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Abstract. A number of algorithms have been proposed aimed at tackling the problem of learning
“Gene Linkage” within the context of genetic optimisation, that is to say, the problem of learning which
groups of co-adapted genes should be inherited together during the recombination process. These may
be seen within a wider context as a search for appropriate relations which delineate the search space
and “guide” heuristic optimisation, or, alternatively, as a part of a comprehensive body of work into
Adaptive Evolutionary Algorithms.

In this paper, we consider the learning of Gene Linkage as an emergent property of adaptive recom-
bination operators. This is in contrast to the behaviour observed with fixed recombination strategies in
which there is no correspondence between the sets of genes which are inherited together between gener-
ations, other than that caused by distributional bias. A discrete mathematical model of Gene Linkage is
introduced, and the common families of recombination operators, along with some well known linkage-
learning algorithms, are modelled within this framework. This model naturally leads to the specification
of a recombination operator that explicitly operates on sets of linked genes.

Variants of that algorithm, are then used to examine one of the important concepts from the study of
adaptivity in Evolutionary Algorithms, namely that of the level (population, individual, or component)
at which learning takes place. This is an aspect of adaptation which has received considerable attention
when applied to mutation operators, but which has been paid little attention in the context of adaptive
recombination operators and linkage learning. It is shown that even with the problem restricted to
learning adjacent linkage, the population based variants are not capable of correctly identifying building
blocks. This is in contrast to component level adaptation which outperforms conventional operators
whose bias is ideal for the problems considered.
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1. Introduction

This paper considers the learning of “Gene Linkage” within the context of genetic
optimisation, that is to say, the problem of learning which groups of co-adapted
genes should be inherited together during the recombination process.1 The trans-
mission of groups of co-adapted genes is believed to be desirable if there is epistasis
between genes.2 Conversely, it has also been recognised that “mixing” is an impor-
tant factor in the design of efficient GAs [44], i.e. recombination has a role in
bringing together partial solutions from different parents, as well as permitting bet-
ter estimates of the fitnesses of competing schemata. Thus for a problem composed
of a number of separable components, the genes in the building blocks coding for
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the component solutions will ideally exhibit high intra-block linkage but low inter-
block linkage.
Since the foundations of the field of Evolutionary Computing, there has been

a history of research in this area (see, for example [19] for a good review), and
a number of algorithms have been proposed which aim to “learn” gene linkage
in the context of an evolutionary system. Kargupta [19] argues that these can be
seen as a search for relations which “properly delineate” the search space, and for
good classes within those relations, within his SEARCH framework [18]. However
an alternative perspective is that these linkage learning algorithms are effectively
learning a simultaneous re-ordering of representations, and “crossover masks.” As
such, these algorithms form part of a larger body of work into “Adaptive” Evo-
lutionary Algorithms which adapt their representations, operators or parameters,
according to some learning mechanism, in an attempt to match the algorithm to
the problem instance being tackled.
In [1, 40] taxonomies of Adaptive Evolutionary Algorithms are given which divide

adaptive algorithms into “population,” “individual” or “component” level depending
on the granularity of the learning process. It is this issue, i.e., what is the appropriate
level at which to learn which genes are co-adapted, which we investigate in this
paper, via the use of an adaptive algorithm which can be used at any one of the
three levels. This will be done by using a self-adaptive simple algorithm, which is
easily adapted to work at any level, and does not rely on statistical assumptions
in order to learn linkage, other than a correlation between “good” solutions and
“good” strategies.3
For the purposes of this paper, this algorithm uses a fixed problem representation

ordering, and only considers links between adjacent loci. The test suite chosen is
designed to make things “easy” for the linkage learning algorithms, that is to say
that where the problems are composed of a number of sub-functions which must
be solved, then these functions are coded into continuous blocks rather than being
interleaved along the genome. Ultimately, of course, a more general solution is
desirable. However considering a restricted set of the linkage learning problem
has several advantages. One example of this is that it allows for straightforward
examination of the ability of the algorithms to distinguish between genes that should
and should not be linked. Furthermore, whilst not able to provide positive evidence
that a given scheme will be able to learn linkage under all situations, it can provide
useful negative evidence, i.e., if a system cannot adapt in these most favourable of
conditions, it will be able to do so in the more general case.
The rest of this paper proceeds as follows:

— Section 2 briefly introduces the topic of linkage learning, and reviews some
salient work in this area.

— Section 3 introduces the concept of different levels of adaptation within algo-
rithms, using examples of mutation, and recombination adaptation mechanisms
to suggest why it is important ‘that the learning takes place at an appropriate
level.

— In Section 4 a model of recombination operators will be introduced based on
capturing gene linkage via Boolean arrays, and it will be demonstrated that
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standard operators can easily be described and generalised within this model.4 It
will be shown that the standard operators do not preserve linkage arrays, rather
they are determined anew for each recombination event via the generation of a
new random vector. Some well known adaptive linkage-learning algorithms e.g.
Punctuated Crossover [31], Gene Expression Messy GA [17], and LEGO [38, 41]
which make explicit use of the linkage arrays are also formally modelled within
this framework.

— In Section 5 the linkage learning algorithm (LEGO) used in this paper is
described in more detail, as are the modifications used to provide different lev-
els of adaptation, and the experimental set up used to compare the different
learning mechanisms.

— Section 6 presents and discusses empirical results and analyses of the operation
of the different operators, before conclusions are drawn in Section 7.

2. Previous work

The Building Block Hypothesis [12] gives an explanation of the operation of GAs
which describes evolution as a process of discovering and putting together blocks of
co-adapted genes of increasing higher orders. In order to do this, it is necessary for
the GA to discriminate between competing schemata on the basis of their estimated
fitness. The Messy GA [14] was an attempt to explicitly construct an algorithm that
worked in this fashion. The use of a representation that allowed variable length
strings, and removed the need to manipulate strings in the order of their expression,
began a focus on the notion of gene linkage (in this context gene will be taken to
mean the combination of a particular allele value in a particular locus).
Munetomo and Goldberg [25] identify three approaches to the identification of

linkage groups.
The first of these they refer to as the “Direct Detection of Bias in Probabil-

ity Distributions,” and is exemplified by what Bosman and Thierens [5] refer to as
“Distribution Estimation Algorithms” (DEAs). A good review is given in [27]. In
this approach a statistical model of the density distribution of the problem is built
based on the current population, and this is used to generate new samples, replac-
ing the traditional recombination and mutation steps of an Evolutionary Algorithm.
Examples of this approach include the Estimation of Distribution Algorithm [24],
MIMIC [7], Univariate Marginal Distribution Algorithm [23], Bivariate Marginal Dis-
tribution Algorithm [28], Depency Trees [4], Estimation of Bayesian Network Algo-
rithms [10] and the Bayesian Optimisation Algorithm [26]. Common to all of these
approaches is the notion of first identifying a factorisation of the problem into a
number of subgroups, such that a given statistical criterion is minimised, based on
the current population. This corresponds to learning a linkage model of the prob-
lem. Once these models have been derived, conditional probabilities of gene fre-
quencies within the linkage groups are calculated and a new population is generated
based on these. The type of structures used to model linkage groups has become
more complex with time, with a corresponding increase in the complexity of the
problem of identifying “good” models. Although it does not include a method for
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selecting an appropriate linkage model, the Factorised Distribution Algorithm [22]
has shown that given a correct linkage model, the calculation and subsequent use
of conditional probabilities for offspring generation can lead to highly efficient algo-
rithms, (although some counter examples are shown in [5]).
The other two approaches identified by Munetomo and Goldberg use more tra-

