biomass-driven cogeneration systems, and 
biomass boilers can be installed in both consumers and prosumers. A 
typical example of a multi-energy network is illustrated in Fig. 2. The 
localised multi-energy network can eliminate the inefficiencies of a 
monolithic centralised electricity generation system by reducing energy 
loss through transmission lines and alleviating the high burden on 
central management systems. 

3.2. Blockchain for multi-type energy trading 

Blockchain is a chain of immutable blocks to ensure the integrity and 
security of transactions [28]. The blocks are generally chained through 
block hash values, while the data and transactions in a block are 
generally immutable [29]. As a blockchain is a distributed ledger, each 
participating member of the blockchain has the same and complete copy 
of the blockchain. Meanwhile, smart contracts can be used to automate 
the purchasing and selling of energy based on energy supply and de-
mand from different participants. In this study, blockchain is adopted to 
facilitate peer-to-peer trading for multiple types of energy amongst 
various prosumer and consumer buildings. Therefore, participating 
buildings on the multi-energy network can conduct the direct exchange 
of surplus heating and electrical energy. 

As public blockchains are permissionless and anyone can join them, 
it is not able to guarantee the privacy of each participating building. 
Consequently, the private blockchain is used to secure energy trans-
actions and prevent participants’ privacy, mainly because only author-
ised members can participate in energy trading. Any new building (i.e., 
energy node) that wants to participate in the multi-energy network 
needs to be authorised by the private chain central operator. The central 
operator is the blockchain provider, who is in charge of user adminis-
tration. Once a node is authorised to become a legal node, it can 
participate in the transaction. To be more specific, if new building A 
wants to join the private blockchain, first, it needs to use an asymmetric 

encryption algorithm to generate a pair of public and private keys and 
send the former to the central operator. The central operator will then 
use its private key to verify and save the identity information of building 
A. Building A can create an account and join the private blockchain upon 
validation and receiving the certificate from the central operator. 

In the multi-energy network, if the participating building has excess 
energy (i.e., heating, cooling, and/or electricity), it can broadcast the 
sellable energy and intended selling price. Conversely, the participating 
building, which is short of heat or electricity, can also broadcast its re-
quirements and intended purchase price. If the requirements and 
intended purchase price match the sellable energy and selling price, 
respectively, the smart contract can facilitate the atomic transaction of 
energy and payment. The atomic transaction means that two sides of 
trade fulfill all predefined conditions before the trade can be completed, 
which indicates that the energy transaction and payment transaction are 
simultaneously completed [30]. 

3.3. Machine learning model for energy prediction 

The energy performance of the building itself, renewable energy 
generation units, and energy conversion units are highly correlated with 
weather conditions. The historical energy performance such as heating 
and electrical energy demands from different buildings, electricity 
generating rates from rooftop PV panels, as well as heating energy 
generating rates from solar heaters can be collected from various smart 
meters. Due to the time-series characteristics of building energy de-
mands and energy generation units, long short-term memory networks 
are developed to predict the day-ahead multiple energy demands of each 
building and energy generation rates from different renewable energy 
devices. LSTM model uses input gate, output gate, forget gate, and self- 
connected memory cells to reveal the time-based dependences in time- 
series data, through feedback connections [31]. As LSTM models are 
adopted for time-series energy data prediction, if there are missing 
values during certain hours, it is assumed that the energy data of that 
particular hour would be equal to the previous time step. 

3.4. PSO algorithm for energy scheduling 

For passive energy-generating units, such as rooftop PV panels and 
solar heaters, the energy-generating rates depend on actual weather 
conditions. Conversely, for active energy-generating units, such as 
biomass cogeneration systems, ground source heat pumps, and biomass 
boilers, the energy-generating rates are controllable through part-load 
operation. The passive energy-generating units and active energy- 
generating units can work together to satisfy multiple energy 

Fig. 2. Energy and information flow within the multi-energy network and proposed framework.  
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demands. For example, the electrical energy demands can be satisfied by 
the collaboration from rooftop PV panels, biomass cogeneration sys-
tems, electricity imported from the main power grid, and electricity 
imported from other participated buildings; while the heating energy 
demands can be satisfied by biomass boiler, heat utilisation from 
biomass cogeneration system, and heat imported from other partici-
pating buildings. 

