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A B S T R A C T

Traffic-related air pollution (TRAP) remains one of the main contributors to urban pollution and its impact on
climate change cannot be overemphasised. Experts in developed countries strive to make optimal use of traffic
and air quality data to gain valuable insights into its effect on public health. Over the years, the research
community has developed advanced methods of forecasting traffic-related pollution using several machine
learning methods albeit with persistent accuracy and insufficient data challenges. Despite the potentials of
emerging techniques such as multi-target deep neural network to achieve optimal solutions, they are yet to
be fully exploited in the air quality space due to their complexity and unavailability of the right training
data. It is to this end that this study investigates the impact of integrating an updated data set including
road elevation, vehicle emissions factor and background maps with traffic flow, weather and pollution data on
TRAP forecasting. To explore the robustness and adaptability of our methodology, the study was carried out in
one major city (London), one smaller city (Newport) and one large town (Chepstow) in the United Kingdom.
The forecasting task was modelled as a multi-target regression problem and experiments were carried out
to predict 𝑁𝑂2, 𝑃𝑀2.5 and 𝑃𝑀10 concentrations over multiple timesteps. Fastai’s tabular model was used
alongside prophet’s time-series model and scikit-learn’s multioutputregressor for experimentation with fastai
recording the overall best performance. Statistical tests run using Friedman and Wilcoxon test also revealed
the significance of the fastai model with a p-values < 0.05. Finally, a model explanation tool was then used
to reveal the most and least influential features from the newly curated data set. Results showed traffic count
and speed were part of the most contributing features. This result demonstrates the impact of these and other
introduced features on TRAP forecasting and will serve as a foundation for related studies.
. Introduction

Highways are designed to facilitate intercity travels within a coun-
ry while providing links to other public or private roads. However,
ommuters or residents living close to these highways are constantly
xposed to numerous pollutants that can result in respiratory and
ardiovascular health diseases. An average commuter in a car spends
%–7% of their day on or close to these major roads constantly polluted
ith vehicle emissions and atmospheric reactions of pollutants such
s nitrogen oxides (NO𝑥) and particulate matter (𝑃𝑀2.5, 𝑃𝑀10) (Matz,
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Stieb, Egyed, Brion, & Johnson, 2018). Studies have shown that contin-
uous exposure to these kind of pollutants increases the risks of dying
from stroke, heart failure and asthma attacks (Mabahwi, Leh, & Omar,
2014). The particle sizes of particulate matter makes it one of the most
difficult traffic-related pollutant to control despite its contribution to
global mortality (Jida, Hetet, Chesse, & Guadie, 2021; Peeples, 2020).
In 2015 alone, 20% of 𝑃𝑀2.5-related deaths in developed countries
such as the United States of America (USA), Germany and the United
Kingdom (UK) were linked to traffic-related air pollution (Jerrett,
2015). Unfortunately, traffic congestion aggravates this problem by
ttps://doi.org/10.1016/j.mlwa.2023.100474
eceived 6 December 2022; Received in revised form 7 March 2023; Accepted 23
vailable online 7 June 2023
666-8270/© 2023 The Authors. Published by Elsevier Ltd. This is an open access
http://creativecommons.org/licenses/by/4.0/).
May 2023

article under the CC BY license

https://doi.org/10.1016/j.mlwa.2023.100474
https://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2023.100474&domain=pdf
mailto:Taofeek.Akinosho@uwe.ac.uk
mailto:Muhammad.Bilal@uwe.ac.uk
mailto:Enda.Hayes@uwe.ac.uk
mailto:Anuoluwapo.Ajayi@uwe.ac.uk
mailto:Ashraf.Ahmed@brunel.ac.uk
mailto:Zaheer2.Khan@uwe.ac.uk
https://doi.org/10.1016/j.mlwa.2023.100474
http://creativecommons.org/licenses/by/4.0/


T.D. Akinosho, M. Bilal, E.T. Hayes et al. Machine Learning with Applications 12 (2023) 100474

𝑃
u
d
B
G
e
a
p
s
u
n
d
d
n

1

i
b
o
l
h
c
o
t

increasing the time spent on these highways and exposure to these
contaminants.

Research into UK highway pollution is limited, with few monitoring
stations from the UK government operated national Automatic Urban
and Rural Network (AURN) sparsely positioned in areas close to major
roads to record concentration levels. Data captured from these stations
are used by the government to detect long-term pollutant trends,
evaluate the effectiveness of certain policy changes, and to determine
compliance with UK health-based air quality objectives. Similarly, the
AURN data is used to support the UK’s air quality forecast system which
is a modelled data set created by the Met Office in a bid to reduce
morbidity and mortality from traffic-related pollution. However, in-
stantaneous forecasting using real-time data is non-existent since it can
be quite challenging. The process of estimating concentration levels of
pollutants is complicated and often constrained by contributing factors
such as weather conditions and traffic flow (Barrera-Animas, Oyedele,
Bilal, Akinosho, Delgado, & Akanbi, 2022; Sun et al., 2021). In the last
decade, a number of studies have focused on investigating innovative
ways to address the challenges of accurate forecasting although with
some persistent constraints.

1.1. Existing approaches to traffic-related air pollution (TRAP) forecasting

Conventional methods for TRAP forecasting can be broadly cate-
gorised into deterministic, statistical and machine learning-based ap-
proaches (Xie, Wu, Li, & Li, 2020). Some studies have adopted a
singular modelling approach while a considerable number combine
these methods for better accuracy. Deterministic methods are generally
less adopted due to limitations such as compute-intensiveness, lack
of spatial and temporal dependencies and the need to mathematically
represent chemical reactions between pollutants (Cabaneros, Calautit,
& Hughes, 2017; Hua et al., 2019). Statistical methods such as multiple
linear regression, autoregression and linear-logarithmic regression are
preferred alternatives for solving the shortcomings in deterministic
methods. For example, the study of Comert, Darko, Huynh, Elijah, and
Eloise (2020) used several variants of linear regression models mixed
with grey systems to predict ozone and 𝑃𝑀2.5 levels using historical
traffic volume and air quality data. Machine learning (ML) methods like
Neural Networks have also been exploited for TRAP forecasting: (Jida
et al., 2021) used the approach to estimate traffic-related 𝑃𝑀2.5 and
𝑀10 in the city of Addis Ababa in Ethiopia. Cabaneros et al. (2017)
sed a hybrid of neural networks and stepwise regression to predict
ay-ahead roadside NO2 concentration levels. Six ML algorithms —
oosted Regression Trees (BRT), Random Forest (RF), Cubist, Extreme
radient Boosting(XGBoost), Support Vector Machine (SVM) and Gen-
ralised Additive Model (GAM) were evaluated in the study of Li, Yim,
nd Ho (2020) to address the limitations of statistical methods by
redicting high temporal resolutions of roadside 𝑃𝑀2.5 and NO𝑥. In a
imilar research, Fong, Li, Fong, Wong, and Tallon-Ballesteros (2020)
sed transfer learning (a process of adapting existing ML models for
ew prediction tasks) and Recurrent Neural Networks (RNNs) to make
ay-ahead predictions of particulate matter. Although these studies
emonstrate the effectiveness of ML approaches, many of them still had
otable limitations.

.2. Limitations of existing approaches

The first and most pertinent limitation of existing approaches is
naccurate prediction and limited generalisability. This constraint can
e attributed to the quality of the data sets that models are trained
n. Traditional models are mostly trained on traffic flow, meteoro-
ogical and historic pollution data collected over many years. Other
ighway and traffic-related data such as background air pollution
oncentrations, vehicle emission factor and highway topography are
ften ignored because of their unavailability. Consequently, many of
he machine learning models only excel on the often limited data sets
2

upon which they have been trained. The study of Fong et al. (2020)
for example, could only make next day predictions and struggled with
periods shorter than a day or even several days ahead. Another impor-
tant limitation is the inability of these models to simultaneously and
accurately predict multiple pollutants and the impact of contributing
variables. Model predictions typically depend on the linear dependency
between influential highway parameters (such as traffic flow and wind
directions) and pollutants. However, these relationships are complex
and non-linear, thereby making simultaneous predictions even more
difficult (Masmoudi, Elghazel, Taieb, Yazar, & Kallel, 2020). Also, most
of the developed models do not offer pragmatic solutions that can be
deployed in a real-world scenario. Rigorous validation of these models
in these kinds of scenarios is almost non-existent. Table 1 summarises
the limitations of the reviewed studies in comparison to the proposed
approach in this study.