ditional recombination and mutation stages, but bias the recombination operator to
use linkage information.
In the revised Gene Expression Messy GA [17], and the Linkage Identification

by Non-Monotonicity Detection Algorithm !LIMD" [25] first order statistics based on
pair-wise perturbation of allele values are used to identify the blocks of linked genes
that they manipulate. These two algorithms used similar methods, but differ in that
the GEMGA linkage blocks are identified for each string in the population, whereas
this is done on a population-wide basis in Munetomo’s work. Similar statistics are
used in a number of other schemes e.g. van Kemenade’s Building Block Filtering [45].
The third approach identified does not calculate statistics on the gene interactions

based on perturbations, but rather adapts linkage groups explicitly or implicitly via
the adaptation of recombination operators. The Linkage Learning Genetic Algorithm
[16], which attempts to co-evolve the positions and values of genes using a repre-
sentation which consider loci as points on a circle, with the (real-valued) distance
between points representing their linkage.
The GLinX algorithm [30] expands on this idea, using a matrix of pairwise linkage

probabilities, in tandem with a method (based on an assumption of Conditional
Independence) of estimating more complex conditional linkage probabilities. This
permits “on-the fly” calculations of probabilities to use for inheriting a gene from
either parent, given the pattern of inheritance so far during the crossover operation.
They present results on a number of problems which show improved performance
over conventional operators, if the linkage pattern is known a-priori and can be hard
coded into the linkage array. They also present results from an adaptive algorithm,
AlinX, which uses Hebbian learning to adapt the contents of the pairwise linkage
matrix during evolution.
The LEGO (to be described later) and APES algorithms both explicitly consid-

ered the population as being composed as evolving blocks, made up of chains of
linked adjacent genes. Improved performance on a number of test problems were
found when compared to “standard” recombination operators [37, 42]. Finally due
mention should be given to a number of schemes that have been proposed for
adaptively learning crossover points and crossover masks e.g. [20, 21, 31, 36, 46]
to name but a few from the literature. Typically within a GA, the mutation oper-
ator is applied with a low per-gene probability of perturbing the allele value, and
so the search for good crossover masks can also be seen as implicitly learning gene
linkage.

3. Adaptation in evolutionary algorithms

The efficiency of the Genetic Algorithm can be seen to depend on two factors,
namely the maintenance of a suitable working memory (the population), and qual-
ity of the match between the probability distribution function (pdf) generated by the
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genetic operators operating on that population and the landscape being searched.
The first of these factors will depend on the choices of population size µ, and selec-
tion algorithm. The second will depend on the action of the reproductive operators
(recombination and mutation) and the set of associated parameters on the current
population.
Naturally, a lot of work has been done on trying to find suitable choices of oper-

ators and their parameters which will work over a wide range of problem types.
The first major study [6] identified a suite of test functions and proposed a set of
parameters which it was hoped would work well across a variety of problem types.
However later studies using a meta-ga to learn suitable values [15] or using exhaus-
tive testing [32] arrived at different conclusions. Meanwhile theoretical analysis on
optimal population sizes [13] started to formalise the (obvious?) point that the value
of µ on the basis of which decisions could be reliably made depends on the size of
the search space. These considerations, when coupled with interactions with other
Evolutionary Algorithm communities who were already using adaptive operators
(e.g. the !1+ 1" [29] and (µλ) [34, 35] Evolutionary Strategies), has led to an ever
increasing interest in the possibilities of developing algorithms which are able to
adapt one or more of their operators or parameters in order to match the p.d.f.
induced by the algorithm to the fitness landscape. The reader is directed to e.g. [40]
for a review of operator and parameter adaptation in Genetic Algorithms.
The terminology of [1, 40] defines three distinct levels at which adaptation can

occur in evolutionary algorithms. Population-level adaptations make changes which
affect the pdf contribution from each member of the current population in the same
way. Individual-level adaptations make changes which affect the pdf contribution
from each member of the population separately, but apply uniformly to each of the
components of the individuals’ representation. At the finest level of granularity are
Component-level adaptations, where the pdf contributions from each component of
each member may be changed individually.
Within the context of linkage learning, the inductive learning of crossover masks

in [36] can be seen as a population level adaptation, since the rules about which
crossover masks to use are applied to all crossover events. Similarly the GLinX,
ALinx, and LIMD algorithms rely on population based statistics in order to decide
from which parents genes should be inherited during crossover.
By contrast, the GEMGA algorithm, although it uses population statistics to ini-

tialise the linkage sets attached to each individual, only considers the sets attached
to the two parents during crossover, and each member of the population can evolve
different sets, i.e. this is an individual level adaptation, as are many other approaches
e.g. [16, 31, 46]. The LEGO and APES algorithms work exclusively on the level of
blocks of genes, and only consider whole solutions during evaluation: these are
component level adaptations.
Within the field of Evolution Strategies, where the emphasis is principally on

mutation as a search operator, there has been a historical move from popula-
tion level adaptation (e.g. the 1:5 success rule) through individual level adaptation
(e.g. the !µ" λ" ES) through to component level adaptation (the Covariance Matrix
approach), which reflects a view that different search strategies may be appropriate
in different parts of the search space, and that, ultimately, it may be necessary to
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separate the adaptation from the basis of the representation. However, each increas-
ing level of complexity increases the size of the space of possible parameters being
searched, with a corresponding increase in the overhead of learning appropriate
strategies.
Within the study of adaptive recombination operators, it is not clear what is

the most appropriate level for adaptation. Population level strategies often rely on
large amounts of “bookkeeping,” which by default means that strategies are adapted
according to information which is possibly not related to the current state of the
population.5 On the other hand, the move to individual level adaptation, although
permitting the simultaneous exploration of a range of different strategies, increases
the learning overhead, and one frequently noted problem [16, 31, 38] is that as
the population converges, so there might not be sufficient information available to
distinguish between the merits of different groups of linked genes. As Goldberg
put it all our attempts to evolve linkage without intervention !inversion, crossover, etc."
have failed because the alleles want to converge before the linkage gets tight.6
This raises a fundamental question about the true purpose of attempting to learn