It is important to determine the optimal energy schedule of each 
energy-generating unit to minimise overall energy costs. PSO algorithms 
have been increasingly adopted to solve sophisticated engineering 
problems owing to their robustness, faster convergence speed, and lower 
computing load [32]. As demonstrated in [2,3,6], PSO was effectively 
adopted to determine the energy schedule of the multi-energy system in 
an individual domestic building, and office building. In this study, each 
building is equipped with an individual PSO optimiser to determine the 
optimal operating parameters of the biomass cogeneration system, and 
biomass boiler, along with electricity importing rate from the main 
power grid, electrical and heating energy importing rates from other 
buildings within the multi-energy network. 

3.5. Deployment of the blockchain energy-trading platform 

In order to test the feasibility and performance of the blockchain and 
machine learning-based decentralised energy management framework 
shown in Fig. 1, Solidity is adopted to develop and deploy the Ethereum 
private blockchain. Meanwhile, a smart contract is implemented to 
facilitate the atomic peer-to-peer energy trading and energy cost trans-
actions. Ethereum is a decentralized platform that runs smart contracts 
and applications without censorship and third-party interference. 
However, Solidity is an advanced programming language for smart 
contracts [33]. 

4. Case study 

4.1. Basic information on case study buildings 

In order to demonstrate the feasibility of the developed energy 
management framework, 4 domestic buildings are connected through 
the multi-energy network and can conduct peer-to-peer energy trans-
actions with each other. The 4 case study buildings were built in 1971 
and located in Bristol, United Kingdom. They have the same floor area, 
construction structure, and internal layout. The main differences in 
energy performance result from occupancy behaviour. The electricity 
and gas consumption were monitored in their natural settings. The floor 
plan and elevation plan are shown in Fig. 3. The case study domestic 
buildings were built with no-fines concrete walls and finished with 
paramount plasterboard. The ground floor was built with solid concrete 

slab while roofs were built using pitched trussed rafters and insulated at 
ceiling level. The internal garages, loft, and back porch were not heated. 
As these 4 domestic buildings are located in the south UK, cooling is not 
required. Thus, this research only focuses on heating and electrical en-
ergy supply. 

4.2. Building energy demands and renewable energy production 

The historical hourly electricity and gas consumption data in 2016 of 
the four domestic buildings is collected to develop the LSTM energy 
prediction models. The year-round hourly electricity power generation 
from the PV panel, along with the thermal power generation from the 
solar heater, was also obtained from two nearby PV panels and solar 
heaters in 2016. The descriptive information of the collected electricity 
and gas consumption profile of 4 case study buildings, along with the 
renewable energy production profile from 2 nearby PV panels and solar 
heaters, is summarised in Table 1. As there were 366 days in 2016, while 
hourly energy consumption and production data were collected, the 
total number of observations is 366 × 24 = 8774 for each type of data. 
The average gas consumption rate is 2871, 1736, 563 and 1579 W, 
respectively, while the average electricity consumption rate is 1775, 
482, 682 and 274 W, respectively for each case study building. The total 
gas consumption is 25222, 5248, 4949, and 13,870 kWh, respectively, 
while the total electricity consumption is 15592, 4231, 5993 and 2403, 
respectively for each case study building. The total electricity produc-
tion from PV1 and PV2 is 11,198 and 4702 kWh, respectively, while the 
total heating energy production from solar heater 1 and solar heater 2 is 
2218 and 940 kWh, respectively. 

The energy consumption profiles of each building are summarised in 
Fig. 4. For building 1, the electricity consumption rate is lower than 
2000 W during most of the time, as shown in Fig. 4(a). There is no 
electricity consumption recorded during the middle of May due to sensor 
disconnection. The gas consumption rate is lower than 2000 W or be-
tween 8000 and 10000 W during most of the time, as shown in Fig. 3(b), 
mainly due to low heating demand at daytime and high heating demand 
at nighttime during the cold seasons. For building 2, as shown in Fig. 3 
(c), the electricity consumption rate from January to early May is much 
higher than the remaining periods, with the highest rate being 6193 W. 
There is no electricity consumption during early to middle July, and 
middle August to early September. It may be due to the fact that the 
electricity meter was disconnected. As shown in Fig. 4(d), the gas con-
sumption rate is discrete owing to the precision of certain gas meters. 
The gas consumption is much higher during January to early May, 
November and December than the other months, with the highest rate 
being 12000 W. For building 3, as shown in Fig. 4(e), the electricity 
consumption rate is relatively evenly distributed over the year, except 
for the fact that there was no electricity recorded from the middle of 

