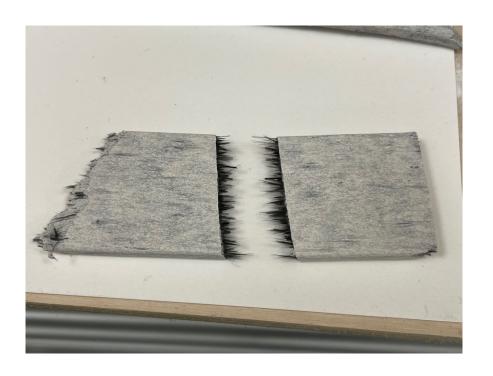
Extrusion of Ceramic Matrix Composites

T. Jorgensen S. Lightfoot

Centre For Print Research Labs, University of the West of England, Bristol, UK

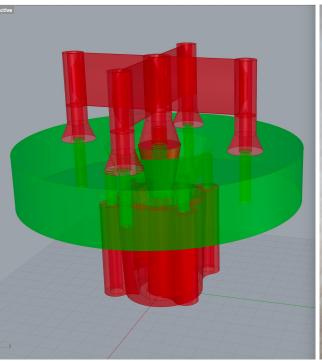
Presentation content

Background and nature for research
Early stage – proof of concept focussed on process and tooling


Early tests

Proof of concept of CMC extrusion with substitute fibre Extrusion die design

Test with Axiom 7800-610 Adopting pre-preg material for extrusion

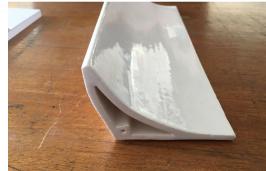

Other possibilities with extruded CMC Curved extrusions, integrated coating


Conclusion
Early findings, further research options

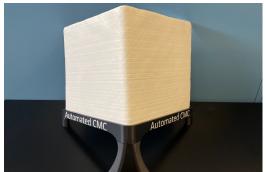
Background for study:

Toolmaking: 3D printing of extrusion dies for ceramics


Interdisciplinary Innovation with ceramic extrusion



cob/adobe bricks for zero carbon construction



new architectural applications ARUP

CMC: Aerospace Energy

Automated Fibre Placement (AFP) technology CMC (work with prepreg only)

fibre-matrix prof of concept ceramic test bodies

610 Chopped Fibers, DC-11 10000 den, with PVA sizing 1/8 in.(3,2 mm), 1 1/2 in.(12	'' /' I 100 - 100 lbe	£281.19		Science. Applied to Life.™
--	-----------------------	---------	--	----------------------------

AB2				AB2 GF3			
Main Body	% by weight	Sample (g)		Main Body	% by weight	Sample (g)	
Alumina 115	1	00	200	Alumina 115		100	100
% Additions to Main Body				% Additions to Main Body			
Bentonite	4	1.2	8.4	Bentonite		4.2	4.2
Colloidal Silica (40% wt to water)		50	120	Colloidal Silica (40% wt to water)		60	60
Water		0	0	Water		0	0
				Fibre			
				Glass Fibre 3mm Strand		10	10
MB2				MB2 GF3			
Main Body	% by weight	Sample (g)		Main Body	% by weight	Sample (g)	
Molochite 325	1	00	200	Molochite 325		100	100
% Additions to Main Body				% Additions to Main Body			
Bentonite	4	1.2	8.4	Bentonite		4.2	4.2
Colloidal Silica		50	120	Colloidal Silica		60	60
Water		0	0	Water		0	0
				Fibre			
				Glass Fibre 3mm Strand		5	5
AMB2				AMB2 GF3			
Main Body	% by weight	Sample (g)		Main Body	% by weight	Sample (g)	
Alumina 115		50	50	Alumina 115		50	50
Molochite 325		50	50	Molochite 325		50	50
% Additions to Main Body				% Additions to Main Body			
Bentonite	4	1.2	4.2	Bentonite		4.2	4.2
Colloidal Silica		50	60	Colloidal Silica		60	60
Water			0	Water			0
				Fibre			
				Glass Fibre 3mm Strand		5	5