Gene Linkage. If the aim is to obtain definitive patterns of linkage, which can be
used to inform future attempts to optimise the same, or similar problems, then the
effects of convergence on the population can be seen to present a huge impedi-
ment to achieving this goal via the use of Adaptive Algorithms. This can be seen by
considering a two locus problem where the allele patterns #00" 11$ contribute more
highly than #01" 10$. If the population converges in either position, then any infor-
mation learned early in the run about the value of tight linkage between those two
loci will get lost amongst the subsequent data which shows linkage to be neutral
between those two genes.
If, on the other hand, we take a “one-off” view, i.e. that that the purpose of

attempting to learn Gene Linkage is solely to aid the process of optimisation dur-
ing the current run, then to some extent these concerns become immaterial, as long
as the adaptive process does not become dominated by information garnered from past
populations. Of course all learning algorithms rely on generalising from past infor-
mation to some extent, however this analysis suggests that there may be a benefit to
individual or component based approaches, since these by their nature take account
of the fact that the individuals to which they are attached are impermanent.
So far this discussion has deliberately concentrated on the level of linkage learn-

ing via adaptive recombination operators, as this is the main focus of this paper. As
noted above there exists a class of population based algorithms (DEAs) which do
not use recombination or mutation operators, but which also learn linkage via the
selection of appropriate models for density estimation. It is necessary to consider
whether the discussion above on the levels of adaptation has any relevance to these
algorithms.
On one hand, the definition of “adaptation levels” relies on the concept of

changes in the way that operators are applied to individual points (pairs for
crossover, or more generally sets for recombination) in the search space. By con-
trast, in DEAs once the population has been analysed to select and then fit an
appropriate distribution model, it is discarded, i.e., there are no operators to be
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adapted, and so the distinction between adaptation levels is largely irrelevant for
these algorithms.
Nevertheless, DEAs do learn linkage models, and it would appear at first inspec-

tion that they do this at the population level, since they rely on probabilistic models
based on population statistics. However, the scoring criteria used in the search for
a “good” model relates specifically to the contents of the groups (chains, trees or
networks) using metrics such as Minimum Description Length, Bayesian Dirichlet
metric etc.
Furthermore, as is demonstrated in [5], it is not sufficient for these algorithms

merely to identify linkage models in order to perform optimisation, rather they must
also correctly and rapidly identify “building blocks,” i.e. allele values within the
linkage sets. This focussing on particular hyperplanes, rather than merely relations,
is the equivalent within an adaptive GA of identifying linkage sets (relations), and
then tuning the mutation rate within those sets once the correct hyperplanes have
been identified, and suggests that these algorithms are closer in spirit to component
level algorithms such as APES rather than population level algorithms.

4. A model for gene linkage

In this section a model of gene linkage is developed that permits the description of
a number of different recombination operators in terms of the way that they manip-
ulate and preserve linkage between loci within an individual. This model associates
with each member of the population a Boolean array A of size l× l7 which encodes
for gene linkage within the problem representation. Recombination is considered
in part as a function which acts on these arrays: R!A" → A′, such that the contents
of the parents’ arrays after the operator is applied determine which genes in the
parents will be transmitted together, and hence which schemata will be preserved.
When the allele values from loci in a selected parent are copied into the offspring,
the corresponding columns of that parent’s linkage array are copied into the array
of the child, (even though in many cases they will be completely rewritten by the
application of the recombination operator in the next iteration).
Conventional recombination operators take a fixed number of parent individuals

as their inputs,8 and the same transformation is applied to the linkage array of each
(as will be described in the next section). In this case the offspring will initially have
the same linkage array as its parents. A number of adaptive algorithms have been
proposed in which the linkage patterns are learned, and for these operators the
parents will in general have differing arrays, as will the resultant offspring.
A recombination operator is thus defined by its arity, the function R, and a repre-

sentation of the random choices made by the operator, such as the crossover points
in N point crossover, and the choice of parents in uniform or scanning crossover.
To give a simple example, which will be formalised later, One Point Crossover

works by taking two parents and selecting a crossover point at random, which effec-
tively splits each parent into two blocks of linked loci. In both parents all of the
array elements corresponding to inter-block links are set true, and those correspond-
ing to extra-block links (i.e. links “across” the crossover point) are set false. In other
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words the effect of this operator is to rewrite both arrays completely, according to
a randomly chosen number (the crossover point).
In this model, each element Aij of the linkage array takes the value true or false

according to whether there is a link from locus i to locus j. In many cases an unam-
biguous definition of the recombination operators requires a symmetrical array, but
this is not always the case. Two loci are considered to be linked (i.e. remain together
under the recombination operator) if and only if both of the relevant array elements
are set true. For the purposes of this discussion the problem representation will be
assumed to be linear, i.e. string-based.
Having defined the linkage array, it is useful to formally define some terms, start-

ing with a Boolean function that tells us whether two loci are linked.

∀ i" j ∈ #1" # # # " l$ • Linked!i" j" = Aij ∧Aji (1)

One property common to all operators is that since each locus is by definition
linked to itself, then the principal diagonal of the array is composed entirely of true
elements, i.e.

∀ i" j ∈ #1" # # # " l$ + !i = j" • Linked!i" j" (2)

This may be read as for all pairs, i and j, of loci between 1 and l such that i = j it
holds that i is linked to j.

Finally we can define the Linkage Set, Si of locus i as the set of loci which are
linked to i:

Si = #j$ ∈ #1" # # # " l$ • Linked!i" j" (3)

In order to specify a recombination operator, it is also necessary to represent the
arity, a, and the random choices made when the operator is applied. This is done
via a randomly created vector x̄ of size l. The contents of x̄, and the way that they
are specified, vary from operator to operator as will be seen.

4.1. Static recombination operators

4.1.1. n-point crossover. For n-point crossover operators, the elements of x̄ are
integers which represent the number of crossover points to the left of the corre-
sponding loci. They are monotonically nondecreasing, with the changes in value
corresponding to the randomly chosen crossover points. Formally:

∀ i ∈ #1" # # # " l$ • !!i < l" ∧ xi ∈ #0" # # # "n$

∧ !!xi+1 − xi" ∈ #0" 1$"" ∨ !xi = n" (4)

Using definition (4) with n = 1 (and by necessity arity 2) allows the specification
of One Point Crossover (1X) as:

R1X!A" → A′ + ∀ i" j ∈ #1" # # # " l$ • !!xi = xj" ∧ Linked′!i" j""

∨!¬A′
ij ∧ ¬A′

ji" (5)
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where the function Linked′!" is taken to refer to the array after the operator is
applied.
This definition states that two loci are linked if there are the same number of

crossover points (0 or 1) to the left of them in the representation. If there are not
the same number of crossover points, then according to (5) both of the elements
in the array which determine the link are set false. This ensures an unambiguous
specification of A′.
Setting n > 1 in (4), increasing the arity accordingly to n + 1, and using (5) to

specify R produces Diagonal Crossover (9).
In the case where n > 1, but the arity is two (i.e. “traditional” two-point and

n-point crossover) it is necessary to take account of the fact that alternate blocks
are also linked. The random vector x̄ is still defined as per (4), and the linkage of
alternate blocks is catered for by noting that this equates to the xi values yielding the
same result mod!2" if they are linked. The generalised two-parent n-point crossover
is defined by (4) and:

R2"nX!A" → A′ + ∀ i" j ∈ #1" # # # " l$ • !!mod2!xi" = mod2!xj""

∧ Linked′!i" j"" ∨ !¬A′
ij ∧ ¬A′

ji" (6)

Although Diagonal Crossover picks n crossover points at random and then selects
the blocks from n+ 1 parents successively, it would be simple to generalise this to
any number of parents, so that if the arity a is less than n more than one block
is picked from some parents (e.g. (6) when a = 2). If the arity is greater than
n+ 1, then this generalisation is still valid as long as more than one child is created
per crossover application. Thus the general form of this class of recombination
operators where n crossover points are picked at random and offspring created
from a parents is:

Ra"nX!A" → A′ + ∀ i" j ∈ #1" # # # " l$ • !!moda!xi" = moda!xj""

∧ Linked′!i" j"" ∨ !¬A′
ij ∧ ¬A′

ji" (7)

where the vector of crossover points, x̄, is defined as per 4.