Fig. 3. Elevation plan and floor plan of 4 case study buildings [34].  
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June to late July, as well as after November. As shown in Fig. 4(f), the 
gas consumption rate is lower than 1000 W during most time of the year. 
From January to May, November and December, the gas consumption 
rate is much higher than the other months. For building 4, as shown in 
Fig. 4(g), the electricity consumption rate is lower than 447 W during 
most time of the year, while the peak value is 1178 W. There only exists 
a small period of electricity sensor data disconnection during middle 
July. As shown in Fig. 4(h), from January to May and October to 
December, the gas consumption is much higher than the other periods of 
the year. There only exists a small period of gas sensor disconnection 
during the middle of December. 

As shown in Fig. 5, during the summer season, the electricity gen-
eration rate from PV panels and thermal energy generation rate from 
solar heaters is relatively higher than that during the winter season. 
There also exists a lack of energy generation records during early to 
middle July, and middle August to early September. 

4.3. Prediction performance of LSTM models 

In the case study buildings, when gas and electricity consumption 
profiles are collected, the conventional gas-fuelled boiler is adopted to 
provide heat demand, while electricity is purely imported from the main 
power grid. To estimate the electricity and heating energy demands of 
the buildings, it is assumed that the gas boiler has a constant efficiency 
of 80 %. The historical electricity and gas consumption data of each 
building is adopted to train the LSTM prediction model. As the elec-
tricity and gas consumption datasets do not follow the normal distri-
bution as seen from Fig. 4, the min–max scaling approach is adopted to 
normalise the datasets into the scale of 0–1.80 % of the data is adopted 
for training, while 20 % of the data is adopted for testing. A single LSTM 
layer is adopted, with the number of neurons being 100, activation 
function being sigmoid, learning rate being 0.05 and dropout rate being 
0.5. The prediction performance of each LSTM model is summarised in 
Table 2. Meanwhile, the training and testing performance of LSTM 
models during 2 representative weeks for each building are summarised 
in Figs. A1 and A2 in the Appendix, for electricity and heating respec-
tively. The blue line indicates the measured historical energy data from 
energy meters, while the purple line represents the prediction results. 

4.4. Design parameters of the multi-energy network 

To increase renewable energy production, rooftop PV panels and 
solar heaters are installed on Building 1 and Building 2 to convert them 
from consumers into prosumers, while Building 3 and Building 4 remain 
as consumers. To increase energy utilisation efficiency and make better 
use of renewable energy, a biomass cogeneration system, and biomass 
boiler is adopted in each building to provide electrical and thermal 
energy for the respective buildings. The 4 buildings are also permitted to 
import electricity and heating energy from other buildings while 
exporting electricity and heating energy to other buildings. Based on the 
historical electricity and gas consumption of the case study buildings, 
the design parameters of the multi-energy network are summarised in 

Table 3. Meanwhile, the energy performance of the biomass cogenera-
tion system and the biomass boiler is estimated from the manufacturing 
data [35]. 

4.5. Performance evaluation of evolutionary optimisation 

The PSO algorithm is adopted to determine the operating capacity of 
the biomass cogeneration system, operating capacity of biomass boiler 
and electricity importing rate from the power grid. The inertial, indi-
vidual and social weights are randomly generated within the value be-
tween 0 and 1, while the other PSO parameters are summarised in 
Table 4. The price of each energy resource is summarised in Table 5. This 
case study assumes that the heat and electricity exchange costs are 0.017 
and 0.1 £/kWh, respectively. In practical application, these exchange 
costs are determined by the actual participants through the blockchain 
platform. 