1.3. The need for multi-target regression (MTR) and deep learning

Motivated by the aforementioned limitations, this study takes a
different approach and models the prediction task as a multi-target
regression problem with additional highway data such as background
air pollution concentrations from the UK Pollution Climate Model
(PCM), vehicle emissions factor and terrain data added to the con-
ventional weather and historic pollution data. While MTR permits the
simultaneous prediction of multiple dependent variables, its real-world
application still poses numerous challenges due to the complexity of
some domains (Borchani, Varando, Bielza, & Larranaga, 2015). Few
studies that have explored MTR for pollutant concentration forecasting
have either had limited accuracies or feature selection issues. None
has evaluated a combination of the data set put together in this study.
Similarly, it has been established in several studies that deep learning
algorithms allow models to learn the fundamental relationships be-
tween variables of a data set (Guo & Berkhahn, 2016) but some scholars
argue the efficacy of deep learning algorithms developed for tabular
data (Fayaz, Zaman, Kaul, & Butt, 2022). Hence, this study also seeks
to validate that claim.

In summary, the main contributions of this study to existing knowl-
edge are:

• The study extends existing machine learning based air qual-
ity forecasting studies by integrating highway information in
addition to meteorological and pollution data.

• Training and evaluating the performance of a single MTR model
for multi-target prediction of traffic-related pollutants (NO2,
𝑃𝑀10 and 𝑃𝑀2.5) using these integrated data set.

• Exploring categorical embeddings in tabular data models and
comparing the performance to time series and regression algo-
rithms using state-of-the-art libraries.

• Evaluating the feature importance of the best performing algo-
rithm to determine the most contributing features.

The rest of the manuscript is organised as follows: the next section
highlights the data collection and preprocessing steps towards model
training and evaluation, Section 3 introduces the MTR approach and
details the entire model training process. Experimentation steps and
model validation results on four major UK regions are presented in
Sections 4 and 5. An analysis of the feature importance for the best
performing algorithm is presented in Section 6 while Section 7 discusses
the general findings of the study and its implication for practice.
Section 8 concludes and summarises the study.

2. Study sites and data collection strategy

2.1. Study sites

To explore the robustness and adaptability of our methodology, the
study was carried out in one major city (London), one smaller city
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Table 1
Summary of existing approaches and comparison with proposed approach.

S/N Author(s) Year Method Aim Target pollutants Limitations Region

1 Cabaneros et al. (2017) 2017 Neural Network Investigate the effect of
feature selection on NO2
concentration prediction

NO2 Impact of traffic data and
emission factor were not
considered

London

2 Suleiman, Tight, and
Quinn (2019)

2019 Support Vector Machine,
Artificial Neural Network,
Boosted Regression Trees

Evaluate the effectiveness
of roadside pollutant
reduction scenarios using
ML-based models

𝑃𝑀10, 𝑃𝑀2.5 Limited dataset, No
multi-target prediction

London

3 Wang, Xu, Tu, Saleh, and
Hatzopoulou (2020)

2020 Artificial Neural Network,
Gradient Boost, Land Use
Regression(LUR)

To investigate the
performance of LURs
against machine learning
models

𝑃𝑀2.5, Black
Carbon

No multi-target output, No
hyperparameter tuning for
improved performance

Toronto

4 Comert et al. (2020) 2020 Regression Models Investigating the impact of
traffic volume on air
quality

𝑃𝑀2.5, Ozone Impact of weather and
traffic parameters not
considered

South
Carolina

5 Li et al. (2020) 2020 Random Forest, Support
Vector Machine, Gradient
Boosting, Generalised
Additive Model, XGBoost,
Cubist

To predict street-level
pollution at roadside
stations

NO𝑥, 𝑃𝑀2.5 Single target models that
could only make hourly
predictions

Hong Kong

6 Fong et al. (2020) 2020 Recurrent Neural Network Explore transfer learning
for better accuracy on
limited observed data

NO2, 𝑃𝑀10,
𝑃𝑀2.5, CO, NO

Could not make next day
predictions

Macau

7 Jida et al. (2021) 2021 Artificial Neural Network To investigate the
contribution of roadside
vehicles to particulate
matter in Ethiopia

𝑃𝑀10, 𝑃𝑀2.5 Did not explore the impact
of background pollution
concentration

Ethiopia

8 Current study 2023 Recurrent Neural
Network, Categorical
Embeddings, Tabular
Models, Regression
Models

Investigate the impact of
additional highway data
in TRAP forecasting

NO2, 𝑃𝑀10,
𝑃𝑀2.5

Addresses existing
limitations by integrating
diverse highway dataset
and exploring categorical
embeddings for improved
performance

Newport,
Chepstow,
Southwark,
Lewisham
s

2
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(Newport) and one large town (Chepstow) in the UK and data was
collected between November 2020 and November 2021. Despite the
impact of Covid lockdowns in this period, there was adequate traffic
flow that allowed us to study the effects of traffic movement trends on
air quality. A total of fourteen custom built Internet of Things (IoT)
devices named REVIS were employed and distributed on highways
in these cities to capture real-time air pollution and weather data as
illustrated in Fig. 1. Development, evaluation and performance details
of the REVIS devices have previously been described in Akinosho et al.
(2022). For London, six devices were deployed on each of the A302
highway in Southwark and A2209 highway in Lewisham with each
device mounted on lamp posts 100 m apart or custom poles in the
absence of lamp posts. One device was deployed on the M4 highway in
Newport and another was placed on the A48 highway in Chepstow.

Additional weather data not captured by the REVIS devices were in-
tegrated from the nearest AURN stations. Publicly available background
mapping data was captured from the Department for Environment,
Food and Rural Affairs’ (DEFRA) website1 while their emissions factor
toolkit was used to estimate traffic exhaust emissions for different
vehicle categories. Similarly, Highways England’s webtris application2

provided traffic congestion, average vehicle speed and traffic volume
data as required. Finally, Google earth application was used to extract
terrain information for the case study sites.

2.2. Data description

The approach used to collect data in this study was to imagine
the highways as consisting of multiple segments. Deployed devices
were mapped to different segments of the highway and data captured
for each device represented that highway segment. This way, it was

1 https://uk-air.defra.gov.uk/data/laqm-background-home.
2 https://webtris.highwaysengland.co.uk/.
3

easier to match device measurements with other data set such as
background concentration that are represented by 1 × 1 km grids. This
ection describes the data set specification which is also summarised in
Appendix.

.2.1. Pollution data
NO2, 𝑃𝑀10, and 𝑃𝑀2.5 data captured every five minutes by the

EVIS devices were included in the data set. After collocating the NO2
readings of the devices with the nearest AURN stations in Chepstow,3
Newport4 and London (Lewisham5 and Southwark6) it was clear that
the NO2 readings were inaccurate with the average correlation of 0.07.
This inaccuracy was linked to the analogue NO2 sensors used on the
REVIS devices, which responded strongly to changes in temperature
and relative humidity, to get negative readings sometimes. As a result,
NO2 measurements from AURN stations were used in place of the REVIS
NO2 data. The REVIS data for 𝑃𝑀10, and 𝑃𝑀2.5 were retained since
there was a good correlation of 0.73 and 0.8 with the AURN data. To
ensure efficient data mapping, the REVIS data had to be summarised
into hourly aggregates to match the hourly readings in the integrated
AURN data (see Fig. 2).