4.1.2. The Uniform Crossover family of operators. Uniform Crossover can be rep-
resented in one of two different ways. The essence is that at every locus a random
choice is made as to which parent the gene should be copied from. Although the
more usual case has a 50% probability of selecting from either parent, some authors
(e.g. [43]) have championed the cause of parameterised uniform crossover, so that
genes are copied from the first parent with probability p. The arity of Syswerda’s
original version, and most implementations, is two.
The first difference between this family of operators and the n-point crossovers

above is immediately apparent: in the former n crossover points were chosen at
random, and the vector x̄ filled in accordingly. For the Uniform Crossover family of
operators, a set of l random values must be chosen. A second apparent difference is
that in the former the number of crossover points is known, whereas in the second
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it may vary between 0 and l − 1. However it should be noted that since the values
are chosen at random from #1" # # # " l$ for n-point, the value n is in fact an upper
bound on the number of crossover points, as they may coincide, and also because
a crossover point at either extreme of the representation has no effect.
One representation of two parent Uniform Crossover which makes this distinction

clear, simply notes that two adjacent loci will remain linked in both parents if the
corresponding random numbers are both either less than or greater than p. Using a
vector r̄ to denote a random vector where each ri is selected uniformly from .0" 1/,
the elements of x̄ are given by:

x1 = 0"∀ i ∈ #2" # # # " l$ • !!ri−1 < p" ∧ !ri < p" ∧ !xi = xi−1""

∨!!ri−1 ≥ p" ∧ !ri ≥ p" ∧ !xi = xi−1"" ∨ !xi = xi−1 + 1" (8)

Using (8) to determine the vector x̄, the function R is then defined exactly as
per (6). It is evident that this model could be used to generate a class of multi-
parent operators by taking any values for the arity, a, and using (7) to specify R.
This class of operators would have a crossover point between adjacent loci with
probability 2p!1 − p", and hence a mean number of 2p!l − 1"!1 − p" crossovers
per genome. However for a > 2 this class is no longer isomorphic to Syswerda’s
original specification.
An alternative representation, which is more easily generalised to models with

arity a, such as Scanning Crossover (8), is for the elements of x̄ to be drawn from the
set #0" # # # " a− 1$ according to some probability distribution. This might be uniform,
fitness proportionate, or parameterised as above. The generalized representation
becomes:

RUX!A" → A′ + ∀ i" j"∈ #1" # # # " l$ • !!xi = xj" ∧ Linked′!i" j""

∨!¬A′
ij ∧ ¬A′

ji" (9)

Note the similarity to (5).
Using a to denote the arity, the elements of x are drawn from #0" # # # " a− 1$ as:

xi =
{

0 ri ≤ p
1 ri > p

Parameterized Uniform Crossover (10)

xi = int!ri#a" Uniform Scanning (11)

xi = j •
j−1
∑

k=0
fitk < ri

a−1
∑

k=0
fitk ≤

j
∑

k=0
fitk Fitness Proportionate Scanning (12)

This definition of x̄ for Fitness Proportionate Scanning is an implementation of
the “roulette wheel” algorithm, and the variable k is taken to be an index into
the set of parents. Other selection methods could easily be implemented with the
corresponding changes to (12).



the learning of gene linkage 139

4.1.3. Other static reproduction operators. All of the recombination operators
above utilize a new randomly generated vector x̄ to transform the parents’ linkage
arrays each time they are applied. Although the definition of the operator in terms
of its effect on the linkage array is constant, the resultant arrays A′ may be dif-
ferent for each application. By contrast mutation based search and Bit Simulated
Crossover employ strategies that can be modelled as having a completely fixed and
identical linkage array for each individual. Algorithms that employ no recombina-
tion select an individual from the population and copy it whole. The effect of this
“asexual reproduction” is to treat each individual as having a completely linked
genome, i.e. the linkage set consists of every locus. This can be modelled as:

Rasexual!A" → A′ + ∀ i" j ∈ #1" # # # " l$ • Linked!i" j" ∧ Linked′!i" j" (13)

By contrast, the action of Bit Simulated Crossover is to treat each individual as
having a completely unlinked genome, i.e., all the entries in the linkage array are
false:

RBSC!A"→A′ +∀i"j"∈#1"###"l$"i 2= j•!¬A′
ij∧¬Aij∧¬A′

ji∧¬Aji" (14)

4.2. Adaptive recombination operators

In Section 4.1 a number of recombination operators were described in terms of the
generation of a set of random numbers which are used to specify a vector x̄ which
instantiates one application of the operator. For the n-point and Uniform crossover
families the specification of R is such that the linkage arrays in all parents are
completely and identically rewritten according to the contents of x̄, i.e., no linkage
information is accrued over time.
However, it has repeatedly and persuasively been argued (e.g. [14, 16, 44]) that

designers of genetic algorithms ignore linkage at their peril. As was mentioned
above part of the rationale behind the development of the messy-ga and its variants
was to identify and amass building blocks and intrinsic to this was the notion of
linkage.

4.2.1. The gene expression messy GA. The messy-ga itself uses a variable length
encoding which allows for under and over-specification, coupled with mechanisms
such as “competitive templates” for filling in missing parts of a representation, all
of which make it hard to analyse in terms of the model above.
The latest variant, the “Gene Expression Messy GA” uses first order statistics

to identify linked blocks, and a reproduction operator that works on these linkage
sets. The algorithm maintains linkage sets for each gene in much the same way as
described above. The recombination operator works by selecting a number of genes
from one parent at random. For each member of this “Exchange Set,” (provided
certain first order statistical criteria are met), the gene and its linkage set are copied
into the opposite parent. The problem of “block conflict” (see the next section) is



140 smith

surmounted by not insisting that the linkage sets are coherent. This can be repre-
sented by dropping the linkage criterion (1) and allowing each row of the array to
be considered separately.
Because the arrays are potentially different in each member of the population,

(i.e., this is an Individual Level adaptation mechanism) it is no longer sufficient
to consider a single array A. Instead A will refer to the “donor” parent, B to
the recipient and C to the offspring. Ignoring the statistical criteria, and denoting
the Exchange set as X, the rows in the linkage array of the offspring C (and the
corresponding genes) are given by:

∀ i ∈ #1" # # # " l$ • !i ∈ X" ∧ ∀ j ∈ #1" # # # " l$ • !Cij = Aij"

∨ !!i /∈ X" ∧ ∀ j ∈ #1" # # # " l$ • !Cij = Bij"" (15)

Unfortunately, the inconsistencies introduced also provide scope for spurious
linkage correlations to propagate. Although this algorithm is claimed to guaran-
tee convergence to the optimal solution for problems where the building blocks are
of a known order k, there are two problems. Firstly, as shown in [44], the population
size required to guarantee convergence to the optimal solution scales exponentially
with k. Secondly, and more importantly for practical implementations, k is, in gen-
eral, unknown. This has the unfortunate effect that if k is underestimated, and
there is deception of order ≈k in the problem, then the algorithm is guaranteed to
converge to a sub-optimal result.
Another variant of this approach, which explicitly attempts to learn values from

the range .0" 1/ to enter into the linkage array is seen in (16). Again, this uses a
dynamic encoding where genes have the form (position, value), and a cut and splice
crossover operator. The model used allows some calculations to be made about the
bias of the operator in terms of the linkage distribution, provided certain assump-
tions about the proportion of optimal building blocks are made. Unfortunately when
run in the context of a “real” GA, i.e. with selection, the algorithm did not display
any appreciable learning of appropriate linkage. This was attributed to the effects
of convergence. Essentially it was found that using the crossover operator alone as
a means of exploring the space of linkages was too slow, since once selection has
converged the problem encoding, mixing or linking genes has no effect. This arises
partly because the algorithm was trying to learn real valued linkages, rather than
restricting itself to a Boolean space.