The energy allocation among different energy devices of each 
building during representative week (Week 29) is summarised in Fig. 6. 
The energy allocation during other weeks for Buildings 1, 2, 3, and 4 are 
summarised in Figs. A3-A6 in Appendix. In terms of electricity alloca-
tion, De indicates electrical energy demand, Qpv, Qg, QCHP, Qimp,e and 
Qexp,e indicates electricity generation rate from PV panel, main power 
grid, biomass cogeneration system, imported electricity from other 
buildings and exported electricity to other buildings, respectively. 
Regarding heating allocation, Dh indicates heating energy demand, QSH, 
QBB, QCHP, Qimp and Qexp indicates thermal energy generation rate from 
solar heater, biomass boiler, biomass cogeneration system, imported 
heat from other buildings and exported heat to other buildings, 
respectively. 

As shown in Fig. 6(a), during nighttime, the electricity demand of 
Building 1 is low. Thus, it is mainly provided by biomass cogeneration 
system and biomass boiler, while little amount of electricity is exported. 
Throughout the daytime, PV panel is primarily used to satisfy electricity 
demand. When electricity production from PV panels is low due to low 
solar radiation, the power grid and cogeneration system will be used. 
When electricity production from PV panel is large due to high solar 
radiation, the extra electricity can be exported to other buildings. During 
0–7 h, extra thermal energy from the cogeneration system is mainly 
utilised to provide heat for the building as its heating demand is quite 
low. Throughout other periods, thermal energy from the solar heater 
and the cogeneration system is primarily used to satisfy heating demand 
for the building. If it is not sufficient, the biomass boiler will be used. As 
the heating energy provided by solar heaters is relatively lower than the 
actual heating demand, heating energy is seldom exported. 

In terms of Building 2, the electricity demand is always lower than 
the PV electricity production during daytime, as shown in Fig. 6(b). 
Therefore, it is frequently exported to provide electricity for other 
buildings. During the nighttime, when electricity demand is quite low, 
the extra electricity energy from the cogeneration system would be 
exported. This is because the cogeneration system is operated to provide 
heating energy due to its high energy utilisation ratio. During the day-
time, when heating demand is quite high and solar heater is not able to 

Table 1 
Descriptive information of energy profiles.  

Statistics Building 1 Building 2 Building 3 Building 4 

Ele. Heat PV panel Solar heater Ele. Heat PV panel Solar heater Ele. Heat Ele. Heat 

Count 8784 8784 8784 8784 8784 8784 8784 8784 8784 8784 8784 8784 
Mean (W) 1851 2311 2735 547 611 1389 745 153 692 640 282 1300 
Std. (W) 1718 3240 4897 979 1212 2252 1934 387 749 1241 238 1943 
Min. (W) 0 0 0 0 0 0 0 0 0 0 0 0 
25 % (W) 708 27 0 0 0 0 0 0 0 29 99 5 
50 % (W) 1204 400 10 2 51 0 0 0 533 198 217 158 
75 % (W) 2315 4656 3193 639 648 2000 40 8 991 570 447 1889 
Max. (W) 8115 12,493 21,100 4220 6193 12,000 9590 1918 3725 5791 1178 10,898 
Total (kWh) 16,261 20,301 24,021 4804 5460 12,198 24,021 1344 6077 5623 2478 11,422  
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Fig. 4. Electricity and gas consumption of 4 buildings.  
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provide sufficient heating energy, the cogeneration system, and biomass 
boiler would be utilised to supplement heat. 

For building 3 and building 4, as shown in Fig. 6 (c) and (d), 

respectively, a large amount of electricity is imported from other 
buildings, while the power grid and cogeneration system are also 
adopted to provide electricity if the available electricity from peer-to- 

Fig. 4. (continued). 
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Fig. 5. Renewable energy production from energy devices.  
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peer energy trading platform is not sufficient. For building 3, the heating 
demand of the building is primarily supplied by the cogeneration system 
due high energy efficiency of the cogeneration system. For building 4, 
heating demand is also supplied by biomass boiler as the available 
thermal energy from peer-to-peer energy trading platform and cogene-
ration system is not sufficient. 

4.6. Performance evaluation of the proposed energy trading framework 

To investigate the economic potential of the proposed energy trading 
framework, its overall performance is compared with 4 reference 
buildings that do not have access to peer-to-peer energy trading. The 4 
reference buildings are assumed to have the same electricity and heating 
demand as our case study buildings. Buildings 1 and 2 can use rooftop 
PV panels, the main power grid, and the biomass cogeneration system 
for electricity supply, while the solar heater, the biomass boiler, and the 
biomass cogeneration system are harnessed for heat supply. Meanwhile, 
Buildings 3 and 4 only use the biomass cogeneration system, the biomass 
boiler and the power grid for energy supply. The energy costs for the 
reference buildings (i.e., without peer-to-peer energy trading) and the 
proposed framework are summarised in Table 6. It is seen that 7.96 
%-18.18 %, 7.60 %-25.41 %, 5.40 %-9.01 %, and 12.46 %-17.63 % 
reduction in energy costs can be achieved for Buildings 1, 2, 3, and 4, 
respectively, through adopting the proposed framework. 

