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Abstract

CATEGORY: Real-World Applications

Structural comparison of proteins is a core
problem in modern biomedical research.
Identifying structural similarities is essential
for the assessment of the relationship between
structure and function in proteins, and struc-
tural comparison techniques play a key role
in applications like rational drug design. In
this paper we consider a technique for protein
structure comparison known as the maximum
contact map overlap problem. In this prob-
lem, the similarity between two protein struc-
tures is computed by aligning the proteins to
maximize the number of shared contacts in
their corresponding contact maps.

We present a new approach to this problem
that uses a Multimeme evolutionary algo-
rithm. The best solution found by our algo-
rithm provides a lower bound on the value of
the optimal structural alignment between the
proteins. We have evaluated the Multimeme
algorithm on a range of benchmark problems
and compared with previous heuristics. We
apply a linear programming method, which
provides an upper bound, to assess the accu-
racy of our solutions. Our experiments show
that the Multimeme evolutionary algorithm
represents a significant improvement on the
current state of the art in metaheuristics for
this problem.
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1 Introduction

Structural comparison of proteins is a central task in
biomedical research. Identifying structural similari-
ties can provide significant insights into the relation
between structure and function in proteins. Reliable
and efficient structural matching plays a key role in
rational drug design and in assessing the quality of
structure prediction methods. A variety of structure
comparison methods have been developed, such as
SCOP [14], DALI [6], and LGA [17, 18]. However, no
one technique has proven robust across a wide range
of applications.

One of the emerging approaches for solving this prob-
lem is to evaluate the alignment (or overlap) of contact
maps between proteins [6, 8, 11]. In its simplest form,
a contact map is a matrix of all pairwise distances
within a protein’s components [12, 7]; these compo-
nents can be atoms, residues, etc, depending on the
resolution of the model employed. The distances in
a contact map typically are computed by considering
either the distance between the C, atoms in a pair
of residues, or the minimum distance between any two
atoms belonging to those residues. Thus a contact map
provides a simple representation of a protein’s native

three dimensional structure.!

In this paper we reconsider the use of metaheuris-
tics for the Contact Map Overlap (Max CMO) prob-
lem [11]. For this problem, the distances in the con-
tact map are discretized to zero or one, depending
on whether the pairwise distances between residues
are within a specified threshold. Although this dis-
cretization would seem to be easier than aligning ma-
trices with real values, the problem is in fact NP-
complete [4, 5, 9]. We have previously proposed a

LA protein’s native state is associated with its minimal
free energy configuration. The biological function of a pro-
tein is achieved in this state.



rigorous approach to Max CMO [11]. This approach
employs an integer programming (IP) formulation for
Max CMO, which is solved using a branch-and-cut al-
gorithm. The branch-and-cut algorithm uses a Linear
Programming (LP) relaxation of the IP to produce the
upper bounds, and a Genetic Algorithm (GA) is used
to provide lower bounds at the branch nodes.

The aim of the present research is to investigate the use
of more sophisticated evolutionary algorithms: Multi-
meme memetic evolutionary algorithms [9], which in-
tegrate multiple local search strategies with a standard
evolutionary search. We employ the LP relaxation of
the Max CMO IP to provide upper bounds on the
quality of the alignment of two proteins’ structures,
and thus we can empirically evaluate the quality of the
solutions that we generate. Further, we compare the
results of the Multimeme algorithm with a standard
GA as well as the LGA protein structure comparison
algorithm.

2 The Maximum Contact Map
Overlap Problem

2.1 0-1 Contact Maps

Although contact maps are generally represented as
distance matrices, one way of simplifying this repre-
sentation of a protein’s structure is to define a contact
as a pair of residues that are closer than a given thresh-
old, #. Typically, § ranges between 2 and 9 Angstroms.
This gives a 0-1 contact map, where the matrix has the
form

g . = 1 if residue i and j are within distance 8
971 0 otherwise

The advantage of this representation is that structural
properties of proteins can be more easily visualized
and compared [16, 15]. Figure 1 is the graphic rep-
resentation of the 0-1 contact map for protein 1C7TW
shown in Figure 2(a).? In this figure, the a-helices are
represented by wide bands along the main diagonal,
while [(-sheets manifest themselves as bands parallel
or perpendicular to the diagonal.?