2.2.2. Traffic data
Traffic information was integrated from Highways Englands’ traffic

monitoring unit (TMU) sites. The data which can be downloaded
through an API or a web interface includes counts for vehicles less
than 5.2 m or greater than 11.6 m in length, counts for each vehicle
type, total traffic volume and average traffic speed. The measurements
only included descriptions of vehicle lengths so it was necessary to

3 https://uk-air.defra.gov.uk/networks/site-info?site_id=CHP.
4 https://uk-air.defra.gov.uk/networks/site-info?site_id=NPT3.
5 https://uk-air.defra.gov.uk/networks/site-info?site_id=LW1.
6 https://uk-air.defra.gov.uk/networks/site-info?site_id=SK5.

https://uk-air.defra.gov.uk/data/laqm-background-home
https://webtris.highwaysengland.co.uk/
https://uk-air.defra.gov.uk/networks/site-info?site_id=CHP
https://uk-air.defra.gov.uk/networks/site-info?site_id=NPT3
https://uk-air.defra.gov.uk/networks/site-info?site_id=LW1
https://uk-air.defra.gov.uk/networks/site-info?site_id=SK5
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Fig. 1. A map of case study highways and sensing device distribution in this study.
Fig. 2. Snapshot of pollution data.
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ap different vehicle types to the appropriate lengths for easy compre-
ension. Cars were mapped to 0–520 cm, buses to 521–660 cm, light
oods vehicle (LGV) to 661–1160 cm and heavy goods vehicle (HGV)
o 1160 cm+ (Bálint, Fagerlind, Martinsson, & Holmqvist, 2014). TMU
ata are captured every minute so just like the historic pollution data,
his data was also summarised into hourly aggregates (see Fig. 3).

.2.3. Weather data
The temperature, humidity and pressure for the four highways of

nterest were measured in real-time along with pollution data. How-
ver, previous studies have shown the impact of other meteorological
arameters such as wind speed and wind direction in aiding pollutant
ispersion (Chen & Ye, 2019). The modelled wind speed and direction
ata were therefore integrated from same AURN stations used for
O2 while data from REVIS devices were aggregated to match. Wind
irection across the four regions ranged between 16◦ and 360◦ and the
ind speed was between 0 and 16 knots (see Fig. 4).
4

.2.4. Elevation data
Research into emission modelling in recent years has shown that

ehicle exhaust outputs varies in uphill and downhill situations (Xu,
ong, & Yan, 2020; Zhai, Tu, Xu, Wang, & Hatzopoulou, 2020). The
ehicle’s engine is under more pressure as it goes uphill and under
ess pressure downhill. It is unknown whether capturing this sort of
ighway information would result in an improved estimation accuracy.
ore importantly, highway terrain data such as elevation and gradient

ata are required to compute the vehicle emissions factor for different
ehicle types. Google earth’s desktop application was used to capture
his information after the highway trajectories were drawn (see Fig. 5).

.2.5. Emissions factor data
Version 11.0 of DEFRA’s emission factor toolkit (EFT) was used

o compute the source apportionment of particulate matter and NO2
for the different vehicle categories. EFT allows the specification of
parameters such as the year of interest, road type, vehicle speed and
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Fig. 3. Snapshot of traffic data.
Fig. 4. Snapshot of weather data.
Fig. 5. Snapshot of elevation data.
vehicle type from the onset and automatically computes the required
output based on COPERT 5 specifications (COPERT is the standard EU
vehicle emissions calculator). The traffic was selected as ‘Detailed Option
2’ since the traffic data that was collected did not include information
on vehicle types as either petrol, diesel or hybrid. This option allows
non-detailed vehicle counts for cars, buses, LGVs and HGVs to be used
as traffic flow input for EFT. The highway gradient information from
Google earth was also fed into the tool while the ‘flow direction’ was
determined from the elevation chart in the application. As a result,
the Newport, Lewisham and Southwark highways were specified as ‘Up
Hill’ while Chepstow was specified as ‘Down Hill’ flow direction due
to the single direction by which vehicles travelled. Finally, the below
equations were used to verify the estimations from the toolkit and the
values were close.

For Uphill: 𝐸𝐹2 = 𝐸𝐹1(1 + 𝐺 × [𝐶1 × 𝑉 + 𝐶2]) (1)

For Downhill: 𝐸𝐹2 = 𝐸𝐹1(1 − 𝐺 × [𝐶1 × 𝑉 + 𝐶2]) if 𝐺 ≤ 2.5%

𝐸𝐹2 = 𝐸𝐹1(1 − 0.025 × [𝐶1 × 𝑉 + 𝐶2]) if 𝐺 > 2.5%
(2)

where 𝐸𝐹1 and 𝐸𝐹2 denote emission factor for vehicles travelling at
speed V on a level and uphill/downhill road respectively, G is the
highway gradient and 𝐶1 and 𝐶2 are the gradient coefficients based

on vehicle type and pollutant of concern (CERC, 2019) (see Fig. 6).

5

2.2.6. Background air pollution concentration data
Background concentration maps for a particular pollutant refers to

data on contributions from other sources mixed with contributions from
the source of interest (in this case road transport). These sources can
range from natural to local sources like household coal burning, indus-
tries and even other means of transportation. It is therefore important
to consider these other sources and eliminate them to avoid double
counting (a situation where concentration for a pollutant is repeated
unknowingly). This study utilises the publicly available background
pollution maps from DEFRA UK AIR resource website (UKAIR, 2018)
to capture this information for the four case study locations. It is
noteworthy that this was the 2018 background maps covering 2020
and 2021 but do not account for long or short term impacts of Covid
lockdowns on local sources. The data provides grid-based modelled
background concentration for 𝑃𝑀2.5, 𝑃𝑀10, NO𝑥, and NO2 from 2018
to 2030. The background concentration for 2020 and 2021 indicated
in Table 2 below includes only rail, domestic, industrial and point
sources. The minor road and motorway background concentration were
not included to avoid double counting . This approach is similar to the
one proposed in the study of Arunachalam et al. (2014) (see Fig. 7).

3. Machine learning approach

This section describes the approach taken in this study to address

the multi-target prediction problem. The pseudo-code for the proposed
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Fig. 6. Snapshot of emission factor data.
Table 2
Pollutant background concentration for the four regions of interest in the year 2020 and 2021.
Regions Grid_ref_x Grid_ref_y NO2 (ppb) 𝑃𝑀2.5 (μg∕m3) 𝑃𝑀10 (μg∕m3)

2020 2021 2020 2021 2020 2021

Newport 332 500 189 500 17.711 16.761 10.386 10.278 15.785 15.648
Chepstow 353 500 193 500 8.409 8.067 7.986 7.883 12.069 11.941
Lewisham 537 500 177 500 24.698 23.827 12.090 11.941 18.560 18.347
Southwark 531 500 178 500 28.954 27.997 12.706 12.555 19.768 19.552
Fig. 7. Snapshot of background concentration data.
approach is highlighted below while the entire workflow is summarised
in Fig. 8.

3.1. Multi-target regression and RNNs

Neural Networks have become a familiar term among the artifi-
cial intelligence (AI) and machine learning research community. The
ML approach which became more popular in 2012 as a result of
its performance at the imagenet classification competition, has since
grown into a widely adopted method for not just classification but
also regression problems. Multi-target models in general refers to mod-
els that are able to automatically detect relationships between target
variables, thereby resulting in better predictions (Korneva & Blockeel,
2020). A multi-target regression neural network differs from its single-
target counterpart by the number of predicted outputs. As illustrated
in Fig. 9a and b, single-target predicts just one output using the set
of features characterising the data set while multi-target can predict
multiple outputs simultaneously. In terms of performance, multi-target
outputs are simpler and faster to train than an ensemble of single-target
models (Kocev, Džeroski, White, Newell, & Griffioen, 2009). Multi-
target models are more widely adopted for classification problems
such as object classification, face recognition and sporadically used
for regression problems (Spyromitros-Xioufis, Tsoumakas, Groves, &
Vlahavas, 2012).

Recurrent neural networks are mainly associated with research
involving time-series, sequence labelling and classification using visual,
6

audio or text data. This class of neural networks and its variants —
Gated Feedback Recurrent Neural Network (GRU) and Long–Short term
memory (LSTM) are suitable for time-series problems since they are
capable of keeping track of the temporal information within input data.
Other neural network architectures like CNN and GANs struggle with
these kind of data (Yu, Si, Hu, & Zhang, 2019). Despite the competitive-
ness of RNNs over other architectures, its application to domains such
as air quality forecasting is limited due to the inadequate understanding
of its internal mechanisms (Shen et al., 2020). Fortunately, several
libraries and frameworks have been introduced in recent times to take
away the intricacies of the RNN implementation.