5. Practical implications and future work 

This study demonstrated the economic and technical potential of a 
blockchain and machine learning-based framework to enable multi-type 
energy allocation and transmission among different buildings. In prac-
tical applications, the building needs to be equipped with electricity and 
gas meters to collect its historical electricity and gas consumption for at 
least one year. Based on the hourly energy consumption profile, LSTM 
models can be developed to predict day-ahead electricity and heating 
energy demand for the building. If the building is equipped with rooftop 
PV panels and solar heaters, their electricity and thermal energy 
generating rate can also be estimated through day-ahead weather fore-
casts. Based on the day-ahead electricity and heating demand of the 
consumer building, or energy demand and renewable energy production 
of the prosumer building, day-ahead energy scheduling of different en-
ergy devices such as the biomass boiler, the biomass cogeneration sys-
tem, electricity importation from the power grid, as well as heat and 
electricity importation and exportation rate from other buildings can be 
estimated by the PSO energy scheduling algorithm. Based on the esti-
mated heat and electricity importation rate, buildings can conduct 
multi-type (i.e., heat and electricity) energy trading with nearby build-
ings, using a smart energy trading platform based on the proposed 
framework. 

Despite the proven cost-saving attributes of the proposed blockchain 
and machine learning framework, further developments are required. 
Future research is needed to develop a fully functional platform in terms 
of energy modelling, algorithm development, software design, hardware 
implementation, scalability testing, and practical application.  

(1) Regarding energy modelling, the constant operating efficiency 
was assumed for the biomass boiler, and biomass cogeneration 
system, while the heat-to-electricity output ratio of the biomass 
cogeneration system was also static. In a practical situation, the 
efficiency of the biomass cogeneration system and biomass boiler 
would be much lower during part-load operation. The heat-to- 
electricity output ratio may also be changed at a low part-load 
ratio. Dynamic models of biomass boilers and cogeneration sys-
tems should be developed to reflect the real situation and account 
for the possible energy loss through part-load operations.  

(2) In terms of algorithm development, a set of fixed parameters is 
used in LSTM models for different buildings in this study. Due to 
the featuring characteristics in energy consumption among 
different buildings, different parameters, such as the number of 
LSTM neurons, activation functions, learning rate, and dropout 
rate, can be chosen for different buildings. Moreover, different 
evolutionary optimisations algorithms, such as artificial bee col-
ony [36,37], ant colony [38], and genetic optimisation [39], can 
be used and compared to select the most appropriate algorithm in 
determining energy schedules of the multi-energy network.  

(3) As far as smart contract development is concerned, the maximum 
allowable energy rate through both the main power grid and 
distribution transmission grid (i.e., peer-to-peer energy trading 
grid) should be set in the smart contract to make sure the energy 
transmission grids do not exceed their bearable loads. Moreover, 

Table 2 
Prediction performance of LSTM models.  

Evaluation metrics Datasets Building 1 Building 2 Building 3 Building 4 

Mean absolute error (W) Electricity Training 712 341 275 99 
Testing 976 83 79 157 

Heating Training 1035 722 294 1072 
Testing 2073 2034 680 1277 

Root mean squared error (W) Electricity Training 1300 755 535 166 
Testing 1669 206 165 284 

Heating Training 2652 1805 681 843 
Testing 3787 5134 1686 1997  

Table 3 
Design parameters of multi-energy networks for case study buildings.  

Design parameters Unit Value 

Electrical efficiency of cogeneration system % 15 
Thermal efficiency of cogeneration system % 65 
Nominal capacity of biomass boiler for building 1 W 10,000 
Nominal capacity of biomass boiler for building 2 W 11,000 
Nominal capacity of biomass boiler for building 3 W 10,000 
Nominal capacity of biomass boiler for building 4 W 2000  

Table 4 
PSO parameters.  