AMB2 GF3			
Main Body	% by weight	Sample (g)	
Alumina 115		50	50
Molochite 325		50	50
% Additions to Main Body			
Bentonite		4.2	4.2
Colloidal Silica		75	75
Water			0
Fibre			
Glass Fibre 3mm Strand		10	10
AMB2 GF3			
Main Body	% by weight	Sample (g)	
Alumina 115		50	50
Molochite 325		50	50
% Additions to Main Body			
Bentonite		4.2	4.2
Colloidal Silica		90	90
Water			0
Fibre			
Glass Fibre 3mm Strand		20	20
AMB2 GF3			
Main Body	% by weight	Sample (g)	
Alumina 115		50	50
Molochite 325		50	50
% Additions to Main Body			
Bentonite		4.2	4.2
Colloidal Silica		120	120
Water			0
Fibre			
Glass Fibre 3mm Strand		40	40

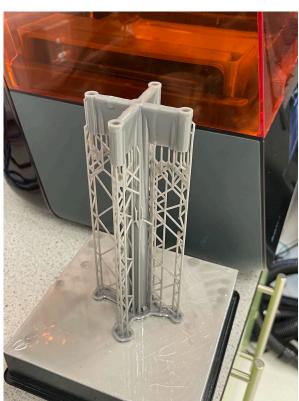
examples of test bodies composition for extrudability

examples of fibre ratio tests

fibre-matrix test recipes approach

Extrudability and shrinkage tests

larger scale extrusion feasibility tests



3D printed extrusion dies

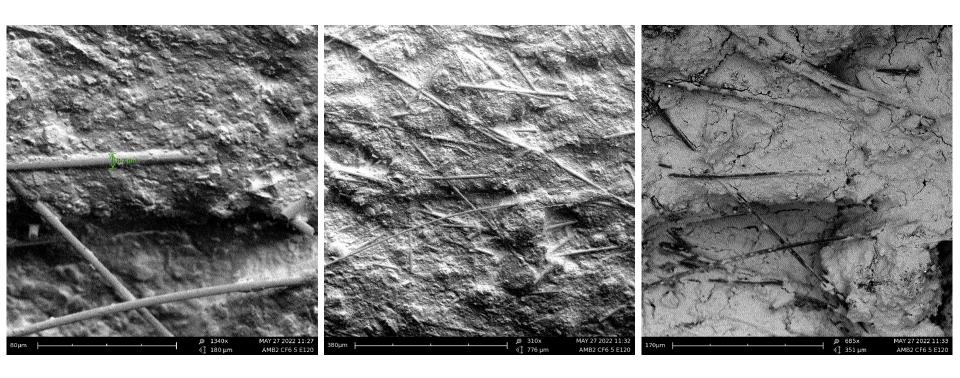
long extruder nozzles approach

tests with carbon fibre

fibre matrix composite preparation, tests with 3, 6 and 12 mm carbon strands to explore other fibres and longer chopped strands

Carbon fibre body tests

visual aid for fibre alignment and density aid


fibre distribution and alignment

200 X magnification (10 % 6mm Carbon fibre)

SEM observations

AMB2 body with 10 % 6mm carbon fibre

Page 3/10

(Contd. on page 4)

Safety Data Sheet (SDS)
OSHA HazCom Standard 29 CFR 1910.1200(g) and GHS Rev 03.

Issue date 10/25/2017

Reviewed on 10/25/2017

Trade name: AX-7800-610

- · Information for doctor:
- · Most important symptoms and effects, both acute and delayed: No further relevant information available.
- Indication of any immediate medical attention and special treatment needed:
- No further relevant information available.

Extinguishing media:

Suitable extinguishing agents:

CO2, sand, dry chemical, water spray or alcohol resistant foam.

Use fire fighting measures that suit the environment.

Special hazards arising from the substance or mixture: Exothermic reaction may occur.

Advice for firefighters:

Protective equipment: Wear full protective suit.

Wear self-contained respiratory protective device.

Personal precautions, protective equipment and emergency procedures:

Treat any fumes as toxic.

Ensure adequate ventilation.