3.2. Fastai, prophet and multioutputregressor methods

Fastai was first introduced in 2016 as a library built with a high
level of abstraction to help AI enthusiasts with limited maths back-
ground to quickly develop deep learning models. With as little as 10
lines of codes, the complexities of developing such models are handled
by fastai’s customisable low, mid and high level APIs (Howard &
Gugger, 2020). The library is put forward as being capable of achieving
state-of-the-art results in computer vision, natural language processing,
collaborative filtering, and time-series problems. Another key attribute
of the library which has caught the eye of researchers is the library’s
implementation of entity embeddings for encoding categorical features
to achieve state-of-the-art results.
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Fig. 8. Multi-target model training architecture using the newly curated dataset. Feature engineering steps including normalisation and log transformation were carried out before
training on three different algorithms used for experimentation.
Prophet, on the other hand, is a library developed by Facebook to
strategically introduce some modifications to traditional time-series al-
gorithms. The library uses the idea of ‘‘changepoints’’ to generate addi-
tive regression models capable of automatically detecting and adapting
to sudden changes in time-series trajectories (Taylor & Letham, 2018).
This implies a reduction in the efforts required to manually specify
data shifts before training a model. The library is designed to be robust
against missing data and is originally built for univariate daily, weekly
and yearly time-series forecasting. However, with a few modifications
to the library, such as the use of multiple regressors, multivariate
prediction is possible. The default configuration in prophet is known
to produce estimates similar to professional forecasters and therefore
encourages quick experimentation. The library is famously used for
sales as well as weather forecasting. The easiest way to install prophet
is through its python or R package on PyPI and CRAN repositories.

Scikit-learn (Sklearn) is one of the most useful python library that
houses different regression, classification and time-series algorithms.
7

One of the wrapper regressor classes in sklearn is the MultiOuputRe-
gressor class which permits the definition of one regressor from any
of the available regression algorithms and then creates an instance for
each output. One key advantage of the class is that it can be used to
identify outputs that are independent of each other and also used to
evaluate the performance of other multioutput models.

3.3. Data preprocessing

All the available data were first pulled together and merged into a
single csv file using Oracle SQL procedures before preprocessing was
initiated. It was important that these procedures were used to extract
the data into separate database tables since they were generated as
JSON strings directly from the IoT devices. The tables were joined
using matching columns such as region or highway id and then loaded
into a jupyter notebook for pre-processing and data cleansing. This
data fusion technique is known as the early multi-view integration
approach where the datasets are first joined together into a vector
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𝑃

Fig. 9. Multi-target vs single-target neural networks.
Algorithm 1 Multi-target algorithm for predicting 𝑁𝑂2,𝑃𝑀10 and
𝑀2.5.

Input: Dataset (𝑋, 𝑌 ), Fastai tabular model  , Prophet model  , Multiout-
putregressor model , epochs 𝜖, learning rate 𝜂, batch size 𝛽, estimators n,
max depth d
Output: (𝑦̂1, 𝑦̂2, 𝑦̂3)
Initialize: 𝜖, 𝜂, 𝛽
Categorify()
FillMissing()
Normalize()
Split  into trainSet, testSet and validationSet
for 𝑒 = 1, ..., 𝜖 do

train  using trainSet, 𝜂 and 𝛽
validate( , validationSet)

end
Return: Trained tabular model 𝑡𝑟𝑎𝑖𝑛𝑒𝑑
Initialize: 
for 𝑥𝑖, ..., 𝑥𝑛 do

 .addRegressor(x)
end
train  using trainset
validate( , validationSet)
Return: Trained model 𝑡𝑟𝑎𝑖𝑛𝑒𝑑
Initialize: n, d, 
train  using trainSet, n and d
validate(, validationSet)
Return: Trained model 𝑡𝑟𝑎𝑖𝑛𝑒𝑑
for model ∈ (𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ,𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ,𝑡𝑟𝑎𝑖𝑛𝑒𝑑) do

for t = 1,..., 24 do
Get: 𝑥𝑡
if 𝑡 ≠ 1 then
Predict: (𝑦̂1, 𝑦̂2, 𝑦̂3)𝑡 using (model, (𝑦̂1, 𝑦̂2, 𝑦̂3)𝑡−1,𝑥𝑡)
else if 𝑡 = 1 then
Predict: (𝑦̂1, 𝑦̂2, 𝑦̂3)𝑡 using (model,𝑥𝑡)
Return:  : (𝑦̂1, 𝑦̂2, 𝑦̂3)𝑡, : (𝑦̂1, 𝑦̂2, 𝑦̂3)𝑡,: (𝑦̂1, 𝑦̂2, 𝑦̂3)𝑡

end
end

using a matching feature before training on a machine learning algo-
rithm (Guarino, Lettieri, Malandrino, Zaccagnino, & Capo, 2022; Li,
Wu, & Ngom, 2018; Noble et al., 2004). The matching feature in this
case is the region/highway id. Two versions of the data were created
to adapt to the needs of the algorithms that were explored. The feature
engineering steps that were taken are as follows:

• Data straight from the database had 232,553 rows and 10
columns. Each row represented a single reading for particular
8

pollutant or weather data at 5 min intervals. One of the columns
captured the trend_type_id, an integer which indicates the type of
measurement (weather, pollutant, emission factor etc.) that was
measured. A dictionary was then created to convert these ids into
meaningful and more descriptive strings. Pandas library was used
for data manipulation and its pivot function was used to turn
rows with matching dates into one single row while retaining
the measurement type as columns. Missing measurements for a
particular time point was represented with ‘Nan’. The shape of
the data set after this preprocessing step was 11,990 rows 𝑥 44
columns

• Next was to create the first version of the data set which includes
extracted date information. Additional date attributes such as day,
month, year, dayofweek, ismonthend etc were added to this data
set. This step makes it easier for the algorithm to extract the date
information from the datetime object. The second version of the
data had just the date and pollutants data like a typical time series
data set.

• Inspecting the data for missing values revealed 1111 missing data
for the REVIS 𝑃𝑀2.5 and 𝑃𝑀10 while the integrated AURN NO2
had none. The missing values were replaced with data from the
previous day using the last observation carried forward (LOCF)
method which is one of the famous imputation methods for time
series data (Hadeed, O’Rourke, Burgess, Harris, & Canales, 2020).
The same approach was used to fill missing values in other
weather and traffic attributes.

• It was difficult to identify the underlying distribution of the
pollutants since their min and max has a smaller scale of values as
shown in Table 3. Hence, the log transform of all three pollutants
was taken to make the distributions less skewed. The resulting
plot of the distribution is shown in Fig. 10.

• Finally, the features were split into categorical and continuous
features based on the type of values they hold as shown in
Appendix. This step facilitates the use of tabular models.

4. Experimentation and model training

This section highlights the experiments and optimisation techniques
carried out in this study while results of each experiment are presented
in subsequent sections. Fig. 11 shows the difference between two sets of
experiments carried out using fastai, prophet and multioutputregressor
algorithms. Each experiment was carried out using separate jupyter
notebooks and a dedicated high performance computer with 64gb RAM

and Nvidia RTX 3080 GPU.
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Table 3
Descriptive statistics of the pollutants data.
Variable count mean std min 25% 50% 75% max

NO2 (ppb) 11 990 21.954 16.405 0.631 9.753 16.910 30.379 132.370
𝑃𝑀2.5 (μg∕m3) 10 879 9.711 14.922 0.699 3.717 5.932 10.205 401.012
𝑃𝑀10 (μg∕m3) 10 879 11.801 17.882 0.778 4.828 8.042 12.587 617.351
Fig. 10. Data distribution for all three pollutants.
Fig. 11. Summary of experiments carried out in this study.
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4.1. Experiment 1 - comparing fastai, prophet and MultiOutputRegressor
defaults

The first experiment involved training models with different com-
binations of data sets and methods. The aim was to initially try out
the default configurations of the choice libraries and see how they
perform with hourly, 3-hourly and 6-hourly MTR predictions before
attempting any hyperparameter tuning. Out of the box, fastai permits
the customisation of the number of features to predict and this can
be set to as many as possible if a custom loss function is configured
alongside. The default design of fastai’s tabular learner (a class within
its mid-level API) is a two-layered neural network with 200 neurons
in the first layer and 100 in the second layer. Other fastai default
parameters and values are shown on Table 4.
 b

9

Prophet uses a conventional time-series method of forecasting and
requires just the date column and one dependent variable (y). However,
for this experiment we made use of the library’s add_regressor function
o include the other features but it was required that the historic and
uture values of these additional regressors be included during training.
ince prophet does not support multi-output forecasting by default, we
ade use of another package called multi-prophet which allowed us

o predict all three pollutants simultaneously. Also, UK holiday effects
ere captured using the built-in country holidays feature.

