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Abstract
This paper carefully considers random landscapes related to Kauffman’s NK model. In
particular, it considers a superset of this model (the NKP model) recently suggested in the
GA-analytic literature. Landscapes are exhaustively examined for both the distribution of
local optima relative to the global optima, and for characteristics that would effect
juxtapositional (building block based) search. The later is accomplished through a Walsh-
based analysis. The results indicate that K and P have distinct effects on peak distribution, K
controlling peak placement, and P affecting relative peak height. The results indicate that P
has little effect on a landscape’s expected juxtapositional complexity. Moreover, the results
suggest that landscapes developed by the NKP procedure are unlikely to have substantial
juxtapositional complexity. A Walsh-based procedure that embodies the flavor of the NKP
procedure, but can allow for greater expected juxtapositional complexity, is suggested.

1 Introduction

In examining evolutionary computation (EC) systems, it is useful to consider the nature of the
search problems to which they are applied. A great deal of the genetic algorithm (GA) literature is
directed at this examination. Careful consideration of search problems (or search landscapes as
they are often called) also has uses in descriptive science. For instance, consider Kauffman’s
examination of random landscapes with tunable levels of epistasis as an explanation of complexity
in biological systems (Kauffman, 1993). Since epistasis is a phenomenon that is easily related to
the GA search process, Kauffman’s NK landscapes are receiving increasing use as test problems
for GAs.

This paper examines NK landscapes (and their extensions) as EC test problems. Moreover, it
forms relationships between Kauffman-based and Walsh-based (deception-based) landscape



analysis and design. Finally, it suggests new methods for test landscape design, and for
understanding of real-world search landscapes.

2 Advantages of NK Landscapes

There are two main advantages to using NK landscapes as EC test problems:

• The landscapes have two tunable parameters, (N and K) that can be used to control
characteristics (e.g., landscape size and epistasis, respectively) of landscapes.

• For given values of N and K, one can generate a large number of landscapes, at random.
 These advantages allow one to easily generate a large number of EC test problems, and examine
EC performance versus the parameters N and K. However, the meaningfulness of such
examinations depends on the relationship between these parameters and the difficulty of the
landscapes for search in general, and EC search in particular. Kauffman’s work provides some
indication of the relationship between the parameters and certain aspects of landscape complexity.
This complexity may (or may not) indicate search difficulty.

 The complete relationship between the NK parameters and the difficulty of the search landscapes
they induce is not entirely clear, for several reasons. First, Kauffman’s descriptions are primarily
concerned with the relationship between epistasis and complexity for purposes of understanding
biological systems, rather than understanding generalized search problems. Second, Kauffman
does not exhaustively examine any landscapes for the relationship between parameters and general
properties. Instead, he only considers the results of randomly restarted hillclimbing on these
landscapes. Third, Kauffman only considers aspects of the landscapes that pertain to hillclimbing
search. In this paper, these will be called peak distribution characteristics. Kauffman does not
consider aspects of the landscapes that pertain to juxtapositional search operators, like crossover.
In this paper, these will be called juxtapositional characteristics.

 Moreover, it has been recently shown that the NK landscapes only cover a small region of the
space of problems with size N and epistasis K. Heckendorn and Whitley (1997) demonstrate this
fact by examining limitations on the number of non-zero Walsh coefficients induced by the NK
landscape generation process. Heckendorn and Whitley’s work, along with earlier work by
Altenberg (1994, 1997), suggests a broader class of random landscapes that cover the complete
space of size N problems with epistasis K, through the introduction of another parameter, P. We
will call these NKP landscapes.

 This paper provides an extensive analysis of NKP landscapes. The NK landscapes are a subset of
the NKP landscapes, and, therefore, this implies a more extensive analysis of NK landscapes as
well. The paper attempts to answer several questions:

• Does the P parameter change the complexity characteristics of the NK landscapes examined by
Kauffman? If so, how?

• Does an exhaustive examination of several NKP landscapes yield complexity characteristics that
agree with those reported by Kauffman?

• How does the difficulty of NKP landscapes for juxtapositional operators vary with N, K, and P
(e.g., how are N, K, and P related to deception and other GA-analytic measures of difficulty)?

