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ABSTRACT

Inspired by the role of mirror neurons and the importance of predictions in joint action, a novel
decision-making structure is proposed, designed and tested for both individual and dyadic action
during real-world human-human and human-robot experiments. The structure comprises models

representing individual decision policies, policy integration layer(s), and a negotiation layer. The latter
is introduced to prevent and resolve conflicts among individuals through internal simulation rather than
via explicit agent-agent communication.

As the main modelling tool, Dynamic Neural Fields (DNFs) were chosen. Data was captured from
human-human experiments with a decision-making task performed by either one or two participants.
The task involves choosing (picking) and placing blocks one by one from seven wooden blocks to create
an alpha/numeric character on a kind of mechanical model of a 7-segment display. The task is designed
to be as generic as possible. Recorded hand and blocks movements were used for developing DNF-based
models by optimising parameters using a genetic algorithm.

Results show that decision policies can be modelled and integrated with acceptable accuracy for
individual performances. In the dyadic experiment, using only individual models without the negotiation
layer, the model failed to resolve conflicts. However, with the implementation of a negotiation layer, this
problem could be overcome.

To Analyse the proposed model for a human-robot collaboration task, first, the role and efficacy
of the negotiation layer of the architecture are assessed. Then, in a “Wizard of Oz” experiment, the
performance of the complete architecture is compared with that of a human decision-maker. The same
task of using wooden blocks to create characters in a 7-segment display is used in both experiments.

Results show a significant improvement in terms of the chosen objective and subjective measures
when the robot uses the complete architecture with the negotiation layer. No significant difference was
found for any of the measures between the human decision-maker and the complete model. Although the
robot with a human decision-maker scored slightly better in all measures, a further Bayesian comparison
of the data suggests a high probability of similarity between the model and the human decision-maker.
This was further illustrated by a qualitative analysis of the post-experiment interview questions; in
answering the third question, when asked which condition is more human-like, 17 participants identified
that the robot using the complete model was like working with a human, and an equal number opted for
identifying the robot controlled by a human decision-maker as being human-like. In addition, answering
the first question, 6 participants found no difference between the robot being controlled by a human
decision-maker and being controlled using the complete model.

The proposed decision-making structure based on DNFs is developed and tested for a simple pick-
and-place task. However, the main primitive underlying action of this task, pick-and-place, is indeed
part of many more complex tasks people perform in their day-to-day life. Paired with the possibility to
gradually evolve the architecture by adding new policies on demand, the architecture provides a general
framework for modelling decision-making in joint action tasks.
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To demonstrate the generality of this ability, a car assembling task was used in a "Wizard of Oz"
experiment. Similar to the previous experiment, participants worked with a robotic arm to perform
the task. Each participant repeated the task 6 times, 3 times for each condition, Model or Wizard, in a
random order. Again, no significant difference was found between the two conditions and the Bayesian
comparison showed a high probability of similarity. When data were sorted based on the order of trials,
a significant difference was found between the task completion time from the first trial to the last. This
could be due to the fact that participants were repeating the same task, however, given the low number
of participants for this experiment, which was executed on a small scale only to illustrate the potential
for the ability to transfer the capability to a different task, further analysis is required in the future.
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1
INTRODUCTION

A s they emerge from being dangerous caged tools, robots are becoming part of human day-to-

day life. This has increased the direct interaction of humans and robots in different contexts

from manufacturing to assisted living. It is well-researched that to have a successful and

efficient human-robot collaboration (HRC) robots require to have several different cognitive abilities

like perspective-taking [115], understanding affordances [82] (including situation, partner, and self-

awareness), forming an expectation of the next action [79], and timing ability [25, 132]. These form a

social cognitive process that starts at the perception level in which the robot assesses the situation and,

by constant monitoring of the environment and partner(s), forms some understanding and predictions of

the next action.

Different criteria have been suggested for the evaluation of a cognitive system like generality,

versatility, rationality, optimality, efficiency, scalability, reactivity, persistence, improvability, autonomy,

and extended operation [76]. Building on these criteria, several cognitive architectures in the literature,

like ACT-R [4], Soar [73], or R-CAST, which are based on Recognition Primed Decision (RPD) models

[42] are developed for individual agents. These architectures are either based on declarative memory

retrieval using instance-based models or rule-based (ACT-R) or probabilistic modelling approaches

like decision trees (Soar). One of the most recent applications of the ACT-R architecture in modelling

decision-making is presented by Zhang et al. [135] for Human-Computer Interaction (HCI). While they
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CHAPTER 1. INTRODUCTION

developed a dynamic model for "complex" interactions in HCI, their model only produces a prediction

of the individual’s decision, but the missing embodied nature of robots and the collaborative nature

of the task with a shared plan make such a model not necessarily applicable to HRC and joint-action

scenarios. On the other hand, Wolpert et al. [128] developed a structure for action production or action

observation of individuals. Although they argue that this concept of forward-inverse models used for

modelling single motor control actions can be also applied to social interaction, their architecture has

never been implemented for a real interaction scenario involving joint action.

One key part of the cognitive process is decision-making. According to Wang and Ruhe [123],

the "decision criteria depend on decision strategy". They categorised decision strategies into four

groups namely, intuitive, empirical, heuristic, and rational; each of which divided into different subsets.

Decision makers may select different decision strategies even in the same circumstances depending on

their "values", "attitude towards risk" and "prediction of the future outcome". Decision strategies are

also divided into static or dynamic strategies. It is considered static when the environmental changes

do not affect the decision-maker’s action. On the other hand, when the decision maker’s actions are

influenced by environmental changes and vice versa, the decision strategy should be a dynamic one. For

human-robot collaboration (HRC), for example, the strategies must be dynamic as each partner should

consider the other partner’s action and the progress of the shared plan when deciding about its action. In

such a situation, decision-makers need information about the "actions", "the intention of peers", "the

abilities of all partners" and "the state of the environment". In this work, only two of these namely,

"actions" and " "the state of the environment" is used and "the intention of peers" is considered already

known by agents. This information then can be used to choose the right action among all the possible

actions [8]. These strategies can be utilised to implement a decision-making system based on different

paradigms like the Game theory or the Bayesian theory [123]. However, as Vinciarelli et al. [119] point

out "mutual influences" in the interaction process has not been well investigated.

Bicho et al. [16] proposed a decision-making system for joint action based on DNFs, however, in

their work decision policies were hard-coded rather than being modelled from human experimental data.

The workspace was divided into two sides to be able to predict an action to be performed by a co-actor.

They assume that objects in the area closer to each actor (human or robot) will only be picked by the

nearest actor.
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In contrast, in developing the proposed architecture, the workspace is considered to be shared equally

as it was observed in the human-human collaboration experiments that people did not necessarily act

based on the assumption of a divided workspace and reached into their partner’s area for picking objects.

Furthermore, their decision-making system was only tested in joint action scenarios that involve serial

actions with collaborators taking turns and performing complementary actions. This reduces potential

conflicts significantly, while the proposed architecture is developed based on both serial and parallel

actions with a negotiation layer to resolve conflicts. This means, if there is no physical constraint

or limitations imposed by the shared plan, the actor can perform an independent action in parallel to

his/her/its partner.

Related is also the recent work by Beraldo et al. [13] in the sense that they developed a decision-

making structure by breaking down the process into decision policies. But the work lacks the joint

action aspect of the interaction and has been developed for the teleoperation of a mobile robot. Finally,

Buisan et al. [20] present an architecture for human-aware planning that emulates the partner’s decision

to better predict his/her actions as also done in the presented architecture in the next chapter. But both

works [13, 20] miss a module for resolving conflicts in decision-making. Finally, the idea of mirror

neurons has also been explored in literature when developing robot control architectures. Metta et al.

[80], for example, developed a model of mirror neurons for robots that are supposed to learn to grasp

from human observations.

This work is inspired by neuroscientific findings suggesting that an agent runs internal simulations

whenever s/he attempts to perform an action or whenever an action is observed while being performed

by someone else [128]. Since the 1980s the Simulation theory (ST), first presented by Gordon [53],

along with other approaches like Theory theory (TT) and Rationality theory were competing to explain

different aspects of human cognition. TT argues that people form a theory or an abstract model about

their partner’s mental states based on their experience, Rationality theory uses rationality principles to

achieve this, whereas ST suggests that people internally simulate their partner’s mental state to reach a

"pretend" state (involving imaginative and empathetic processes as well as mirroring observed actions,

for instance seeing an object being picked up the motor neurons of the observer are activated as if s/he is

performing the picking up action.)[105]. Simulation theory has gained additional support in explaining

cognitive processes of human interaction after the discovery of mirror neurons [10, 47]. ST has also
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inspired roboticists to develop cognitive architectures for safer [127] and more ethical [118] robots.

Further application of simulation theory of mind in robotics has also been reviewed by Bianco and

Ognibene [15] as an approach to achieve "coordinating and managing false beliefs", "proactivity and

preparation", "perception", and "learning" in social robots. Devin and Alami [33] also used ST for shared

plan execution having the robot engage in a dialogue with its partner for a "fluent" implementation of the

shared plan "without being annoying or intrusive" by estimating its partner’s mental state. In addition,

Görür et al. [55] propose an ST-based architecture for human intention estimation for robot decision-

making in a shared plan. However, their work is presented in an online archive (not peer-reviewed) and

the extent of the paper does not include any test either in the real world or simulation for assessing and

evaluating the proposed architecture. Building on this work, they have presented an architecture for

"anticipatory decision-making" [54] used to address two conditions: "1) when the human’s intention is

estimated to be irrelevant to the assigned task and may be unknown to the robot, e.g., motivation is lost,

another assignment is received, onset of tiredness, and 2) when the human’s intention is relevant but the

human doesn’t want the robot’s assistance".

Particularly in the pre-motor cortex, two types of mirror neurons and canonical neurons have been

found activated during action execution, imitation, or when only observing the other agent’s actions.

The mirror neurons were found to be activated during an action execution or observation with a specific

goal, while the canonical neurons were found to be activated with the presentation of objects that afford

goal-oriented actions [64, 117]. Inspired by the role of mirror neurons in joint action [90] and the fact

that prediction is an essential part of this process, a novel decision-making architecture is proposed.

Considering the importance of prediction in the joint action process in which one’s own action system

is used to understand and interact with others [10, 104] to enable an agent to form expectations about

the next action of a collaborating partner, the proposed architecture foresees mental models of the

decision-making processes of both the agent and of the interaction partner. Each agent has its own

decision-making system that allows for combining a series of independent individual policies through

an integration layer. The two decision-making systems of the agents run in parallel when collaborating

on a joint action task and their outcome enters a negotiation layer. This layer is introduced to prevent

conflicts in action execution by negotiating own independently taken decisions with anticipated partner’s

decisions. The latter is obtained by internal simulation of the mental model of the partner. So, each
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agent is assumed to simulate its own and its partner’s decision-making process and to integrate the

two independent decisions deriving from these processes into the final decision. The architecture is

explained in detail in Chapter 3. A literature review is presented in the next chapter.

1.1 Research Hypotheses

As reviewed in the literature in the next chapter, to the best of our knowledge, there is no architecture

for addressing decision-making challenges in dynamic human-robot collaboration. Therefore, in this

work, a novel architecture is designed aiming to improve the collaboration by masking the interaction as

conflict-free as possible. The conflict resolution is done through the implementation of the Negotiation

layer which acts as an implicit communication. It is important to note there are some previous works

[24, 28] in which conflict resolution was done through verbal communication. However, having verbal

communication in HRC is not necessarily possible for many applications like working in a highly noisy

environment or security patrolling. In addition, human beings rely on implicit communication along

with verbal communication and this makes human-human collaboration fluent and seamless [50]. This

makes the presented architecture in this work a novel and crucial development in advancing HRC.

Focusing on HRC and a joint action task, modelling decision-making policies is the first step in

developing the architecture. After comparing different mathematical frameworks, Dynamic Neural

Field (DNF) is chosen for the modelling policies and developing a decision-making architecture. As

Curioni et al. [31] pointed out, human-human interaction can provide a good model for human-robot

interaction (HRI), hence, a human-human collaboration experiment is designed and performed to capture

the required data for the modelling. The experiment and modelling are done to investigate the following

hypothesis:

• The decision process in dyadic joint action in a pick-and-place task can be broken down into

decision policies and modelled accordingly.

• The decision-making models for the individuals can be integrated into a decision-making archi-

tecture for a dyadic joint action by adding a negotiation layer to resolve conflicts in a generic

pick-and-place task.
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• The models and architecture developed based on a generic and abstract pick-and-place task could

be applied to a similar yet more realistic task without retraining the models.

After achieving a high level of accuracy in the modelling phase, the architecture is embedded in a

robot for a human-robot experiment. The experiment is run in two phases, first to assess the effectiveness

of the negotiation layer and then to compare the architecture to a human decision-maker. The result of

the experiment shows that adding the negotiation layer has a significant effect in improving HRI and the

robot using the architecture has a similar performance to the robot with a human decision-maker.

Finally, to show the transferability of the architecture, another experiment is designed to use the same

models adapted for a more complex task without extra training. The result of this experiment shows that

the architecture could be deployed for different tasks with small adjustments and no retraining.

After reviewing the literature in the next chapter, the architecture and the comparison of the potential

mathematical frameworks for the decision-making models are presented in Chapter 3. The human-human

experiment, data collection process, and developing models using DNFs are presented in Chapter 4. Two

human-robot experiments are presented in Chapter 5. Chapter 6 presents the HRC experiment designed

to show the generalisability and expandability of the architecture. Finally, the thesis is concluded and

future work is presented in Chapter 7.
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2
LITERATURE REVIEW

A s mentioned in the previous chapter, there are several cognitive processes required for

a seamless human-robot collaboration. In this chapter, previous efforts in line with the

proposed architecture are reviewed. First, related work on Action and Intention recognition

is presented. Then, works related to physical interactions, like carrying an object, are reviewed and

finally, the main cognitive architectures are presented and compared to the proposed architecture.

2.1 Action and Intention Recognition

As mentioned before, in a collaboration a decision maker needs to recognise his/her partner’s actions

and intentions ([8]). Intention recognition could be the next step after action recognition. i.e., after a

collaborator’s action is understood, the reason(s) (I or intention) behind that action is questioned in the

task context. Both processes have been researched to improve human-robot collaboration. For action

recognition, most works require visual information, while intention recognition research has exploited a

wider range of data like visual, auditory, language and physiological signal processing. In the following,

some of these works are presented.

Deep learning is one of the main approaches in action recognition. Guo et al. [59] reviewed several

works based on different deep-learning methods. Despite their high accuracy and wide applicability,
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these methods require large datasets of labelled visual cues (like skeleton tracking) and not having

comprehensive data could lead to training bias. This means the performance of the recognition method

highly depends on the image representation. As such, large datasets such as one presented by Ji et al.

[68] have been created and used for human action recognition. Poppe [94] has also reviewed several

vision-based action recognition research which is mainly based on classification methods like Support

Vector Machines (SVM) and Principal Component Analysis (PCA). All these methods require the

preprocessing of visual data and reliable detection of the region of interest (ROI) for action detection.

Poppe argues that most of these methods also fail when there is a “severe occlusion”. He also points out

that a temporal variation of complex actions can be misrecognised for similar actions like jogging and

walking.

One could argue that methods used for action recognition like those presented by Parisi [91] using

a self-organised deep neural network for action prediction could be equally applied to the prediction

of a partner’s decision in a joint human-robot collaboration. While this potentially could be done by

mapping said predicted action to a related decision, it is not always possible to directly relate an action

to a decision especially when the same action could be the result of different decisions. For instance,

the action of picking an object when there are objects with equal priority to be picked up could not

accurately represent the decision of which object has been chosen. In addition, such methods normally

require a large library of recorded actions (most of the time in the form of a sequence of images) and

only can be applied to that specific set of recorded actions.

Similarly, intention recognition research has also utilised deep learning methods and visual informa-

tion. For example, Cheng et al. [26] use human skeleton tracking data as input to their LSTM network.

Along with deep learning methods, other approaches, such as Probabilistic State Machine (PSM) for

predicting human intention using skeleton tracking as input [37], gaze tracking [46], using Bayesian

models [66, 112], Hidden Markov Models [136] or physiological signals like Electromyography (EMG)

[14] are used for intention recognition. These techniques are either probabilistic (as such not desirable

as discussed in the next chapter) or require a pre-/post-processing of input data like physiological data

and skeleton tracking causing additional complexity for it to be used for decision-making modelling.

Nonetheless, intention recognition is an essential step towards understanding of decision process as

knowing "the intention of peers" is one of the main inputs to the decision-making process. A clarifying
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example in a joint human-robot interaction could be when the intention of a human is to pick up a certain

object with more than one instance of it involved in the task and a decision need to be made to choose

between these instances of the same object. Therefore, in such a scenario like the one in this work, the

intention would be picking the object but the decision would be differentiated as a specific instance of it.

2.2 Action Planning

Planning came to be an essential part of robot control in the Sense-Plan-Act model of robot control

[83]. For mobile robots, planning involves a search or an optimisation approach to find the best path

while avoiding obstacles in the environment and for the robotics arm it entails finding a path to move the

end-effector and perform a task [27]. To enable robots to collaborate with human counterparts, other

features such as role allocation [85] or task allocation [69], belief management [58], and coordination

mechanisms [84] were added to the planning phase. Most of these methods are implemented either

through verbal communication or hard-coded rules. Nonetheless, several efforts were made to address

the dynamic nature of human-robot interaction. Devin and Alami [34] present a Theory of Mind (ToM)

inspired architecture in which a ToM manager is introduced to "estimate and maintain the mental state

of each agent" as it receives information from the Situation Assessment module. The main goal of this

architecture is to inform the human partner of the progress in the shared plan without being intrusive or

annoying if, for example, s/he is distracted during the task. This is a good example of attempts to equip

robots with high-level mental models. Buisan et al. [20] also present an architecture for human-aware

planning that emulates the partner’s decision to better predict his/her actions. In their architecture, a

human-aware task planner (HATP) is combined with a simulation module in which the robot’s human

partner decisions are being predicted and the task planner updates the robot’s action based on this

prediction.

Overall, to the best of our knowledge, planning research does not address the challenge of dynamic

decision-making required for human-robot collaboration. Most work is either based on hard-coded plans

or requires verbal communication to resolve conflicts. The recent planning architecture by Buisan et al.

[20] has tried to address this shortcoming and is the closest work to the proposed work here. However,

the planner does not have the ability to resolve conflicts in parallel actions. It is noteworthy that parallel
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actions are required to have a natural human-robot collaboration. As explained in the following chapters,

in human-human interactions both serial action (turn-taking) and parallel action (working at the same

time, were observed during the data collection phases of this work. This is especially important as there

could be many steps of the task execution with the same priority and a decision-making module like the

one presented in this work is required to enable the robot to work parallel alongside its partner towards

task completion instead of waiting for its turn to execute an action.

2.2.1 Planning for Cooperative Object Carrying

As required in human-human interaction, humans and robots might need to engage in a physical

interaction in which they carry an object together. This has brought up a challenge of planning and

coordination in such tasks and researchers have tried to address it in different ways. Using haptic

feedback has been a dominant approach in creating coordinated cooperation between humans and robots

[19, 36, 56, 57, 124]. These works require physical contact between the robot and human as they rely

on force and torque feedback. A fusion of the visual and feedback has also been used for such tasks

[1, 134], Nonetheless, physical contact still is required for such methods to work.

Sheng and his colleagues [106] developed a framework for a humanoid robot to collaborate with

a human in lifting a table. They have used an imitation learning approach by using Gaussian Mixture

Models (GMM) and applying Gaussian Mixture Regression (GMR) for learning to grasp. The robot then

uses two types of controllers either a reactive controller or a proactive controller to adjust the lifting to

its human partner and keep the table horizontal. The reactive controller output is based on "the observed

state of the object". This controller is trained by reinforcement learning. The proactive controller works

like the reactive controller however it acts based on the prediction of the human’s next action so that the

robot’s goal is to be always ready to adjust as the human action is implemented instead of waiting for

the action to be done and react to it. To this end, a Kalman filter (KF) is utilised. Such approaches could

potentially be extended to be applied to other joint action scenarios like the one presented in this work,

however, when training decision-making models, reinforcement learning approaches could require very

long training times as the number of alternatives increases.