Randomforestregressor, gradientboostingregressor and kneighbour-
regressor were explored with the MultiOutputRegressor to see which
erformed better. The best performing regressor with the default con-
igurations was to then be used for subsequent experiments. Gradient-
oostingregressor produced the best result when compared in terms
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Table 4
Hyperparameters used for experiment 1 - default configurations.

Algorithm Hyperparameter name Hyperparameter value

Fastai

Number of layers 2
First layer neurons 200
Second layer neurons 100
Dropout probability 0.04
Learning rate 1𝑒−1

Prophet Period 365
Changepoint prior scale 0.001

MultiOutputRegressor Number of estimators 100
Learning rate 0.1
Max depth 3
Minimum samples split 2
Minimum samples leaf 1
Alpha 0.9

Table 5
Details of hyperparameters optimised using Optuna and GridSearchCV.

Optimiser Hyperparameter Search space Result

Optuna

Number of layers (1,7) 3
Neurons per layer (50,200) 200,162,134
Weight decay (0.01,0.1) 0.01
Learning rate (1𝑒−5, 1𝑒−1) 1𝑒−3

Dropout probability (1𝑒−3, 1𝑒−1) 0.2

GridSearchCV

Number of estimators (10,300) 250
Learning rate (1𝑒−5, 1𝑒−1) 1𝑒−1

Max depth (1,40) 12
Minimum samples split (0.01,1) 0.6
Alpha (0.1,2) 1.3

of the mean absolute error (MAE). The default configuration used is
shown in Table 4. The result of experiment 1 is reported in Section 5
but overall, it showed that most of the models did not perform too well
and more experimentation or parameter optimisation was required.

4.2. Hyperparameter tuning with optuna and gridsearchcv

Following the not-so-impressive results of experiment 1, it was es-
sential that the training parameters were optimised. Optuna is a mildly
famous parameter optimisation framework for deep learning models. It
was chosen for the purpose of this study due to its ease of use and also
its recently introduced integration module for fastai. Optuna requires
the definition of an objective function to be optimised, and in our case
was defined as the model’s prediction of the three pollutants. Table 5
shows the search space for each of the optimised hyperparameter and
the associated value after 50 optuna trials. GridSearchCV is an estima-
tor within the sklearn library used to carry out brute force parameter
search on regression algorithms such as the one being explored in
this study. The technique uses cross-validation for this purpose while
fitting and scoring each fold independently. GridSearchCV was used
to optimise the number of estimators, learning rate, max depth, min-
imum sample split and alpha values for the gradientboostingregressor
algorithm. Table 5 also shows the selected hyperparameter values after
optimisation.

4.3. Experiment 2 - exploring lagged dependent variables (LDVs)

This experiment sought better model performance through the intro-
duction of lagged variables. Introducing lagged variables in regression
analysis is not new as discussed in the study of Wilkins (2018). The
concept has been explored in several studies including air quality
research with some scholars arguing that it may introduce bias in the
data set if not defined properly (Grubb & Symons, 1987). In this study
we implemented the concept by carefully creating a structured data set
which contained actual readings from previous time points leading to
the current time point to be predicted. Each of these time points were
 s

10
depicted as separate columns and fed into each model to be trained.
The effect of this experiment was that information of the previous time
points needed to be provided for any future time point. This was the
sensitive bit that could easily lead to data leakage. A function was
therefore written to implement this idea while sequentially predicting
all the timing points leading to the current one. Results of experiment
2 are also reported in Section 5 and it shows an improvement from the
previous experiment.

5. Model validation and results

This section highlights results of the experiments carried out in this
study. Details of the choice evaluation metrics and the methods used
to select our validation data are also highlighted.

5.1. Performance metrics

Evaluation metrics are used to check the performance of models
during and after training. Hence, it was necessary that suitable metrics
for MTRs were first chosen even before training was started. More
importantly, the metrics were also used to validate our models to
make sure they were actually learning. Existing regression studies adopt
metrics such as mean squared error (MAE), root mean squared error
(RMSE), mean absolute percentage error (MAPE) and mean square
error (MSE) for model evaluation. Eqs. (3) to (5) illustrate the MAE,
RMSE and MAPE metrics that were chosen as performance measures
where 𝑦 is the actual value and 𝑦̂𝑖 is the predicted value. For fastai,
a custom loss function that could compute the model’s performance
for each pollutant, average it and then update the model’s weights
accordingly was implemented. This was an important step to force the
model to learn appropriately and not perform exceptionally on one
pollutant and poorly on another.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (3)

𝑀𝐴𝑃𝐸 = 100%
𝑛

𝑛
∑

𝑖=1
|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

| (4)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖|

2 (5)

5.2. Test and validation data

70% of the entire data set was used for training while the remaining
30% was split into validation (20%) and test(10%) sets. However, the
data had to be first sorted by date and then split by index to ensure
no randomisation occurred and that seasonality within the data was
maintained. As a result, 8953 rows were used for training, 2398 rows
for validation and 1199 rows for testing. In days, this translated to
39 days for validation and 27 days for test. Each datapoint represents
hourly reading for all 44 features. The validation set was used to
optimise models’ parameters after each training loop while the test
set was used to evaluate the performance of the final model. Cross
validation is one of the widely adopted validation methods in regres-
sion analysis (Morin & Davis, 2017). Hence, the method was chosen
for validating and testing the accuracy of the trained models. The
implementation was different for all three algorithms but this generally
meant that once the training was completed on the initial 8953 rows,
the model’s performance is examined on the validation set, then a
specified chunk of data is taken from the validation set and then used to
train the model again and its performance evaluated on the remaining
chunk. This process is repeated till there is no chunk left to cross
validate with. For prophet, this chunk is referred to as the period while
the number of days to be predicted is referred to as horizon. Sklearn’s
ross_val_score helper function was used to cross validate the fastai and
ultioutputregressor models. The horizon was successively set at 1 h,
h, 16 h and 24 h for different validation rounds while the period was

et to hourly.
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Table 6
Experiment 1 results of MTR models prediction for different timesteps.

Pollutant & Timestep Fastai Multioutputregressor Prophet

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

NO2 (ppb)

1 h 15.760 1.256 27.420 10.452 0.952 19.145 13.128 0.811 17.142
8 h 16.321 1.076 31.329 17.334 1.772 21.768 14.372 0.816 20.099
16 h 18.167 1.321 34.771 21.982 2.306 24.911 14.714 0.852 23.146
24 h 21.159 1.442 35.682 23.057 2.512 21.156 15.591 0.994 26.044

𝑃𝑀2.5 (μg∕m3)

1 h 33.051 1.858 31.341 18.036 1.452 27.588 15.103 1.623 12.304
8 h 34.111 2.328 33.142 23.911 1.641 33.612 19.145 1.815 18.142
16 h 38.440 2.416 36.189 27.105 1.952 35.145 10.232 2.012 22.356
24 h 40.099 2.512 38.146 26.830 1.835 36.875 15.344 2.458 23.198

𝑃𝑀10 (μg∕m3)

1 h 32.130 14.063 29.156 14.798 1.568 19.376 21.403 1.434 28.599
8 h 37.156 7.342 31.002 18.233 1.734 22.157 20.123 2.583 32.048
16 h 38.360 10.222 35.158 21.156 1.912 28.523 22.041 5.168 37.145
24 h 33.127 8.066 36.360 24.076 1.820 32.142 23.487 3.443 33.640
Table 7
Experiment 2 results of MTR models prediction for different timesteps.