4.2.2. Punctuated crossover. In the Punctuated Crossover mechanism [31], self
adaptation is used to govern the evolution of the linkage array. The problem rep-
resentation is augmented by the addition of a binary flag between each pair of
adjacent loci, which encodes for a crossover point. Successive genes (and crossover
bits) are copied from the first parent into the offspring until a crossover point is
encountered in either parent. At this point genes start to be copied from the other
parent, regardless of whether it coded for crossover at that point. This continues
until a full child is created, and a second child is created as its complement. This
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is equivalent to associating with each individual a tridiagonal linkage array, of the
form:

Aij =







0 + i− j +> 1
1 i = j" j + 1
0" 1 i = j − 1

(16)

The values are subject to mutation at the same rate as the problem bits, which
corresponds to the generation of the random vector and the transforming of the
arrays.
In order to define the linkage array, C, of the first offspring, it is useful to keep

a running count of the number of times crossover has occurred so far during tran-
scription. This will be denoted by n, and for brevity the parents’ linkage arrays
will be subscripted by this value. If the parents are A and B, then An"ij = Aij if
mod2!n" = 0, and Bij if mod2!n" = 1. The genome and linkage array inherited by
the first offspring are given by:

Cij =



















A0" ij !i = 1" ∧ !j = i+ 1"
An" ij !i > 1" ∧ !j = i+ 1" ∧An" ij ∧An+1" ij
An+1" ij !i > 1" ∧ !j = i+ 1" ∧ !¬An" ij ∨ ¬An+1" ij"
1 i = j" j + 1
0 + i− j +> 1

(17)

The first line of this equation gives the start conditions. The fourth and fifth
lines, in conjunction with the clauses j = i + 1 ensure that the linkage array of the
offspring obeys the tridiagonal condition (16). The second line states that genes and
the linkage array elements continue to be inherited from the current parent (n) as
long as the linkage flag is set in both that and the complementary (n + 1) parent,
and the third line states that crossover occurs if either parent has the corresponding
entry of their linkage array set to False.
Unfortunately this implementation did not preserve much linkage information

from either parent. It was demonstrated in the original paper that it was possible
for two parents with “medium” numbers of crossover points to create two offspring,
such that the linkage array attached to one child contained all the crossover points
from both parents.

4.2.3. Linkage evolving genetic operator !LEGO". It was shown in the previous
section that both the N-point and Uniform families of Crossover Operators can
be defined in terms of linkage arrays, with the randomness in each instantiation
captured by a random vector x̄. Similarly other adaptive operators can be defined
in terms of linkage arrays, with the random choice of parents and mutation taking
the place of x̄. It follows that one way of specifying an adaptive recombination
operator, which can adjust its arity and linkage arrays to the problem in hand, is
to encode the linkage array within the genome of each individual and to use self
adaptation to govern the growth of different linkage sets, and hence recombination
strategies. A benefit of using a separate binary linkage array for each individual
is that it greatly reduces the size of the search problem compared to using real
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values (i.e. a probabilistic array). The benefits of evaluating different strategies,
which accrue naturally from a probabilistic array in a population level approach,
are achieved via the use of multiple (µ) binary arrays.
Based on this approach, LEGO [38, 41, 42] was developed as a means of testing

the viability of this approach. In brief, the operator works by attaching a linkage
array to each member of the population, which partitions the loci in that member
into a number of linkage sets. The initial implementation of LEGO only permit-
ted linkage to occur between adjacent loci, i.e. the evolved linkage sets consist of
chains of linked genes. This has an obvious potential weakness in that it cannot
capture tight linkage between two non-adjacent genes unless the entire set of genes
between them is also linked, i.e., it places a heavy emphasis on the chosen repre-
sentation, unlike some of the schemes described above. The rationale for this was
that as has already been noted that learning linkage is a second order effect, and
that there is often a problem with allele convergence preventing the algorithm from
finding good “blocks.” By only considering adjacent linkage, the size of the problem
space is reduced from O!l2" to O!l". Furthermore, when the practical implemen-
tation is considered, problems of conflict resolution are immediately found with
the use of non-adjacent linkage, which require an arbitration process via which
would be decided the parts of the accrued linkage information to be ignored during
recombination.
In practice, analysis of the evolved linkage on a number of different problem

types [39] showed that when the “true” linkage pattern was not adjacent, then highly
linked chromosomes tended to evolve, i.e. the system evolved to avoid disrupting
groups of co-adapted genes, at the expenses of mixing. Note that possible ways of
avoiding this problem include re-ordering prior to chain linkage (as is done in the
MIMIC algorithm) or removing the restriction to adjacent linkage by proving a
means of block conflict resolution, but these will not be considered here.
The operator is not restricted to selecting from only two parents, so the genome

can be considered as being comprised of a number of distinct linkage sets, or blocks.
Unlike the case for two-parent recombination, alternate blocks on the same parent
are not linked. The linkage set of a locus i can now be redefined to reflect the
constraints imposed:

S!i" = #j ∈ #1" # # # " l$ + !j = i"

∨ !!j < i" ∧ ∀k ∈ #j" # # # " i− 1$ • Linked!k"k+ 1""

∨ !!i < j" ∧ ∀k ∈ #i" # # # " j − 1$ • Linked!k"k+ 1""$ (18)

When an offspring is created, blocks are chosen sequentially from left to right. In
the first locus a parent (denoted X1) is chosen according to the pdf pr defined by
the action of selection operator on the entire population.9 This block is then copied
whole, that is to say that every gene from the linkage set of gene a1"1, is copied into
the new individual.
If there are s1 =+ S11 + elements in this first set, then, by definition of the linkage

set, in both the offspring and a1"¬Linked!s1" s1 + 1". Providing that s1 < l there
is now a new competition to select the next block.
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Because the whole purpose of the operator is to preserve information carried in
the linkage array, the selection of partial blocks is forbidden. Thus the selection of
the next parent is restricted to those with eligible blocks; i.e. the next block selected
must have a left hand edge abutting the right-most edge of the partially completed
offspring. This requires a dynamic calculation of pr , to yield a modified pdf p′

r given
by the action of the selection operator on the restricted set of permissible parents.
The pdf for parental selection for the next block will look like:

p′′
r !ati" =

{

0 Linked!ati"s1" ati"s1+1"
p′
r!ati" ¬Linked!ati"s1" ati"s1+1"

(19)