 The practical implications of these examinations are two-fold:

• They provide greater understanding of the expected difficulty of EC test problems generated via
the NKP (and therefore, the NK) landscape procedure.



• They suggest possible alternative methods for generating random landscapes with tunable
difficulty for use as EC test problems.

Moreover, these examinations may provide further insight into the nature of the search problems
induced by real-world problems..

The remainder of this paper begins with an introduction to the NK landscapes, then introduces an
analogous set of NKP landscapes, and landscapes based on Walsh functions. This also allows for
introduction of the NKP landscape concepts presented by Heckendorn and Whitley. Given this
introduction, a detailed examination of the peak distribution characteristics of NKP landscapes is
presented. This is followed by a Walsh analysis perspective on the juxtapositional characteristics
of NKP landscapes. Final comments include suggestions for alternative methods of generating
random, tunable landscapes.

3 Kauffman’s NK Landscapes

In this discussion we will assume all genes are binary, for convenience. However, the results are
extensible to problems with larger gene alphabets.

Specifying an NK landscape requires the following parameters:

N - the total number of bits (genes).

K - the amount of epistasis. Each bit depends on K other bits to determine that its fitness
contribution. We will call the K+1 bits involved in each contribution a subfunction.

bi - N (possibly random) bitmasks (i = 1,2,3…N). Each bitmask is of length N, and contains K+1
ones. The 1s in a bitmask indicate the bits in an individual that are used to determine the value of
the ith sub-function.

Given these parameters, one can construct a random NK landscapes as follows:

A. Construct an N by 2K+1 table, X.

B. Fill X with random numbers, typically from a standard uniform distribution.

Given the table X, and the bitmasks, one determines the fitness of an individual as follows:

A. For each bitmask bi, select out the substring of the individual that correspond with the K+1
one-valued bits in that bitmask.

B. Decode these bits into their decimal integer equivalent j.

C. Add the entry A(i, j) to the overall fitness function value for this individual.

Note that the fitness values are normalized by dividing by N.

A typical set of bitmasks for this type of problem consists of all N bitmasks that have K+1
consecutive ones. In this case the string is treated as a circle, so that the consecutive 1 bits wrap
around. This set of bitmasks outlines a function where any given bit depends on the K preceding
bits to determine its contribution to fitness. However, bitmasks are sometimes used such that bi has
the ith bit set to one, but the remaining K one-valued bits are selected at random. Some other
possibilities are discussed in Altenberg (1997).



4 NKP Landscapes

Altenberg (1994, 1997), and later Heckendorn and Whitley (1997), allude to a set of landscapes
that we will call the NKP landscapes. If one uses an analogy to the NK landscapes, specifying an
NKP landscape requires the same parameters as the NK landscapes, with one addition:

P - the number of sub-functions (each assumed to be of epistasis K, for this discussion) that
contribute to the overall fitness function. This discussion also assumes that the P sub-functions are
simply summed to determine overall fitness. Each sub-function is associated with a bitmask (also
called a partition) bi. Note that, for coverage of the space of all K epistatic functions
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Moreover, this means that one must specify P bitmasks, rather than only N. This means that table
X must be extended to be P by 2K+1. Otherwise, the construction and decoding procedure is the
same as that for NK landscapes.

5 Walsh-based Epistatic Landscapes

A set of functions similar to the NKP landscapes can be constructed using Walsh coefficients. This
is convenient, since Walsh coefficients have often been used in GA analysis. Moreover, it will help
to illustrate Heckendorn and Whitley’s conclusions. However, one must make note of what is
meant by epistasis in Walsh-based landscapes. Some terminology will be useful here.

Consider a search space defined over length L binary strings. In terms of the Walsh coefficients,
define the fitness of an individual as
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where x is the bit string representing the individual, xi is the ith bit in that string, wj is the Walsh
coefficient corresponding to the partition (bitmask) numbered j, J is the bitmask (which is the N-
bit binary integer representation of j), Ji is the ith bit in the bitmask, and ^ is the function describe
in Table 1:

xi iJ ( )ii Jx ,^

0 0 1
0 1 1
1 0 1
1 1 -1

Table 1: Walsh Transform Function ^

Let us call the order of a Walsh coefficient the number of ones in the partition (bitmask) associated
with that coefficient. If a function has a non-zero Walsh coefficient of a given order (say, K+1),
that means that there is a fitness contribution that depends on all K+1 bits in the associated
partition.