More recently, Ng et al. [86] proposed a motion planner for mobile robots when carrying an object

with a human. The planner is trained based on human-human interaction using a Variational Recurrent
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Neural Network (VRNN). The main idea behind their algorithm is similar to the work of Sheng et al.

[106]. The planner used a prediction model to adjust the robot’s movements to the human’s. We also use

the same concept, however, we use different modelling methods as explained in the following chapter. In

addition, the joint action scenario is different. There are no kinematic constraints imposed by the closed

kinematics chain created due to carrying an object together. This means two collaborative partners have

a higher degree of freedom and the proposed methods in the literature are not necessarily sufficient for

developing predictive models. for instance, the performance of the proposed method is compared to

recurrent neural networks and it has outperformed it as it is reported in the following chapters.

2.3 Cognitive Architectures

There are several cognitive architectures developed for individual artificial agents in the literature. Here,

we consider three architectures that are deployed in the field of robotics, namely, ACT-R, SOAR and

R-CAST.

2.3.1 Adaptive Control of Thought-Rational (ACT-R) Architecture

Developed by John R. Anderson and his colleagues at Carnegie Mellon University, ACT-R (Figure 2.1)

aims to provide a framework for understanding how humans perceive, learn, remember, and perform

tasks. It is based on a production system, which consists of a set of condition-action rules (productions)

[5]. These rules describe how the system should respond to different situations or inputs. ACT-R

distinguishes between two primary types of knowledge, namely declarative and procedural. Declarative

knowledge contains facts and everything an agent is aware of and can describe to others, while procedural

knowledge corresponds to sequences of actions and how to perform tasks and it could be observed in

our behaviour and not necessarily conscious. This separation allows ACT-R to model both conscious

knowledge and automatic, skill-based behaviours [5]. It operates by setting and pursuing goals. Goals

represent desired states or tasks to be accomplished, and the system works to achieve these goals by

selecting and executing appropriate productions [4]. As the architecture evolved over the years, it has

now a conflict-resolution module for choosing between possible productions. The resolution is achieved

by a ranking (or weighting) of the production rules to prioritise their execution [96]. While Trafton et al.
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Figure 2.1: Schematic diagram of the ACT-R cognitive architecture. Recreated by the author based on
ACT-R 5.0. [4]

[116] have developed an embedded version of the ACT-R, the architecture has never been used for a

joint action scenario and lacks a negotiation layer like the one presented in this work.

2.3.2 State, Operator, And Result (SOAR) Architecture

Developed by John Laird and Allen Newell at the University of Michigan, SOAR (Figure 2.2) is designed

to model and simulate human cognitive processes and problem-solving abilities. It represents knowledge
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Figure 2.2: Schematic diagram of the SOAR cognitive architecture. Recreated by the author based on
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using a production system, similar to ACT-R and consists of a large set of production rules that describe

how the system should react to different situations. These rules are written in the form of "if-then"

statements [74, 75]. The architecture contains a working memory structure to hold information that is

currently being processed. This working memory is highly flexible and can hold a variety of types of

information, including symbolic facts, goals, and problem-solving states. It employs a problem-space

search mechanism to solve complex problems. It represents problems as states and uses operators

to transition between states in search of a solution. To represent and organize knowledge, chunking

is used. Chunks in SOAR are units of knowledge that can be created, retrieved, and manipulated

during problem-solving and learning. Chunks allow for the efficient handling of complex and structured

information [72]. Several learning mechanisms, including reinforcement learning and chunking, are

incorporated into the architecture. So, it can learn from experience and adjust its behaviour based on

feedback and past performance [72]. In terms of conflict resolution, SOAR prioritises the production

rules based on predefined criteria and context [130, 131]. SOAR is used to solve navigation problems

[75] that can be extended to mobile robot applications, nonetheless, similar to ACT-R, it has not been

used for a joint action scenario. In comparison to ACT-R, having a problem-solving approach through
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searching the problem space, it could be more capable of addressing joint action conflicts by searching

for alternative action. However, the search algorithm could prove computationally extensive as tasks

become more complex.
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Figure 2.3: Schematic diagram of the R-CAST cognitive architecture. Recreated by the author based on
[43]

2.3.3 R-CAST Architecture

Developed by Fan and Yen [43] for human-AI teamwork, it is based on the CAST (Collaborative Agents

for Simulating Teamwork) agents [133] equipped with Recognition-primed decision (RPD) models [42].

The R-CAST architecture is depicted in Figure 2.3. CAST agents are designed to simulate multi-agent

teamwork based on formal models of information exchange coded in a language called MALLET

(Multi-Agent Logic-based Language for Encoding Teamwork). Team processes and structures are

hard-coded using MALLET descriptors. The shared team processes are coded using Petri Nets as a

"computable model of mental states". Agents’ synchronisation is done through Petri Nets by transitions

between control nodes and belief nodes [133].

RPD initially was developed as a decision support tool. It operates in two phases, recognition and

evaluation. In the recognition phase, the agent uses the information from the situation and experience to
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Figure 2.4: Schematic diagram of the Recognition Primed Decision Model. Recreated by the author
based on [42]

recognise which course of action has worked in the past in a similar situation. The outcomes of this step

are depicted in Figure 2.4 as Relevant Cues (what to pay attention to), Expectancy (what would happen

next), Plausible goals (which goal makes sense) and Course of Actions (indicating actions worked before

in similar situation). In the Evaluation phase, the decision-making agent would imagine the outcome of a

course of action. The evaluation is an iterative process until the agent finds a course of action that works

for the current situation. The model also uses two strategies for gaining situation awareness, namely
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feature matching and story building. These strategies are used by experts first to find whether they ever

experienced situations similar to the current one (feature matching) and if not, they will construct an

explanation based on linking the observed information (story building) [42]. By merging the RPD model

with the CAST agent, the R-CAST architecture was created. In this way R-CAST can first provide a

shared mental model in the team and by using the RPD models the decision-making in the team would be

more natural as the human decision-making process is entwined with agents’ decision-making through

tow-way communication [43].

2.3.4 Cognitive Architectures Review Conclusion

Two dominant cognitive architectures namely, ACT-R and SOAR and R-CAST as a multi-agent teaming

architecture created based on a decision support tool were presented above. ACT-R and SOAR have

provided good insight into different aspects of human cognition. However, the decision-making and

conflict resolution in these architectures have limited capacity and would not be the best choice for

a dynamic dyadic joint action scenario with parallel actions. The R-CAST architecture is designed

for teamwork and could potentially be applied to such a scenario. Nonetheless, the current state of

the architecture is based on expert knowledge and explicit communication. Hence, The proposed

architecture in the next chapter addresses this shortcoming by equipping the robot with a negotiation

layer acting as a means of implicit communication for resolving conflicts.
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I nspired by the role of mirror neurons in joint actions [90] and considering prediction as a crucial

part of this process [10, 104], a novel decision-making architecture is designed for HRC scenarios

with no explicit communication (either verbal or gesture) between human and the robot. The

proposed architecture foresees mental models of the decision-making processes of both the agent and

the interaction partner. The architecture is depicted in Figure 3.1. In developing the architecture, it is

assumed that the agents involved in the joint action are committed to completing the task and reaching

the goal. Agents’ intentions are assumed to be known as implementing an action towards completing

the task like picking an object, however, their decision of which object to pick is not known. It is also

considered that both agents are engaged in the task in a co-active collaboration with equal capabilities.

In the architecture, each agent has its own decision-making system that allows for combining a

series of independent individual policies by means of an integration layer. The two decision-making

systems of the agents run in parallel when collaborating on a joint action task and their outcome enters a

negotiation layer. This layer is introduced to prevent conflicts in action execution by negotiating own

independently taken decisions with anticipated partner’s decisions. The latter is obtained by internal

simulation of the mental model of the partner. So, each agent is assumed to simulate its own and its

partner’s decision-making process and to integrate the two independent decisions deriving from these

processes into one final outcome. The final decision on the next action is reached after both its own and
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Figure 3.1: Proposed decision-making architecture for joint action: an abstract depiction of the decision-
making process of two agents. Each agent’s decision-making process takes into account (i) its own
preference model (including different policies and policy integrator); (ii) an internal simulation of its
partner’s decision model (inspired by mirror neurons); and a negotiation layer that combines (i) and (ii).

the predicted partner’s decisions are integrated in the negotiation layer. Unlike works such as the one by

Devin and Alami [33] that utilises a dialogue system, here the negotiation layer works as an implicit

communication, as after the actions of both agents are updated in real-time, these updated actions again

trigger a new outcome of the internal simulations of both agents. Thus, if for example, both agents

come to the same decision, the one implementing the decision faster will have its action allowed to be

executed, while the other will be prohibited to continue until the next foreseen action of the shared plan

starts.

In developing the negotiation layer, similar to modelling decision policies, data collected from

human-human interaction was used to create a naturalistic conflict resolution. The negotiation layer

outcome is updated in real-time. This means as soon as new outcomes from decision models (as a result

of any change in the agent’s actions) are fed into this layer there will be a different outcome of the
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conflict resolution process (if there are any conflicts at all). In an extremely rare case in which there is

no differentiation measure like approaching the target object faster, the negotiation layer gives priority to

the human partner when it is embedded on the robot. However, this was not observed in human-human

interaction experiments presented in the next chapter.

It is noteworthy that the architecture is developed as a result of an iterative design in which at first

the decision policies were not modelled separately. The first design contained an individual decision

model like the one presented in [16], however, this model did not work and the training did not converge

after many iterations when trying to have multiple policies like those in the next chapter. Therefore,

in the next step, the decision policies were modelled separately and then integrated by the means of

decision integration layer leading to the currently presented architecture.

The perception module in the architecture represents any proprioceptive sensors that provide in-

formation on body movements as well as sensors that provide information on object movements. In

developing the models in this work, a Vicon motion capture system and Microsoft Kinect to track hand

and object movements are utilised. However, depending on the complexity of the recognition system,

other stereo vision or RGB-D cameras could be used. (The experimental setup and used tracking sensors

are described in Chapter 4). While in this work we only consider kinematic motion, there is no constraint

imposed for using a dynamic motion and getting haptic feedback data as used in the literature for joint

object carrying.

Action generation is considered to be a module that derives required action commands for action

execution and is not considered the main topic of this research. It is assumed to be covered by standard

motion planning algorithms available in the literature when, e.g., implementing the structure on a robot.

It will receive the final decision and generates a series of commands to be sent to the low-level control

system of the actuators that then execute the individual actions.

The plan module is to implement a shared plan for joint action and differentiates between parts of

the plan that can be executed in series or also in parallel. It also activates the related policy models or

layers required for task implementation.

The presented architecture is designed for dyadic joint action. The models presented in the following

chapter are also developed based on dyadic human-human interaction and the models and architecture

are tested later on in a dyadic human-robot joint action. The Negotiation layer in the architecture works
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in real-time and can update and adapt to any changes in the interactions. Nevertheless, while modelling

decision policies could be applied to any number of interactive agents, as the decision needs to be

updated in real-time, employing the negotiation layer of the architecture for any higher dimensional

interaction of triadic or more requires rigorous testing beyond the scope of this thesis.

3.1 Selection of Mathematical Modelling Framework

Considering the dynamic nature of human decision-making processes, the desired mathematical frame-

work for modelling the decision-making module has to be able to implement this dynamic and predictive

nature of the processes. Dynamic methods can model the high variability of a system over time. For

decision-making, a dynamic decision model can address the change of decision due to different fac-

tors like environmental events. Although there are many dynamic probabilistic modelling approaches

available in the literature, finding accurate probability information on human decision-making would

require a large database. This is due to human behaviour being affected by several internal and external

factors [95], a decision-making process could have different outcomes in different situations, hence, a

probabilistic model requires all these varied decisions (a large dataset) to be trained. This makes the

modelling based on such approaches difficult, if not impossible as it would require recordings of a

large series of real human-human collaboration experiments. Furthermore, while many probabilistic

approaches have been used successfully when the required computational resources are available, many

"naturalistic decision-making researchers argue that when people make a decision in their day-to-day

life actions they do not know the probabilities of all alternatives and sometimes they might not even

know all possible choices [108]. Thus, in this work deterministic methods are preferred (not considered

superior to probabilistic approaches) as then modelling requires a relatively smaller dataset. As argued

by Kahneman and Tversky [70] people do not necessarily make rational decisions. So, to have a

well-generalizing model, methods based on rationality assumptions (the tendency to maximise utility

when making a decision) are not suitable for this work. At the same time, the system should be able to

cope with uncertainty and multiple alternatives (considering most decision-making models focus on

two-alternative forced choice) while avoiding assumptions hence avoiding normative (in which only one

best decision exists from the choice alternatives) approaches. So, the features of the required modelling
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are categorised as:

• Desirable: Predictive, Multi Alternative, Dynamic, Coping with uncertainty

• Undesirable: Probabilistic, Normative, Static, based on Rationality assumption

To finally choose a proper mathematical modelling framework, some of the well-known techniques for

implementing decision-making were reviewed as presented in the following paragraphs.

3.1.1 Decision Trees

Decision trees are one of the most popular decision support tools, a tree-like graph that starts from

the decision that needs to be made and branches to the chance nodes and further sub-decisions and

consequences of the decision in different situations. The value of uncertain outcomes O is calculated by

multiplying the probability by the gained value of O. Each Decision node could have several chance

nodes. The value of each chance node is calculated by finding the maximum net value of outcomes

branched out from that node. the net value of each outcome is calculated by reducing the cost of the

outcome from its value [60, 89]. For instance, the value of the chance node in the decision tree depicted

in Figure 3.2 is calculated as presented in the following equations.

(3.1) V = P∗VO

where V is the value of end node with outcome O with probability of outcome P. Then, the value of

chance node C1 is calculated as

(3.2) VC1 = MAX{V1−CO1,V2−CO2}

where VC1 is the value of chance node C1, V1 and V2 are value of end nodes with outcomes O1 and O2,

finally, CO1 and CO2 are costs associated with outcomes O1 and O2.

Decision Trees (DT) have been used in many different fields, for example: i) corporate decision

making; ii) Artificial Intelligence (AI) and machine learning for applications like decision support,

regression, data mining; iii) path planning for mobile robots [63, 111]. There has been an effort to make
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C1

O1

O2
D

Figure 3.2: Part of a Decision Tree with decision node D, chance node C1 and two possible outcomes
O1 and O2.

DTs as dynamic as possible [63]. However, they have been generally found to be not applicable when

decisions have to be made for a continuously changing and dynamic environment. This is due to the

fact that the general structure of the tree and the main consequences, including their probabilities of

occurring, have to be known at the outset. This is not always possible for applications like HRI when

human behaviour needs to be considered when establishing the DT structure.

3.1.2 Expected Utility and Prospect Theory

In classical economics, Expected Utility (EU) Theory is used in a descriptive way trying to explain why

people make a specific decision. In philosophy, on the other hand, it is used as a normative theorem

explaining how people should make decisions. The essence of the theory is that people are considered

rational so they will make decisions to maximise the utility of the outcome of their action [62]. The

action of the decision maker will be state-dependent and, since the states are uncertain, the expected

value is calculated as a probabilistic weighted sum of the utility of outcomes of action in different states.
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So, expected utility of action A is calculated as

(3.3) EU(A) =
N

∑
O=1

PA(O)U(O)

where PA(O) is the probability of having outcome O when choosing action A and U(O) is the utility of

outcome O [62]

This theory has been popular in different disciplines to explain human decision-making. However,

as will be explained in the following, EU theory has difficulties predicting human behaviour. In terms

of its use in robotics, there is research on action planning using utility maximisation like [98] with

reported improved performance of planning. Like DT this approach relies on knowing the probabilities

of consequences and needs information on the task at the outset.

Value

Losses Gains

Preference Point

Outcome

EU value function

Prospect Theory value function

Figure 3.3: Value functions for EU and Prospect Theory.

As Kahneman and Tversky [70] well pointed out, EU theory, as a descriptive or predictive theorem,

is likely to fail when it comes to real-life decision making. Instead, they suggested Prospect Theory
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which tries to explain why people are not always rational and do not always make optimal decisions.

The main idea of this theory is that people are neither always risk-averse nor always risk-seeking. They

mostly seek risk when there is a high loss and mostly avoid risk when there is a high gain. This makes

the value function, describing the value of an outcome, nonlinear in contrast to the linear one in EU

theory. Having a steeper value function for losses means they have a higher effect than gains. Hence, in

Prospect Theory the final utility gets lower as people give less value to higher gains by avoiding and not

taking risks in such a situation (Figure 3.3). Conversely, when there is a high loss people tend to take

higher risks and they give a higher value to the outcome compared to what seems to be the rational value.

Like Utility Theory, Prospect Theory has been used in many disciplines to explain human behaviour

and decision-making processes. Particularly in robotics, for example, it has been used to model human

behaviour for assistive robots [120]. Prospect Theory is also relying on knowing probabilities of events

and consequences which limits its use in highly dynamic environments. In addition, Expected Utility

and Prospect Theory have been mainly used for two alternative tasks but increasing the number of

alternatives may render the problem highly complicated.

3.1.3 Markov Decision Processes (MDP)

MDPs are a mathematical discrete stochastic model of decision-making. An MDP includes several

states, in each of which the decision maker can choose from a pool of available actions. The probability

of moving from one state to another is a function of the current state, so, the next state depends on the

current one and the chosen action by the decision maker. The decision maker will receive a reward each

time the process moves from one state to another [11]. The whole process relies on having complete

knowledge of finite states and actions. MDPs have been used in several applications like economics,

automated control, manufacturing, and robotics.

A more generalised variant of MDPs are Partially Observable Markov Decision Processes (POMDP)

in which the process does not have complete information on the current state (the current state is

uncertain) and not all the states are completely known or "observable". POMDPs use probability

distributions to represent how the environment evolves over time. These transitions are typically

modelled as Markovian, meaning that the future state depends only on the current state and action taken

[23]. Hence, similar to MDPs the transition to the next state is a function of the current state and current
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action. The main goal of both MDPs and POMDPs is to maximise the cumulative reward by optimising

the policies for choosing actions. So, the reward is maximised as

(3.4) Max{
∞

∑
t=1

δ
tRat (St ,St+1)}⇒ ∃at = π(St)

where Ra is the reward received due to the transition to the next state and is a function of the current

state and current action. δ is a discount factor indicating the importance of future and present rewards

and its value is between 0 and 1, and π is the policy based on which the action a is chosen.

Among all the probabilistic approaches, POMDPs have been used most in robotics as they can

be applied in uncertain and dynamic environments. Examples can be found in control, planning, and

navigation [45, 92, 93, 109]. POMDPs have been applied to a vast range of fields like machine vision,

business, corporate policy, and marketing. However, they can only deal with problems with certain

characteristics such as having a finite state set and following the Markov Property (meaning that future

states only depend on the current state and not past states). Also, it can be highly computationally

expensive to assess all the rewards, transition probabilities, and observation probabilities [22] and thus,

solutions are often approximated. In addition, the data collected in the human-human interaction phase

of this work was used by [125] to evaluate the feasibility of using POMDP as the modelling approach.

However, the POMDP models completely failed. This is likely due to the noise in the data as the

recorded data consists of tracking coordinate frames of participants’ motion and there are many short

temporary losses of tracking.

3.1.4 Decision Field Theory

Decision Field Theory was introduced by Busemeyer and Townsend [21], as a dynamical stochastic

mathematical model of decision-making, initially focusing on problems of approach-avoidance behaviour

[114]. In contrast to normative theories, it tries to explain people’s behaviour and decisions without a

rationality assumption. The main feature of this theory is that it dynamically models the evolution of

the decision during deliberation time rather than considering fixed states of preference. The theory is

based on two main psychological principles namely, approach-avoidance in motivation theories and

information-processing theories of choice response time [21].
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Busemeyer and Townsend developed DFT in an incremental way starting from basic deterministic

Subjective Expected Utility (SEU) theory and building upon this by adding processes in 7 stages moving

from deterministic SEU to Random SEU, Sequential SEU, Random Walk SEU, Linear System SEU,

Approach-Avoidance Theory and finally presenting Decision Field Theory (DFT). These stages are

explained briefly here.