Having chosen a parent X2 the block S2!s1+ 1" is copied into the new individual
and the process repeats until the offspring is fully specified.10
The Lego recombination operator has the form R 4 !I × I × I"µ → I. Using Oi to

denote the ith offspring produced and Oi"j to denote the jth locus of that offspring,
the full definition of the operator is given by:

Oi"j =







X1"j j = 1
Xk"j Linked!Xk"j−1"Xk"j" 1 ≤ j ≤ l
Xk+1"j ¬Linked!Xk"j−1"Xk"j"

(20)

where the parents Xk"Xk+1 are selected from the population as required (i.e. when-
ever the linkage criterion is not met) using the modified pdf p′′

r !atk". Since the link-
age arrays Li and Ri of the population define the recombination strategy, and are
themselves potentially changed during both recombination and mutation, the tran-
sition function for the recombination function is given by $R!Ai". R is defined by
(20) and the effect of mutation, M , on the linkage is given by:

M!A" → A′ + ∀ i" j ∈ #1" # # # " l$ • !!+ i− j += 1" ∧ !xij ≤ p"

∧ !A′
ij 2= Aij"" ∨ !A′

ij = Aij" (21)

where p is the mutation rate and xij is a random number sampled afresh from
.0" 1/.
In [42], the effects of iterated recombination and mutation are examined. It is

shown that for an infinite population, in the absence of any selection pressure with
respect to linkage, the system will rapidly evolve to a steady state. This steady state
will retain all four combinations of links between two adjacent genes, and will thus
retain the ability to adapt to changing circumstances. The proportion of genes linked
at the steady state is entirely independent of the starting conditions, being solely a
function of the mutation rate, p, applied:

mean linkage rate =
(

√

2 + p!1− p" −
√

p!1− p"
2

)2

(22)

Thus any deviation from this pattern indicates a selection pressure for or against
linkage.
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5. Description of linkage evolving operators used

5.1. Representation

The LEGO operator is implemented by adding two Boolean arrays to the represen-
tation of each individual, denoting whether each locus is linked to its neighbour on
the left and right respectively.11 For the sake of clarity these arrays have length l,
although in practice only l− 1 of the positions are used since the problem represen-
tations are not toroidal. This gives an extended representation for the population as:

Pt = !at1" # # # " atµ" ∈ !I × I × I"µ (23)

Denoting the three arrays coding for the problem, left linkage and right linkage
as α"L and R respectively, an individual comprises the 3-tuple ati = !αt

i"L
t
i"R

t
i".

This will be referred to as the genome of the individual, and a single gene at locus
j consists of the relevant entries from all three arrays: ai"j = !αi"j"Li"j"Ri"j". The
linkage array A!i" for the ith member of the population is given by:

Ai" jk =















0 + j − k +> 1
1 j = k
Ri"j j = k− 1
Li"j j = k+ 1

(24)

The linkage criterion, (1), for two genes j and k, (where without loss of generality
j < k) becomes:

Linked!j"k" ≡ !j = k− 1" ∧ Lk ∧ Rj

Initially the Boolean values in the linkage arrays are set using a biased random
choice of value so as to create a range of different block sizes in the initial pop-
ulation, representing a variety of recombination strategies. It was found that using
a probability of 90% for setting each linkage value to True gave a good mix of
block sizes in the population. In order to implement the mutation scheme, there
is a small probability of changing the value of a link bit via the application of bit-
flipping mutation at a low rate (1/l).
This scheme was implemented in a steady-state GA, using tournament selection

for blocks, and with the new offspring replacing the oldest member of the population
if fitter. It was found in [42] that a steady state model gave improved performance
and clearer adaptation patterns, this ties in with the well known need for increased
selection pressure in self-adaptive algorithm (see e.g. [2, 39]) and also the findings
of Eiben et al. [9] that multiparental recombination operators worked better in a
steady state setting.
The effects of population level adaptation are examined by the use of three dif-

ferent schemes. In each case the whole population is used to generate the linkage
information which governs which genes are inherited together, but this is decoupled
from the actual choice of which parent the allele values at each locus are inherited
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from. The first two cases have arity 2—that is to say that the linkage arrays effec-
tively form a crossover mask for two-parent n-point crossover. Because the compo-
nent scheme can potentially mix genes from l parents (the totally unlinked case with
µ ≥ l), there is potential for faster mixing of building blocks, so a third scheme,
also of indeterminate arity, was implemented.
The first scheme (Pop. v.1) uses a probabilistic interpretation of the linkage arrays

in the evolving population. These are combined to form a vector ȳ where each par-
ent X contributes a value to yi if ¬Linked!Xi−1"Xi". These values are weighted
using linear ranking over the whole population, with fittest parent weighted at twice
the mean. This is done to provide a (roughly) equivalent selection pressure at the
level of linkage to that of the component level. A random vector x̄ is generated, and
compared to ȳ, to create a crossover mask as per Parameterised Uniform Crossover.
This is used to create an offspring from two parents, and inherited as the linkage
array of the offspring. Each of the parents is selected via deterministic binary tour-
naments, creating the same selection pressure at the allele level.
In the second version (Pop. v.2), the linkage information in the whole population

is used to select a number of blocks as per the basic LEGO. Linkage information
is inherited in this fashion, however the actual allele values within the blocks are
inherited from two parents selected by tournaments as above. In other words, the
alleles in the first block are inherited from X1, the second from X2, then the third
from X1 and so on until the offspring is completely specified. This has the effect of
separating the process of learning linkage arrays from that of learning allele values,
thus moving from component to population level adaptation.
As noted above, the third variant of population level adaptation (Pop. v.3) is

designed to separate any effects arising from greater mixing with more than two
parents. In this case, linkage blocks are selected as per the component and second
population level schemes, but the actual allele values are inherited from a parent
chosen by a fresh binary tournament for each block.

5.2. The test suite

A set of well studied test problems which displayed a range of epistasis and multi-
modality were selected. All of the problems selected had known maximum val-
ues, and the algorithms were compared on the basis of the time taken to find the
optimum.
It should be recognised that there is no single commonly accepted method of

comparison, and that different results might be obtained if a different performance
criterion were used. Preliminary results show that performance improvements can
be obtained for the adaptive algorithms by tuning the link mutation rate, but that
the algorithms are all fairly robust to this setting, and the relative order of the
results for the four versions remains the same. Similarly the performance of the
algorithms was not extensively tuned with respect to selection pressure and popula-
tion size. The purpose of this work is to examine the relative behaviour of the three
different linkage learning algorithms, rather than to produce “fast” linkage learn-
ing algorithms compared to the static algorithms tested, and as noted, the optimal
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set of parameters for any algorithms will tend to depend on the performance met-
ric chosen. However it should be noted that the three sets of results following all
show the same pattern, across a range of population sizes.
The test problems were as follows:

1. One-Max: This was run with a genome of length sixty four, and is defined as:

f !a" =
l
∑

i=0
ai ai ∈ #0" 1$ (25)

This is a simple problem, which has no epistasis or deception. Since it is sepa-
rable, it would be expected that there would be no selective advantage towards
Gene Linkage on this problem.