Pollutant & Timestep Fastai Multioutputregressor Prophet

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

NO2

1 h 5.333 0.412 8.312 9.132 1.012 15.325 10.122 0.931 14.122
8 h 7.182 0.676 9.042 13.562 1.622 19.328 13.306 0.826 19.059
16 h 6.325 0.521 8.763 20.152 2.133 22.541 14.334 0.782 22.326
24 h 8.058 0.731 10.324 22.034 2.262 20.331 15.591 0.924 24.134

𝑃𝑀2.5

1 h 3.062 0.258 5.341 16.506 1.243 23.124 14.332 1.589 11.752
8 h 4.251 0.328 4.142 21.121 1.476 33.612 18.032 1.629 16.302
16 h 4.430 0.399 5.189 23.105 1.432 35.145 9.112 1.892 20.126
24 h 5.639 0.435 6.146 22.498 1.835 36.875 13.763 2.298 21.156

𝑃𝑀10

1 h 3.124 0.267 5.443 13.332 1.228 18.069 20.313 1.254 27.169
8 h 4.022 0.354 4.783 18.023 1.734 21.100 19.523 2.383 30.124
16 h 4.129 0.378 5.034 19.326 1.912 26.613 20.376 4.198 32.225
24 h 5.123 0.462 6.343 21.312 1.820 31.298 21.809 3.213 31.004
8
f
t

5.3. Experiment 1 results

Models trained in the first experiment were evaluated over an
hourly, 8-hourly, 16-hourly and 24-hourly timestep. These timesteps
were chosen based on similar AQ studies that have also evaluated their
models using the same method (Bui, Le, & Cha, 2018; Mao, Wang,
Jiao, Zhao, & Liu, 2021). Fig. 12a shows the training and validation
loss for fastai after 1500 epochs. From the plot, it can be seen that the
training loss reduced progressively but this was not indicative of the
final evaluation results shown in Table 6. The table shows the scores
recorded for each algorithm in each timestep. It is evident that all the
models struggled with the 24 h and 16 h predictions and performed
slightly better with the hourly and 8 h predictions. The overall min-
imum MAE, MAPE and RMSE 1 h scores for NO2 in this experiment
was 10.452, 0.952, 19.145 respectively with the multioutputregressor
model. Likewise, the best performance for 𝑃𝑀2.5 was on the prophet
model with 15.103, 1.623 and 12.304 scores. For the most part, fastai
recorded the worst performance in this experiment with scores as high
as 40.099, 2.512 and 38.146. To further strengthen our assumptions
that the scores recorded on these models were too high, a graphical plot
of the actual readings and models’ predictions were made as illustrated
in Figs. 13–15. None of the models were able to perform well on all
three pollutants simultaneously. An ensemble of predictions from the
two better performing models — multiouputregressor and prophet was
also explored but there was no improvement with the achieved scores.

5.4. Experiment 2 results

There was an immediately noticeable improvement in the results
obtained in experiment 2. The metrics scores dropped considerably for
the fastai model while the multioutputregressor and prophet models
also saw some improvements. The best scores were recorded by fastai
in this round of experiment for all three pollutants simultaneously.

Although the model in this experiment was run for 1500 more epochs

11
than experiment 1, this was not the reason for the improved scores. The
first experiment was only run for shorter epochs to avoid overfitting
since the validation and training losses were not reducing as the epochs
increased. A plot of the validation loss illustrated in Fig. 12b shows
that the loss from this experiment was lower from the beginning and
reduced in a stable manner as compared to experiment 1. The model’s
worst performance was on NO2 24 h predictions with MAE as high as
.058. However, this result still outperforms the previous NO2 results
or all the models in experiment 1. From Table 7, it is hard to determine
he model’s best prediction performance since the results for 𝑃𝑀2.5 and
𝑃𝑀10 were quite similar on 1 h timestep predictions. The best average
MAE, MAPE and RMSE scores was recorded as 3.062, 0.258 and 5.341
respectively. This improvement in the performance of the fastai model
can be associated with the introduction of lagged variables as well as
the hyperparameter tuning in this round of experiment. As illustrated in
Figs. 17 and 18 and also Table 7, the prophet and multioutputregressor
models also performed slightly better in this as a result of these changes
but the improvement was not as significant as fastai’s (see Fig. 16).

5.5. Statistical significance of results

To further strengthen the confidence in the results achieved with
fastai, it was necessary that statistical hypothesis tests were carried
out to weigh its performance against the two other models. The non-
parametric Friedman and the Wilcoxon signed-rank test were selected
with a null hypothesis (𝐻𝑜) that there is no statistical difference be-
tween the predictions from the three models. This hypothesis would be
rejected if the chi-square was >3.84 for the Friedman test and 𝑝-value
was below 0.05 for both tests. Both tests were performed on 20 MAE,
MAPE and RMSE error readings from cross-validation in experiment 2.
The Friedman test for the 3 models resulted in a chi-square score of
6.45 and 𝑝-value of 0.03. Table 7 shows the result of the Wilcoxon test
for pair-wise comparisons of the models. Just like the Friedman test,

all the 𝑝-value scores were less than 0.05. The result of both statistical
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a

Fig. 12. Training and validation losses on Fastai after 1500 and 3000 epochs for experiments 1 and 2 respectively.
Table 8
Statistical significance and model evaluation using Wilcoxon signed rank test.

Pair-wise comparison P-value Significance

Fastai and Prophet 0.02 Yes
Multioutputregressor and Prophet 0.03 Yes
Fastai and Multioutputregressor 0.02 Yes

tests indicates that the hypothesis can be rejected and the predictions
from fastai are statistically different from the multiouputregressor and
prophet models.

5.6. Results comparison with related work

Although there have been lots of studies focused on traffic related
air pollution prediction, very few have looked into multi-target predic-
tion of pollutants or the combination of data set used in this study.
Similarly, the evaluation metric and validation approach in some of
these studies are different from the ones explored in this study. For
these reasons, it was unfeasible to make a direct comparison of the
results of our proposed approach with existing ones. Nevertheless, the
results of individual predictions for pollutants same as ours in a select
few studies were compared with the result of our proposed approach.
Table 8 shows the outcome of this comparison with our approach
outperforming most of the reviewed studies. The study of Suleiman
et al. (2019) outperformed ours in 𝑃𝑀2.5 predictions but the validation

pproach used by the authors was different. The improved performance
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achieved with our approach can be attributed to the use of additional
data for training and the adoption of categorical embeddings (see
Table 9).

5.7. Model’s performance on missing data

An additional test was carried out to evaluate the performance of
the fastai model from experiment 2 in a real-life scenario where some
of the integrated data might be missing. It is suggested that as much
data as possible is sourced to get optimum performance, but this may
not always be the case. To replicate this scenario, the values for the
intended missing data were replaced with zeros in the test data before
model inferencing. It was important to not drop the columns entirely
since the model was originally trained on 44 features and dropping
them would result in errors. Similarly, replacing with Nan instead
of zeros results in errors too. The model’s predictive performance
when traffic, weather, emissions factor, background concentration or
elevation data are missing can be seen on Figs. 19–23. The illustrations
indicate varying predictive accuracy depending on the missing data.
The model’s performance is worse when weather data is missing and
poor when elevation or background concentration data are missing.
NO2 prediction is the most affected in these missing data scenarios. This
performance variation with certain missing data begs the question -
What are the most important features that must be captured for a reasonable

prediction accuracy?
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Fig. 13. Experiment 1 - Fastai’s model predictions.
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Fig. 14. Experiment 1 - MultiOutputRegressor’s model predictions.
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Fig. 15. Experiment 1 - Prophet’s model predictions.
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Fig. 16. Experiment 2 - Fastai MTR predictions for NO2, 𝑃𝑀2.5 and 𝑃𝑀10.
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Fig. 17. Experiment 2 - MultiOutputRegressor’s MTR predictions for NO2, 𝑃𝑀2.5 and 𝑃𝑀10.
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Fig. 18. Experiment 2 - Prophet’s model predictions.
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Fig. 19. Fastai model’s performance when missing traffic data.
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Fig. 20. Fastai model’s performance when missing weather data.
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Fig. 21. Fastai model’s performance when missing elevation data.
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Fig. 22. Fastai model’s performance when missing emissions factor data.
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Fig. 23. Fastai model’s performance when missing background concentration data.
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Table 9
Comparison of prediction results with existing studies based on RMSE score.