3.1.5 Subjective Expected Utility (SEU)

Considering two alternative tasks and using the probabilistic weighted sum to calculate the utility of

each action as in the above-mentioned Expected Utility Theory. a new parameter d, mean difference, is

introduced. The mean difference is computed by subtraction of the calculated utility of actions which is

d = EU(A1)−EU(A2). For two alternative tasks if d > 0 it means the preference direction is towards

A1 and vice versa.

3.1.6 Random SEU

The next step is the development of Random SEU in which the decision maker has the freedom of

switching between choices across trials. So, according to Random SEU, there is no fixed probability of

outcome and rather the attention weight is changing from one trial to another resulting in the SEU of

each action being a random variable which is called valence of action, V . It is calculated in the same

way as EU but rather than having constant PA it will be a continuous random variable denoted W to

model fluctuation of attention. So,

(3.5) V (A) =
N

∑
O=1

WA(O)U(O)

The difference of valence of actions, P, determines the choice similar to mean difference d. For two

alternative tasks P = V (A1)−V (A2). And if P 0 then A1 is the chosen action and vice versa.

The difference between SEU and random SEU is presented by residual difference, ε = P−d which

shows the change of preference from trial to trial. So, P=V (A1)−V (A2) = d+ε which means to choose

action 1 over 2, Pr[P>0] = Pr[ε −d] which is a representation of the mathematical model of random

SEU. It is assumed that ε is normally distributed by zero mean and Var(ε) =Var[V (A1)−V (A2)] = σ2
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which is called the variance of the valence difference and is used to show the strength of preference. By

considering F as a normal cumulative distribution function we have,

(3.6) Pr(A1,A2) = Pr[ε −d] = F [(
d
σ
)]

meaning the choice probability is an increasing function of ( d
σ
) which is called the discriminability

index. From basic statistical theory

(3.7) σ
2 = Var[V (A1)−V (A2)] = σ

2
A1
+σ

2
A2
−2σA1A2

Where σ2
A1

is the variance of the valence for action 1 and σ2
A2

is the variance of the valence for action 2

and σA1A2 is covariance of these two valences which is negatively related to the variance of valence σ2.

This means by increasing the similarity of payoffs for actions the discriminability index will increase[9].

The shortcoming of random SEU is it cannot provide an explanation of the systematic relation of

decision time and choice probability. This is addressed in the next stage by going development of the

Sequential SEU theory.

3.1.7 Sequential SEU

To allow integration of decision time in the Sequential SEU there will be a sequence of one or more

samples during deliberation time of each trial meaning that the decision maker preference may even

change in each trial in addition to one trial to another. So, the preference state will be accumulated over

all the samples. This means if P(1) = [VA1(1)−VA2(1)] then P(2) = P(1)+ [VA1(2)−VA2(2)] and so

on. So, for n 2:

(3.8) P(n)) = P(n−1)+ [VA1(n)−VA2(n)] =
n

∑
k=1

VA1(k)−VA2(k)

P(n−1) is the previous preference state of having n−1 samples and then VA1(n)−VA2(n) is the new

valence difference. This process will continue until it reaches a threshold θ which is called inhibition

threshold. In the case of having a positive preference state, the preference is in favour of action 1 and the
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action will be chosen as soon as the accumulative preference reaches the inhibitory threshold θ and for

negative preference, action 2 will be the outcome of deliberation. This means that the decision time is a

function of the number of samples required to reach the threshold. Similar to random SEU the residual

here represents the change in preference state due to attention fluctuation in deliberation time, so,

(3.9) P(n)) = P(n−1)+ [d + ε(n)]

Then the probability of choosing action 1 over 2 will be calculated by [30]

(3.10) Pr(A1,A2) = F [2(
d
σ
)(

θ

σ
)]

Where F is the standard logistic cumulative distribution function:

(3.11) F(x) =
1

1+ e−x

Compared to random SEU, both theories describe the probability of choosing actions as a function

of the discriminability index ( d
σ
), while in sequential SEU this probability is also a function of threshold

θ. In extreme decision cases, the discriminability might be constant or very low so that an increasing

threshold causes a high probability of choosing the action with a higher SEU. However, the cost of

increasing the threshold θ is having a higher number of samples to reach the threshold which means a

higher decision time. The mean number of samples for getting to the threshold level is calculated by

(3.12) E(N) = (
d
σ
)[2Pr(A1,A2)−1]

The downside of sequential SEU is that it cannot explain having choice probabilities of less than 0.5

and for any positive mean difference value the choice probability is always greater than 0.5. So, in the

next step, this is addressed in Random Walk SEU theory.

3.1.8 Random Walk SEU

In Random Walk SEU unlike Sequential SEU, the initial preference is not considered 0. It means the

decision maker may have a preference based on past experiences and recalling memories which causes
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the mean difference to lean towards one choice. This generalises sequential SEU theory by adding some

anchor point, z, for initial preference P(0). So by having P(0) = z,

(3.13) P(n)) = P(n−1)+ [d + ε(n)] = z+
n

∑
k=1

VA1(k)−VA2(k)

The mean difference, d, and variance of the valence, σ2, are calculated similarly to sequential SEU

theory. A good example of choice experience is when the decision maker is choosing between two

options, one is known and another one is new. There is an initial preference towards the well-known

choice and under time pressure it is more likely that it will be chosen. However, with longer deliberation

time it is likely that a positive mean difference causes the decision maker to switch preference towards

the new choice if it has some advantages, like higher quality. This models the effect of time pressure on

decision-makers.

The inadequacy of random walk SEU theory is considering the effect of primacy and recency in

decision-making as the final preference is only sum of initial preference and all the valence differences

and it does not depend on the order of the events in sequence. So, the Linear System SEU theory is

introduced to tackle this issue.

3.1.9 Linear System SEU

Linear System SEU theory incorporates the effect of the order of events (if that happened late or early)

on final preference. All the parameters at this step are the same as random walk SEU theory except new

parameter, s, which is called the growth-decay rate. The final preference is then calculated as

(3.14) P(n)) = (1− s)P(n−1)+ [d + ε(n)] = z(1− s)n−k +
n

∑
k=1

VA1(k)−VA2(k)

This makes the random walk SEU theory a specific case of linear system SEU theory by setting s

as zero. With this formulation, for growth-decay rate values between 0 and 1, there will be a recency

effect on final preference meaning that the later or more recent events have a higher influence and if s is

less than zero there will be a primacy effect meaning that earlier events have more influence on the final

preference.
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The shortcoming of the linear system SEU theory, however, is being neutral on the nature of the

decision. The final preference depends only on the sum of valence differences and the well-established

findings that the mean deliberation time is longer for avoidance-avoidance problems than approach-

approach ones when having constant mean differences. To address this issue, the Approach-Avoidance

Theory is introduced in the next step [114].

3.1.10 Approach-Avoidance Theory

In approach-avoidance theory, the aforementioned problem is addressed by adding another dynamic

parameter to the equation for calculating final preference. This new parameter is called goal gradient and

it implements the effect of the attractiveness of rewards or aversiveness of punishments as a decreasing

function of distance to implementing an action [114].

According to this theory, the closer the decision-maker gets to choosing an action, the more s/he

will pay attention to the action’s consequences. So, consequences of action with little chance of being

chosen will more likely be ignored, while when getting closer to the inhibitory threshold for an action

its consequences will be more noticeable to the decision maker.

Considering a and b as the goal gradients for rewards and punishments,

(3.15) d(n) = [EUA1(n)−EUA2(n)] = −cP(n)+ δ

where

(3.16) c = b[EUP(A1)+EUP(A2)]−a[EUR(A1)+EUR(A2)]

(3.17) δ = [EUR(A1)+EUR(A2)](1−aθ)+ [EUP(A1)+EUP(A2)](1−bθ)

and EUP is the average punishment (loss) and EUR is the average reward (gain) and by imposing this

new mean valence difference to linear system SEU equation:

(3.18) P(n)) = (1− s)P(n−1)+ [d(n)+ ε(n)] = [1− (s+ c)]P(n−1)+ [δ+ ε(n)]

30



CHAPTER 3. PROPOSED ARCHITECTURE

δ, mean valence input, in this equation, is similar to d, mean difference, in linear system SEU theory.

A positive δ means that the preference is moving towards the positive direction on the average and vice

versa. The residual ε(n) has a zero mean and its variance, σ2, is calculated similarly to linear system

SEU theory. The actual new variable in the approach-avoidance theory is the goal gradient parameter,

c. By setting this parameter to zero the above equation will be equal to the linear system SEU theory

equation. c 0 defines an avoidance-avoidance conflict and for approach-approach conflicts, c is negative

which leads to faster reaching the threshold and shorter decision time. The next step then will be to

move to a continuous/real-time approach rather than the above discrete-time methods to form Decision

Field Theory.

3.1.11 Decision Field Theory

Building upon previous theories, Busemeyer and Townsend [21] developed Decision Field Theory

(DFT). DFT is considered both dynamic and continuous in time in contrast to previous theories which

are discrete in time. The real-time DFT is defined by introducing a time variable h which is the time

needed to process each sample of valence difference. This is equal to the time needed to process a pair

of predicted consequences before switching attention to another pair. Then, the deliberation time, t, will

be the total time of processing all the samples consequences or t = nh where n is the total number of

samples. So,

(3.19) P(n)) = [1− (s+ c)h]P(t−h)+ [hδ+ ε(t)]

where ε(t) is the residual input with zero mean, and hσ2 variance and σ2 is calculated same as linear

system SEU theory. By having h approaching zero the preference state will be developed in a roughly

real-time way. In summary, 7 parameters govern DFT, δ, mean valence input, shows the preference

direction, σ2, the variance of the valence, shows the strength of preference, θ, inhibitory threshold,

explains speed-accuracy trade-off, z, the initial anchor point, describes preference reversal as a function

of time, s, the growth-decay rate, is used to remove serial positioning effect, c, the goal gradient variable

is to explain nature of approach-avoidance conflict during the deliberation time and zero approaching h,

as a time unit, is to estimate a real-time process. Although the initially presented formulation of DFT is
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for a two-alternative task, a multivariate DFT has been also presented in a connectionist interpretation

way [97].

DFT has been applied to different cognitive processes like visual sensory detection [107] and

conceptual classifications [87]. However, since DFT is in its nature a Markov process [21], Markov

assumptions are assumed to hold. In contrast, human decisions may depend on past experiences. The

main advantage of DFT over other decision-making models, however, is that DFT tries to explain the

process of decision-making rather than merely the end result, as it models the evolution of the decision

during the deliberation time.

3.1.12 Dynamic Field Theory

Dynamic Field Theory was introduced by Schöner [102] based on the mathematical formulation of

dynamic neural fields by Amari [3], as a framework for modelling cognitive processes like detection,

selection or working memory. It combines the dynamics of attractors and repellers to form a dynamic

behaviour, formulated as follows:

(3.20) τu̇(x, t) = −u(x, t)+ h+ S(x, t)+
∫

w(x− x′)σ[u(x′, t)]dx′

(3.21) σ(x) =
1

1+ e−βx

where τ is the time scale, u the activation function over the feature space x at time t, h 0 a constant resting

level, S an external input or stimulus to the field, and the integral part is to drive lateral interaction in the

population with w(x− x′) as interaction kernel and σ[u(x′, t)] a sigmoidal nonlinear threshold function

with a scaling parameter β. Depending on the type of interaction kernel, the nature of the interaction can

change from global inhibition to local inhibition or global excitation. This property is being used to

model different cognitive processes. A global inhibition, for example, is used for the selection process

to achieve a stable choice with minimised effect of environmental noise on the process so that unless the

target is shifting to another alternative, the choice won’t change due to small environmental perturbance,

or a local inhibition is required for a detection process in which the neural field needs to be inhibited in

the immediate vicinity of the point of interest so that it stands out of the neighbouring points. These are
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achieved through the interaction kernel as depicted in Figure 3.4. As can be seen from the equation,

the interaction is computed through convolving the interaction kernel with a sigmoidal threshold of the

activation function.

The lateral interaction kernel is the key player in changing the behaviour of the dynamic model. One

common formulation of the kernel is the following exponential equation:

(3.22) w(x) = cex
−x2

2σ2e − cix
−x2

2σ2
i

where subscript e stands for the excitatory and i for the inhibitory part of the kernel. By changing values

of ce and ci the excitatory or inhibitory effects of the kernel can be varied. Similar to a normal bell curve

σe and σi are to adjust the bell shape. In Figure 3.4 three cases of interaction kernels are depicted, the

green curve is for modelling working memory, the blue one is to model a detection mechanism and the

red one is to model a selection process in the neural field.

Figure 3.4: Examples of interaction kernels: the green curve is for modelling working memory, the blue
one is to model a detection mechanism and the red one is to model a selection process.

Neural Field Theory has been used in the field of cognitive science to model sensorimotor decisions

[126], visual cognition [49], modelling object localisation in the visual cortex [67], modelling visual

perception [38] and action understanding [40]. In terms of robotics applications, Dynamic Field Theory

has been applied to areas like navigation [103], aspects of human-robot interaction and collabora-
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tions like action understanding through imitation [41], object recognition [44], verbal and non-verbal

communication [17], decision making and joint action for human-robot collaboration [16, 39].

Table 3.1: Comparison of Decision-Making Modelling methods. (red: undesirable, green: desirable, X:
feature available, X: feature unavailable)
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Probabilistic X X X X X X
Normative X X X X X X
Predictive X X X X X X

Multi Alternative X X X X X X
Dynamic X X X X X X

Coping with
uncertainty

X X X X X X

Rationality
Assumption

X X X X X X

3.1.13 Summary of Comparison of Mathematical Frameworks

Characteristics of mathematical modelling frameworks introduced so far are summarized in Table 3.1.

In this table, when a method has a feature, it is shown by a X, and if it doesn’t with an X; colours red

and green mean undesirable and desirable, respectively. Apart from Dynamic Field Theory, the reviewed

approaches are mainly probabilistic methods requiring information on the probability of actions and

consequences. While Expected Utility theory-based methods require static and completely known

problems in terms of alternatives and consequences, Markov Decision Processes, particularly POMDPs,

Decision Field Theory, and Dynamic Field Theory are applicable to uncertain and dynamic problems.

Most of these approaches have been initially developed for two-alternative forced choice tasks, however,

some like POMDP, DFT, and Dynamic Field Theory (DNF) can be extended to multivariate alternatives.

As can be seen from Table 3.1, Dynamic Neural Field (DNF) has all the desired requirements for

developing a dynamic decision-making model, even when only small datasets are available. In addition,

most of the methods are based on Markov property and are known as "memoryless". However, using

DNF a memory trace can be modelled for learning as well the dynamic evolution of the current output
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of the dynamic field always is a continuous change. This means having a different sequence of actions

could lead to a different field activation and hence outcome in each trial.
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4
DEVELOPING MODELS

T o model decision policies and develop the initially-introduced decision-making modules, a

series of experiments are designed to have either human individuals or dyads to work on an

instructed task so that their behaviour could be observed and data required for modelling

their decision processes could be recorded. Two main policies are chosen, namely Distance policy and

Colour policy. The former represents an unconscious cognitive process in which people try to minimise

their energy consumption and the latter is for the conscious cognitive process of learning plans order.

These policies are then integrated using the policy integration layer. The model development steps

are presented in the following. Ethics approval for these experiments was obtained from the ethics

committee of the University of the West of England (reference number: UREC16-17.03.10).

4.1 Experimental Setup

Participants were asked to work together in a table-top pick-and-place task. Participants were monitored

and a set of data consisting of tracked 3D hand and chest position were recorded using a Vicon motion

capture system. The motion capture worked with a sample rate of 100Hz, and initially all its data was

recorded to create the training datasets. However, the number of samples was too high and this made the

optimisation process (explained in the following sections) very slow, therefore, data was down-sampled
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by a factor of 15. No other post or pre-processing was performed on the data. In addition, at the start of

the experiment, participants had their tracked hands resting on the table in front of them. To have a clear

baseline for evaluation, participants were instructed to perform the task in a particular way, following

a specific pre-defined policy as introduced further below. The blocks were equipped with Augmented

Reality (AR) markers and their motion was captured using a Kinect sensor. The experimental setup is

depicted in Figure 4.1.

Vicon Infrared Camera 

Kinect 

Figure 4.1: Experimental setup. Two subjects collaborating in the dyadic condition. The 7-segment
shown on the top right is placed on the table horizontally so that segment "d" comes to lie at the center
of the table. The subjects have markers attached to their hands and chest that are captured by the Vicon
tracking system. The AR tags on the blocks are tracked by the Kinect camera.

4.2 Task

The chosen task was designed considering certain requirements. The task was supposed to capture an

aspect of day-to-day life and be able to be completed by either individuals or pairs. It should be of an

abstract level and be extendable or generalisable later on to more complex tasks. Also, as the focus of

the work is on the process of decision-making, the task should be as simple as possible to not require any
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other cognitive processes like problem-solving adding cognitive load, which might affect participants’

decision-making.

Taking these considerations into account, the task was chosen as follows: Participant(s) were asked

to use provided coloured blocks to form some alpha/numeric characters on a 7-segment template,

according to a provided instruction. In terms of experiments with an individual participant, each person

was asked to pick blocks one by one and place them on the marked 7-segment shape. In the case of joint

action, each participant was asked to pick blocks one by one, being told to "work together", but leaving

them the freedom to either take turns or pick blocks at the same time.

4.3 Instructions and Procedure

Before starting the experiment, participant(s) were made familiar with the setup and handed out an

information sheet that described their task. They were asked to sign a consent form and were informed

that they can withdraw their participation at any point. Then, the participants’ right/left wrist and

chest were marked with motion capture markers. In each trial participant(s) were asked to perform and

complete characters "H", "3", "E", "9", "6", "2", "5", and "8" on the 7-segment shape using provided

coloured blocks. For instance, a number 9 could be formed by covering segments"a", "b", "c", "d",

"f" and "g". These characters were chosen to counter-balance any effect of the blocks’ final position

on the outcome (e.g. H and 8 are symmetric while others are mirrored with respect to different axes).

To counter-balance any effect of blocks’ initial positions, blocks were randomly placed in the middle

of the table by the experimenter after each character was formed, with initial orientation changing

between vertical or horizontal placement (Figure 4.2). Blocks’ in-the-line position was also randomised.

Participants were asked to sit on either side of a table with minimum possible movement to perform

the calibration of all tracking systems assisted by the experiment conductor. Participants were provided

with a set of blocks marked with AR markers (Augmented Reality markers) and were instructed to grab

each block in a way not to cover the markers. Participants were also asked to pick and place blocks one

by one and to follow the predefined policy. In doing so, participants were instructed to work together

without any verbal communication, gesture or facial expression. Participants’ movements were recorded

when performing the task. In terms of the collaborative phase, participants were asked to always place
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Agent1 Territory

Agent2 Territory

Agent1 Territory

Agent2 Territory

Figure 4.2: Blocks’ initial position; the initial position was rotated 90 degrees for every other character
in the task meaning if for the current character blocks were initially placed horizontally (top image) for
the next they were aligned vertically (lower image).

the first block on the central segment. This is to have both serial (meaning participants take turns in

picking up blocks) and parallel actions as it was observed in pilot experiments that some participants

performed the task only in a parallel manner (picking up blocks at the same time). In this work, a serial

action is considered when one participant waits until his/her partner finishes picking up a block and

then moves to pick another block. On the other if both participants moved to pick up blocks together

even though with a slight delay in the onset of their motion (not having a synchronous movement) the

interaction is considered a parallel action.

