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Abstract

In this paper we show how a simple inher-
itance mechanism is capable of learning the
best local search to use at different stages of
the search. In our work an individual is com-
posed by its genetic material and its memetic
material. The memetic material specifies the
strategy the individual will use to do local
search in the vicinity of the solution encod-
ed in its genetic part. A simple vertical in-
heritance mechanism is enough to provide a
robust adaptation of behavior. This result s-
pans from a simple OneMax problem, to NK-
landscapes and the TSP.

1 INTRODUCTION

In this paper we introduce a Memetic Algorithm (MA)
in which the local search (a meme) employed by each
individual is learnt during evolution. An individual is
composed of its genetic material and its memetic ma-
terial. The memetic material specifies the strategy the
individual will use to do local search in the vicinity of
the solution encoded in its genetic part. A simple ver-
tical inheritance mechanism, as used in self-adaptive
genetic algorithms and evolutionary strategies, is e-
nough to provide a robust adaptation of behavior. We
begin by illustrating the viability of the adaptive mech-
anism with two experiments where the GA adapts to
use suitable mutation probabilities. With our method
any meme, that is any mutation rate, is accesible with
equal probability from any other one. This can not be
achieved by a binary or gray encoding using multiple
bits[1][17] nor with a real value encoding attached to
the normal genes [8]. Also, by using this mechanism,
the control of which memes to use is a distributed one.
Furthermore, memes themselves can be modified by an
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adequate mechanism. For a detailed review of opera-
tor adaptation refer to [18]. This is then expanded to
a MA where the memes represent local search algo-
rithms. In the memetic algorithms literature authors
have spent a considerable amount of research assess-
ing, e.g., how deep the local search should be and how
often[7]. Land[13] used the concept of “sniffs” to try
to gauge which individuals should go through a local
search phase and with how much intensity. In [6] the
authors developed a systemic model of Global-Local
search hybrids that shed some light on the optimiza-
tion of those algorithms. Carrizo et.al. in [5] employed
several local searchers within the same MA to solve
quadratic assignment problems. Moreover, to the best
of our knowledge, just a few papers[19][10] have ap-
peared where the choice of which local search to ap-
ply was left to the evolutionary process itself. It is in
this spirit that this work is done.

2 THE MEMETIC ALGORITHM
AND THE SIMPLE
INHERITANCE MECHANISM

In this section we will describe the underlying GA ar-
chitecture used in our experiments. An individual is
composed of genetic material plus a meme allele.The
genetic part was the representation of the potential so-
lution. There were M memes available to be expressed
by an individual, that is to say we treat our memes as
categorical rather than ordinal entities. For the One-
Max and NK-Landscapes Problems memes represent-
ed mutation strategies. In this case they were not as-
sociated with any local search process so we can regard
our memetic algorithms as an adaptive GA. In the case
of the TSP, memes were chosen from a range of local
search strategies, embodying a fully fledged MA. The
mutation process of an individual involves mutating
its meme and its chromosome. The meme is mutat-
ed accordingly to a small innovation_rate IR by ran-



domly choosing a meme number from the distribution
U(1,M). The IR takes a value in the range [0,1]. A
value of 0 means that there is no innovation and hence
if a meme allele is lost it will not be re-introduced in
the population. A value of 1 specifies an extremely
explorative meme policy where all the different strate-
gies implied by the available M/ memes will be equally
used and no emergent properties are expected to arise.
After that, the mutation strategy given by the meme
is expressed. This mutation strategy specifies the kind
of genetic mutation (One Point mutation or Bit Wise
mutation) and the probability of applying it to the
chromosome. The innovation_rate guarantees a mini-
mum level of exploration of the memetic space. For an
innovation_rate of IR, a population size of u and a u-
niform distribution of meme mutations U (1, M), even
the worst meme can be reintroduced to the popula-
tion with a frequency of P, = IR% per generation.
Crossover is based on the following pseudocode:

Individual_Level_Crossover(parentl, parent2)
BEGIN
IF (both parents carrie the same meme}
Cross parents genetic material.
Inherit common meme to offspring.
ELSE-IF (parentl.fitness()==parent2.fitness())

/* the two parents have different memes */
/* but their fitness are comparable hence */
/% a random choice is made */

Cross parents genetic material.
Choose a meme randomly from any of the two parents.
Inherit selected meme to offspring.