Population 100 

Maximum iterations 40 
Fitness criterion 0.01  

Table 5 
Price of different energy resources (£/kWh).  

Biomass 0.0211 

Electricity  0.1310 
Heat exchange with other buildings  0.017 
Electricity exchange with other buildings  0.1  
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Fig. 6. Electrical and heating energy allocation and transmission among 4 domestic buildings.  
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the asset response rate [40] and asset ramp rate [41] of main 
power grids, energy transmission grids, and multi-energy systems 
should also be taken into consideration in the smart contract.  

(4) Regarding software development, fully functional software needs 
to be developed so that participants can visualise the predicted 
day-ahead energy consumption and explore how peer-to-peer 

Fig. 6. (continued). 
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(a) Training, Building 1 

(b) Testing, Building 1 

(c) Training, Building 2 

(d) Testing, Building 2 

Fig. A1. LSTM prediction performance of building electricity demand.  
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(e) Training, Building 3 

(f) Testing, Building 3 

(g) Training, Building 4 

(h) Testing, Building 4 

Fig. A1. (continued). 

X. Luo and L. Mahdjoubi                                                                                                                                                                                                                     



Energy & Buildings 303 (2024) 113757

16

(a) Training, Building 1 

(b) Testing, Building 1 

(c) Training, Building 2 

(d) Testing, Building 2 

Fig. A2. LSTM prediction performance of building heating demand.  
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(e) Training, Building 3 

(f) Testing, Building 3 

(g) Training, Building 4 

(h) Testing, Building 4 

Fig. A2. (continued). 
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(a) Week 30 

(b) Week 35 

Fig. A3. Electrical and heating energy allocation of Building 1 in Weeks 30 and 35–39.  
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(c) Week 36 

(d) Week 37 

Fig. A3. (continued). 
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(e) Week 38 

(f) Week 39 

Fig. A3. (continued). 
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(a) Week 30 

(b) Week 35 

Fig. A4. Electrical and heating energy allocation of Building 2 in Weeks 30 and 35–39.  
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(c) Week 36 

(d) Week 37 

Fig. A4. (continued). 
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Fig. A4. (continued). 
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(a) Week 30 

(b) Week 35 

Fig. A5. Electrical and heating energy allocation of Building 4 in Weeks 30 and 35–39.  
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(c) Week 36 

(d) Week 37 

Fig. A5. (continued). 
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(e) Week 38 

(f) Week 39 

Fig. A5. (continued). 
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(a) Week 30 

(c) Week 35 

Fig. A6. Electrical and heating energy allocation of Building 4 in Weeks 30 and 35-39.  
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(d) Week 36 

(e) Week 37 

Fig. A6. (continued). 
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(f) Week 38 

(g) Week 39 

Fig. A6. (continued). 
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energy trading to help them make profits and achieve cost sav-
ings. Three Python algorithms are developed separately for en-
ergy prediction, planning optimisation, and blockchain 
transaction, respectively. However, a dataset is saved as a.h5 file 
to communicate between different Python files. In practical ap-
plications, there may exist implementation and maintenance 
challenges for integrating these three techniques (i.e., block-
chain, machine learning, and PSO optimisation). For example, 
the communication protocols need to be coordinated among IoT 
sensors, machine learning modules, blockchain modules, and 
PSO optimisation modules [42]. In practice, each building has a 
tailored python-based optimisation module, and a distributed 
and all the participated buildings will conduct peer-to-peer multi- 
type energy trading through the blockchain-based platform. As 
illustrated in Fig. 1, the tailored Python-based optimisation 
module consists of 4 machine learning models for heat demand 
prediction, electricity demand prediction, PV electricity produc-
tion prediction, and solar heater heat production prediction, as 
well as one PSO model for scheduling local energy devices and 
energy importation and exportation rate. The input dataset to this 
tailored optimisation module mainly includes smart energy 
sensor measurement, while the output dataset consists of values 
regarding energy rates of local energy devices, importation en-
ergy from other buildings, and exportation energy to other 
buildings. The blockchain platform is an open-source decentral-
ised system and can enable peer-to-peer transactions among 
multiple participants, while the importation and exportation 
energy rates obtained from each optimisation module will be 
automatically set as input dataset to the blockchain platform. 