Reference Data source Method Pollutant RMSE (lowest)

Cabaneros et al. (2017) Marlyeborne Road Monitoring sites Hybrid Artificial Neural Networks NO2 22.05

Suleiman et al. (2019) Monitoring sites Artificial Neural Network, SVM, BRT 𝑃𝑀2.5 4.67
𝑃𝑀10 10.05

Li et al. (2020) Hong Kong Roadside station SVM, GAM, XGBoost, RF, BRT 𝑃𝑀2.5 7.90
NO𝑥 30

Jida et al. (2021) Aeroqual AQ sensor Artificial Neural Network 𝑃𝑀2.5 8.45
𝑃𝑀10 12.42

Wu, Song, Peng, et al. (2022) Shanghai Roadside stations Neural Networks - LSTM NO2 9.61

Mengara Mengara, Park, Jang, and Yoo (2022) South Korea Roadside stations LSTM, Auto Encoder, Convolutional Neural Networks 𝑃𝑀2.5 7.40
𝑃𝑀10 9.81

Proposed method REVIS sensors and integrated data Deep Learning + Categorical Embeddings NO2 8.31
𝑃𝑀2.5 5.34
𝑃𝑀10 5.44
6. Feature importance on best model results

Following the improvement of fastai model’s performance in exper-
iment 2, further investigation was carried out to understand which of
the input parameters were the most influential in the model’s predic-
tions. This section highlights the outcome of this analysis.

6.1. Fewer features, same accuracy

Machine learning models developed with advanced algorithms such
as deep learning are considered black box models (Akinosho et al.,
2020). This is as a result of the complexities involved in understand-
ing what happens behind the scenes for most of these models. It
is particularly important in the air quality domain to highlight the
main contributors to pollution through this kind of understanding.
Thankfully, various tools are now available to make models explanable
and fastai’s Interpretation classes further facilitate this task. A feature
importance plot as shown in Fig. 24 was plotted using one of these
tools and this gave many insights into which of the 44 input parameters
were the least and most contributing. From the plot it is observable
that ‘LGV Count’, ‘Other Avg speed’, ‘Bus Count’, ‘Wind Direction’, ‘Car
Count’, ‘HGV Count’, ‘NO2 emission factor’ and ‘DATETimeHour’ were
the most influential features. These are mainly traffic parameters except
the ’Wind Direction’ and ‘DATETimeHour’ features. All the additional
date variables that were added to the data set had none to little impact
with some even recording negative importance. Similarly, ‘highway
elevation’, ‘background NO2’ and other weather parameters were not
important for the model’s predictions. The fastai model was retrained
while dropping these low and negative influencing parameters to see if
its performance would be any different and if the feature importance
will be reshuffled.

Fig. 25 shows the feature importance after retraining on just the top
12 features from experiment 2. The model’s accuracy remained similar
to what was achieved in experiment 2 but the feature importance
was reorganised. It can be noticed that most of the traffic parameters
maintained the top spot with only car count dropping behind. The date
parameter were also influential with the hour of the day having the
highest influence. The wind direction and NO2 emission factor features
dropped to the bottom of the list in this round. However, it is worth
reiterating that these least influential features are only not so important
for this minimised data set but had significant impact in the overall data
set

6.2. Features ablation test

The result of running an ablation test on the fastai model to further
corroborate the importance of the training features is illustrated in
Fig. 26. The test was carried out by dropping each feature one at a time
and then retraining the model on the remaining features to predict all
24
three pollutants. The RMSE score on the test data for each pollutant
was recorded once the model retraining process was complete and the
model was cross validated. This score was then compared to the RMSE
score when all the features were used. The 𝑥-axis on Fig. 26 represents
each feature that was dropped while the 𝑦-axis represents the recorded
RMSE score. It can be observed that the impact of dropping most
of the additional date parameters was almost non-significant except
for the hour parameter. Similarly, dropping the weather parameters,
background pollution data and traffic parameters all resulted in a
significant increase in the RMSE score to a level that is almost similar
to experiment 1. Removing the other features had less impact on the
model’s performance. The result of this ablation test corresponds with
the feature importance from the previous section where traffic and
weather parameters were highlighted as important.

7. Discussion and implication for practice

Currently there are several open-source and commercial traffic-
related pollution modelling software available for different kinds of
modelling and simulations. These software are considered robust and
are largely adopted for local air quality management across the globe
despite weaknesses such as the inability to integrate instantaneous
data and retrain models on the fly (Forehead & Huynh, 2018). The
success of tools such as ADMS-Roads has been particularly linked to
the incorporated data and explicit computation approach they use
for important parameters (CERC, 2022). With the growth of machine
learning algorithms and demonstrable efficiency in the air quality do-
main (Wang et al., 2020), there is an excellent opportunity to emulate
the kinds of data captured in these advanced modelling tools where
available. The intrinsic computations and feature relationships can then
be left to the algorithms to decipher for better accuracy. One immediate
advantage of this approach is that it takes away the need for explicit
parameter computation and can potentially address the limitation of
model retraining using instantaneous data.

This study was able to integrate data from several sources albeit
with some challenges. Only a portion of these data including historic
pollution, some weather data and background concentration were pub-
licly available. Extra research authorisation requests had to be carried
out to access the rest. Traffic flow data especially was not within reach.
The disparity in the data format for these data sets was another issue
that had to be addressed using data integration maps. Similar fields
from different sources had to be mapped together before integration
was possible. These integrated data were then used to train models
using three famous algorithms including deep learning, time-series
and linear regression. It was important to demonstrate with these
algorithms, if the forecasting performance of AI models with the newly
curated data set are any close to what could be achieved using air
quality modelling tools.
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Fig. 24. Feature importance from experiment 2. Traffic features including LGV and bus count, ‘average speed’ and ‘car count’ were in the top list with the hour of the day, ‘wind
direction’ and ‘No2 emission factor’ also part of this list. Some of the least influential parameters were ‘bike count’, minute of the day and similar date parameters.

Fig. 25. Feature importance after retraining on the top twelve features from experiment 2. All the traffic features except ‘car count’ maintained the top spot while ‘wind direction’
and ‘No2 emission factor’ dropped further down the importance list.

Fig. 26. Feature ablation test to reveal features with the most impact on fastai model’s predictions. The x-axis contains the feature list with each tick representing the feature
that was removed when the model was retrained and RMSE score recalculated. The RMSE scores are represented on the y-axis. This chart indicates the importance of traffic and
weather data as the RMSE scores increased when these features were removed from the data set.

25
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Table A.1
List of attributes captured for MTR pollutant concentration forecasting.