There are several works in the literature pointing to the effect of embodiment in the human-robot

interaction [121, 122]. Researchers argue that a screen-based or even virtual augmented interaction

would lack the embodiment effect [6, 77]. Considering the ultimate goal of the experiment is to collect

data to train models for human-robot collaboration, considering the embodiment effect required for the

HRC along with the role of physical action in activation of the mirror neuron system, it is considered a

physical experiment is more appropriate in this work than a screen-based one.
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In two separate experiments for individuals and dyads the following four conditions have been

tested:

1. Distance policy: Each person has been asked to only pick the closest block.

2. Colour policy: Each person has been asked to pick blocks according to an order of colour

irrespective of their physical position, i.e., no matter where the block is located the order of

colours should be applied first. In terms of the dyadic experiment, each participant is given the

same order of colours.

3. Colour and Distance: Participants have been asked to follow a colour order and at the same time

pick the closest block when there is more than one block of the same colour. The data captured in

this condition was used to develop the policy integration layer.

4. Uninstructed: In this condition, participants are free to pick blocks without being instructed to

follow any order.

These conditions were chosen to create a dataset for a pick-and-place task with a specific order of

completion. The order of the task was represented by colour policy. The distance policy was chosen as is

suggested that people tend to minimise energy consumption by reaching to the closest object[2, 113, 129].

This was also observed in the uninstructed condition.

4.4 Experimental Design and Participants

A between-subject design was chosen to avoid carry-over effects from one condition to the other. In the

first phase of the experiment, 60 individuals took part, 15 people per condition, 44 of which were male

and 16 were female. The average age of participants was 28.78 (SD 5.7) ranging from 20 to 48 years old

with an average height of 175.4 cm (SD 8.63) ranging from 157 to 191 cm. In terms of handedness, 49

participants were right-handed and 11 were left-handed. All participants reported normal or corrected to

normal vision (18 wearing glasses). In the second phase, 96 people in 48 pairs took part, 12 pairs per

condition, having an equal number of male and female participants. The average age of participants

was 30.92 (SD 10.87) ranging from 18 to 67 years old with an average height of 171.27 cm (SD 10.26)
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ranging from 148 to 193 cm. For handedness, 85 people were right-handed, 11 were left-handed and 2

reported being dual-handed but used their right hand in the experiment. Participants formed 16 male

only, 16 female only and 16 male/female dyads, 37 pairs of both participants being right-handed and

11 pairs of mixed right and left-handed ones. All reported normal or corrected to normal eyesight (44

wearing glasses).

It is noteworthy that despite height differences all participants could reach all objects on the tabletop

at all times. To ensure this the height of the participants’ chair was adjustable and was equipped free

spinning mechanism.

4.5 Neural Field Structure

4.5.1 Structure for Distance policy

For modelling Distance policy, the table-top setup of the experiment is mapped into a 2D DNF:

(4.1) τu̇(x,y, t) = −u(x,y, t)+ h+ S(x,y, t)+
∫ ∫

w(x− x′,y− y′)σ[u(x′,y′, t)]dx′dy′

with

(4.2) w(x,y) =Cgi +Cee
−x2−y2

2σ2e −Cie
−x2−y2

2σ2
i

where τ is the time scale, u the activation function over the feature space x (mapped to the length of the

table) and y (mapped to the width of the table) at iteration t, h 0 a constant resting level, S an external

input or stimulus to the field (with one stimulus for each block and participants’ hands). The integral part

is to drive lateral interaction in the population with w as interaction kernel and σ a sigmoidal nonlinear

threshold function with a scaling parameter β similar to (Eq. 3.21). In the interaction kernel, w(x,y),

subscript e stands for the excitatory and i for the inhibitory part of the kernel. By changing values of ce

and ci the excitatory or inhibitory effects of the kernel can be varied. σe and σi are to adjust the shape of

the interaction kernel (like those presented in Figure 3.4) and Cgi decides the amplitude of the global

inhibition.

The projected position of the centre point of each block and the wrist position of the participants’

wrists is mapped on the x-y plane. The x and y axes are then used as features so that each x-y coordinate

of the blocks and wrist is considered the position of an input stimulus to the neural field. Each stimulus
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is modelled with a 2D Gaussian and the interaction of these stimuli (through lateral interaction shown

as integral part of (Eq. 4.1) changes the field activation level in different locations as the input stimuli

change due to the agents’ motions. The parameters to be learned for this setting are mainly interaction

kernel parameters (ce, σe, ci, σi, β, cgi). Having properly trained the model (as detailed in Section 4.6),

interaction kernel parameters can change the neural field behaviour such that the response to stimuli will

result in activation of the field at the point of interest, respectively the location of the chosen block.

4.5.2 Structure of Colour policy

The Colour policy model, is a 1D DNF coupled with a memory trace (Eq. 4.3) having only colours as

stimuli:

τpṖ(x, t)) = λbuild(−P(x, t)+ f (u(x, t))) f (u(x, t))

−λdecayP(x, t)(1− f (u(x, t)))
(4.3)

where τp is the time scale, P(x, t) is the strength of memory at point x of the DNF with u(x, t) as its

activation function and f is a sigmoid function. λbuild and λdecay determine the rate of build-up and

decay of the memory trace [99]. The training for this structure is like memorising the colour order

by demonstrating the order and showing blocks one by one. The memory then forms pre-shapes for

the colour order. This model structure is similar to the work by Sandamirskaya and Schöner [100] but

implemented in a way that the neural field stays activated to wait in the order until all blocks of the

same colour are removed by the participant(s) before moving to the next colour in the order. This means

unlike the serial order in[100], there is an additional measure to consider objects of the same colour

with the same priority and stop the order to move on to the next colour unless all the previous colour

instances are removed. This was simply implemented by an if condition. This is done to simulate tasks

with an equal priority of actions in the plan. The parameters of the Colour Policy DNF are chosen to be

the same as the ones reported in [100].

4.5.3 Structure of Policy Integrator

This layer of architecture plays an important role in future expansion. Having different policies modelled

separately, and integrated through this layer, makes the architecture adaptable to different tasks. For

the task at hand, to have a correct prediction on the chosen block, the colour policy model is coupled
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with the distance policy model. This provides a measure to decide when there exist multiple blocks of

the same colour. This means that the colour policy creates a short list of the blocks to be picked and

the distance policy model predicts which one will be picked up. This is done by having a DNF similar

to the Distance policy with only shortlisted blocks as stimuli being implemented and the final block is

chosen from the shortlist according to the distance policy. This process occurs naturally in the DNF

of the policy integrator as the amplitude of the input stimuli from the output of the colour policy and

distance policy models will intensify the neural field activation for the chosen block.

4.5.4 Structure of Negotiation Layer

A simulation of the predicted partners’ actions runs simultaneously with the ’own’ model in the

architecture and their outcome is fed into the negotiation layer. The role of the negotiation layer is to

adjust the own decision to the predicted partner’s decision accordingly to prevent any conflicts like

picking up the same object. This will also adjust the decision based on the plan, so, if the partner’s

model predicts that the partner would perform the next step, like when a partner reaching quicker to an

object, the agent should either move on to the next action or wait for the appropriate moment to perform

the next action. This is done by inhibiting own decisions when the model predicts that the partner will

perform the same action, or excite own decision when it predicts that the partner is waiting or performing

another action. To achieve this, the interaction kernel (W (x,y) in Eq. 4.1) of two DNFs of the own

agent model and the partner model, is adjusted based on the human-human interaction experiment. The

input to the interaction kernel for the own decision would be the outcome of the predicted decision of

the partner and vice versa. In this way, the interaction kernel can either inhibit or excite the outcome

of either model depending on the outcome of the decision models. For instance, if the own decision

is to pick a specific block this will be input to the interaction kernel of the partner’s model, and if the

prediction of the partner’s decision is to pick the same block this will be input to the interaction kernel

of the own decision model. The evolution of these two decisions as two partners are moving towards

that specific block, would change the outcome of the interaction kernels so that if one of the agents is

approaching the block faster this would lead to inhibition of the other agent’s decision and excitation

of the faster-approaching agent’s decision. This means the desired outcome is achieved by learning

when each DNF should be inhibited (activation function being locally or globally deactivated) or excited
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(activation function either locally or globally being further activated).

4.6 Training Method

The recorded data from individual/dyad participants completing the task was used for training policy

models as well as integration and negotiation layers. The training was fairly time-consuming as it took

one month to optimise all parameters for the individual phase and as layers added up it became even

more computationally expensive. The last training of the negotiation layer for the colour and distance

condition took three months.

In the following, the procedure adopted for training are briefly explained, which was applied to all

policies (colour, distance, colour and distance) as well as the integration and negotiation layer. The

recorded data was split into training and test datasets by randomly choosing the data from two third of

the participants for training and the rest for test. With 15 participants for one condition, for example,

data from 10 participants was used for training and the rest for testing. All the structures of Section 4.5

were implemented in MATLAB using the DNF toolbox COSINIVA [29]. Parameters of the DNF models

were optimised such that it resulted in the desired activation of the field at the correct position and time

in the feature space. Basic work on how to train DNFs focuses on gradient-based methods for a local

search or evolutionary algorithms for a global search as reported in [65]. A Genetic Algorithm (GA)

[81] for a global search was adopted. This was done after other linear optimisation methods like gradient

descent were tried and failed to converge to an optimum solution. The recorded data was used as input

to the network. Information about the picked block and the predicted decision by the model was used

to calculate the error over the whole captured data. To make the results comparable, the same error

equation (Et) for all the policies was used:

(4.4) Et = {
1 if Blockp,t 6= Blockn,t

0 if Blockp,t == Blockn,t

(4.5) E =
ΣEt

N
,

where Blockp,t is the predicted to-be-next-picked block evaluated at time t by the model and Blockn,t is

the next picked block evaluated at iteration t and N is the total number of iterations. The overall error E
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is then calculated by the average of errors over time. In total, 9 parameters for each field are tuned by

the GA: τ, h, ce, σe, ci, σi, β, cgi and σw (width of the Gaussian stimuli for the participants’ hands). The

population size was 200, with stochastic Uniform selection, Scattered crossover and Adaptive Feasible

mutation. The training was considered to be finished when the stall generation limit of 50 was reached.

The training was performed using pure global coordinates for wrist and blocks. This computation was

done in parallel on an HP Z640 14-core machine with 64 GB memory (RAM).

It is worth noting that the training of the negotiation layer was done based on observed human

behaviour during joint action. Participants were observed, completing the task, namely taking turns

(serial actions) or at the same time (parallel actions) and in few cases a mixture of both serial and

parallel actions. When the DNF was optimised for serial actions, the amplitude of global inhibition

was larger, while for the parallel actions, it was smaller and the amplitude of local inhibition was

larger compared to the serial actions. For a definition of global and local inhibition please refer to

Section 3.1.12. Consequently, a training set was formed by mixing data from 3 trials with participants

having mainly serial actions and 3 trials with participants having mainly parallel actions.

4.7 Results and Model Validation

Validation of the trained model was performed using a binary performance measure similar to (4.5):

(4.6) Pt = {
0 if Blockp,t 6= Blockn,t

1 if Blockp,t == Blockn,t

(4.7) P =
ΣPt

N
,

where Blockp,t is the predicted to-be-next-picked block evaluated at time t by the model and Blockn,t is

the next picked block evaluated at iteration t. The value of P should be close to zero for a trained model

well-fitted to the data, assuming that subjects perfectly followed the instructed policy. This measure was

used for all the models to have a meaningful comparison.
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4.8 Validation Performance

The trained models were tested using separate test sets created randomly from the recorded data of

one-third of the participants. The achieved model performance and optimised DNF parameters are

reported in Table 4.1, 4.2 and 4.3. As can be seen from Table 4.2, DNF parameters of the negotiation

layer when being trained for the Colour policy are the same as for the Distance and Colour condition

with serial actions. This indicates that in the Colour only condition, the majority of the participants were

taking turns in picking the blocks and serial actions are the main form of interaction. In addition to the

DNF activation function and interaction kernel parameters, σw representing the width of the Gaussian

stimuli for the wrist of participants is presented in this table. While its value has been in the same order

for all conditions, for the Distance policy of dyadic experiments the width was found to be much smaller.

This is due to requiring higher precision as participants might pick two blocks next to each other. This is

why this parameter was also optimised, while the width of Gaussian stimuli for the blocks remained at a

constant value of 0.5.

To compute performance measures, the developed models were applied to the recorded data. For

individual models, only data from individual experiments was used for training, while for testing data

obtained in dyadic experiments was used. In addition, the last row in Table 4.3 shows the performance

of the system without a negotiation layer. These numbers were computed by adopting trained individual

models for each agent and applying them to all data of the dyadic experiments. The system, in this case,

has a relatively low accuracy for colour and colour and distance conditions and shows slightly better

performance for the distance condition as each participant picks up the closest block hence reducing the

potential conflicts (unless participants of a dyad are of opposite handedness).

Table 4.1: Performance of the policy models for the individual experiment. The accuracy is the mean
of accuracy per participant and the standard deviation is calculated by computing the accuracy of the
model for each participant and then calculating the standard deviation of these values (the accuracy scale
is from 0 to 100%).

Individuals Experiment
Condition

Distance STD Colour and Distance STD

Individual
Training set 89.52% 3.72 86.7% 2.94

Test Set 84.69% 4.28 86.26% 3.08

As an example, snapshots of the activation function of the 2D DNF mapped on the table-top along
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Table 4.2: DNF parameters of developed models for individual and dyadic experiments. Parameters of
the distance policy and the integrator (colour and distance) are trained from the individual experiment
presented in the first two rows. Parameters of the negotiation layer for each condition were trained based
on the data from the dyadic experiment presented in the third to sixth rows. The two last rows present
two sets of parameters for the negotiation layer of the distance and colour condition for all actions (fifth
row) and the last row for trials in which participants were taking turns performing serial actions.

Individuals Experiment
DNF Parameters

h τ β ce σe ci σi cgi σw

Distance -2.99 19.44 9.52 25.49 1.01 11.02 3.59 -0.54 34.77
Integrator -2.93 18.94 10.78 25.01 0.88 12.52 3.59 -1.43 36.77

Colour For parameters see work by Sandamirskaya and Schöner [100]
Dyads Experiment DNF Parameters of the Negotiation Layer in each Condition

Distance -3.10 17.06 2.28 3.62 16.59 9.89 21.91 -14.94 0.79
Colour -8.23 17.36 1.55 12.40 16.38 9.12 20.36 -13.34 38.30

Distance & Colour (all actions) -7.19 13.04 1.29 20.03 10.82 5.35 23.60 -0.22 34.20
Distance & Colour ( only serial actions) -8.23 17.36 1.55 12.40 16.38 9.12 20.36 -13.34 38.30

Table 4.3: Performance of proposed system with and without the negotiation layer in different conditions
of the dyadic experiment. No training was done for "Without Negotiation Layer" and the performance
result is based on all recorded data. The accuracy is the mean of accuracy for each pair of participants
(dyads). The standard deviation is calculated by computing the accuracy of the model based on individual
participants and then calculating the standard deviation of these values (the accuracy scale is from 0 to
100%).

Dyads Experiment
Condition

Distance STD Colour STD Distance & Colour STD

With Negotiation Layer
Training Set 88.46% 5.83 84.64% 2.89 85.31% 2.90

Test Set 80.57% 2.37 83.58% 1.88 81.39% 3.00
Without Negotiation Layer 72.01% 11.72 57.67% 9.75 65.5% 8.1

with "block layover" are also depicted in Figures 4.3-4.5 to demonstrate how these models work. The

small sphere represents a participant’s hand and the ellipse is their upper torso position. The lines for the

upper and lower arms are drawn approximately as there has been no tracking information for the elbows

or shoulders. Figure 4.3 and 4.4, show activation of the neural field and the peak on the approached

block, meaning that it is predicted to be picked up by an individual participant. Figure 4.5 is for the

same experiment, above showing the DNF activation for participant 1 and below showing the DNF

activation for participant 2, respectively. As can be seen, when participant 2 is approaching the blue

block, the DNF of participant 1 is inhibited (no activation peak) and the DNF for participant 2 has an

activation peak over the blue block, meaning it will be picked up by participant 2.
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Figure 4.3: Snapshot of 2D DNF activation mapped on the tabletop and overlaid blocks when the
participant is approaching the first blue block on the right in an individual trial.

Figure 4.4: Snapshot of 2D DNF activation mapped on the tabletop and overlaid blocks when the
participant is approaching the black block after placing the blue block in an individual trial.

4.9 Participants Demographics and Modelling Performance

Considering the physical nature of the human-human interaction in the experiments, ergonomics and

the gender of the participants could have an effect on the recorded data and the modelling outcome. To

investigate this, the cross-correlation of the training results per dyad participants is evaluated against

the following measures, gender difference, meaning the dyad participants were of the same gender or

opposite gender, handedness difference, meaning the dyad participants were of the same handedness or

the opposite, and hight difference in 4 categories of difference of 5 cm or more, 10 cm or more, 15 cm

or more and 20 cm or more, and the age difference of 5 years or more, 10 years or more, 15 years or

more, 20 years and more and finally 25 years and more.

No meaningful correlation was found in any of these categories. The model correlation for the
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[DNF for participant 1]

Participant1

Participant2

[DNF for participant 2]

Participant1

Participant2

Figure 4.5: Snapshot of 2D DNF activation for participant 1 (above) and participant 2 (below) mapped
on the tabletop and overlaid blocks when participant 1 and participant 2 are approaching a blue block at
the same time. The neural field of participant 2 is activated with a peak over the blue block predicting
this block will be picked up since participant 2 was moving faster than participant 1, while the activation
for participant 1 was inhibited.

handedness difference was -0.0.39, for the gender difference, it was -0.2001, and for the height difference

of 5 cm or more, 10 cm or more, 15 cm or more, and 20 cm or more, it was 0.0426, -0.1376, -0.1204,

and 0.1651, respectively. The correlation for the age difference measures were 0.1736, 0.21396, 0.1534,

0.1076, and 0.0023, for 5 years and more, 10 years and more, 15 years and more, 20 years and more,

and 25 years and more, respectively. Nonetheless, considering the number of dyad participants was

very limited and not necessarily representative of a normal population this lack of correlation does not

necessarily mean no relation. It is, however, crucial to investigate this further in future work with a

larger number of participants before drawing any conclusion.
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4.10 Comparison to Artificial Neural Networks (ANN)

An all-in-one approach aiming for learning the decision without breaking down the process into policies

using a single DFT model failed at the early stages of this work. Thus, it was decided to model policies

separately as also indicated in the overall architecture, resulting in the proposed gray-box model. But to

also test the DNF and the developed architecture against another black-box technique which has been

used in many fields of machine learning including decision-making, further it was decided to compare it

to Artificial Neural Networks (ANN). For this purpose, a multi-layer perceptron (MLP) was implemented

with h hidden layers of d nodes with ReLU activation, l2-norm batch normalisation with a regularisation

penalty l2, dropout at rate dr, batch size b, using the "Adam" optimiser with early stopping when the

accuracy on a 10% validation set had not improved for 20 epochs. To tune these hyper-parameters, a

random search in the space of all combinations of hyper-parameters was used as defined by a grid of

possible values controlling topology, batch size, normalisation, and dropout. Scikit-learn’s Randomised

Search method with 5-fold cross validation over 500 iterations was used to tune the meta-parameters,

thus in total 100 runs of 500 epochs were used to tune the MLP hyper-parameters, resulting in h = 4,

d = 64, l2 = 0.01, dr = 0.2 and b = 512.

Unlike the DNF, the MLP model does not have state, so is making an independent prediction at each

sampling time-step. However, in practice, the users’ decisions only change periodically, and far slower

than the observation sampling rate, so access to "memory" could be beneficial. Therefore, also an LSTM

recurrent neural network (RNN was implemented), presenting it with a sliding window of samples

(xt−w,xt−w+1, . . . ,xt) from which to predict xt+1. Tuning the meta-parameters, in particular for the batch

and window size w proved excessively computationally expensive, so after initial experimentation a

topology of two layers of 50 LSTM nodes followed by a single dense layer of 64 nodes, and dr = 0.25

was used, with "data" values of w = 8, b = 512. The ReLU activation functions was chosen as in the

past experience they worked well on a range of non-image problems. Some preliminary experimentation

with the use of alternative activation functions such as sigmoid and tank was also performed, but the

results were not promising.