(5) In relation to hardware development, the actual energy trans-
mission grids need to be implemented to perform real-time 
heating and electrical energy trading. Meanwhile, blockchain- 
specific hardware and network infrastructure should also be 
developed and adopted in practical applications. In addition, 

other renewable energy devices such as ground source heat 
pumps and building-integrated wind turbines [5] might also play 
an important role in heat and electricity production. The impacts 
of their participation on overall cost-saving potential should be 
investigated.  

(6) Regarding scalability testing, as only 4 domestic buildings 
participated in this study, the renewable energy utilisation rate is 
still quite low. As different types of buildings may have different 
peak times for electricity and heating demand, it is interesting to 
see how energy utilisation rate can be further improved if 
different types of buildings are included in the peer-to-peer en-
ergy trading.  

(7) In terms of practical application, the error between predicted and 
actual values of both energy demands and generating rates 
should also be considered. In the case that the predicted energy 
demand is smaller than the actual energy demand, a higher 
operating capacity of biomass boiler should be adopted to sup-
plement the heat demand, as a result, electricity should be im-
ported from the main power grid. Moreover, cooling demands 
may also be required for domestic buildings or other types of 
buildings under different climate conditions. The proposed con-
ceptual framework may be further extended to include cooling 
energy trading, while biomass trigeneration systems, absorption 
chillers and electric chillers can be installed to satisfy cooling 
energy demands. 

As demonstrated in Table 7, the proposed blockchain and machine 
learning-based framework for decentralised energy management out-
performs various state-of-the-art approaches. The developed framework 
performs better than the multi-agent method, based multi-energy 
management system in terms of computational load. This is mainly 
because the proposed machine learning and optimisation modules are 
distributed in each participated building so that no centralised control is 
required. The decentralised feature can also prevent the management 
system from single point of failure. 

The developed framework can also outstrip the state-of-the-art 

Table 6 
Energy costs of different buildings (£).  

Period Method Building 
1 

Building 
2 

Building 
3 

Building 
4 

Week 
29 

Reference 
method 

21,240 8353 17,180 6167 

Proposed 
framework 

19,550 7418 15,794 5208 

Reduction 7.96 % 11.19 % 8.07 % 15.55 % 
Week 

30 
Reference 
method 

22,490 7649 15,673 6578 

Proposed 
framework 

20,213 7067 14,261 5758 

Reduction 10.12 % 7.60 % 9.01 % 12.46 % 
Week 

35 
Reference 
method 

29,905 2443 16,727 6549 

Proposed 
framework 

27,130 1987 15,824 5727 

Reduction 9.28 % 18.68 % 5.40 % 12.55 % 
Week 

36 
Reference 29,270 2299 19,196 7646 
Proposed 
framework 

26,112 1715 17,722 6490 

Reduction 10.79 % 25.41 % 7.68 % 15.12 % 
Week 

37 
Reference 31,924 2840 22,123 8356 
Proposed 
framework 

27,004 2425 20,494 7087 

Reduction 15.41 % 14.62 % 7.36 % 15.19 % 
Week 

38 
Reference 31,083 3569 21,495 8500 
Proposed 
method 

25,433 3191 19,526 7188 

Reduction 18.18 % 10.60 % 9.16 % 15.43 % 
Week 

39 
Reference 32,036 3884 23,362 8987 
Proposed 
method 

27,126 3563 21,385 7403 

Reduction 15.33 % 8.26 % 8.46 % 17.63 %  

Table 7 
Performance comparison between existing methods and proposed framework.  

Conventional 
methods 

Features of 
conventional 
methods 

Features of the 
proposed 
approach 

In which aspect 
the proposed 
method 
outperforms 
conventional 
methods 

Multi-agent 
method based 
multi-energy 
management 
system 

Relies on 
centralised 
control 

Machine learning 
and optimisation 
modules are 
distributed in 
each participated 
building 

Computational 
loadFailure of a 
single point 

blockchain-based 
energy trading 
platform 

Based on 
participants’ 
experience in 
determining 
energy trading 
rate 

Optimal energy 
importation and 
exportation rate 
is determined by 
optimisation 
algorithm 

Energy trading 
strategy 

Thermodynamic 
models for 
building energy 
prediction 

Model is needed 
for each building 
based on its 
unique 
architecture, 
energy system 
and thermal 
properties 

Easily 
personalised to 
each individual 
building by 
training its 
historical energy 
consumption 
profiles. 