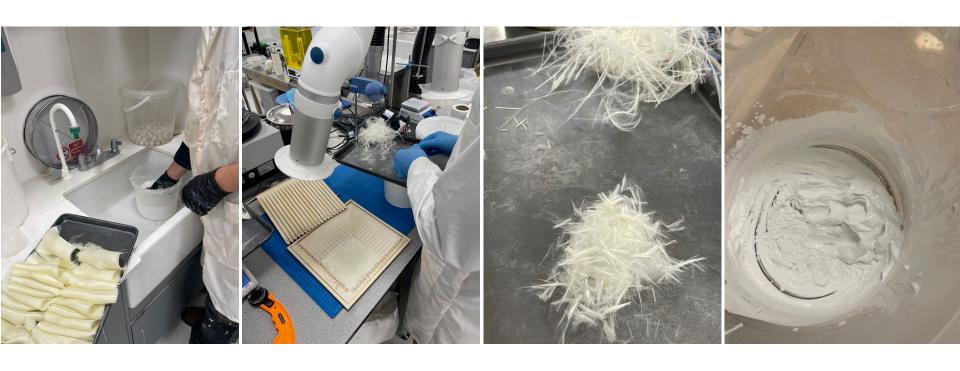
Environmental precautions: Do not allow to enter sewers/surface or ground water.

Methods and material for containment and cleaning up; Pick up mechanically.

Reference to other sections:

See Section 7 for information on safe handling.

See Section 8 for information on personal protection equipment.


See Section 13 for disposal information.

Protective Action Criteria for Chemicals

	Transfer Criticina for Criticina	
PAC-1:		
1344-28-1	Aluminium Oxide	15 mg/m
7631-86-9	Silicon Dioxide	18 mg/m
57-55-6	Propylene Glycol	30 mg/m
9002-89-5	Poly(vinyl alcohol)	24 mg/m
56-81-5	56-81-5 Glycerin	
PAC-2:		
1344-28-1	Aluminium Oxide	170 mg/m ³
7631-86-9	Silicon Dioxide	740 mg/m ³
57-55-6	Propylene Glycol	1,300 mg/m
9002-89-5	Poly(vinyl alcohol)	270 mg/m ³
56-81-5	-5 Glycerin	
PAC-3:		
1344-28-1	Aluminium Oxide	990 mg/m ³
7631-86-9	Silicon Dioxide	4,500 mg/m
57-55-6	5-6 Propylene Glycol 7	
9002-89-5	Poly(vinyl alcohol)	1,600 mg/m
56-81-5	Glycerin	1,100 mg/m

Adopting AXIOM 7800-610 pre-prep CMC to chopped strand

CMC Test Bar

Recipe

Addition of CMC fibre as percentage by weight to dry ingredients

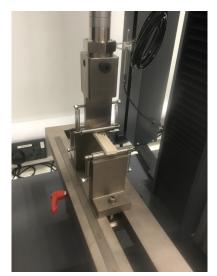
CMC - No Fibre

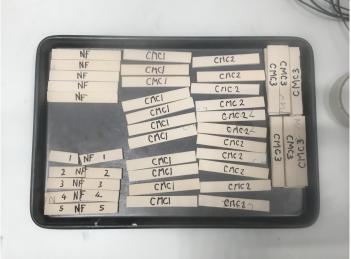
CMC 1 - Addition of 5.5% 12mm CMC Fibre

CMC 2 - Addition of 11% 12mm CMC Fibre

CMC 3 - Addition of 23% 12mm CMC Fibre - all by by wight

CMC No Fibre		
Material	Weight in Sample (g)	%
Dry Ingredients		
Alumina Nabalox 115-P	385	46.83698297
Molochite 325	385	46.83698297
Bentonite	52	6.326034063
Additions to Dry Ingredients		
Colloidal Silicate (40% wt. in Water)	600	72.99270073
Additions to Dry Ingredients		
12mm CMC Fibre	0	0