ELSE
/% parents don’t share memes nor fitness values */
/% hence the fittest individual */
/* imposes its meme preference */

Cross parents genetic material.

Choose meme from fittest parent.

Inherit the chosen meme to offspring.
END

The first phase involves the standard chromosome
crossover, while the second phase performs the verti-
cal propagation of the memes in the following way. If
two individuals share the same meme then this meme
will be inherited to the offspring. If the memes they
carry are different, then the meme of the fittest parent
is propagated. Finally, if memes are different but the
fitnesses are equal, then a random choice between both
memes will be done and the selected one will appear
in the offspring. The memetic phase of the crossover is
kept identical in the three problems. The first phase of
chromosome crossover are different; for the OneMax u-
niform crossover with probability 0.7 was used, for the
TSP DPX with probability 0.6 was used. In the case
of NK-Landscapes no chromosome crossover was em-
ployed. As we said before an individual consists of its
chromosome and its meme. This meme specifies a s-
trategy that is composed of both an operator and its
probability of being applied. These composed memes
are called ‘memeplexes’ (see for example [3]). In the

first two experiments presented the meme encoded a
fixed mutation operator with variable probabilities for
the binary problems, while for the TSP the meme rep-
resented variable local searchers with a probability of
being applied fixed at 1.0 .

3 EVOLUTIONARY ACTIVITY
WAVE AND MEME
CONCENTRATION GRAPHS

In order to examine the evolutionary and adaptive
properties of memes in our system we will use the ap-
proach of Bedau et.al. [2]. We are interesting in ob-
serving the adaptive significance of the search strate-
gies coded by the memes. We define the concentration
¢ of meme i at time ¢ as the number of individuals in
the population that carry this meme. We denote this
value by ¢;(t). It is hypothesized that since memes are
carried alongside genes, those strategies that confer a
selective advantage to the genes (i.e. they represent an
efficient local search) will proliferate. Moreover, this
proliferation is going to be reflected as an increase on
those meme’s concentration. The meme concentration
¢i(t) is a crude measurement of a meme success be-
cause it doesn’t give information about its continual
usage since it first appeared in the population. Some
memes might have a low concentration at a given time
but disappear or take over the population in the next
few generations. To account for such phenomena the
evolutionary activity (E.A.) a of meme i at time ¢ is
defined by:

if Ci(t) >0
otherwise (1)

a;(t) = { Ofo ci(t)dt

When the evolutionary activity of a meme is plotted,
the slope of the curve represents the concentration
¢i(t) of meme i. In that way, an increase in the s-
lope indicates an increasing use of a given meme (it
is spreading fast in the population). An almost flat
curve points out a meme that is having less survival
value than its competitors. In this kind of graph is
usual to distinguish a wave of activity when a meme
that has been successful for many generations disap-
pears.

4 THE OneMax AND NK-Landscapes

In this section we describe several experiments per-
formed to understand the behavior and the feasibility
of adapting memes in a population of evolving indi-
viduals. We will describe and analyze the results of
several experiments on two different, yet related, prob-



lems: OneMax Problem and NK-Landscapes[9]. The
OneMax problem consists of achieving an all ones bit
string of length n starting from a randomly initialized
population. The NK-Landscapes are binary problems
of length n where genes participate in epistatic inter-
actions. The number of genes with which any other
gene interacts depends on K.