2. Royal Road: This is a sixty four bit problem effectively identical (given the perfor-
mance measure) to the R1 function (11), and similar to Eshelman and Schaffer’s
“plateau” functions [33]. It is comprised of eight contiguous blocks of eight bits,
each of which scores 8 if all of the bits are set to one, i.e:

f !a" =
7
∑

i=0

i∗8+7
∏

j=i∗8
aj (26)

Although there is no deception in this problem there is an amount of epistasis.
This problem was designed to be “ga-easy” but Forrest and Mitchell reported
that it had been solved faster by Random Mutation Hill-Climbing. Schaffer and
Eshelman reported for their plateau function that “The crossover gene takes over
and the population performance is about the same as with mutation alone but this
performance level was reached much sooner.”

3. Matching Bits: This is a twenty bit multi-optima problem where each pair of
adjacent bits of the same parity contribute 1 point to the score:

f !a" = 19−
18
∑

i=0
+ai − ai+1+ (27)

There are thus two maxima at !0" 0 # # # 0" and !1" 1" # # # 1" which score 19. There
are a large number of sub-optimal peaks: for example there are 34 sub-optima
scoring 18 at Hamming distances from one of the optima of between two and
ten. In addition to being multi-modal, this problem has high local epistasis of
order two, and these blocks overlap.

4. “Trap” function: This is composed of eight contiguous subproblems, each being
a four bit fully deceptive function given by Deb in [3]. The contribution of each
subproblem j depends on the number of bits set to one:

f !a" =
7
∑

i=0

(i∗4+3
∏

j=i∗4
aj + 0#2

(

1#0−
i∗4+3
∏

j=i∗4

) i∗4+3
∑

j=i∗4
aj

)

(28)
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6. Results

6.1. Comparison with other operators

In addition to comparing the four variants above, experiments were also performed
using 1-Point and uniform crossover (both with 100% probability of application).
These two operators were chosen to represent and illustrate the extremes of posi-
tional bias. In each case the relevant algorithm was run with a population of 100
until the problem’s optimum had been reached, or a fixed number (400,000) of eval-
uations had been done, and the results show the generation in which this occurred,
averaged over twenty five independent runs. The same sets of seeds were used for
each of the algorithms tested. Experiments were run across a spread of (bit flip-
ping) mutation rates in order to investigate the sensitivity of the various operators
to this parameter.
A summary of the results obtained showing the mean and standard deviation (in

brackets) of number of evaluations taken at the optimum mutation setting for each
operator, is given in Table 1. The figure in the third row for each algorithm is the
mutation rate at which this performance was achieved. Figure 1 shows the sensitiv-
ity of the operators to mutation rates by plotting mean number of generations to
reach the optimum against bit mutation rate for each problem. It should be noted
that for each operator the optimal mutation rate is generally different. Equally, for
each function, if the operators are ranked according to the performance at a sin-
gle mutation rate (as is common practice) the rank orders obtained are somewhat
dependent on the choice of mutation rate.
Inspection of these results shows that for the linearly separable OneMax, the

1 Point Crossover operator is considerably slower than the rest of the operators to
find the optimum, across the spread of mutation rates tested. For the rest of the

Table 1. Generations (std. deviations) to find optimum at optimal mutation rate in % (bold)

Algorithm One-max Royal road Matching ones Trap

1 Point 2162.28 27693.64 5104.32 9861.32
(372.0) (10509.8) (3653.2) (6787.9)

0.6 1.25 7 3
Uniform 1134.8 30005.56 9436.68 306219.56

(211.8) (13346.9) (9999.0) (125335.1)
0.4 0.75 6 3

Lego 1261.24 28839.16 7223.76 73375.28
(223.1) (13853.6) (5747.4) (81273.3)

0.08 1.2 7 3.5
Pop. v.1 1120.48 31163.04 13745.6 283650.8

(270.7) (10832.9) (12504.9) (132179.8)
4 1.25 6 3.5

Pop. v.2 1218.08 33409.72 9825.08 248588.88
(281.9) (15812.2) (10070.9) (129354.0)

0.4 7.5 6 3.5
Pop. v.3 996.16 26429.2 7964.76 320093.2

(207.97) (12359.36) (5193.0) (14026.470)
0.4 1 7 3.5
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Figure 1. Mean number of iterations to solve problem vs. mutation rate.

problems, all of which display tight linkage which suits the positional bias, the best
performance is shown by 1 Point Crossover, albeit with a marginal improvement
over the component level, and Pop. v.3 adaptive algorithms on Royal Road and
Matching Bits problems. As suggested by the standard deviations, the results for
the different algorithms are often not statistically significantly different except in
the case of OneMax (One Point performance worse) and the deceptive function,
where Uniform Crossover does not solve the problem, and the Component level
adaptive algorithm, and 1 Point Crossover are different to each other and faster
than the other algorithms.
More pertinently, we can see that although the three population level algorithms

give faster performance at their optimal mutation rates for OneMax, the Compo-
nent level algorithm is more robust with respect to mutation rates, as it is for the
rest of the problems, where it gives superior performance. Comparing the three
population level algorithms shows that the multiparental population level algorithm
is able to sustain higher mutation rates than the two parent versions, but does not
perform significantly better. Overall these results suggest that there is a benefit to
be had from the component level adaptation, especially on the deceptive problems.
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Figure 2. Analysis of evolved linkage as a function of time.

6.2. Analysis of operation—Strategy adaptation

In order to examine the cause of these observations, the mean linkage rate in the
population was measured at each locus, as a function of time. Figure 2 shows the
first 12500 iterations of the evolution of this linkage averaged over ten runs for each
algorithm on each problem using a population size of 250. The mutation rates used
were those found to give the best results above for each combination of algorithm
and problem.
For the OneMax and Match functions, the figures show the values averaged over

the whole string, and the error bars represent one standard deviation. For the Royal
Road and Trap problem, the values have been grouped into two classes, represent-
ing links within and between sub-problems, and the error bars have been omitted
for the sake of clarity. In the following we shall use the term distinguishable as short-
hand for saying that for significant portions of the evolutionary timescale shown, the
distance between two curves is greater than the sum of their standard deviations at
that point.
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From these figures we can make the following observations:

— The algorithms can be grouped into three classes, namely component level, prob-
abilistic population level (Pop. v.1) and Boolean population level (Pop. v.2 and
Pop. v.3). All three classes show different behavior. Where the error bars are not
shown, there is still a clear difference between the three algorithms, that is to
say that any pair of corresponding curves are distinguishable. However the two
population level algorithms which use the normal LEGO method of determin-
ing linkage do not show different behavior to each other, despite their different
arity.

— The first population level algorithm, which uses a stochastic interpretation of
the linkage arrays, very quickly evolves to a steady state of nearly 50% mean
linkage on every problem, i.e., there is no evidence of learning. This arises from
the averaging effect of the adaptation method used.

— The second and third population level algorithms, which rely heavily on the
basic LEGO algorithm, but divorce the linkage learning from the allele learning,
exhibit very similar patterns of behavior on all the problems, and evolve to the
same linkage rate. Both algorithms display brief periods where there is different
linkage between and within blocks on the Royal Road problems, but these are
brief and there is no significant difference between the behavior between and
within blocks on the trap function.