In training the ANN models a pre-processing stage of the data was required. So that, instead of

feeding raw data of (x,y) coordinates of objects used for the DNF models, the data had to be hot-coded
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with ones for the presence and zeros for absence of objects in the scene for each time sample. In

addition, the raw recorded data from the motion capture has a very high sample rate. This had resulted

in unnecessarily very large dataset for training DNF models as the training did not need so many

coordinates per seconds. Therefore, the data for training the DNF was down-sampled by the factor of 15.

However, when the same down-sampled data was used for training of the ANN models it proved to be

too small. Hence, the larger recorded datasets had to be used for training of the ANN models.

The results from the two ANN’s are shown in Table 4.4 and further compared to the DNF performance

in Table 4.4. Please note that the accuracy is similar in most conditions for training data but the ANN

model is not comparable for the Colour condition as the DNF model memorises the order and has 100%

accuracy in individual experiments.

Table 4.4: The performance of the developed ANN models. The standard deviation values were
calculated over 10 runs (accuracy scale is 0 to 100%).

ANN Results
Condition

Distance STD Colour STD Distance & Colour STD

MLP
Individual

Training Set 79.08% 3.27 86.62% 3.44 92.23% 1.04
Test Set 43.92% 2.32 77.99% 1.93 85.18% 1.38

Dyad
Training Set 75.25% 3.19 89.54% 0.76 90.30% 2.05

Test Set 45.08% 2.14 67.24% 2.31 73.69% 2.64

RNN
Individual

Training Set 61.82% 1.18 78.67% 1.23 79.71% 0.71
Test Set 24.72% 1.35 64.32% 0.81 63.68% 1.02

Dyad
Training Set 59.21% 5.26 81.84% 0.34 85.89% 0.82

Test Set 18.76% 2.75 67.81% 1.39 46.61% 0.88

As can be seen, despite having "memory", the recurrent network did not always achieve the same

level of training accuracy as the more basic MLP, and the gap between accuracy on the training and

test sets was typically far greater - a classic sign of "overfitting". The MLP also displays some signs of

overfitting and never reaches the test accuracy observed with the DNF. Possible reasons for this are as

follows:

• The form of the model: the MLP does not have state, and so cannot take advantage of the

differences between the rate of decision-making and sampling. This should have been ameliorated

by the use of LSTM nodes in the early layers of the recurrent model - and was for all but the

individual-distance combination.
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Table 4.5: Comparing performance of DNF, MLP and RNN in different conditions of the individual
and dyadic experiments. Bold type indicates highest value in each row, but it is not intended to assert
statistical significance (accuracy scale is 0 to 100%).

Condition Accuracy (%)
DNF MLP RNN

Distance

Individual
Training set 89.52 79.08 61.82

Test Set 84.69 43.92 24.72

Dyad
Training set 88.46 75.25 59.21

Test Set 80.57 45.08 18.76
Colour

Individual
Training set 100 86.62 78.67

Test Set 100 77.99 64.32

Dyad
Training set 84.64 89.54 81.84

Test Set 83.58 67.24 67.81
Colour & Distance

Individual
Training set 86.7 92.23 79.71

Test Set 86.26 85.18 63.68

Dyad
Training set 85.31 90.30 85.89

Test Set 81.39 73.69 46.61

• Insufficient computational budget for meta-parameter tuning and training: direct comparisons are

difficult as the MLP and RNN were built on a 48-core processor exploiting two fast GPU cards.

However each was given a week’s runtime, which approximately equates to the month on a slower

machine for the DNF.

• The greater complexity (number of weights to learn) is greater than the DNF and consequently

requires more training data to avoid overfitting. This should have been ameliorated by the use of

early stopping. Nevertheless, both MLP and RNN have several categorical meta-parameters to

tune, followed by thousands of continuous-valued weights for which values must be optimised.

• The algorithm used to optimise the model parameters: both used stochastic algorithms, but the

DNF parameter space was searched using the global search of an evolutionary algorithm, whereas

because of the far greater search space size, the MLP and RNN networks used a variant of local

search (gradient descent).

In summary, the evidence suggests that the MLP is outperformed by the DNF due to its lack of

memory. For some tasks, the RNN approached or bettered, the accuracies of the DNF in its performance
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on the training data. However, to an even greater extent than the MLP, it suffered from "overfitting",

so that predictive accuracy on unseen test data was poor. Given greater computational budget for

tuning the meta-parameters (such as network size, "early stopping" rule) could possibly have been

improved. However, the greater simplicity of the DNF makes global optimisation feasible, and reduces

the likelihood of overfitting, making it faster and simpler to tune to a good level of accuracy for different

tasks.

4.11 Discussion

The proposed decision-making structure based on DNFs is developed and tested comprehensively for a

simple task. However, the main primitive underlying action of this task, pick-and-place, is indeed part

of many more complex tasks people perform in their day-to-day life. Hence, we strongly believe that it

is possible to apply this structure also to more complicated tasks, with one example being presented in

Chapter 6. There might be a need to integrate more policy models though and to eventually also update

them over time. This modularity, however, is considered a clear advantage of the proposed architecture

as it allows evolution over time by adding or removing required policies for different tasks with different

degrees of complexity.

On the other hand, as pick-and-place is a natural part of many collaborative tasks, we consider it

reasonable to re-use the already trained Distance policy without any need for further training (as is done

in the experiment in Chapter 5) and to extend the idea of the Colour policy to any preferred order of

actions. Hence, there would be only a need to train further involved policies as well as the integration

layer. We further assume the negotiation layer would not need to be re-trained as long as the main nature

of the task remains a pick-and-place process, each agent is performing an action either in series or in

parallel to the other agent to achieve the shared goal and there is no shared action like carrying a large

object together as well as the negotiation layer has been trained with a sufficiently rich dataset to capture

a large series of eventual cultural or personal preferences. Otherwise, offline re-training or better online

updating of the negotiation layer may be required. All these assumptions, however, need to be still

proven in future work.

An all-in-one approach aiming for learning the decision without breaking the process down into
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policies with a single model based on a DNF failed at the early stages of this research, hence, it was

hypothesised a way forward is to model policies separately as also indicated in the overall architecture

and resulting in the proposed grey-box model. A clear benefit of modelling each policy separately and

integrating them in a second step rather than a learning-all-in-one approach is that the properties of

individual policies can be considered. For instance, in the presented task in this chapter, the Colour

policy is learnt by memorising the colour order and the Distance policy model is trained based on the

recorded data optimising DNF parameters using a GA. Using the integration layer makes it possible to

have several policy models trained with various approaches and integrated into the overall architecture.

Furthermore, having the policy models developed separately makes it possible to easily add more

policies to the architecture depending on future tasks. Some possible extensions are explained in the last

chapter as future work.

In addition, the chosen task and instructions, make it possible to generalise the developed models for

a complex task without requiring a complete retraining of the models. As mentioned before, a Distance

policy is an integrated part of most pick-and-place tasks. The colours order also has been chosen in a

way so that Colour policy could be generalised for other tasks with orders of actions, either with serial

order like picking the red block first then the blue one, or having a parallel order for two actions with

the same priority, like picking either of the blue blocks. This is clearly demonstrated in the experiment

results of Chapter 6.

When training the models, despite the close performance of the RNN models to DNF models for

the training data in some conditions, for the test data, DNF outperformed both RNN and MLP. It can

be due to the nature of DNF models and having a travelling wave for the movement of the blocks and

participants, while MLP does not have state, and so cannot take advantage of the differences between the

rate of decision-making and sampling. This should have been ameliorated by the use of LSTM nodes in

the early layers of the recurrent model. However, insufficient computational budget for meta-parameter

tuning and training of RNN models considering their greater complexity (number of weights to learn)

than the DNF model consequently requires more training data to avoid overfitting.

It is noteworthy that the GA itself is governed by several parameters and operator choices, most

notably whether it was allowed to re-evaluate duplicates (This was not restricted). Moreover, the GA

is evolving the weights for the DNF, whereas the random search is tuning the MLP hyper-parameters,
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but the MLP weights are being tuned by a sophisticated meta-heuristic (Adam). Therefore, it could

be argued that although we have attempted to achieve parity of computational effort within the use of

standard toolkits (to replicate research), it is probably never possible to guarantee exact equality.

As the model was developed using a supervised learning approach, the outcome was compared to

ANN as another supervised learning method. Nonetheless, an attempt was also made to apply POMDP on

the datasets. Wang [125] found, although initial implementations using POMDP based on an artificially

created dataset seemed promising when applied to the real dataset, the POMDP-based model completely

failed. This is likely due to the noise in the data. The recorded data consists of tracking coordinate frames

of participants’ motion and there are many short temporary losses of tracking. This, however, does

not affect the DNF-based model as its dynamic nature damps a sudden change in the input stimuli. In

addition, when lacking the probability of events and consequences, Reinforcement-Learning(RL)-based

approaches typically require many iterations so would be less practical for human-machine collaboration.

In the human-human interaction experiments, the majority of people tended to minimise their energy

consumption by picking the closest object. This has been also observed when participants were asked to

perform the task without any instruction, making Distance policy the main naturally chosen policy in a

pick and place task. In this case, using the system only with Distance policy models resulted in 87.78%

prediction accuracy.

The negotiation layer may also facilitate safe human-robot collaboration. The collaboration will be

safer as the Negotiation Layer reduces the chances of conflicts and, thereby, unwanted or unintentional

contact since the human’s action is directly affecting the robot’s decisions. As Table 4.3 presents,

the results showed that in dyadic scenarios, incorporating the negotiation layer improved the model

performance, for example, the highest improvement was for the Colour Policy experiment by 26%.

Using DNFs along with a global optimisation approach like a GA to optimise its parameters has

one disadvantage, i.e., it is computationally expensive. However, one could expect this to be mitigated

in the future by emerging faster high-performance computers. For example, in this work during the

training phase, a machine with 14 cores was used to run the optimisation in parallel making the training

significantly faster than using a normal computer. Gradient descent approaches (available in Matlab)

were also tested for optimising the parameters, however, they did not converge and ended with a

relatively high error. This suggests that GA was a good choice for optimising DNF parameters as it
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can escape local minima. On the other hand, using a global search approach has made the training

highly computationally expensive. Although this could be alleviated by advances in computing power

and parallel processing, at present, it has limited the training phase. At the same time, considering the

dynamic behaviour of the DNF, it is highly resilient to variation in its input and, in most previous work

(cited in Chapter 3.1.12) for less complex systems, its parameters were chosen manually through expert

tuning.

Another advantage of using DNF for modelling decision-making is that it can capture the dynamic

process of human decision-making. For example, in the data from the human-human interaction pick-

and-place task, any changes in the human motion indicating a change in the decision would dynamically

change DNF activation on-the-fly and the predicted decision would be updated. When using a 2D

DNF this process can also be visualised for a better understanding of the decision-making process and

evaluation of the model performance.
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5
HUMAN-ROBOT COLLABORATION EXPERIMENTS

T his chapter is aimed for evaluating the performance and perceived naturalness of the developed

architecture in a human-robot collaboration task. For this, the architecture was implemented

on a robotic arm and human participants were asked to collaborate with the robot in performing

exactly the same task as that which had been used for data collection and training the models. A Wizard

of Oz test was used in which a human teleoperated the robot as a baseline and compared it to the

performance of the architecture with and without the negotiation layer.

In addition to objective measures, participants’ answers to the Godspeed questionnaire [7] taken

at the end of each condition as well as the obtained answers to three post-experimental interview

questions were evaluated. Results reported in Section 5.8 and discussed in Section 5.9 indicate that the

introduced architecture with the negotiation layer achieves similar performance as the baseline, while

the architecture without the negotiation layer performs statistically significantly worse.

5.1 Experimental Design

To evaluate the developed decision-making model, three conditions are tested in a human-robot collab-

oration experiment: First, the complete model that includes the negotiation layer, second, the model

without the negotiation layer, and finally, the human (‘Wizard of Oz’) decision-maker.
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In pilot experiments where a complete within-subject design was tried, it was noticed that the robot

behaviour in each condition strongly affected how participants interacted with the robot in the subsequent

conditions, for example, when there were conflicts in the "no-negotiation" condition people changed the

way they worked with the robot to avoid those conflicts and adapted to the robot, for example by trying

to take turns rather than collaborating.

Thus, to overcome this problem and to reduce the total number of subjects required for a full

between-subject design, it was decided to run two within-subject experiments comparing the baseline

(Wizard of Oz) to the model with a negotiation layer and another one for comparing the performance

of the model with and without the negotiation layer. This way it was possible to reduce the required

number of subjects by one-third, which helped to conclude the experiment in a timely manner due to

increased difficulty in conducting group behavior experiments during the coronavirus pandemic.

Ethical approval for these experiments was obtained from the ethics committee of the University of

the West of England (reference number: UREC16-17.03.10).

5.2 Experimental Setup

The experimental task was chosen to be the same as that used during the data collection phase for

training the decision-making models and consists of a table-top pick-and-place task which is explained

in Section 5.4. The main difference consisted in the fact that participants were asked to collaborate with

a Franka Emika Panda robotic arm instead of a human collaborator.

The experimental setup is shown in Figure 5.1. The dominant hand of the participant was equipped

with reflective balls to allow its tracking by a Vicon motion capture system. The robot was controlled in

real-time using the libfranka library in C++. The decision-making model was implemented in MATLAB

and passed its final decision on for execution to the robot controller via TCP/IP socket communication.

The implementation foresaw that the robot controller was not continuously receiving the decision from

Matlab, but only at specific times in both conditions (Wizard or Model decision maker). Hence, once

the robot initiated an action, the robot could not change its behaviour anymore but had to conclude this

action.

Participants repeated the same task in two conditions. In the first experiment, the performance
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of the decision-making model with and without the negotiation layer were compared. In the second

experiment, the model with the negotiation layer was compared to the baseline (Wizard of Oz), where a

human decision-maker commanded the robot. The order of the two conditions along with the blocks’

locations (horizontal vs vertical alignment) was randomised. The robot controller and motion planner

remained the same in all conditions.

Figure 5.1: Experimental Setup.

5.3 Wizard Protocol

In the baseline condition, the wizard sees the scene from the MS Kinect camera mounted over the table

to also track the blocks marked by AR markers. To guarantee a consistent behaviour of the human

decision-maker, the following protocol was given to the wizard to follow:

The wizard makes the first decision as soon as the robot is in the "ready position". This is done

by entering a number between 1 to 7, 1 for the far-right and 7 for the far-left block from the robot

perspective, or entering 8 for just waiting. Later the wizard needs to confirm this decision when the

robot goes to the "ready-to-grasp" position. As soon as the robot reaches the "ready-to-grasp" position,

the wizard must make the final decision within one second or as soon as the human participant makes

his/her move (whichever is faster). At this stage, the wizard has 3 options, either to confirm the decision
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and continue picking the same block, change to another block, or just wait. If the decision is waiting,

the wizard needs to make another decision again within one second until a block is chosen. This will

continue until the task is complete. It is noteworthy to mention that the wizard needs to make a decision

even if the decision is waiting so that the robot control loop is reset and the robot would be ready for the

next action. If no decision is made by the wizard, the robot would stop working.

5.4 Task

The experimental task was kept the same as used during the data collection phase. Participants were

asked to use provided coloured blocks to form some alpha/numeric characters on a 7-segment template,

according to a provided colour order. Each participant was asked to pick blocks one by one, however,

they were just told to "work with the robot" and were free to either take turns or pick a block at the same

time as the robot. The alpha/numeric characters were "H, 2, 5, 3, E, 6, 9, 8". After completing each

character, the experimenter was resetting the blocks and randomised their position. The order of the

character was also randomised and the experimenter told the participants which character to assemble

next every time the scene is reset.

5.5 Participants

5.5.1 First Experiment (model with negotiation layer vs model without negotiation

layer)

In total 40 participants (22 male) took part in the experiment. Participants were staff and student

members of the University and had an average age of 31.9 (STD = 8.47) ranging from 21 to 54 years

with an average height of 173.22 cm (ST D = 8.98) ranging from 158 to 191 cm. 38 participants were

right-handed, and all reported normal or corrected-to-normal eyesight (14 wearing glasses).

5.5.2 Second Experiment (model with negotiation layer vs human decision-maker)

Again, in total 40 new participants (29 male) took part in the experiment. Participants were staff and

student members of the University and had an average age of 31.8 (STD = 9.5) ranging from 20 to 61
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years with an average height of 175.05 cm (STD = 9.35) ranging from 157 to 200 cm. 37 participants

were right-handed, and all reported normal or corrected-to-normal eyesight (18 wearing glasses).

5.6 Subjective and Objective Measures

In terms of objective measures, the task completion time, the robot task share, and the number of

conflicts were recorded. The robot task share is calculated as the mean value of the number of blocks

the robot picks divided by the total number of blocks required for the character being created. A conflict

is considered when the robot tries to pick the block that the participant has just picked up or is about to

be picked up.

As for the subjective measures, at the end of each condition, participants were asked to answer the

Godspeed questionnaire. As the questionnaire is designed for use with humanoid robots, they were

asked to only focus on the robot’s behaviour when choosing and picking the blocks. Finally, at the end

of the experiment, participants were additionally asked the following three questions:

• Q1. What do you think was the difference between the first and second conditions?

• Q2. Which condition did you prefer?

• Q3. Which condition was more like working with a human partner?

5.7 Data Analysis

To evaluate the model, a statistical analysis of the recorded objective and subjective measures was

performed. Since data was found to be not normally distributed for some of the objective data, an

Analysis of Variance (ANOVA) was chosen instead of a classical t-test, which would be unreliable,

while there is a strong body of research suggesting the ANOVA F-test to be not sensitive to normality

assumptions [18, 51, 61, 78]. In addition, using ANOVA allows the Tukey test to be performed for

Post-hoc analysis. This allows for a robust comparison that ensures a significant difference exists even

for marginal situations. By contrast, the t-test would fail in these situations.
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Considering that the absence of a significant difference in the Null hypothesis test does not necessarily

imply a similarity, a further Bayesian comparison [12] of the conditions of the second experiment was

performed to establish similarity.

In addition, as the data for the number of conflicts is rather sparse, a difference of proportion

hypothesis test (DPHT) was performed for this measure in the second experiment. To do so, the total

number of instances in which there was "no conflict", "one conflict", and "two conflicts" for both the

model and human decision-maker was derived from the data and the z score of the DPHT was calculated

according to

(5.1) z =
P̂1− P̂2√

P̂(1− P̂)( 1
n1
+ 1

n2
)

where n1 and n2 are the number of samples for each condition, here both equal 40. Both, P̂1 and P̂2 are

found by dividing the number of conflicts by the number of samples for each condition. Finally, P̂ is

found with

(5.2) P̂ =
n1P̂1 + n2P̂2

n1 + n2

Having the z score, the p-value can be found using an inverse normal distribution function like

NORM.S.INV in any statistical package.

As for qualitative analysis, NVivo was used to extract keywords used by participants for describing

each condition. A Word Frequency Query and a Matrix Coding Query were performed. The former is to

analyse the frequency of the words with the same stem that participants used to describe each condition

and the latter is to analyse the attitude (Positive, Negative, Mixed, Neutral) of the participants towards

each condition.

5.8 Results

5.8.1 The First Experiment (model with negotiation layer vs model without

negotiation layer)

The data distribution was analyzed using the Jarque-Bera method. Not all the data had a normal

distribution as shown in Table 5.1, however, as previously mentioned the ANOVA F-test is still being

considered a reliable approach for a null hypothesis test.
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Table 5.1: Jarque-Bera Normal Distribution test and Cohen d effect size for the objective measures. H=0
means data has a normal distribution.