Furthermore, in the case of OneMax, in generation 370
(out of 1000) the problem was changed from maximiz-
ing the number of ‘ones’ to that of maximizing the
number of ‘zeroes’. This change in the fitness func-
tion provides a dynamic environment where individu-
als (genes and memes) were tested against very differ-
ent situations. At the beginning of the run the popu-
lation was randomly initialized, with both genes and
memes set randomly. After the environment transition
the evolving population was faced with a new problem
(that of ZeroMax instead of ones). In practice this
was equivalent to restarting the experiment but with
a non-random population. In this way we were able
to study the behavior of our approach under three dif-
ferent regimes: A random starting one and its adapta-
tion towards an optima, a transient state with a biased
(converged) initial population, and a final converged s-
tate. Thirty runs were made with a generational GA
with no elitism. Deterministic binary tournament was
used to select parents. The population size was 50.
Uniform crossover was used with a probability of 0.7
. The 11 memeplexes specified a one point mutation
together with its ‘per individual’ probability of being
used. The mutation probabilities were in the range
[0.0,1.0]. For this experiment IR = 0.1. In figure 1 we
plot the average of the mutation probabilities in the
memes that exist at time ¢ in the population. Also the
average fitness achieved by the population is shown.

The dominating meme corresponds to a 0 mutation
probability. This meme is successful because it pre-
serves whatever the evolutionary system achieved. At
the fitness transition it is wiped out and memes that
represent high mutation rates take over the popula-
tion (memes with mutation probabilities of 0.6, 0.8 and
0.9). When the new problem, ZeroMax, is 50% solved
(i.e. half the allele values are optimal) those memes
rapidly disappear and again strategies that represen-
t low mutation rates dominate the population. From
the graph in figure 1 we can see that at the beginning
of the run, when the population is randomly initialized
and the goal is to maximize the number of ones, the
average mutation probability expressed by the memes
is around 0.5. At the fitness transition and because the
population is biased towards all ones, the system tunes
to a much higher average mutation: 0.7 . When the
system starts to maximize the number of ones on aver-
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Figure 1: In (a) Average mutation rate expressed by the
individuals in the population at time ¢t. The mutation rate
is defined by the meme each individual keeps, higher meme
number means higher mutation rate. Average fitness is
in solid line. Fitness transition is at generation 370. (b)
Average meme concentration in the system at the fitness
transition. Memes with higher numbers dominate (high
mutation rates)



age half the bits will be properly set. After achieving
an average fitness of at least 50%, mutations become
deleterious and selection works against mutation. On
the other hand, when the system switches to maximiz-
ing the number of zeroes, the majority of allele values
are suboptimal, so with high probability mutating a
bit will give a selective advantage. Thus, those memes
which correspond to a higher probability of achieving
this advantage will flourish until the mean density of
zeroes is greater than 50%. Furthermore the expan-
sion of the high mutation rates is longer than the one
at the beginning of the run. In figure 1(b) the aver-
age meme concentration can be seen. The patterns
of concentration at the start of the search and dur-
ing the fitness transitions differ from each other (not
shown here). During the fitness transition memes with
even higher mutation rates are favored and it takes
longer for their concentrations to decrease. This ex-
periment demonstrates the ability of a system with
simple meme encoding to adapt, even though (unlike
other approaches) memes are not treated as continous
or ordinal entities. A theoretical model of this method
can be seen in [16].

5 ADAPTATION AND PHASE
TRANSITIONS IN PARAMETER
SPACE

In the previous sections we described the main archi-
tecture of our adaptive GA and we showed that it was
capable of tracking changes in the environment by ap-
propriately tuning the mutation rates of the evolution-
ary search. We also conducted a series of experiments
with NK-Landscapes to assess if our system was able
to adapt the mutation rates in more complex settings.
In [14] the authors explore a phase change in search
when a parameter 7 reaches a certain critical value on
some NK-Landscape problems . In their experiments
the authors focused on Simulated Annealing (SA) as
a local search algorithm, although a very special SA:
the temperature was kept equal to zero at all times.
The underlying operator, a bit-flip, was parameterized
with 7, a per bit mutation rate. In their paper the
authors show experimentally that the quality of the
search follows an s—shape curve when plotted against
7 making evident a change in phase. We wanted to ex-
plore whether the same kind of phenomenon arises in
a GA and, if indeed this was the case, if our adaptive
mechanism was able to select mutation rates compa-
rable to those before the demeliorating transition.