Given this definition, one can say that the epistasis (in the sense of Kauffman) of a Walsh-based
function is the maximum order of the non-zero Walsh coefficients, minus one.

If one uses an analogy to the NKP landscapes, specifying a similar type of Walsh-based landscape
is straight forward. It requires the same set of parameters as the NKP landscapes. Given these
parameters, one can construct a random Walsh-based function of length N and epistasis K as
follows:

A. Construct a P by 2K+1 table W.

B. Fill the table W with random numbers, taken from some distribution, possibly a normal
distribution.

One determines the fitness of an individual as follows:

A. For each bitmask bi, select out the bits in the individual that correspond with the K+1 1-valued
bits in the bitmask. Call this length K+1 bitstring Si.

B. For each partition order m, m=0,…,(K+1), determine the parity of all the order m partitions of
Si. That is, determine the parity of each subset of m bits that can be taken from string Si. Note that
there are a total of 2K+1 partitions that must be examined for parity. Each of these corresponds to a
column in the random table W described above.

C. If the parity of the jth partition of Si is even, add table entry W(i, j) to the overall fitness. If the
parity of the jth partition of Si is odd, subtract table entry W(i,j) from the overall fitness.

Note that if the bitmasks bi are non-overlapping, the values in the random table correspond directly
to the Walsh coefficients for various, associate partitions in the overall fitness function. However,
if the bitmasks overlap, the direct correspondence to the overall Walsh coefficients is less clear.
However, as Heckendorn and Whitley (1997) point out, the overlap in the bitmasks affects only
the Walsh coefficients associated with partitions in the overlapping region. The Walsh coefficients
in these overlapping regions must have an order less than K+1.

The relative scale of these landscapes can be changed without loss of generality. Given this
consideration of arbitrary scale, the Walsh based procedure and the NKP procedure outlined above
can both generate all landscape “shapes” with epistasis K.

Clearly, the NK landscape procedure can only generate a subset of the landscapes generated by the
Walsh or NKP procedure. Therefore, the NK landscapes can only generate a subset of the space of
landscapes with epistasis K. For a more detailed proof this, see Heckendorn and Whitley (1997).

6 What Are The Effects of P?

We have noted that NKP landscapes (neglecting scale) cover the space of possible problems with
K epistasis. We have also noted that NK landscapes only cover a subset of this space. Given this,
one must ask whether the NK landscapes are indicative of the general behavior of the larger space
of NKP landscapes. In other words, what are the effects of the new parameter P on the complexity
of these tunable, random landscapes. If the effect is negligible on the complexity character of the
landscapes, one might not need to consider P in the design of random landscapes as indicative test
problems.

This section will present an examination of the effects of N, K, and P on various aspects of
problem complexity. Part of the examination will specifically focus on the peak distribution



characteristics considered by Kauffman for NK landscapes. Since the NK landscapes are a subset
of the NKP landscapes, this will allow a reconsideration of the results presented by Kauffman.
However, the examination presented here will differ from Kauffman’s, in that the landscapes
considered will be examined exhaustively. Kauffman only examined landscapes via repeated,
random restarts of a hillclimbing algorithm.

7 Peak Distribution Characteristics

In order to evaluate the properties of these NKP landscapes, a number of landscapes were created
for each of a set of combinations of parameter values. For landscapes of size N = 12, 16 and 20, 10
landscapes were created for each of the combinations with K varying between 2 and 8, and P
taking the values {4,8,16,32,64} Each landscape was exhaustively probed in order to discover the
location and value of all the optima (both local and global), and the following values were then
calculated for each landscape:

• Maximum, minimum, mean and standard deviation of fitness,
• Mean and standard deviation of optima fitness,
• Number of optima, mean and standard deviation of distance of optima from the global optimum,
• Correlation between relative fitness of local optimum and distance from global optimum.
The results were subjected to a one-way analysis of variance (ANOVA) for the factors N, K and P,
and to tests for linearity. The results are summarized in Table 2. Where the ANOVA tests indicate
statistical significance at the 1% level, the ¡2 value (a measure of the proportion of the measured
value that can be attributed to the factor) is given (and particularly meaningful values are shown in
bold). Where the linearity tests indicate statistical significance at the 1% level the correlation
coefficient in the linear model is given. In all cases, NSS indicates no statistical significance

Landscape N K P
Measure anova linearity anova linearity anova linearity
Land Max. 0.029 0.170 0.042 0.178 0.906 -0.948
Land Min. 0.035 -0.187 0.041 -0.178 0.894 0.942
Land Avg. NSS NSS NSS NSS NSS NSS
Land Std. Dev. NSS NSS 0.020 0.117 0.988 -0.973
Number of Peaks 0.394 0.587 0.292 0.519 NSS NSS
Mean Distance 0.841 0.917 0.098 0.249 NSS NSS
Std. Dev. Distance 0.339 0.582 0.366 -0.572 NSS NSS
Optima Correlation 0.011 0.102 0.641 0.765 NSS NSS
Mean Optima Fit. 0.025 0.158 NSS NSS 0.898 -0.935
Std.Dev. Optima Fit. NSS -0.087 0.041 0.155 0.816 -0.900

Table 2: Statistical factors indicating the effects of N, K, and P on peak distribution characteristics
of landscapes. The Optima Correlation row pertains to the correlation between local optima

fitness, and distance from the global optima.

Inspection of the results above shows that the variables K and P affect the nature of the landscape
in completely different ways, which do not interact. In many cases, even when a factor’s effect is a
statistical significant, the proportion of variation that can be attributed to that factor is minor. An
example of this is in the value of the landscape maximum, where both N and K have a statistically
significant effect, but 90.58% of the variation can be attributed to the effect of P.



The first thing to note is that the landscape mean fitness is unaffected by either K or P. The mean is
always 0.5 (within experimental error). Next, note that the P parameter effectively acts as a kind of
“gain control” on the fitness values’ deviation from this mean. As the number of partitions
considered (P) increases, the values of the maxima decrease towards 0.5, and those of the minima
increase towards 0.5. This effect arises from the compromises enforced by considering increasing
numbers of overlapping partitions. This explains the negative correlation between the value of P
and the mean optima fitness, and between P and the standard deviations of the fitness values of the
optima and the landscape as a whole. This is the complexity catastrophe noted by Kauffman.
However, our results show that it is a result of the number of partitions considered (P) rather than
their size (K).

By contrast, the epistasis parameter K has little effect on the global fitness statistics, and does not
affect the mean fitness values of the local optima at all. However, along with N, K is responsible
for determining the number and dispersion of suboptima in the landscape. In particular, K is
largely responsible for the correlation between the fitness (relative to the global optimum) of a
local optima, and its Hamming distance from the global optimum. Also note that the number of
peaks increases linearly with K.

Kauffman reports (Tables 2.1 and 2.2 in Chapter 2 of Kauffman, 1993) that for K>0, the mean
fitness of optima found by hill-climbing decreases with increasing K. In fact, study of the results
quoted in those tables shows that the mean values are mostly within one standard deviation of each
other. Analysis of the exhaustive searches done above shows that there is not a statistically
significant relationship between the size of the partitions considered and the fitness range of the
landscapes. This can be explained by considering the effect of changing the allele value at a single
position, whilst leaving the rest of the string unchanged. The way in which the fitness is calculated
means that for each partition in which the position is included, one of two random values will be
taken according to the allele value. Thus if a bit position is included in x partitions, then on
average x/2 of them will take the lesser of the two possible values.

Assuming the bit masks are randomly created, the probability that the bit position is included in
any one partition is simply (K+1)/N, and by extension the probability that the position is included
is exactly x partitions is

Prob( in x partitions) = 
xPx
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This shows that even considering the allele value in a single position, the number of partitions
which can be expected to take sub-optimal values scales as an exponential of P, and only as a
polynomial of K. Further, for fixed P, as the value of K changes two rightmost terms (i.e., those
involving K) change value in opposing directions, counteracting each other.