Objective Measures Condition JB test H JB test p Cohen D Effect Size

Robot Task Share
With negotiation 1 0.0268

1.0194
Without negotiation 0 0.1935

Task Completion Time
With negotiation 0 0.1718

0.4234
Without negotiation 1 0.0219

Conflicts
With negotiation 0 0.0647

2.3964
Without negotiation 0 0.1860

A one-way analysis of variance (ANOVA) followed by a Tukey test were performed on the recorded

objective and subjective measures. All objective measures for the condition with the negotiation layer

were found to significantly outperform the condition without such layer. The mean task completion time

with the negotiation layer was significantly (F = 17.03, p 9.15e−05) less than without the negotiation

layer. Nonetheless, 10 participants mentioned the difference between the two conditions was that the

robot was "faster" or "quicker" without the negotiation layer. The mean number of conflicts was also

significantly (F = 205.82, p 1.4e− 23) lower in the condition with the negotiation layer compared

to the condition without such a layer. This was further confirmed in qualitative interview data by

participants describing the robot’s behaviour without the negotiation layer as making more "mistakes" (13

participants), being more "aggressive" or "irritating" (4 participants,) more "competitive" (2 participants)

and using other adjectives like "foolish/dumber", "intrusive", "ignored" and "unpredictable". The mean

robot task share was found to be significantly (F = 33.9, p 1.23e−7) higher in the condition with the

negotiation layer. Results of the statistical tests performed on the objective measures are reported in

Appendix A.1.

Table 5.2: Mean value and standard deviation of the objective measures.

Objective measures
Conditions

With negotiation Without negotiation
Mean Completions Time (s) 440.2 (STD=64.18) 495.8 (STD=57.78)

Mean Robot Task Share 0.451 (STD=0.03) 0.416 (STD=0.021)
Mean number of Conflicts 0.73 (STD= 0.78) 5.85 (STD=2.28)

As for the subjective measures, although all the scores for the model with negotiation layer were

found to be higher, only data in two categories of the Godspeed questionnaire, namely "Anthropomor-

phism" (F = 8.4, p 0.0049) and "Perceived Intelligence" (F = 20.83, p 1.84e−5) scored significantly
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better when using the model with negotiation layer. However, no significant difference was found for

the other categories of "Animacy", "Likeability", and "Perceived Safety", see also Figure 5.2 reported in

Appendix A.1.

Table 5.3: Jarque-Bera normal distribution test and Cohen d effect size for the objective measure. H=0
mean data has a normal distribution.

Measure Condition JB test H JB test p Cohen d effect size

Anthropomorphism
With Negotiation 0 0.3655

0.6694
Without negotiation 0 0.3312

Animacy
With negotiation 0 0.5

0.4757
Without negotiation 0 0.5

Likeability
With negotiation 0 0.5

0.5016
Without negotiation 0 0.5

Perceived Intelligence
With negotiation 0 0.2866

0.9696
Without negotiation 0 0.5

Perceived Safety
With negotiation 0 0.0538

0.4234
Without negotiation 0 0.2256

Table 5.4: Mean value and standard deviation of the subjective measures of Godspeed questionnaire.

Subjective measures
Conditions

With negotiation Without negotiation
Anthropomorphism 2.815 (STD=0.86) 2.315 (STD=0.68)

Animacy 2.95(STD=0.77) 2.66 (STD=0.77)
Likeability 3.565 (STD= 0.585) 3.275 (STD=0.72)

Perceived Intelligence 3.515 (STD=0.54) 2.835 (STD=0.77)
Perceived Safety 3.775 (STD= 0.63) 3.6 (STD=0.646)

A further analysis was performed on the data when sorted, based on the order of trial rather than

conditions and no significant difference was found in the data based on trials’ order.

In addition, a word frequency analysis of answers to the first question of the post-experiment

interview was performed using NVivo software by looking for words with the same stem and more than

5 letters, see tables A.17 and A.18 in Appendix A.2. The NVivo word maps created from the word

frequency query are shown in Figures 5.3 and 5.4.

Since NVivo could not separate words based on the way they are used in the sentence, like using

an adjective positively or negatively by adding "not" before it, a further Matrix Coding Query was

64



CHAPTER 5. HUMAN-ROBOT COLLABORATION EXPERIMENTS

Figure 5.2: Bar graph for Godspeed questionnaire. Mean values of all categories for the first experiment.
Error bars are ±1SEM (Standard Error of Mean)

Figure 5.3: NVivo word map for the answers to the first interview question for the condition without
negotiation layer. Note, the positive adjectives like responsive and pleasant were used in negative form
with "not" to describe the robot in this condition but the software cannot show that.

performed, see results reported in table 5.5. Attitudes are coded manually in such a way that if there are

only positive comments about the robot it is coded as "Positive", for example, a participant describes the

robot running the model with the negotiation layer as "it was like working with another person. It was
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Figure 5.4: NVivo word map for the answers to the first interview question for the condition with
negotiation layer.

like having an interaction." or if only negative comments are used it is coded as "Negative" like this

statement of the same participant describing the robot using the model without negotiation layer as "It

felt like working with a machine and the robot was just doing its job". If mixed positive and negative

adjectives are used it is coded as "Mixed" such as "it was slower but easier to work with" as a description

of the robot with the model with negotiation layer. If there are neither positive nor negative comments it

is coded as "Neutral".

Table 5.5: NVivo Matrix Coding Query for conditions vs attitudes. Numbers show the number of times
participants have described a condition with each attitude.

Matrix Coding Query
Attitude

A : Mixed B : Negative C : Neutral D : Positive

Condition
With negotiation 6 2 0 23

Without negotiation 7 24 0 3

Answering the second interview question, 30 participants mentioned they preferred the condition

with the negotiation layer. The other 10 participants who preferred the without negotiation condition

mentioned the robot was faster and that’s why they preferred it. This is despite the actual robot movement
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being the same in both conditions, however, one of the effects of the negotiation layer on the robot

behaviour was to wait and give way to the participants.

Answering the last question of the interview, 33 participants said the robot with the negotiation

layer was more human-like and one found no difference. 4 Participants mentioned the robot without

the negotiation layer was faster hence they found it more human-like and one described the robot’s

behaviour as "unpredictable" and hence more human-like.

5.8.2 Second Experiment (model with negotiation layer vs human decision-maker)

Data captured in this experiment was tested for normality distribution using the Jarque-Bera test. Not all

data was found to have a normal distribution as indicated in table 5.6.

Table 5.6: Jarque-Bera normal distribution test and Cohen d effect size for the objective measures. H=0
means data has a normal distribution.

Objective Measures Condition JB test H JB test p Cohen d Effect size

Robot Task Share
With negotiation 0 0.5

0.1388
Human decision-maker 0 0.3137

Task Completion Time
With negotiation 0 0.2592

0.4270
Human decision-maker 0 0.5

Conflicts
With negotiation 1 0.0068

0.2195
Human decision-maker 1 1.0000e-03

A one-way ANOVA was performed to analyse the data captured in this experiment. Unlike the

first experiment, no significant difference was found for any of the objective or subjective measures.

Nonetheless, the human decision-maker was found to descriptively outperform the model, even though

marginally, in most categories. In terms of the objective measures, data were normally distributed for

Robot Task Share and Task Completion Time but not for the number of Conflicts in either condition.

The result of the Jarque-Bera test and Cohen d effect size are shown in table 5.6.

Table 5.7: Mean value and standard deviation of the objective measures.

Objective measures
Conditions

With negotiation Human decision-maker
Mean Completions Time (s) 486.3 (STD=78.75) 463.95 (STD=75.85)

Mean Robot Task Share 0.463 (STD=0.038) 0.469 (STD=0.032)
Mean number of Conflicts 0.55 (STD= 0.75) 0.45 (STD=0.63)
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Table 5.8: Jarque-Bera Normal Distribution test and Cohen D Effect Size for the subjective measure.
H=0 mean data has a normal distribution.

Measure Condition JB test H JB test p Cohen d effect size

Anthropomorphism
With negotiation 0 0.5

0.2224
Human decision-maker 0 0.5

Animacy
With negotiation 0 0.5

0.3044
Human decision-maker 0 0.5

Likeability
With negotiation 0 0.5

0.1151
Human decision-maker 0 0.1033

Perceived Intelligence
With negotiation 0 0.0512

0.1787
Human decision-maker 0 0.5

Perceived Safety
With negotiation 0 0.4711

0.0824
Human decision-maker 0 0.5

As for subjective measures, similarly, there was no significant difference found for any categories of

the Godspeed questionnaire, although the human decision-maker scored descriptively better in all. The

mean values of these categories are depicted in Figure 5.5. All the data were normally distributed and

the results of the Jarque-Bera test and the Cohen d effect size are reported in table 5.8.

Table 5.9: Mean value and standard deviation of the subjective measures derived from Godspeed
questionnaire.

Subjective measures
Conditions

With negotiation Human decision-maker
Anthropomorphism 2.875 (STD=0.665) 3.025 (STD=0.71)

Animacy 2.99 (STD=0.73) 3.196 (STD=0.71)
Likeability 3.615 (STD= 0.73) 3.68 (STD=0.67)

Perceived Intelligence 3.69 (STD=0.73) 3.805 (STD=0.59)
Perceived Safety 3.683 (STD= 0.75) 3.73 (STD=0.77)

Having no significant difference in the Null hypothesis test, a further Bayesian comparison [12]

of the conditions was performed to test for similarity. To do so, all the data was normalised based

on the maximum value of each category. The results of this comparison between the model with the

negotiation layer and human decision-maker for all the objective and subjective measures are presented

in Tables 5.10 and 5.11. In these tables, the probability of similarity, and the probabilities of either

condition outperforming the other are depicted. The last column in the tables shows the width of the

Region of Practical Equivalence (ROPE). ROPE is in the same order as the data; since the data is
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Figure 5.5: Bar graph for the Godspeed questionnaire. Mean value of all categories for the second
experiment. Error bars are ±1SEM (Standard Error of Mean)

normalised, the ROPE value was chosen between 0 and 1. Having a high probability of similarity with a

smaller ROPE is desirable as it means even a higher likelihood of similarity than with a larger ROPE

closer to 1.

Table 5.10: Bayesian comparison of the model and human decision-maker for objective measures.

Objective Measures Model is better Difference is negligible Human is better ROPE
Robot Task Share 1.46e-14 0.9999999999 4.09e-13 0.1

Task Completion Time 3.9e-08 0.99999996 4.32e-13 0.1
Conflicts 0.00088 0.999 2.34e-06 0.5

Table 5.11: Bayesian comparison of the model and human decision-maker for subjective measures.

Measure Model is better Difference is negligible Human is better ROPE
Anthropomorphism 5.89e-05 0.9867 0.0133 0.1

Animacy 2.195e-05 0.9671 0.0328 0.1
Likeability 3.52e-05 0.9992 0.00073 0.1

Perceived Intelligence 6.50e-05 0.9943 0.0057 0.1
Perceived Safety 0.000125 0.99883 0.00104 0.1

Having rather sparse data for the number of conflicts, a difference of proportion hypothesis test

(DPHT) was performed for this measure. The total number of instances in which there was "no conflict",

"one conflict", and "two conflicts" for both the model and human decision-maker was derived from the
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data as shown in table 5.12. The z value of the DPHT was calculated according to eq 5.1. Determined z

values are shown in table5.13. Values indicate no significant difference for a significance level α = 0.05

when comparing the model with decision layer and the human decision-maker.

Table 5.12: Number of conflicts per condition per occurrence.

number of conflicts
Conditions

With negotiation Human decision-maker
no conflicts 24 25
one conflict 10 12
two conflicts 6 3

Table 5.13: The z and p values of the Difference of Proportion test for the number of conflicts.

Number of Conflicts z p
no conflicts -0.2295 0.591
one conflict -0.5008 0.692
two conflicts 1.0615 0.144

Similar to the first experiment, data was sorted based on the order of trials, however, no significant

difference was found between the first and second trials.

Using NVivo, a word frequency analysis of the answers to the first question of the post-experiment

interview was performed by looking for the words with the same stem and more than 4 letters. Results

are reported in tables A.19 and A.20 of Appendix A.2. The NVivo word maps created from the word

frequency query are shown in Figures 5.6 and 5.7.The first obvious observation is that when describing

the robot with the model with the negotiation layer, participants used different words like it was "waiting"

(21 times) for me, "hesitant" (3 times), or "slower" (4 times) or "calmer" (1 time) showing they perceived

the robot was not as fast as the human decision-maker. While for the human decision-maker condition,

words like "faster" (15 times), "quicker" (6 times), "snappier", "wilder", and "determined" (each of

which 1 time) were used.

Another observation is the use of the words "difference" and "similar", which were used by par-

ticipants as they did not find any difference between the two conditions. This is later categorised as a

neutral attitude in the NVivo Matrix Coding query.

Analysing the results of the Word Frequency Query shows that the robot implementing the model
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Figure 5.6: NVivo Word Frequency Map for the answers to the first interview question for the conditions
human decision maker (robot controlled by a human decision-maker).

with negotiation layer to be described positively using words like "changed behaviour/decision/action"

(5), "responsive" (4), "working together" (3), "interactive" (2), "human-like" (2), "polite" (2), "col-

laborative/cooperative" (2), "considered/considerate" (2), "accommodating" (1), "calmer (1), whereby

some were used in completely positive statements and some in a mixed one. For instance, a participant

described the robot implementing the model with the negotiation layer as "It was a bit slower and waits

for me to pick first. Less aggressive and changed its behaviour if approaching the same block.", in

a mixed statement if being slow is considered to be negative. An example of a completely positive

description of the robot in this condition is "[it] felt like working together and collaborative."

As for the robot controlled by the human decision-maker, it was described positively using words

like "faster/quicker" (21), "responsive/responded" (5), [took] "initiative" (1), "determined" (1), "col-

laborative" (1), "efficient" (1), "changed behaviour" (1), again used in both completely positive or

mixed statements. For example, one participant described the robot with the human decision-maker

as "it was faster with short reaction time. It was machine-like and getting the job done." Which is
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Figure 5.7: NVivo Word Frequency map for the answer to the first interview question for the condition
with negotiation layer.

considered a mixed statement as being "machinelike" is taken to be a negative description. An example

of a completely positive example is "it was more decisive and quicker."

To show the attitude of the participants when describing each condition, a Matrix Coding Query

was performed in NVivo, the result is presented in table 5.14. Attitudes are coded manually in a way

that if there are only positive comments about the robot it is coded as "Positive" or if only negative

comments are used it is coded as "Negative". If mixed positive and negative adjectives are used it is

coded as "Mixed". If there are neither positive nor negative comments about either condition it is coded

as "Neutral". In this experiment, the participants’ descriptions of the robot were considered neutral when

they mention there was no difference between two conditions like saying "couldn’t tell any difference",

"didn’t feel a big difference", or "there was no difference".

Answering the second interview question, 20 participants mentioned they preferred to work with the

robot when there was a human decision-maker as it was "quicker". Another 13 participants preferred

the condition with the model decision-maker and mentioned the robot was "responsive" (3), "less
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Table 5.14: NVivo Matrix Coding Query for Conditions vs Attitudes. Numbers show the number of
times participants have described a condition with each attitude.

Matrix Coding Query
Attitudes

A : Mixed B : Negative C : Neutral D : Positive

Conditions
Human Decision-Maker 8 3 6 16

Complete Model 7 7 6 17

aggressive" (1), "quicker" (2), "smoother" (2), "cooperative" (2), "calmer" (1), "more comfortable" (1),

and "accommodating" (1) and that’s why they preferred it. This is noteworthy that the actual robot

movement was the same in both conditions, however, like the first condition, one of the effects of

the negotiation layer in the complete model on the robot behaviour was to wait and give way to the

participants. 7 participants had no preference between the two conditions. Answering the last question

of the interview, 17 participants said the robot with the complete model was more human-like, another

17 participants found the robot with the human decision-maker to be more human-like and 6 of them

found no difference between the two conditions. Those choosing the model decision-maker mentioned

they found the robot "polite", "kind", "interactive/more interactive", "cooperating" and "responsive" and

hence more human-like. While those choosing the human decision-maker described the robot using

words like "more efficient", "decisive", "collaborative", "quick", and "taking initiative" and hence more

human-like.

5.9 Discussion

It is crystal clear that having a negotiation layer has significantly improved the interaction. All subjective

and objective measures were significantly improved in the first Human-Robot Collaboration (HRC)

experiment after introducing the negotiation layer (as presented in Section 5.8.1). Although in the

qualitative analysis many participants perceived the robot without the negotiation layer to be faster, the

actual task completion time for this condition was longer than when using the negotiation layer. It is

due to the robot facing many conflicts without the negotiation layer and requiring to repeat its actions

leading to a longer task completion time. The absence of the negotiation layer meant there was no

hesitation caused due to deliberating on the partner’s action and the robot made a decision faster and

moved towards a target immediately causing participants to feel it worked faster, while all the robot
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movements were actually done in the same speed in all conditions. Nonetheless, several participants

mentioned the robot with the negotiation layer was more efficient.

The qualitative analysis further revealed that the majority of participants described the robot without

the negotiation layer ascribed a negative attitude (Table 5.5) to it, using words like [making] "mis-

takes", "competitive" and "aggressive", while the robot with the negotiation layer was perceived as

"collaborative" and "considerate". Both qualitative and quantitative analyses of the subjective data

found that participants consider the robot with the negotiation layer to be more intelligent. The result

of the Godspeed questionnaire showed that the robot with the negotiation layer scored better in all

categories compared to the robot without the negotiation layer. The score was significantly higher for

two categories, namely Anthropomorphism and Perceived Intelligence, further confirming the significant

role of the negotiation layer.

Comparing the answers to the second and third post-experiment interview questions in the first HRC

experiment, 32 out of 33 participants who preferred the robot with the negotiation layer also considered

the robot with the negotiation layer to be more human-like. Only 5 out of 10 participants who preferred

the robot without the negotiation layer also considered it more human-like. The other 5 participants still

preferred the robot being faster despite not perceiving it as human-like. This indicates the majority of

participants preferred to work with a robot with human-like behavioural traits, as they described it is

being "considerate", "responsive" or "collaborative".

A further interesting observation in the first HRC experiment is that among 20 participants who

experienced the robot without the negotiation layer in their first trial, 12 participants changed the way

they worked with the robot from working together in parallel in the first trial to taking turns in the

second trial. These participants experienced a high number of conflicts in the first trial with a mean

number of conflicts of 6.25 (STD=1.14) which is higher than the overall mean of 5.85 (STD=2.28).

This behavioural change was further investigated by looking into the completion time of the first and

last characters in the task for both conditions. The character completion time then was divided by the

number of blocks per character to have a comparable measure. For the trials without the negotiation

layer, the mean time per block goes from 11.435 seconds (STD= 2.94) for the first character to 10.254

seconds (STD= 1.59) for the last character. A one-way ANOVA shows a significant reduction of the

time (F=7.16, p<0.0091). While for the trials with the negotiation layer, the mean time per block goes
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from 9.538 seconds (STD= 1.482) for the first character to 9.16 seconds (STD= 1.371) for the last

character. A one-way ANOVA shows no significant difference between the time for the first and last

character (F=1.37, p<0.2446). This indicates that humans try to adapt and change their behaviour to

avoid conflicts in response to adverse or undesirable events in the interaction.

The second HRC experiment was performed to evaluate the decision-making structure compared

to a human decision-maker. Overall, the result (as presented in Section 5.8.2) suggests the model

performance is close to a human decision-maker considering six participants considered them the same

and another 3 participants mentioned they are very similar and there is only a small difference in the

speed otherwise they considered them to be the same. Another interesting finding, mentioned in the

results, was that an equal number of 17 participants found either condition to be like working with a

human. This could be seen in agreement with previous research in autonomous cars by Stanton et al.

[110] in which participants were shown video clips of a Tesla Model S P90D when driving on Autopilot

and only 50% of participants thought it was controlled by autopilot. Similarly, when driven by a human

only 50% of the participants thought it was controlled by a human.

In both HRC experiments, the robot using the complete decision-making model was perceived as

slower or calmer than the other conditions namely, without the negotiation layer and human decision-

maker. It is due to the robot hesitating when it detects a conflict situation and the negotiation layer

deliberates on possible ways to resolve the conflict. This pausing moment did not have an adverse

effect on the mean task completion time in the first HRC experiment. In this experiment, despite being

perceived as slower, the robot with the negotiation layer has a significantly lower task completion time.

This is due to the fact that the robot without the negotiation layer had to repeat its actions after a conflict.