As a first step we ran extensive simulations of the
GA behavior with different bit rate mutations cover-
ing a wide range of values. The same GA as before

was used but with a zero probability of crossover and
100 generations. A set of experiments was done with
N = 40 and K € [0,15]. For each K three land-
scapes were created and 10 runs made on each land-
scape. This was repeated for 29 mutations rates in
{0.0005, 0.0010, . ..,0.0045} [ J{0.005,0.010,...,0.10}.
In the upper part of figure 2 we can see the results
obtained!. The GA is sensitive to the per bit mutation
probability, there is a change in behavior at 7 = 0.01.
When 7 is further increased a swift loss of performance
occurrs. This critical value 7. is very close to the theo-
retically predicted error threshold[15] for finite asexual
populations:
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(2)

where S is the population size, v is the genome length,
o is a “selective ratio” that gives a rough measure of
fitness superiority of the master sequence. In our ex-
periments S = 50,v = N = 40 and o = 2.0, the
resulting 7& = 0.0103.
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Figure 2: Up: Fitnesses achieved under different muta-
tion rates for varying K averaged over 30 runs. Note the
sharp decrease in fitness for mutations higher than 0.01.
Down: Evolutionary activity of memes representing the
same range of mutation probabilities as above. Note the
fast decrease in activity for those memes above 0.01.

Once we knew that the phenomenon was present in
GAs, we needed to check if the mechanism proposed
here was capable of avoiding effective mutation rates
equivalent to those greater than 7*. In our experiment
we used 50 individuals per generation, the GA was a

!For clarity we show here just a few K that span the
range studied



generational one and the memes encoded per bit mu-
tation rates in the range described above and a zero
probability of crossover. The problems used were as
in the exhaustive experiments. In the lower part of
graph 2 we see the evolutionary activity of memes, as
defined by equation 1, for K in the same range as be-
fore. The graph shows the activity for generation 100.
Memes were associated with the range of probabilities
with which the exhaustive runs were performed. We
can see that the adapting GA was able to distinguish
between memes before and after the 7*. This is shown
by the rapid decrease in evolutionary activity for those
memes lying beyond 0.01. A second important con-
clusion that we can draw is that this simple adaptive
mechanism is sensitive enough to be able to discrim-
inate between a large set of alternatives (29 in this
case) and it allows the emergence of effective muta-
tion rates that avoid been trapped after 7*. In figure
3 we plot, for different K, the best fitness obtained
from all of the exhaustive runs of the standard GA,
the fitness of the adaptive GA and the fitness of the
standard GA after the transition. As it can be seen
in the graph the adapting GA, by differentially propa-
gating memes that are before and after the transition,
can sustain fitness values comparable to the optimal
ones. As K increases, the gap between the adaptive
and the optimal value decreases, while the gap with the
values after the transition gets larger. Another obser-
vation is that the transition is not sharp for K < 4,
confirming Macready’s et.al. findings [14]. Important
to note is the fact that the best fitnesses obtained for
the standard GA (before and after the transition) were
obtained with different mutations rates and involved
30x29 runs. The adaptive version achieves its results
just with 30 runs.

Comparison of optimal, adaptive and post-transition fitnesses
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Figure 3: The best fitness for each K is compared to the
fitness achieved by the adaptive GA and the fitness imme-
diately after the transition at 7* = 0.0103. The values on
this curves are averaged over 30 runs