Although the epistasis parameter K does not affect the scale of fitness values, it, rather than P, is
responsible for determining the number and dispersion of sub optima in the landscape. As K
increases so the number of peaks increases linearly.

Kauffman (1993, Figures 2.7 and 2.8 in Chapter Two) shows local optima as points on plots of
relative fitness versus hamming distance from the global optima. This yields “clouds” of points
that can be characterized by the associated N, K, and P values. The mean distance corresponds to
the midpoint of the cloud on the distance axis and the standard deviation is a measure of the
“width” of the cloud. The correlation coefficient is the tangent of the angle between the principal
axis of the cloud and a line drawn through the midpoint, parallel to the fitness axis. Specifically, a
correlation coefficient of zero indicates that the cloud is symmetrical about the midpoint to the
fitness axis. We summarize measures similar to those presented in Kauffman’s cloud diagrams in
Figure 1 The plotted values are for N = 16, and are averaged over P.
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Figure 1: Variation of peak distribution characteristics versus K for N = 16 (averaged over P).

Broadly speaking, there are two regimes of behavior in this graph. For K less than or equal to
approximately 2, the peaks are on average close to the global optima, and there is a negative
correlation between relative fitness and distance from the optimum. This is the “Massif Central”
effect noted by Kauffman and confirmed by Hordijk & Manderick (1995) and Smith and Fogarty
(1996).

However, for K greater than 3, the peaks appear to be randomly spaced. The mean distance from
the optimum is N/2. The standard deviation in the distance drops from around 2.5 (K=1,2, 3) to
2.0, and the correlation between fitness and distance from the optimum drops from -0.79 (K=1) to
K = -0.109 (K = 6).

8 Juxtapositional Characteristics

To consider how N, K, and P affect juxtapositional characteristics of the landscape (that is,
patterns in the landscape that will affect the utility of juxtaposing building blocks with
recombination operators), some elaboration is necessary. Define the global optima in a landscape
as the value of bitstring x that yields the highest value of f(x). Call this optimal string x*:

( ) ( )f x f x* ,*  for all x.

This condition for optimality, in terms of ordered Walsh coefficients is:
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Define the nth order fitness of a combination of bits as:
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In other words, this is the fitness of the bit string when one considers only Walsh coefficients up to
order n. Note that this corresponds to considering epistatic effects up to order n-1. The nth order
fitness is related to the effectiveness of juxtapositional operators, since for some value of n, these
operators disrupt the associated building blocks. Thus, a search scheme using such an operator will
be insensitive to effects of Walsh coefficients of some order greater than n. This examination only
considers order, and not defining length. However, analogous arguments can be made for
juxtapositional operators that are affected by defining length.

Define the nth order optima as the string x for which f  n(x) is highest. Call this nth order optimal
string xn*.

( ) ( )f x f xn n n* ,*   for all x.

Thus:
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Note Deb’s (1997) definition of deception: “A schema partition is said to be deceptive if the
schema containing the deceptive optimal solution is no worse than all other schemata in the
partition." One can state the inequalities that define deception (Deb, 1997) in terms of the previous
definitions, and the associated Walsh coefficients. However, this yields a large number of such
inequalities (on the order of 2L). Therefore, calculating probabilities of strict deception from these
inequalities is difficult. To yield a more calculable measure of juxtapositional complexity in
random landscapes, we will say that a landscape is nth order misleading if and only if
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That is, the complement of the optima (roughly corresponding to Deb’s “deceptive optima”) has an
nth order fitness greater than or equal to that of the optima. For this condition to hold:
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Given the relationship between the Walsh sums of complementary strings, this condition can be
rewritten as:
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Assume that all Walsh coefficients for a given class of binary encoded search spaces are random,
with known distribution functions. Further assume:

• that Walsh coefficients of the same order come from the same distribution functions, and
• that pertinent statistics for all the Walsh coefficient distribution functions are known.
 Let’s assume that it’s equally likely that any given string x is x*. Note that this implies an
assumption that the Walsh coefficients (with order greater than zero) have zero mean.