S/No Column Column Description Range Non-Null Count Variable type

1 datetimehour Hour variable extracted after preprocessing of datetime column 0–23 11 990 non-null Categorical
2 datetimeminute Minute variable extracted after preprocessing of datetime column 0–59 11 990 non-null Categorical
3 datetimesecond Second variable extracted after preprocessing of datetime column 0–59 11 990 non-null Categorical
4 datetimeelapsed Time elapsed variable extracted after preprocessing of datetime column 1.60e+9–1.63e+9 11 990 non-null Continuous
5 datetimeyear Year variable extracted after preprocessing of datetime column 2020–2021 11 990 non-null Categorical
6 datetimemonth Month variable extracted after preprocessing of datetime column 1–11 11 990 non-null Categorical
7 datetimeweek Week variable extracted after preprocessing of datetime column 1–47 11 990 non-null Categorical
8 datetimeday Day variable extracted after preprocessing of datetime column 1–31 11 990 non-null Categorical
9 datetimedayofweek Day of week variable extracted after preprocessing of datetime column 0–6 11 990 non-null Categorical
10 datetimedayofyear Day of year variable extracted after preprocessing of datetime column 8–322 11 990 non-null Categorical
11 datetimeis_month_end Boolean variable to indicate if the day is month end 0/1 11 990 non-null Categorical
12 datetimeis_month_start Boolean variable to indicate if the day is start of the month 0/1 11 990 non-null Categorical
13 datetimeis_quarter_end Boolean variable to indicate if the day is the end of a quarter 0/1 11 990 non-null Categorical
14 datetimeis_quarter_start Boolean variable to indicate if the day is the start of a quarter 0/1 11 990 non-null Categorical
15 datetimeis_year_end Boolean variable to indicate if the day is the start of the year 0/1 11 990 non-null Categorical
16 datetimeis_year_start Boolean variable to indicate if the day is the end of the year 0/1 11 990 non-null Categorical
17 road_name The name of the highway of interest – 11 990 non-null Categorical
18 region_name The name of the region where the highway is located – 11 990 non-null Categorical
19 segment_name The name of the highway segment where the IoT device is located – 11 990 non-null Categorical
20 NO2 Integrated average hourly NO2 (ppb) reading from AURN station 0.63–132.37 11 990 non-null Continuous
21 𝑃𝑀2.5 Captured 𝑃𝑀2.5 (μg∕m3) reading from REVIS IoT devices 0.69–401.01 10 879 non-null Continuous
22 𝑃𝑀10 Captured 𝑃𝑀10 (μg∕m3) reading from REVIS IoT devices 0.77–617.35 10 879 non-null Continuous

23 air_quality_index The AQI for the highway segment of interest computed from the
pollutant concentration readings

0–6.5 11 990 non-null Continuous

24 background_NO2 The background NO2 concentration for the highway segment of interest 8.06–27.99 11 990 non-null Continuous

25 background_𝑃𝑀2.5 The background 𝑃𝑀2.5 concentration for the highway segment of
interest

7.88–12.55 11 990 non-null Continuous

26 background_𝑃𝑀10 The background 𝑃𝑀10 concentration for the highway segment of
interest

11.94–19.55 11 990 non-null Continuous

27 NO2_emission__factor Calculated NO2 emission factor based on different vehicle types on the
highway at that time point

0–14 823 11 990 non-null Continuous

28 PM_emission_factor Calculated 𝑃𝑀10 emission factor based on different vehicle types on
the highway at that time point

0–19 982 11 990 non-null Continuous

29 bike_count Captured bike count from REVIS IoT devices – 6 non-null Continuous
30 bike_avg_speed Captured bike avg speed – 6 non-null Continuous
31 car_count Integrated car count from TMU sites 0–3515 10 949 non-null Continuous
32 car_avg_speed Captured car avg speed from REVIS IoT devices – 6 non-null Continuous
33 bus_count Integrated bus count from TMU sites 0–412 10 949 non-null Continuous
34 bus_avg_speed Integrated bus avg speed – 6 non-null Continuous
35 lgv_count Integrated LGV count from TMU sites 0–245 10 949 non-null Continuous
36 lgv_avg_speed Captured LGV avg speed from REVIS IoT devices – 6 non-null Continuous
37 hgv_count Integrated HGV count from TMU sites 0–383 10 949 non-null Continuous
38 hgv_avg_speed Captured HGV avg speed from REVIS IoT devices – 6 non-null Continuous
39 other_avg_speed Integrated average travelling speed from TMU sites 0–76.25 10 949 non-null Continuous
40 humidity Captured average hourly relative humidity from REVIS IoT devices (𝜙) 23.65–99.99 11 990 non-null Continuous
41 wind_speed Integrated hourly modelled wind speed (knots) from AURN station 0–16.2 11 990 non-null Continuous

42 wind_direction Integrated hourly modelled wind direction (true degrees) from AURN
station

0–360 11 990 non-null Continuous

43 temperature Captured average hourly temperature (◦C) from REVIS IoT devices −2.95–44.07 10 879 non-null Continuous
44 pressure Captured average hourly pressure (hPa) from REVIS IoT devices 979.31–1042.72 10 879 non-null Continuous
Our results show that just like any other machine learning task, suf-
icient hyperparameter tuning is required when training these models
rrespective of the quality or type of data being used. Despite fastai’s
efault incorporation of new deep learning techniques such as ‘entity
mbeddings for categorical variables’, the library’s training parameters
till needed to be tweaked for better results. The trained model was able
o capture general pollution levels including rise in pollution and drop
ff but was not able to capture unpredictable peak events that could
ave been caused by specific occurrences such as an extra congestion.
his is an indication that more features or peak events data can still be
aptured in the data set in order to model the specific causes of these
eaks. Another approach is to tackle the prediction as a classification
roblem rather than a regression one. This will enable the use of
dvanced loss functions like focal loss which are designed to force an

algorithm to learn rare trends in the data.
Since regular air quality review and assessment has now become a

mandatory requirement for major cities across the globe (Zeng, Cao,
Qiao, Seyler, & Tang, 2019), this study could not have been carried
26
out at a better time. From a social perspective, our proposed approach
can help reduce traffic related pollution risks to citizens in different
countries. There is evidence of increasing environmental injustice in
developed countries where vulnerable citizens who are most susceptible
to traffic pollution have less agencies in their area of residence (Barnes,
Chatterton, & Longhurst, 2019). An improved air quality management
system backed by an accurate forecasting mechanism such as the one
proposed in this study would enable government agencies to formulate
targeted traffic restriction policies, provide early warnings on antici-
pated peak episodes and help spread its agencies to the most prone
areas. Economically, the effect of air pollution has resulted in billions
of dollars lost through healthcare provision or reduced yields from
economically important agricultural crops in many countries (Pandya,
Gadekallu, Maddikunta, & Sharma, 2022). A prediction system such as
the one proposed in this study is not sufficient on its own to solve these
economic problems but would have a significant input when integrated
into existing air quality systems used for making informed decisions.
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From a technological perspective, this study presents an opportunity
or easily productionising air quality models for real-world use cases.
he type of MTR models developed in this study solves the issue of
eploying individual models for each pollutant of interest. Tools such
s AWS lambda, Oracle ADS, mlflow are useful in automating this
rocess and even provide more opportunities to get real-time predic-
ions. One thing to be aware of when productionising MTR models
s the possibility of model (or concept) drift which occurs when the
nvironment becomes different from scenarios on which the model was
rained leading to a depreciation in performance. One possible solution
s to enable the automatic detection of these kinds of drifts and to
ut a process in place to retrain a model using updated data. The
erformance of the new models can then be compared with the already
eployed model.

. Conclusion

This study set out to contribute to existing body of air quality
onitoring knowledge by investigating how additional data which are

arely integrated in TRAP forecasting could help improve accuracy. Un-
onventional training data for AI models such as terrain data, pollutants
ackground concentration and emissions factor were integrated with
he traditional traffic flow, weather and historic pollution data and used
o train multi-target prediction models for NO2, 𝑃𝑀2.5 and 𝑃𝑀10. The

results of our experiment demonstrate the efficacy of the MTR models
albeit with a lot of hyperparameter tuning required. The best perfor-
mance was achieved with fastai on simultaneous hourly predictions
for all three pollutants. The model performed well with 𝑃𝑀2.5 and
𝑃𝑀10 and was able to capture peak episodes but struggled with similar
spikes for NO2. This indicates that the model was able to pick up the
general trends of NO2 pollution but struggled with localised pollution
that resulted in peak episodes. We also evaluated key contributors to
the model’s performance and realised that traffic, weather, hour of the
day and emission factor were at the top of the list. In conclusion, it is
evident through this study that introducing additional highway features
can effectively improve a model’s prediction accuracy. However, there
is still a persistent challenge of these models struggling with unusual
spikes that are neither caused by trans-boundary air pollution effect or
background pollution but by effects specifically localised to where the
pollutant is being measured. Future research can look into these kind of
scenarios and further investigate other pollutants and highway features
that were not covered in this study.
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