6 ADAPTING THE BEST MEME
FOR THE TSP

In the previous sections we showed that a simple verti-
cal inheritance of memes was capable of performing an
efficient adaptation of behavior for the dynamic One-
Max and NK-Landscapes. In this part of the work we
applied the same principle to learn which is the best
meme to employ during different stages of the search
for TSP. The TSP consists on finding the minimum
length closed circuit among all the cities of a prede-
fined set. The circuit should touch each city only once.
We used 24 different memes, each meme defines the
acceptance strategy, the underlying basic move and
the number of iterations to use during the local search
stage. There were two acceptance strategies, namely
first-improvement and best-improvement. Three basic
moves were considered 2—ezchange, 3—exchange and
4 — exchange. The final property of a meme was the
number of times the acceptance strategy was going to
be iterated employing the basic move. We can repre-
sent a meme M by the three values that specifies its
basic move(M), its acceptance strategy(F B) and its
number of iterations(l): MeF BbIn. The range of e
was {2,3,4} implying a 2 — exchange, 3 — exchange or
4 — exchange. To specify a first-improvement accep-
tance strategy b was set to 1, and when b = 2 then the
meme used a best-improvement acceptance strategy.
Finally, n gives the number of iterations drawn from
the set {1,3,6,9}. Because our goal in this paper is to
see if this simple memetic system can learn the best
meme to use and not to discover the best meme for a
particular TSP instance, we assume that the execution
cost of all of the 24 memes is equivalent. The reader
should note that the memes with b = 2 require greater
computational cost than their counterparts b = 1. Fur-
thermore, except for the 2 — exchange (for which the
neighborhood explored by the acceptance strategy was
complete), just a sample of the induced neighborhood
was considered for the other moves. For all the experi-
ments run the probability of mutation was 0.4, that of
crossover 0.6 and the innovation rate was set to 0.125.
The crossover used was DPX and the mutation opera-
tor the double-bridge move. The underlying GA was a
generational GA with a (50,200) strategy with a tour-
nament size of 4. The architecture of the MA was,
according to [11], a D = 4 MA, that is, local search
was executed independently of mutation and crossover
in a separate stage. The probability of local search (ex-
pressing the meme) was 1. The encoding used was a
permutation encoding.

We first ran a set of experiments (one for each of the 24
memes), each consisting of 30 trials, where the whole



population used the same meme, that was fixed during
the complete run. The goal of this experiment was to
obtain a ranking of memes for the different instances.
We then ran an adaptive MA where the meme alleles
were evolved. The graph in 4(a) shows the evolution of
fitness over time for different memes on the lin318.tsp
instance from TSPLIB. The reader must keep in mind
that the memes were executed within the underlying
MA described above.

An ANOVA analysis of the average over 30 runs for
the best tour in each experiment shows that the curves
are (with 95% confidence level) different. The ANO-
VA, together with the post-hoc t — test, provide a
sound ranking of the various memes. As can be seen
in figure 4(a) the MultiMeme MA, that is, the memet-
ic algorithm for which the adapting process was en-
abled, was able to closely follow the performance of
the best meme. It achieves this by favorably select-
ing the memes that produce the best increment in
fitness. This is shown by the evolutionary activity
graph in figure 4(b). The same results, with statis-
tical significance, were obtained for other instances
of different size and nature: eil76.tsp, 1lin105.tsp and
mnpeano44.tsp. We ran extensive experiments with
a MultiMeme MA where the memes available were
of the form MeFBlIn with e € {2 — exchange,3 —
exchange, 4 — exchange} and n € {1,3,6,9}. The al-
gorithm was able to positively select the best meme
and to match the performance of the best one (with
statistical significance). As the size of the instances
increased the memes were more easily differentiated,
and MultiMeme was able to track the curve of the
best meme. For the instances studied the evolutionary
activity diagrams show? that while the evolutionary
search is not yet stagnated and the search is progress-
ing, just one or two evolutionary waves are conspic-
uous, while the other memes remain under spurious
activity. The use of an IR > 0 means that memes
have non-zero background activity even if they are
actually selected against (see section 2). When the
search is converging towards local optima then several
memes become neutral to each other and the evolu-
tionary waves starts to develop. From our experiments
it turns out that the best meme for all the instances
was M2FB119 and the second best M2F B1I6. This
is not surprising since those memes perform 9 and 6
iterations respectively based on the complete neigh-
borhood of a 2 — exchange while for the remaining
moves the neighborhood was sampled. This fact led
us to design an experiment where the memes involved
where the same as before except that the first best

2Only the graph for 1lin318.tsp is shown due to space
limitations

and the second best were not allowed to appear in the
population. This MA will be called multiMeme-b. The
results are shown in figure 5(a) for instance lin318.