 Clearly, the event that some string x is the optima is mutually exclusive from the event that any
other string is the optima. Therefore, without loss of generality, let’s consider the case where x* is
the length L string of all 0s, which we will call x0. This string has the property that it has even
parity in all subpartitions. Thus, if xn*=x0, the misleadingness condition is:
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 Splitting this into two terms yields:
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 Given these assumptions and developments, the probability of the misleadingness condition being
true, given that xn*=x0 is:
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 Then, the total probability of having a misleadingness will be:
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 where the sum is taken over all possible length L strings xa. There are 2L equal terms in this sum,
therefore, given previous assumptions:
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 To summarize: the number given by expression, which we will call the probability of nth

order misleadingness, is the probability that, when one considers all building blocks of n bits
or less, the compliment of the optima appears as fit or more fit than the optima itself.

 Assume the Walsh coefficients (of order greater than zero) are normally distributed and zero mean.
Several properties of the normal distribution are applicable. Specifically, recall that the distribution
of a sum of normally distributed random variables is itself normal, with mean equal to the sum of
the means, and variance equal to the sum of the variances.

 Assume that the order k Walsh coefficients are drawn from a normal distribution with mean µk and
variance mk

2. Then, if we define two new variables A and B:
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 where A and B are both normally distributed zero-mean random variables, with:
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 Assume, for the time being, that A and B are uncorrelated. Given this, the necessary probability has
a bivariate normal distribution with correlation coefficient l=0. However, since we are given that
B > 0, we are considering only half of this distribution. A bivariate normal (with zero correlation)
is given by
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 To evaluate the integral, one can make the transformation (Maghsoodloo & Huang, unpublished):
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 Then one can construct the appropriate limits of integration to find the desired probability, giving:
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 Note that the maximum value of Pm  in this case is 0.5.

 Now consider the more general case where A and B are correlated, with correlation coefficient l.
The probability is still given by a bivariate normal, but this time in its more general form:
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 With a rotation transformation, this can be reduced to:
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 (rotation clockwise), and h1, h2 are the eigenvalues of the covariance matrix for A and B, given by:
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 Given previous developments, and the appropriate changes in bounds of integration associated
with the rotation transformation:
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 Note that, regardless of the selection of which eigenvalue is which, the numerator in the first
inverse tangent term goes to zero faster than the denominator as l approaches 0. Therefore, this
expression reduces to the previously stated expression for the uncorrelated case when  l = 0, as
expected.

 In the NKP landscapes we have examined thus far, l 5 0. Recall that this case gives a maximum
probability of 0.5. This illustrates that while misleadingness is possible in landscapes generated by
the NKP procedure, it occurs at most half the time.

 9 Evaluating Juxtapositional Complexity

 To examine the juxtapositional complexity characteristics of NKP landscapes, a number of
landscapes were created for various combinations of N, K, and P values. Probabilities of
misleadingness were calculated from these landscapes. Before examining the results, we make
some note of the validity of previous assumptions. First, note that, given the random determination
of bit masks in the NKP procedures, one can assume that all partitions of similar order should have
similar Walsh statistics (over the space of randomly generated landscapes). Second, note that each
Walsh coefficient is a sum of 2L signed fitness values, and that, in a NKP landscape, each of the
fitness values is itself a sum of uniform random variables. Therefore, it is reasonable to assume
that the statistics of samples from these sums large numbers of uniform random variables should be
normally distributed. Under the NKP procedures, these distributions all have zero mean, since all
points are equally likely to be the optima in any given partition.

 Finally, we note that our experiments indicate that the sums A and B are either completely
uncorrelated, or virtually so. All experiments give very low values for correlations between A and
B. Moreover, increasing sample sizes (i.e., the number of landscapes considered) resulted in
increasingly lower correlation. Therefore, the calculations presented are based on the l = 0 case
discussed above. The implications of correlation between A and B are discussed in a later section.