However, in the second HRC experiment, the robot with the human decision-maker has a slightly lower

task completion time. This difference was not significant and even a further Bayesian comparison

analysis of this data showed a high probability of similarity.

In the Second HRC experiment, the human decision-maker performed slightly better than the model

in all subjective and objective measures, however, no significant difference was found. To establish

similarity further analyses were performed. A Bayesian comparison [12] of the data showed a high

probability of similarity for all subjective and objective measures. For the sparse data about the number

of conflicts, a comparison of proportion was also performed and this also did not show any difference
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between the model and the human decision-maker.

Comparing answers to the second and third post-experiment interview questions in the second HRC

experiment, 16 out of 20 participants who preferred the robot controlled by a human decision-maker

also found the robot more human-like. Similarly, 11 out of 13 participants of those who preferred the

robot using the complete model found the robot’s behaviour more human-like. Of the 7 participants

without any preference for either condition, 2 found the robot with the model more human-like and

one participant found the robot with a human decision-maker more human-like. Considering a total of

25 participants preferred the situation where the robot was perceived as being more human-like, it is

clear that the approach taken for creating a human-like decision-making model based on human-human

interaction could increase the robot’s acceptability by the user. However, it is also important to bear

in mind that being human-like could be perceived differently by people. Here, the majority of the

participants considered a robot, being "calm", "responsive", or "collaborative", more human-like, yet, a

small group of participants considered a "faster" robot to be more human-like.

Recorded videos of the three experimental conditions can be seen through the links Without

Negotiation, With Negotiation, and Wizard.
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6
MODEL TRANSFERABLILTY

T o show the transferability and generic nature of the developed decision-making model, a

new experiment is designed. The decision-making models were developed using a generic

task. This makes the developed models adaptable to more complex tasks. To demonstrate

this ability a new experiment is designed. In this experiment, the task is assembling parts of a toy car.

All the developed models could be used in this experiment without requiring retraining. The order

of the assembling part was only mapped to the colour order in the colour policy. The experiment is

designed similarly to the previous experiments to have two conditions namely, the "Wizard of Oz" and

the "Model" for when the robot uses the proposed decision-making architecture. Each participant repeats

the task 6 times, 3 for each condition without being informed of the conditions. The order of the trials is

randomised in 16 unique combinations (see Table 6.1); hence, 16 participants were recruited.

6.1 Experiment Setup

The experiment setup was similar to the previous human-robot interaction study. Participants were asked

to work with a Franka Emika Panda robotic arm in a table-top pick-and-place task. Their dominant hand

was marked for tracking by Vicon motion capture reflective balls. The robot control was done in real-time

using the libfranka library in C++. The decision-making model was running in parallel in MATLAB and
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Table 6.1: Random order of trials for 16 participants. H is for the "Wizard of Oz" condition and M is for
the Model condition.

Participant Trail1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6
1 H H H M M M
2 M M M H H H
3 H M H M H M
4 M H M H M H
5 H H M M H M
6 M M H H M H
7 H M M H H M
8 M H H M M H
9 M M H H H M
10 H H M M M H
11 M H H H M M
12 H H M H M M
13 H M M M H H
14 M M H M H H
15 H M H H M M
16 M H M M H H

the decision was communicated to the robot controller through TCP/IP socket communication. This

means the robot controller was not continuously receiving the decision but at specific times, hence, the

robot could not change its behaviour when one motion was being implemented. Participants repeated the

same task in two conditions. The Experiment setup is shown in Figure 6.1. In the human decision-maker

condition, the wizard sees the scene from the MS Kinect camera mounted over the table to also track the

parts marked by AR markers.

6.2 Wizard Protocol

To guarantee the consistent behaviour of the human decision-maker, the following protocol was given to

the wizard to follow: The wizard makes the first decision as soon as the robot is in the "ready position".

This is done by entering a number between 1 to 7, 1 for the far-right and 7 for the far-left block from

the robot perspective, or entering 8 for just waiting. Later the wizard needs to confirm this decision

when the robot goes to the "ready-to-grasp" position. As soon as the robot reaches the "ready-to-grasp"

position, the wizard must make the final decision within one second or as soon as the human participant

makes his/her move (whichever is faster). At this stage, the wizard has 3 options, either to confirm the
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Figure 6.1: Experiment Setup.

decision and continue picking the same block, change to another block, or just wait. If the decision is

waiting, the wizard needs to make another decision again within one second until a block is chosen.

This will continue until the task is complete. It is noteworthy to mention that the wizard needs to make a

decision even if the decision is waiting so that the robot control loop is reset and the robot would be

ready for the next action. If no decision is made by the wizard, the robot would stop working.
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6.3 Task

The task was to assemble parts of a toy car including the Chassis, Cabin, Wheels and Spoiler. The order

of the assembly was given to the participants to follow as 1. Chassis, 2. Cabin, 3. Wheels, and 4. Spoiler.

While participants were following this order, they were free to choose any of the wheels without any

order when it was the right time to do so. This task was repeated 6 times, 3 times for each condition, in

random order. At the end of each trial, participants were asked to answer the PeRDITA questionnaire

[35] This questionnaire is chosen over the Godspeed questionnaire in this experiment as it focuses more

on the collaboration in the experiment than anthropomorphism of the robot.

(a)

(b) (c) (d)

Figure 6.2: Car assembly order: a. Car parts lay over the table on the right and the assembly platform at
the left b. First Chassis and then Cabin are assembled c. Wheels assembled next and d. the spoiler is
assembled last.
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6.4 Participants

In total, 16 participants (13 male) took part in the experiment. Participants were students and staff

members of the university with a mean age of 29.8 (STD= 6.14) ranging between 22 and 43 years old

with an average height of 175.6 cm (STD=7.43) ranging between 164 and 188 cm. 14 participants were

right-handed, one was ambidextrous but used his left hand and one was left-handed, and all reported

normal or corrected-to-normal eyesight (8 wearing glasses).

6.5 Objective and Subjective Measures

In terms of objective measures, the task completion time, the robot task share, and the number of

conflicts are recorded. The robot task share is calculated as the number of parts the robot picks divided

by the total number of parts required (7) for assembling the car. A conflict is considered when the robot

tries to pick the part that the participant has just picked or is picking up.

As for the subjective measures, at the end of each trial, participants were asked to answer the

PeRDITA questionnaire. As there is no verbal communication between the robot and participants,

only four dimensions of the questionnaire were used namely, "Collaboration", "Interaction", "robot

Perception", and "Acting".

6.6 Results

The results of the PeRDITA questionnaire are presented in the following tables and graphs. The overall

comparison of the results for the human decision-maker against the model is shown in figure 6.3 and

Table 6.2 in which the mean is calculated from the average of 3 trials of each condition for each

participant for 16 participants. Despite a slightly higher score for the human decision-maker across the

board, no significant difference was found in the subjective measures. The results are also presented

based on the order of the trials in Figure 6.4 and Table 6.3. Similarly, the data was sorted based on the

order of the trials in each condition, namely, Model and Wizard. An overall improvement in scores

can be observed, however, no significant difference was found. Bar graph of the mean values for each

conditions are presented in Firgue3 6.5 and 6.6.
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Figure 6.3: Bar graph for Mean value of subjective measures from the PeRDITA questionnaire. Error
bars are ±1SEM (Standard Error of Mean)

Table 6.2: Mean and Standard Deviation of Subjective measure from the PeRDITA Questionnaire.

Subjective Measures
Conditions

Human Decision-Maker Model
Collaboration(/500) 333.0208 (STD=91.21448) 352.5 (STD=93.25989)

Interaction(/500) 343.6458 (STD=92.93012) 366.3542 (STD=100.4291)
Robot Perception (/800) 455.4167 (STD=151.6972) 457.8125 (STD=143.0109)

Acting(/300) 206.1458 (STD=51.72119) 217.6042 (STD=66.87736)

Figure 6.4: Bar graph for Mean value of subjective measures from the PeRDITA questionnaire based on
order of the trials. Error bars are ±1SEM (Standard Error of Mean)
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Table 6.3: Mean and standard deviation of subjective measures based on the trial order.

Trials
Dimention

Collaboration (/500) Interaction (/500) Robot perception(/800) Acting (/300)
T1 321.563 (STD=102.55) 331.875(STD=104.19) 438.75(STD=135.136) 206.875(STD=42.49)
T2 340.625 (STD=101.57) 349.0625 (STD=99.34) 443.4375 (STD=148.8) 200.938 (STD=65.98)
T3 315 (STD=116.56) 340.938 (STD=104.47) 440 (STD= 174.83) 199.063 (STD=59.11)
T4 352.5 (STD=90.4986) 359.375 (STD=90.864) 479.375 (STD=169.14) 205.313 (STD=55.30)
T5 360.625 (STD=90.637) 367.1875 (STD=95.76) 478.438 (STD=161.83) 217.813 (STD=53.35)
T6 365.3125 (STD=90.98) 361.875 (STD=97.96) 502.813 (STD=154.22) 215 (STD=53.45)

Figure 6.5: Bar graph of mean subjective measures for 3 trials using the model. Error bars are ±1SEM
(Standard Error of Mean)

Figure 6.6: Bar graph for Mean Subjective Measures for 3 trials with human decision-maker. Error bars
are ±1SEM (Standard Error of Mean)

As for objective measures, the data shows a significant difference (F = 2.57, p 0.0323) in Task

completion time between the first and sixth trials (regardless of condition). When data is sorted based on
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the order of trials within each condition no significant difference was found for the condition using the

model but for the human decision-maker, there is a significant difference (F = 4.04, p 0.0243) between

the first and third trial in the task completion time. No significant difference was found when comparing

the model against the human decision-maker in any of the measures. The results for three objective

measures namely, Task Completion Time, Robot Task Share, and Conflicts are presented in Table 6.4

Figures 6.7, 6.8 and 6.9.

Table 6.4: Mean and standard deviation of the objective measure based on conditions.

Assembling Car
Objective Measures

Task Completion Time (s) Robot Task Share Conflicts

Conditions
Model 54.20833(STD=5.38) 0.44047 (STD=0.0275) 0.145833 (STD=0.171)
Wizard 53.0833 (STD=5.90856) 0.4583 (STD=0.038391704) 0.08333 (STD=0.1491)

Figure 6.7: Bar graph of mean task completion time based on conditions. Error bars are ±1SEM
(Standard Error of Mean)

There was a significant difference between the first and last trials in the mean of the Task Completion

Time when data was sorted according to the order of the trial both in the overall experiment data and for

the Wizard condition. The ANOVA tables are presented in Tables 6.5 and 6.6

The result for the objective measure are also sorted based on the order of the tirals and presented in
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Figure 6.8: Bar graph of mean robot task share based on conditions. Error bars are ±1SEM (Standard
Error of Mean)

Figure 6.9: Bar graph of mean number of Conflicts based on conditions. Error bars are ±1SEM
(Standard Error of Mean)

Table 6.5: ANOVA Table for task completion time based on the order of trials

Task Completion Time
Source SS df MS F Prob > F

Columns 566.46 5 113.292 2.57 0.0323
Error 3973.5 90 44.15
Total 4339.96 95

Table 6.7 and Figure 6.10, 6.11 and 6.12.
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Table 6.6: ANOVA table for task completion time for human-decision -maker condition based on the
order of trials.

Task Completion Time
Source SS df MS F Prob > F

Columns 411.17 2 205.583 4.04 0.0243
Error 2288.5 45 50.856
Total 2699.67 47

Table 6.7: Mean and standard deviation of objective measures based on the trial order.

Trials
Objective Measures

Task Completion Time Robot Task Share Conflicts
T1 56.8125 (STD=8.3364160) 0.446428571 (STD=0.048795) 0.3125 (STD=0.478714)
T2 55.1875 (STD=7.43163284) 0.473214286 (STD=0.06838765) 0.1875 (STD=0.403113)
T3 54.75 (STD=4.892170616) 0.464285714 (STD=0.063888) 0.0625 (STD=0.25)
T4 54.125 (STD=7.098121817) 0.4375 (STD=0.035714286) 0 (STD=0)
T5 51.4375 (STD=6.562202374) 0.4375 (STD=0.035714286) 0.125 (STD=0.341565)
T6 49.5625 (STD=4.774498228) 0.4375 (STD=0.035714286) 0 (STD=0)

Figure 6.10: Bar graph of mean task completion time (/second) based on the trial order. Error bars are
±1SEM (Standard Error of Mean)

Similar to the previous HRC experiment, after finding no significant difference, the Bayesian

comparison of the data for two conditions; the "Wizard of Oz" and the "Model", showed a high

likelihood of similarity between the two conditions for all subjective and objective measures. The data

was normalised for this analysis based on the maximum values of each measure. The comparison results

are depicted in Tables 6.8 and 6.9.
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Figure 6.11: Bar graph of mean robot task share based on the trial order. Error bars are ±1SEM
(Standard Error of Mean)

Figure 6.12: Bar graph of mean of the number of the conflicts based on the trial order. Error bars are
±1SEM (Standard Error of Mean)

Table 6.8: Bayesian Comparison for the objective measures.

Measure Model is better Difference is negligible Human is better Rope
Robot Task Share 0.000364 0.9996192 1.680241e-05 0.1

Task Completion Time 1.555164e-05 0.99992125 7.719776e-05 0.1
Conflicts 0.0002701 0.99970587 2.4007e-05 0.5

Table 6.9: Bayesian Comparison for the subjective measures.

Measure Model is better Difference is negligible Human is better Rope
Collaboration 9.5738e-05 0.975926 0.02397785 0.1

Interaction 8.44871e-05 0.958927 0.040988432 0.1
Robot Perception 0.00182163 0.9954326 0.002745791 0.1

Acting 0.00205497 0.922336 0.0756091 0.1
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6.7 Discussion

The car assembling HRC experiment was designed to demonstrate the transferability and expandability

of the proposed architecture. To do so, no model was retrained and the order of the assembling task

was mapped to already learnt colour order in the colour policy. The distance policy was used as it was

trained and indeed proved to be an underlying part of a pick-and-place task.

Bearing in mind that the HRC experiment of assembling the toy car was run with 16 participants,

when data was sorted per conditions, the human decision-maker scored slightly better than the model in

all the objective and subjective measures but no significant difference was found. A further Bayesian

comparison of the data revealed a high probability of similarity between these two conditions.

Using car assembling experiment data sorted on the order of the trials, a significant difference was

found in the task completion time between the first and the last trial. The significant difference was

also observed when only looking at the human decision-maker trials sorted based on the order of the

trials, however, not for the model trials, although the time was improved over trials. The reason for

this decrease in the task completion time from the first trial to the last could be that the same task was

exactly repeated 6 times during this experiment. This learning effect was prevented in the previous HRC

experiments (presented in Chapter 5) as the task was changing randomly for trials and in each trial,

participants were making a different alphanumeric character. Having a significant change in the Task

Completion Time for the Wizard condition and lack of this significant difference in the model condition

could also indicate that participants could adapt better to the robot in the wizard condition. However,

further investigation with more participants is required for a concrete conclusion here.

Additionally, fewer conflicts were recorded in the car assembling experiment when compared to the

previous HRC experiments. This could be because of having fewer parallel actions in the tasks. As in

the previous experiments, in the task used for data collection and training of the models, there were 3

pairs of blocks of the same colours giving them the same priority to be picked in parallel, while in the

car assembling task, only wheels have the same priority.

Overall, the result indicates a good potential for transferability of the models trained on a generic

task to different more application-specific tasks if they shared some characteristics, such as turn-taking.

This is important to note, the Colour policy model was trained for an order of four colours and the car
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assembling task had also four main steps. However, it is possible to map unequal orders to the "Colour

policy" as by only presenting an object the model can create a new stimulus for that object and add it to

the order according to the way it was presented to the robot.

A recorded video of the experiment can be seen through this link.
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CONCLUSION AND FUTURE WORK

T hree research hypotheses were investigated in the work. First, the decision-making process in

a joint action for a generic pick-and-place task was modelled. This was done by developing a

novel decision-making architecture and by breaking down the decision process into decision

policies. Dynamic Neural Field (DNF) was chosen as the modelling framework and it proved to be

superior in performance when compared to black-box approaches like Artificial Neural Network (ANN)

in our setup. To test the architecture, a generic pick-and-place task was considered in which two decision

policies were involved. These policies were chosen carefully to represent both conscious (Colour policy)

and unconscious (Distance policy) cognitive processes involved in the joint action.

The current structure of the decision-making module is designed to be extendable by introducing

new policies as needed, which is a clear advantage of the proposed architecture. Currently, it is assumed

that both agents have an equal affordance for all actions, however, inspired by the role of canonical

neurons, in the future a policy model could be added for the agents’ affordances to have an architecture

for heterogeneous agents. Another example can be modelling user preferences resulting in a personalised

robot that can adapt to the user needs. This makes the architecture suitable for many applications; from

production lines to care-working or companion robots for older adults. It is also possible to combine this

architecture with the one proposed by Sarthou et al. [101] for considering tasks in which agents have

different perspectives of the environment. This could be done either by using their proposed modelling
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approach or a unified approach of using DNF models for the agent’s perspective.

Investigating the second hypothesis, the modelling results indicate that modelling complicated

policies can be achieved by integrating single policies and that conflicts can be resolved or prevented in

a joint action by means of internal simulation in the proposed Negotiation Layer. The structure can be

used for different tasks provided that the relevant policies are modelled and integrated into the system.

Partner’s action is always considered in the decision-making process for joint actions, hence making this

system a good candidate to be embedded in robots for human-robot collaboration (HRC). This was done

to further test the architecture and models developed based on the generic task presented in Chapter 3.

Two separate within-subject HRC experiments were conducted to investigate the role of the negotia-

tion layer and compare the architecture to a human decision-maker, respectively. Having the negotiation

layer improved all the objective measures significantly as well as Anthropomorphism and Perceived

intelligence measures from the Godspeed questionnaire. The "Wizard of Oz" experiments showed that

the performance of the proposed decision-making architecture is very close to a human decision-maker

as no significant difference was found in any measure and a further Bayesian comparison showed a high

probability of similarity.

In both HRC experiments, the robot using the complete decision-making model was perceived as

slower or calmer than the other conditions, i.e., without the negotiation layer and human decision-maker.

This perceived effect is due to the robot hesitating when it detects a conflict situation and the negotiation

layer deliberates on possible ways to resolve the conflict. This pausing moment did not have an adverse

effect on the mean task completion time in the first HRC experiment. In this experiment, despite being

perceived as slower, the robot with the negotiation layer has a significantly lower task completion time.

This is due to the fact that the robot without the negotiation layer had to repeat its actions after a conflict.

However, in the second HRC experiment, the robot with the human decision-maker had a slightly lower

task completion time. This difference was not significant and even a further Bayesian comparison

analysis of this data showed a high probability of similarity. Therefore, overall, the performance of the

architecture could be considered similar to a human-decision maker.

One clear shortcoming of the current integration of the architecture with the robot low-level control

is that the model is implemented in the MATLAB environment and is communicating with the robot

controller through a TCP/IP socket server. This has limited the decision points of the robot so that, if the
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robot’s low-level controller receives a decision from the model and starts implementing it, its action

cannot be changed until it is fully implemented.

In an extreme case, this could cause a confusing movement of the robot. For instance, in one case

the model outcome was picking one of the last two blocks located on the right side of the scene and

while the robot was approaching that block the human partner moved towards the other block at the

left of the scene but as the human was moving towards the other block the trajectory passed the block

chosen by the robot. This approaching-like movement of the human resulted in the model to change the

decision to the other block on the left that human intended to pick but not reached yet. Receiving the

changed decision the robot moved towards the other block but by the time it reached the picking position

its partner had already picked up the block. This meant the model had to send the robot another change

of decision to go back to the previous block on the right. This led to a "zigzag" movement of the robot

between two blocks (This was recorded using the ROS tf coordinate frames and a screen-captured video

of the ROS visualisation tool "RVIZ" is provided here and the decision change can be seen from second

50 of the video). The lack of real-time communication of the decision to the robot low-level control

is also the reason there are conflicts even when the robot is controlled by a human decision-maker. To

address this limitation, future work could be to convert the models developed in MATLAB environment

to the robot low-level controller environment (c++) so that the model runs continuously in the control

loop and can update the robot actions in real-time.