After analyzing the results obtained, we observed that
multiMeme-b was able to track and follow the curve of
the best meme for the instance mnpeano44.tsp, how-
ever it fails to do so for lin105.tsp and lin318.tsp.
In the later case the best meme, that is, the meme
that at the end of the run produces the best fitness
was M2FB1I3. The algorithm fails to select this
one in favor of MA4FB119, M3FB119, M3F B1I6 and
MA4FB116. The reason for this behavior is simple to
state: it pays for an individual to carry the meme that
produces the maximum increase in fitness at any giv-
en point in time. Given that the individuals have no
foresight of which is going to be the best fitness at the
end of the run®, the meme that produces the behav-
ior with the steepest increase in fitness (decrease in
tour length) is favorably selected. However, as gener-
ations go by, the relative payoff of the different memes
change. In the case of the TSP the reason for this
dynamic payoff is rooted in the so called “Big Valley”
structure. In Boese’s work [4] it is shown that the
TSP shares with other commonly studied NP-Hard
combinatorial optimization problems a globally con-
vex structure of the set of local minima, where the
local minima are points in the landscapes defined by
different local search heuristics. The author shows
that tours found by better heuristics are on average
closer to each other in terms of distance* to the opti-
mal solution, giving rise to the “Big Valley” metaphor.
The gradient of improvement for the different memes
changes during evolution while approaching a local op-
timum (eventually a global optimum). The adaptive
MA, through its simple inheritance model is sensitive
to this changes. Looking at the graph (b) in figure
5 we can see that the evolutionary wave of meme
MA4FB119 is becoming almost flat. As explained in
the previous sections this means that the selective ad-
vantage of carrying this meme is decreasing. Also,
we can see that waves of evolutionary activity arise
for memes M3FB119, M3FB116,M2FB113. Trac-
ing back the origins of these waves it is possible to
note that they match the time when the correspond-
ing curves in graph (a) to the left surpass the curve of
multiMeme-b. Three vertical bars are marked in the
graph with x1,22,23. Moreover, the longer the sim-
ulation, the closer the gap between the curve of the
best meme and the multiMeme-b approach. The same
behavior was notice for the instance 1in105.tsp. The

3The system is not teleological.
“Distance here is actually measure as the number of
links that differentiate two tours
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Figure 4: (a) Performance of different MAs when memes varies. Just the curves for the first-improvement strategy
are shown. It is possible to see how the MultiMeme MA follows closely the performance of the best meme. In (b) the

evolutionary activity of the MultiMeme MA is shown

reader should also note how the suppression of the best
and second best memes alters the evolutionary activity
diagram by comparing figure 4(b) and 5(b).

7 CONCLUSIONS

In this paper we showed how a simple vertical inheri-
tance mechanism is enough to adapt the behavior of in-
dividuals in a memetic algorithm under different prob-
lems. Individuals have access to a set of memes that
represent different search strategies. The evolutionary
mechanism ensures that memes that are useful will be
selected and spread in the population. Our approach
differs from others (i.e. [19]) in that we are learning
the association between an individual an a memeplex
and not a vector with the particular characteristics
of a given meme in a set of memes. Hence, the di-
mensionality of the problem is much smaller. From
an engineering point of view this is a sound approach
because we can allow memes to change using any al-
gorithm that we find suitable, i.e., we can run a GA to
define the memes themselves. By isolating the struc-
ture of a meme from its phenotypic action in the genes
we are facilitiating the search in both genes and memes
spaces. We tried our MA under three different scenar-
ios. The dynamic OneMax problem showed that the
adaptive MA was able to track changes in the envi-
ronment, i.e. the fitness function, by triggering high
mutation rates. We saw that for the NK-Landscapes
the adaptive mechanism was robust enough to adapt
to the edge of the transition after which mutation rates
become pernicious. It was able to express an almost
optimal mutation and to track closely the optimal fit-

ness achieved by exhaustive runs. In the case of the
TSP we are able to conclude that the adaptive MA is
capable of selecting the memes that provide the best
performance at any given moment of time. As a by
product of this paper we were able to show that the
phenomena described by Macready et.al. for simulat-
ed annealing [14] is also present in GAs. The memes
exploited in this paper were, accordingly to [11], stat-
ic memes. We are currently running experiments with
adaptive memes like those of [12]. Self adapting memes
for the Protein Folding Problem will be studied soon.
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