— In contrast, the component level algorithm shows far more distinct patterns of
evolving linkage. In particular, it shows a pattern of increasing linkage as the
epistasis in the problem increases, as can be easily seen by comparing the curves
for the Match and Royal Road problems. The OneMax problem is solved so
quickly that the behavior observed is simply an evolutionary drift towards the
steady state linkage value. The fact that this occurs slower than the decrease
in mean linkage for the Match problem suggests that in the latter case there is
actually a selective pressure against linkage on that problem. Moreover, for the
Royal Road and Trap problems, the curves for linkage between and within blocks
are distinguishable over much of the runs, only converging once the problem is
solved and the population converges. This demonstrates the ability of even this
unsophisticated algorithm to learn linkage information.

6.3. Scaleability

In order to examine the effect of problem size on the performance of the different
variants of the algorithm, a series of experiments was run using increasing numbers
of concatenated sub-problems of Deb’s 4-bit deceptive function, giving problem
lengths of between 20 and 120 bits (increasing in steps of 20). In each case a pop-
ulation size of 1000 was used, and the mutation rate was set to 1/l. Experiments
with smaller population sizes (not reported here for reasons of space) showed that
the population based methods required this large population size in order to solve
the larger problems reliably within the time allowed for each run. However, the
pattern of results for the smaller populations was the same as those reported here.
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Figure 3. Mean and standard deviations of time taken to solve problems as a function of length. Where
not all runs found the global optimum, the number of successful runs (used to calculate statistics) is
shown.

Each of the four variants, along with One Point Crossover was given 25 runs of
1 million evaluations on each problem size, and the time taken to find the global
optimum noted. Figure 3 shows the mean times taken by the successful runs, with
error bars showing one standard deviation. Alongside each point is the number of
runs in which the optimum was found (omitted where all runs were successful for
the sake of clarity.
From these results we can make the following observations:

— The first population level algorithm displays poor scaleability, and even with
these large population sizes is unable to solve problems greater than length 60.

— There is a clear difference between the performance of the second two popu-
lation level algorithms, with the multi-parent version performing more reliably,
and faster, for the longer problems.

— The results for 1-Point crossover show that it is fastest for the smaller problems,
as was seen above. However this advantage disappears for longer problems, and
it solves the longer problems less frequently than either the third population
level variant or the component level algorithm.

— The component level algorithm shows the best performance, both in terms of
reliability and speed of locating the global optima for the longer problems.
This is despite the fact that the problem representation should favour 1-Point
crossover, and demonstrates that the overhead of correctly identifying the build-
ing blocks is more than offset by the advantages of preserving and mixing them.
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7. Conclusions

The aim of this paper was to offer a perspective on linkage learning from the point
of view Adaptive Evolutionary algorithms, and to see if this could give useful insights
into the topic of Gene Linkage. From this point of view, it becomes apparent that
the notion of Appropriate Levels of Learning is one which has definite relevance to
the field.12 Further consideration into the nature of the information used by the
learning algorithms suggests that if the purpose of linkage learning is to provide
information which can be used offline, then a “learn first, optimise second” such
as that taken by the Messy GA may be preferable. It also suggests that there may
be an inherent weakness in schemes which attempt to learn linkage on-line at a
population level, arising from the problem of convergence of allele values, unless
mechanisms are specifically in place to combat this.
Distinctions were drawn between linkage learning via adaptation of recombina-

tion operators, and the implicit learning of linkage in Distribution Estimation algo-
rithms, although it was noted that even in the latter, it is not possible to separate
the process of learning linkage groups from that of learning their contents.
A Boolean definition of gene linkage was introduced, within which the major

families of static crossover operators can be modelled and generalised, and it was
shown how various Adaptive Linkage Learning algorithms can be easily understood
and contrasted using the notion of “Linkage Arrays.” It was also shown how con-
sideration of these arrays can lead naturally to the specification of operators which
explicitly manipulate them. One such operator, LEGO was adapted to provide a
means of exploring the effects of component vs. population based linkage learning.
The empirical results, on a test suite designed to be “learning-easy” illustrate that

there is a clear difference between the different levels of learning. Not only does
the component based scheme provide faster time to discovery of the optimum on
all but the simplest problem, it also displays greater robustness to changes in the
mutation rate. When the patterns of evolved linkage between and within blocks are
examined, there is a noticeable difference between the algorithms. The component
level algorithm is able to distinguish the two cases, and evolves linkage patterns
which will lead to higher mixing between blocks than inside them. This is reflected
in far superior optimisation performance. In contrast, the population level variants
do not appear to “learn” the same information, even though two of them used
exactly the same method of inheriting linkage arrays, but simply separate this from
the allele values inherited.
When the problem sizes were increased these results became more apparent.

The difference in results between the algorithms demonstrate that although some
of the advantage came from the multi-parental nature of the component level algo-
rithm, this was not as important as the ability to identify, preserve and mix good
combinations of allele values. The component level algorithm displayed apparently
linear behavior, and outperformed 1-Point Crossover, despite the problem repre-
sentation being tailored for the high positional bias of the latter. In other words the
component based scheme is able to learn and exploit the linkage structure of the
problem.
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Because the problem representations were explicitly designed to suit the simpli-
fied adjacent linkage model it is not reasonable to claim that the success of the
simple component level algorithm reported here will work under all conditions, and
indeed this was not the point of this paper. However the population level mod-
els failed to learn appropriate linkage groups without simultaneously considering
the contents of those groups, even in these most favourable of circumstances. This
provides empirical evidence to back up the earlier conceptual arguments in favour
of trying to learn linkage at an individual or component level rather than at the
population level.
Having demonstrated these results using a self-adaptive scheme, the next phase of

work will concern extending the mechanism to deal with non-adjacent linkage, and
higher order problems, as well as performing comparisons using learning mecha-
nisms which do not rely on self-adaptation, e.g., GEMGA vs. LIMD. Finally, it
should be noted that this is an area in which rapid advances are being made (partic-
ularly in the related field of Distribution Estimation Algorithms), and these results
should be seen as offering a different perspective to be considered in the design of
algorithms, rather than offering hard and fast rules.

Notes

1. Simply stated, the degree of linkage between two genes may be considered as the probability that
they are kept together during recombination.

2. A chromosome is said to exhibit epistatic interactions if the fitness contribution from one or more
genes depends not only on the allele value at that locus, but also on the values at other loci.

3. This assumption that “good” learning strategies will tend to be associated with high quality solutions
lies behind a large body of successful research into Self Adaptivity.

4. This model first appeared in [42].
5. Note that this does not refer to DEAs.
6. Personal communication, June, 1996, note these problems have been to some extent mitigated in

later versions.
7. Where l is the length of the problem encoding.
8. This is referred to as the arity of the operator.
9. In this work binary deterministic tournaments are used, although the use of any operator is possible.

10. It is guaranteed to be possible to complete an offspring since succeeding blocks can be chosen from
the same parent.

11. In practice more compact representations are used.
12. It also becomes apparent that a number of operators which adaptively learn Gene Linkage tend not

to be recognised as such.
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