This is noteworthy that exploring individual differences in a joint action was considered out of

the scope of this work and hence not explored. However, neuroscientists have investigated the effect

of individual personality traits on joint actions. For instance, Novembre et al. [88] found a positive

correlation between the individual "perspective-taking" score and their adaptation in the designed joint

action task. The "perspective-taking" ability, on the other hand, is known to be stronger in empathic

individuals [32, 48, 71]. This led Novembre et al. [88] to use an empathy questionnaire at the end of each

trial for each participant. A similar analysis could be done for the presented experiments. Considering

few participants, despite facing the robot’s "mistakes", preferred to work with the robot that did not take

their actions into account and just performed the task, such analysis could reveal any correlation of such

preferences with participants’ personality traits.

Considering the discrete state of techniques like POMDP, further improvements may be achieved by
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training the models by means of Partially Observable Monte Carlo Planning (POMCP) as a continuous

state method similar to Goldhoorn et al. [52]. Finally, investigating the third research hypothesis,

a car assembling task was designed for human-robot collaboration. The car assembling experiment

demonstrated the generic nature and expandability of the architecture. The overall architecture performed

similarly to the human decision maker in the task using adapted policy models trained for a simple

pick-and-place task. Again, Distance Policy showed to be an integral part of any task involving the

pick-and-place process and its model did not need any retraining. The colour order which was trained

for the previous task also was mapped to the order of car assembly and it did not need any retraining.

This shows the high potential for the transferability and expandability of the trained models and the

architecture for more complex tasks.

In conclusion, three research hypotheses were investigated. Modelling decision policies was done

with high accuracy. The presented decision-making architecture demonstrated a human-like performance

in HRC experiments with the same task as the one used in the modelling phase and further could be

applied to a more realistic task without retraining the models. While the application of the architecture

to higher dimension interactions like triadic joint action needs further investigation and is beyond the

scope of this work, the results of the modelling and HRC experiments show the potential of the proposed

methods for dyadic joint action. Hence, we believe the architecture in its current form could already be

applied to many real-world applications like manufacturing.
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A.1 Quantitative Graphs and Tables for Two HRC Experiments

Boxplot Graphs and ANOVA tables for the first and second experiments of the objective and subjective

measures are presented here.

Table A.1: ANOVA Table for task completion time in the first experiment.

Task Completion Time
Source SS df MS F Prob >F

Columns 61827.2 1 61827.2 17.03 9.15531e-05
Error 283250.8 78 3631.4
Total 345078 79

Table A.2: ANOVA Table for robot task share in the first experiment.

Robot Task Share
Source SS df MS F Prob >F

Columns 0.02473 1 0.02473 33.9 1.2273e-07
Error 0.0569 78 0.00073
Total 0.08164 79
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Figure A.1: Boxplots for 3 objective measures: a. Task Completion Time, b. Robot Task Share and c.
Number of Conflicts for the first HRC experiment.

Table A.3: ANOVA Table for the number of conflicts in the first HRC experiment.

Conflicts
Source SS df MS F Prob >F

Columns 525.313 1 525.313 205.82 1.39646e-23
Error 199.075 78 2.552
Total 724.388 79
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Figure A.2: Boxplots for 2 of subjective measures with significant difference between two conditions: a.
Anthropomorphism, b. Perceived Intelligence in the first HRC experiment.
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Figure A.3: Boxplots for 3 of subjective measures: a. Animacy, b. Likeability and c. Perceived Safety in
the first HRC experiment.

Table A.4: ANOVA Table for the Godspeed Anthropomorphism in the first HRC experiment.

Godspeed Anthropomorphism
Source SS df MS F Prob >F

Columns 5 1 5 8.4 0.0049
Error 46.422 78 0.59515
Total 51.422 79

Table A.5: ANOVA Table for the Godspeed Animacy in the first experiment.

Godspeed Animacy
Source SS df MS F Prob > F

Columns 1.7503 1 1.7503 2.93 0.0911
Error 46.6632 78 0.59825
Total 48.4135 79

Table A.6: ANOVA Table for the Godspeed Likeability in the first experiment.

Godspeed Likeability
Source SS df MS F Prob > F

Columns 1.682 1 1.682 3.91 0.0516
Error 33.566 78 0.43033
Total 35.248 79

Table A.7: ANOVA Table for the Godspeed Perceived Intelligence in the first experiment.

Godspeed Perceived Intelligence
Source SS df MS F Prob > F

Columns 9.248 1 9.248 20.83 1.83802e-o05
Error 34.622 78 0.44387
Total 43.87 79
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Table A.8: ANOVA Table for the Godspeed Perceived Safety in the first experiment.

Godspeed Perceived Safety
Source SS df MS F Prob > F

Columns 0.6125 1 0.6125 1.51 0.2232
Error 31.6861 78 0.40623
Total 32.2986 79

Table A.9: ANOVA Table for task completion time in the second experiment.

Task Completion Time
Source SS df MS F Prob > F

Columns 9990.5 1 9990.45 1.8 0.1841
Error 433846.3 78 5562.13
Total 443836.8 79
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Figure A.4: Boxplots for 3 objective measures: a. Task Completion Time, b. Robot Task Share and c.
Number of Conflicts for the second HRC experiment.

Table A.10: ANOVA Table for robot task share in the second experiment.

Robot Task Share
Source SS df MS F Prob > F

Columns 0.00063 1 0.00063 0.56 0.4562
Error 0.08708 78 0.00112
Total 0.08771 79

Table A.11: ANOVA Table for the number of conflicts in the second experiment.

Conflicts
Source SS df MS F Prob > F

Columns 1.0125 1 1.0125 1.86 0.1761
Error 42.375 78 0.54327
Total 43.3875 79
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Figure A.5: Boxplots for 2 other subjective measures: a. Perceived Intelligence, b. Perceived Safety in
the second HRC experiment.
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Figure A.6: Boxplots for 3 subjective measures: a. Anthropomorphism, b. Animacy and c. Likeability
in the second HRC experiment.

Table A.12: ANOVA Table for the Godspeed Anthropomorphism in the second experiment.

Godspeed Anthropomorphism
Source SS df MS F Prob > F

Columns 0.45 1 0.45 0.95 0.3322
Error 36.87 78 0.47269
Total 37.32 79
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Table A.13: ANOVA Table for the Godspeed Animacy in the second experiment.

Godspeed Animacy
Source SS df MS F Prob > F

Columns 0.8681 1 0.86806 1.69 0.1978
Error 40.1264 78 0.51444
Total 40.9944 79

Table A.14: ANOVA Table for the Godspeed Likeability in the second experiment.

Godspeed Likeability
Source SS df MS F Prob > F

Columns 0.0845 1 0.0845 0.17 0.678
Error 37.935 78 0.48635
Total 38.0195 79

Table A.15: ANOVA Table for the Godspeed Perceived Intelligence in the second experiment.

Godspeed Perceived Intelligence
Source SS df MS F Prob > F

Columns 0.2645 1 0.2645 0.6 0.4418
Error 34.515 78 0.4425
Total 34.7795 79

Table A.16: ANOVA Table for the Godspeed Perceived Safety in the second experiment.

Godspeed Perceived Safety
Source SS df MS F Prob > F

Columns 0.05 1 0.05 0.09 0.7696
Error 45.1444 78 0.57877
Total 45.1944 79
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A.2 NVivo Qualitative Tables for Two HRC Experiments

Here the result of the NVivo Word Frequency Query of the answers to the first interview question for

two experiments is presented.

Table A.17: NVivo Word Frequency Query of Answers to the first post-experiment interview question

describing the robot using the model without negotiation layer in the first experiment.

Word Length Count Weighted Percentage (%) Similar Words

mistakes 8 12 7.55 mistakes

faster 6 8 5.03 faster

going 5 6 3.77 going

moving 6 5 3.14 moved, moving

aggressive 10 3 1.89 aggressive

quicker 7 3 1.89 quicker

responsive 10 3 1.89 responsive

action 6 2 1.26 action

approach 8 2 1.26 approach, approached

competition 11 2 1.26 competition, competitive

condition 9 2 1.26 condition

confident 9 2 1.26 confident

empty 5 2 1.26 empty

intelligence 12 2 1.26 intelligence, intelligent

times 5 2 1.26 times

wanted 6 2 1.26 wanted

adapt 5 1 0.63 adapt

ahead 5 1 0.63 ahead

alone 5 1 0.63 alone

already 7 1 0.63 already

anticipate 10 1 0.63 anticipate

blocks 6 1 0.63 blocks

collision 9 1 0.63 collision

consideration 13 1 0.63 consideration

Continuation of Table A.17 on the Next Page

100



APPENDIX A. APPENDIX

Continuation of Table A.17

decision 8 1 0.63 decision

dominant 8 1 0.63 dominant

dumber 6 1 0.63 dumber

emotional 9 1 0.63 emotional

errors 6 1 0.63 errors

exciting 8 1 0.63 exciting

following 9 1 0.63 following

foolish 7 1 0.63 foolish

getting 7 1 0.63 getting

happen 6 1 0.63 happen

hesitating 10 1 0.63 hesitating

ignored 7 1 0.63 ignored

initiative 10 1 0.63 initiative

intrusive 9 1 0.63 intrusive

irritated 9 1 0.63 irritated

lacked 6 1 0.63 lacked

looking 7 1 0.63 looking

machine 7 1 0.63 machine

making 6 1 0.63 making

movements 9 1 0.63 movements

needs 5 1 0.63 needs

nicer 5 1 0.63 nicer

pleasant 8 1 0.63 pleasant

pressured 9 1 0.63 pressured

puppy 5 1 0.63 puppy

pushing 7 1 0.63 pushing

recognise 9 1 0.63 recognise

repeated 8 1 0.63 repeated

rushing 7 1 0.63 rushing

Continuation of Table A.17 on the Next Page
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Continuation of Table A.17

scared 6 1 0.63 scared

script 6 1 0.63 script

seemed 6 1 0.63 seemed

sensing 7 1 0.63 sensing

several 7 1 0.63 several

smoother 8 1 0.63 smoother

space 5 1 0.63 space

spots 5 1 0.63 spots

sympathetic 11 1 0.63 sympathetic

taking 6 1 0.63 taking

thing 5 1 0.63 thing

trying 6 1 0.63 trying

understand 10 1 0.63 understand

unpredictable 13 1 0.63 unpredictable

useless 7 1 0.63 useless

Table A.18: NVivo Word Frequency Query of Answers to the first post-experiment interview question

describing the robot using the complete model with negotiation layer in the first experiment.

Word Length Count Weighted Percentage (%) Similar Words

waiting 7 11 5.73 waited, waiting

interactive 11 9 4.69 interaction, interactive

slower 6 8 4.17 slower

action 6 6 3.12 action, actions

better 6 5 2.60 better

responsive 10 5 2.60 responsible, responsive

collaborative 13 4 2.08 collaboration, collaborative

aware 5 3 1.56 aware

cared 5 3 1.56 cared, careful, caring

considerate 11 3 1.56 considerate

Continuation of Table A.18 on the Next Page
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Continuation of Table A.18

considering 11 3 1.56 considered, considering

hesitant 8 3 1.56 hesitant

together 8 3 1.56 together

another 7 2 1.04 another

behaviour 9 2 1.04 behaviour

changed 7 2 1.04 changed

condition 9 2 1.04 condition

continuous 10 2 1.04 continuous

easier 6 2 1.04 easier

faster 6 2 1.04 faster

first 5 2 1.04 first

humanlike 9 2 1.04 humanlike

intelligent 11 2 1.04 intelligent

moved 5 2 1.04 moved

predictable 11 2 1.04 predictable

understand 10 2 1.04 understand

accurate 8 1 0.52 accurate

achieve 7 1 0.52 achieve

adaptive 8 1 0.52 adaptive

adjusted 8 1 0.52 adjusted

agile 5 1 0.52 agile

animated 8 1 0.52 animated

apprentice 10 1 0.52 apprentice

backing 7 1 0.52 backing

child 5 1 0.52 child

choices 7 1 0.52 choices

comfortable 11 1 0.52 comfortable

companion 9 1 0.52 companion

compassion 10 1 0.52 compassion

Continuation of Table A.18 on the Next Page
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Continuation of Table A.18

competitive 11 1 0.52 competitive

confident 9 1 0.52 confident

cooperative 11 1 0.52 cooperative

curiosity 9 1 0.52 curiosity

delayed 7 1 0.52 delayed

effective 9 1 0.52 effective

efficient 9 1 0.52 efficient

engaged 7 1 0.52 engaged

enjoyed 7 1 0.52 enjoyed

evenly 6 1 0.52 evenly

finish 6 1 0.52 finish

following 9 1 0.52 following

friendly 8 1 0.52 friendly

going 5 1 0.52 going

human 5 1 0.52 human

impacting 9 1 0.52 impacting

intrigued 9 1 0.52 intrigued

liked 5 1 0.52 liked

longer 6 1 0.52 longer

matched 7 1 0.52 matched

negative 8 1 0.52 negative

opponent 8 1 0.52 opponent

partnership 11 1 0.52 partnership

pattern 7 1 0.52 pattern

perception 10 1 0.52 perception

person 6 1 0.52 person

pleasant 8 1 0.52 pleasant

polite 6 1 0.52 polite

prioritised 11 1 0.52 prioritised

Continuation of Table A.18 on the Next Page
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Continuation of Table A.18

quicker 7 1 0.52 quicker

reading 7 1 0.52 reading

recognised 10 1 0.52 recognised

responding 10 1 0.52 responding

showing 7 1 0.52 showing

situation 9 1 0.52 situation

smooth 6 1 0.52 smooth

smoother 8 1 0.52 smoother

someone 7 1 0.52 someone

something 9 1 0.52 something

steady 6 1 0.52 steady

strategy 8 1 0.52 strategy

synch 5 1 0.52 synch

takes 5 1 0.52 takes

think 5 1 0.52 think

trusted 7 1 0.52 trusted

trying 6 1 0.52 trying

watchful 8 1 0.52 watchful

Table A.19: NVivo Word Frequency Query of Answers to the first post-experiment interview question

describing the robot using the complete model with negotiation layer in the second experiment.

Word Length Count Weighted Percentage (%) Similar Words

waiting 7 21 13.82 waited, waiting, waits

difference 10 7 4.61 difference, different

like 4 6 3.95 like

changed 7 5 3.29 changed

start 5 5 3.29 start

action 6 4 2.63 action

first 5 4 2.63 first

Continuation of Table A.19 on the Next Page
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Continuation of Table A.19

paused 6 4 2.63 pause, paused, pausing

responsive 10 4 2.63 responsive

slower 6 4 2.63 slower

choice 6 3 1.97 choice

decision 8 3 1.97 decision

hesitant 8 3 1.97 hesitant

taking 6 3 1.97 take, taking

together 8 3 1.97 together

working 7 3 1.97 working

approached 10 2 1.32 approached, approaching

based 5 2 1.32 based

behaviour 9 2 1.32 behaviour

humanlike 9 2 1.32 humanlike

interactive 11 2 1.32 interactive

make 4 2 1.32 make, making

moved 5 2 1.32 moved

polite 6 2 1.32 polite

quicker 7 2 1.32 quicker

sometimes 9 2 1.32 sometimes

tell 4 2 1.32 tell

think 5 2 1.32 think, thinking

accommodating 13 1 0.66 accommodating

aggressive 10 1 0.66 aggressive

another 7 1 0.66 another

aware 5 1 0.66 aware

calmer 6 1 0.66 calmer

caring 6 1 0.66 caring

cautious 8 1 0.66 cautious

chose 5 1 0.66 chose

Continuation of Table A.19 on the Next Page
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Continuation of Table A.19

closest 7 1 0.66 closest

collaborative 13 1 0.66 collaborative

comfortable 11 1 0.66 comfortable

conservative 12 1 0.66 conservative

considerate 11 1 0.66 considerate

considered 10 1 0.66 considered

cooperative 11 1 0.66 cooperative

elegant 7 1 0.66 elegant

feel 4 1 0.66 feel

finish 6 1 0.66 finish

follow 6 1 0.66 follow

furthest 8 1 0.66 furthest

gave 4 1 0.66 gave

getting 7 1 0.66 getting

less 4 1 0.66 less

lifelike 8 1 0.66 lifelike

long 4 1 0.66 long

longer 6 1 0.66 longer

made 4 1 0.66 made

mechanical 10 1 0.66 mechanical

much 4 1 0.66 much

need 4 1 0.66 need

note 4 1 0.66 note

place 5 1 0.66 place

preferred 9 1 0.66 preferred

recognise 9 1 0.66 recognise

strategy 8 1 0.66 strategy

sure 4 1 0.66 sure

task 4 1 0.66 task

Continuation of Table A.19 on the Next Page
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Continuation of Table A.19

thought 7 1 0.66 thought

uncertain 9 1 0.66 uncertain

used 4 1 0.66 used

went 4 1 0.66 went

Table A.20: NVivo Word Frequency Query of Answers to the first post-experiment interview question

describing the robot with a human decision-maker in the second experiment.

Word Length Count Weighted Percentage (%) Similar Words

faster 6 15 13.76 faster

difference 10 8 7.34 difference, different

quicker 7 6 5.50 quicker

decision 8 4 3.67 decision, decisive

responsive 10 3 2.75 responsive

waiting 7 3 2.75 waited, waiting

working 7 3 2.75 worked, working

action 6 2 1.83 action

first 5 2 1.83 first

getting 7 2 1.83 getting

interaction 11 2 1.83 interaction, interactive

machinelike 11 2 1.83 machinelike

making 6 2 1.83 making

responded 9 2 1.83 responded, responding

similar 7 2 1.83 similar

based 5 1 0.92 based

behaviour 9 1 0.92 behaviour

changed 7 1 0.92 changed

collaborative 13 1 0.92 collaborative

comparative 11 1 0.92 comparative

competing 9 1 0.92 competing

Continuation of Table A.20 on the Next Page
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Continuation of Table A.20

competitive 11 1 0.92 competitive

complete 8 1 0.92 complete

decide 6 1 0.92 decide

determined 10 1 0.92 determined

efficient 9 1 0.92 efficient

finished 8 1 0.92 finished

follow 6 1 0.92 follow

furthest 8 1 0.92 furthest

independently 13 1 0.92 independently

initiative 10 1 0.92 initiative

liked 5 1 0.92 liked

order 5 1 0.92 order

placing 7 1 0.92 placing

quick 5 1 0.92 quick

reaction 8 1 0.92 reaction

ready 5 1 0.92 ready

rushed 6 1 0.92 rushed

short 5 1 0.92 short

slower 6 1 0.92 slower

smoother 8 1 0.92 smoother

snappier 8 1 0.92 snappier

strategy 8 1 0.92 strategy

taking 6 1 0.92 taking

unspoken 8 1 0.92 unspoken

wanted 6 1 0.92 wanted

wilder 6 1 0.92 wilder

A.3 Questionnaires
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Figure A.7: Godspeed questionnaire [7] used in the HRC experiment presented in chapter 4.
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Dimension Question 

Collaboration 

In your opinion, the collaboration with the robot to perform the task was: 

Restrictive        Adaptive 

Useless             Useful  

Unsettling        Satisfactory 

Annoying         Acceptable 

Insecure           Secure 

Interaction 

In your opinion, generally, the interaction was: 

Negative          Positive  

Complicated   Simple 

Not practical   Practical 

Unpredictable Predictable 

Ambiguous      Clear 

Robot 
perception 

In your opinion, the robot is rather: 

Machinelike    Humanlike  

Artificial           Living 

Inert                 Animated 

Apathetic        Responsive 

Unpleasant     Pleasant 

Disagreeable  Agreeable 

Stupid              Intelligent 

Incompetent  Competent 

Acting 

In your opinion, the robot actions were: 

Inappropriate Appropriate  

Useless            Useful 

Unpredictable Predictable 
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Figure A.8: PeRDITA questionnaire [35] used in the HRC experiment presented in chapter 5.
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