Workload 

Individual building 
energy 
management 

Relies on energy 
storages to 
reschedule the 
peak and valley 
demand 

Peer-to-peer 
energy sharing to 
reschedule the 
peak and valley 
demand 

Capital cost 
energy efficiency  
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blockchain-based energy trading platform, which relies heavily on 
participants’ experience in determining energy trading rate. In the 
proposed framework, the optimal scheduling of local energy devices and 
importation/exportation rate are estimated by PSO algorithm for each 
building, while this optimal energy importation and exportation rate is 
used for peer-to-peer energy trading. 

In terms of building energy prediction, conventional thermodynamic 
models tend to model for each building, based on its unique architec-
ture, energy system and thermal properties, which is proven to be both 
cumbersome and time-consuming. However, the developed machine 
learning models provides a step change as it can be easily personalised to 
each individual building by training its historical energy consumption 
profiles. 

The proposed blockchain framework also provides improvements in 
comparison to existing smart energy management for individual build-
ings. Those individual energy management systems mainly rely on en-
ergy storages to reschedule the peak and valley demand, and they fail to 
cooperate with other buildings. The proposed peer-to-peer energy 
sharing can avoid the energy storages, which may lead to higher capital 
cost and energy loss. 

6. Conclusion 

Traditionally, gas and electricity are generally supplied through 
centralised energy systems, which are operated by major energy and 
utility companies. These central management systems always result in a 
high computational load, while energy prices are fully decided by those 
companies and may increase rapidly due to economic inflation. In 
addition, a large fraction of energy losses through long-distance energy 
transmission occurs. Conversely, the strategic operation of decentralised 
energy systems among different buildings can reduce global greenhouse 
gas emissions, and address climate change issues. Although blockchain 
has been adopted in various energy trading platforms to facilitate peer- 
to-peer electricity transactions, most of the existing research focused on 
workflow, smart contracts and consensus mechanism development, 
while there may be a lack of predictive control, optimal energy planning, 
and multi-energy trading. 

The key innovation of this study is to integrate blockchain and ma-
chine learning to develop an energy management conceptual framework 
for decentralised multi-type energy (i.e., heat and electricity) allocation 
and transmission among a range of domestic buildings. LSTM models are 
adopted to predict day-ahead energy consumption rates of different 
buildings and energy generation rates of renewable energy devices, 
within the multi-energy network. PSO algorithms are adopted to 
determine the schedules of operating capacity of controllable energy 
devices, as well as energy importation and exportation rates of each 
participating building. Meanwhile, blockchain is adopted to establish 
peer-to-peer energy transactions among different buildings. This novel 
framework focuses on global energy-matching between supply and de-
mand sides from a range of buildings through encouraging direct energy 
trading between prosumers and consumers. The privacy, security, and 
fairness of energy management are also enhanced through smart con-
tracts to strictly execute the energy trading and bill payment rules. 

This study determined the economic and technical potential of peer- 
to-peer multi-type energy trading under a given set of tariff circum-
stances, with a case study of 4 real-life domestic buildings. The results of 
testing the proposed framework in the case study buildings revealed that 
there was a 7.96 %-18.18 %, 7.60 %-25.41 %, 5.40 %-9.01 % and 12.46 
%-17.63 % reduction for Buildings 1, 2, 3 and 4, respectively. In prac-
tical application, the proposed framework can involve a larger number 
of prosumer and consumer buildings within the community to decen-
tralise multiple energy trading, reduce greenhouse gas emissions and 
enhance environmental sustainability. 

Findings revealed that in comparison to prevailing methods 
including multi-agent method-multi-energy management system, 
blockchain-based energy trading platform, and thermodynamic models 

for building energy prediction, the proposed framework performs better 
in terms of computational load/failure of a single point, energy trading 
strategy, workload, and capital cost energy. 

A strong case was made for the economic and technical potential of a 
blockchain and machine learning-based framework to enable multi-type 
energy allocation and transmission among different buildings. Above 
all, it confers significant potential to contribute to the reduction of 
greenhouse gas emissions and enhancing environmental sustainability. 
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