 For landscapes of sizes N = {8,16,20}, 40 landscapes were created for each of the possible
combinations of values of K={2,3,4,5,6} and P={2,4,8,16,32,64,128}. Given the assumption of l
= 0, these were sufficient sample sizes for the required calculations. Although these are relatively
small values of N, it is important to note that this can be thought of as a subproblem of a larger
problem.

 Figures 2 through 4 present the calculated probabilities of misleadingness, versus order of
misleadingness.
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 Figure 2: Probabilities of misleadingness, versus order, for landscapes where N=8. In this and the
following figures, values of K are represented by markers: no marker = 2, white square = 3,

triangle = 4, filled square = 5, circle = 6, diamond = 8. Values of P are represented by line type:
light long dash = 2, light solid = 4, solid = 8, long dash =16, short dash = 32, short-long dash = 64,

short-short-long dash =128 .
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 Figure 3: Probabilities of misleadingness, versus order, for landscapes where N=16. Symbols as
noted in the previous figure.
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 Figure 4: Probabilities of misleadingness, versus order, for landscapes where N=20. Symbols as
noted in the previous figures.

 Some general conclusions are worth noting. First, K bounds the level of misleadingness. For n > K,
Pm = 0. For values of n < K, the probability increases with K, and decreases with n. Somewhat
surprisingly, P seems to have no substantial effect on Pm. Note that the line groups for fixed N and
K, and varying P, remain relatively the same. There are some variations, particularly for N = 20,
but the absolute values of these variations are quite small. Finally, as was previously noted, the
probabilities of misleadingness are bounded by 0.5. Therefore, the misleadingness is always less
likely than a lack of misleadingness in the generated NKP landscapes. For higher orders of
misleadingness, the graphs indicate that the probabilities are usually quite small.

 10 Landscape Design

 In addition to analysis, one can use the expressions presented here as a tool for landscape design.
Consider using the Walsh-based procedure for constructing landscapes (outlined above), and
manipulating the statistics of entries in the table W. As suggested by the previous analysis, the key
parameters in such design are the Walsh sums, A and B. Parameter A represents the sum of odd
Walsh coefficients of order greater than n, and parameter B represents the sum of odd Walsh
coefficients of order less than n. Consider generating random variables A and B directly, from a
bivariate normal distribution with known variances for A and B, and known correlation between A
and B. Then, A and B could be broken down into Walsh coefficients, to fill table W.

 It is important to note that a key parameter in such designs is l, the correlation between A and B. If
negative correlation exists, the misleadingness probability is no longer bounded by 0.5. Therefore,
the suggested Walsh-based procedure would allow for construction of landscapes with higher
misleadingness probabilities. Note that although P seems to have little effect on juxtapositional
complexity of problems created by the NKP procedure, it may have a more substantial effect when
l is manipulated directly.

 Finally, note that in the suggested procedure, the concepts represented by K (size of epistatic
interactions), and P (number of epistatic interactions) remain. In this case, the size of epistatic
interactions (K) is dictated by the largest order of non-zero Walsh coefficients, and the number of
epistatic interactions (P) is dictated by the number of non-zero Walsh coefficients.



 11 Final Comments

 Several conclusions can be drawn from this study:

• In terms of peak distribution characteristics, the parameter P has little effect on the most critical
of these characteristics.

• However, P acts as a “gain factor” on the landscape’s expected range of fitness values.
• Moreover, P seems more responsible than K for the so-called complexity catastrophe in these

landscapes.
• The expected juxtapositional complexity (that is, the building block structure) of landscapes

generated by the NKP procedure is limited.
• P seems to have little effect on changing the juxtapositional characteristics of landscapes

generated by the NKP procedure.
• It may be possible to directly manipulate Walsh coefficient statistics to develop random

landscapes with more desirable and controllable juxtapositional characteristics.
The last of these items will be the subject of further study. In particular, if such a procedure is
followed to generate desired juxtapositional, the effects on peak distribution characteristics will
have to be reconsidered.

As was discussed in the introduction, there are definite advantages to being able to generate and
examine large numbers of random landscapes, if those landscapes can be parameterized in a
meaningful way. Such landscapes can provide descriptive insight into real-world landscape
complexity, and prescriptive insight as search algorithm test problems. It is hoped that this paper
will aid in such efforts.
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