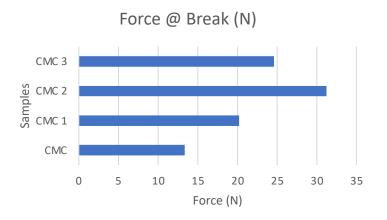

CMC 1	Maria la 1 : - Ca 1 - (a)	0/
Material	Weight in Sample (g)	%
Day la sus dis ats		
Dry Ingredients Alumina Nabalox 115-P	385	46.83698297
Molochite 325	385	46.83698297
Bentonite	52	6.326034063
Bentonite	52	6.326034063
Additions to Dry Ingredients		
colloidal Silicate (40% wt. in Water)	600	72.99270073
conclude Sincute (10% Wt. III Water)	000	72.33270073
Additions to Dry Ingredients		
12mm CMC Fibre	46	5.596107056
CMC 2		
Material	Weight in Sample (g)	%
Dry Ingredients		
Alumina Nabalox 115-P	288	46.3022508
Molochite 325	288	46.3022508
Bentonite	46	7.395498392
Additions to Dry Ingredients		
colloidal Silicate (40% wt. in Water)	450	72.34726688
Additions to Dry Ingredients		
12mm CMC Fibre	70	11.25401929
CMC 3		
Material	Weight in Sample (g)	%
Dry Ingredients		
Alumina Nabalox 115-P	200	46.2962963
Molochite 325	200	46.2962963
Bentonite	32	7.407407407
Additions to Dry Ingredients		
colloidal Silicate (40% wt. in Water)	350	81.01851852
Additions to Dry Ingredients		
12mm CMC Fibre	100	23.14814815

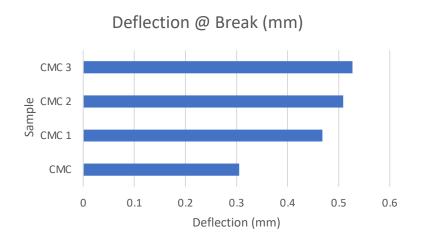

CMC Test Bars

Sample	Units
Fired Temprature	1100 c
Test Speed	1 mm/min
Pre Load	0.1 N
Width	15 mm
Span	80 mm
Thickness	5 mm

Using the standard ASTM C1341 for flexural strength using the mean of 5 samples per CMC test body

Mean of 5 samples								
Test Bodie	Force @ Peak (N)	Stress @ Peak (MPa)	Def. @ Peak (mm)	Strain @ Peak (%)	Force @ Break (N)	Stress @ Break (MPa)	Def. @ Break (mm)	Strain @ Break (%)
CMC	59.418	19.01	4 0.303	0.142	13.336	4.268	0.305	0.143
CMC 1	66.718	3 21.3	5 0.466	0.218	20.226	6.472	0.468	0.219
CMC 2	80.214	25.66	8 0.508	0.238	31.24	9.997	0.509	0.239
CMC 3	60.212	19.26	9 0.512	0.24	24.598	7.871	0.527	0.247




CMC Test Bars

3 Point Test

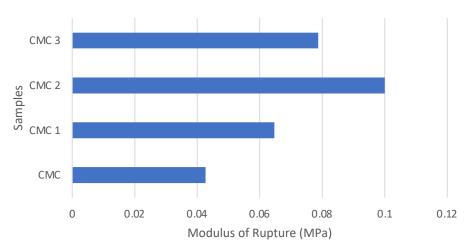
- Results from 3 point bend show strength increase with increase in fibre up to CMC 3 which has a drop in strength perhaps due to increased fibre causing voids within samples leading to defects
- Deflection @ break increases with higher fibre content including CMC 3.

Mean of 5 samples	
Test Bodie	Force @ Break (N)
CMC	13.336
CMC 1	20.226
CMC 2	31.24
CMC 3	24.598

Mean of 5 samples	
Test Bodie	Def. @ Break (mm)
CMC	0.305
CMC 1	0.468
CMC 2	0.509
CMC 3	0.527

CMC Test Bars

Modulus of Rupture (MPa)


A rectangular sample under a load on a three-point bend setup.

Modulus of Rupture = $\frac{3FL}{2bd^2}$

- F = load (force) at the cracked point (N).
- L = Total length of the support span.
- b = Total width of the support span.
- d = Total thickness of the support span.

Mean of 5 samples	
Test Bodie	Modulus of Rupture (Mpa)
CMC	0.0426752
CMC 1	0.0647232
CMC 2	0.099968
CMC 3	0.0787136

Modulus of Rupture Base on Mean

Explorations of other possibilities with extruded CMC

Integrated coating of extruded CNC (internal and external

Explorations of other possibilities with extruded CMC

curving (training) of extruded CMC pipes utilising rheology flow restriction approach

Conclusion and further work

Proof of concept Extrusion with CMC bodies is possible!


Extrusion die design critical Long nozzle to align fibres

Performance:

Industry standard for CNC performance far from met Clear indication of added strength though fibre inclusion in body

Further research

Tests with industry grade slurry (converted to paste) Body preparation: deairing mixing approach. Robotic curving of extrusion Other geometries

Thank you!

Dr Tavs Jorgensen

tavs.jorgensen@uwe.ac.uk