A 0-1 contact map can also be represented as an undi-
rected graph. In this graph, each residue is a node and
there exists an edge between nodes ¢ and j if these
residues are in contact (i.e. if S;; = 1). Figure 2

>The proteins used in this paper are taken from the
Protein Data Bank [1], and the labels we use are the labels
provided by the PDB.

3a—helices and S—sheets are elements of a protein’s
secondary structure. See [2] for a description of protein
secondary structure.
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Figure 1: A 0-1 contact map comparing protein 1C7TW
with itself.

shows the native structures of two proteins, and Fig-
ure 3 shows the graphs corresponding to their contact
maps. Note the long range interactions of residues that
are far away in the sequence but close in the three di-
mensional structure adopted by the native state.

2.2 Problem Formulation

The alignment between two contact maps is an assign-
ment of residues in the first contact map to residues
on the second contact map. Residues that are thus
aligned are considered equivalent. Further, consider
a pair of contacts, one from each protein. We say
that such a pair of contacts is equivalent if the pairs
of residues that define the end-points of these contacts
are equivalent. In the Max CMO problem, the value of
an alignment between a pair of proteins is the number
of equivalent contacts between these proteins. This
number is called the overlap of the contact maps and
the goal is to maximize this value. The Max CMQO
problem was first discussed by Godzik et al. [3], and it
has been proven NP-complete [5, 9].

Lancia et al. [11] describe an IP approach for the MAX
CMO problem, which builds upon a polynomial reduc-
tion from Max CMO to Maximum Independent Set
(MIS). The size of the converted instances is the prod-
uct of the number of contacts of the two maps (around
10000 nodes for a pair of proteins of 100 residues each).
To solve MIS instances of this size, the authors exploit
specific characteristics of the MIS instances.

Let Gy = (E1, V1) and G3(Es, Vs) be the two graphs
that correspond to two 0-1 contact maps, where F; are
the edges in these graphs and V; the vertices. The IP



(b)

Figure 2: Ribbon representation of structures for
proteins (a) 1C7TW and (b) INMG. Arrow shows
B—strand and spiral depicts helix.

formulation proposed by Lancia et al. is:

max Z Ye,f

e€E1,fEE>
subject to the constraints

Tiu+ Tjw <1
D i Y(i) () < Tiu

Y(i,u), (j,v) crossed
Vi € Vi, (u,v) € Ey

i3 Y. (uw) S Tiw Vi€V, (u,0) € Es
u<v Y0i,5) (u,v) < T Yu € V27 (777) € El
Yuso Y (o) < Tju Yu € Va, (i,f) € Eq

z,y € {0,1}

The binary variable z;, for i € V; and v € V5 has
a value of 1 if i is aligned with u and 0 otherwise.
The binary variable y. ¢ has a value of 1 if the edges
e, f are shared in a feasible solution and 0 otherwise.

Figure 3: Graphical representation of the contact maps
of proteins (a) 1C7TW and (b) INMG.

Hence the first equation is the statement of the goal
of maximizing the shared edges (contacts). We say
that (i,u) and (j,v) are crossed if both of these as-
signments are not feasible within a single alignment;
these form crossed assignment lines in the alignment
graphs below.

Lancia et al. [11] discuss the solution of this IP with
a branch-and-cut algorithm. Note that if the last con-
straint in the IP is removed then this problem is an LP,
so it can be solved in polynomial time. Further, the
solution to this relaxation of the IP provides an upper
bound on the globally optimal solution of the IP. These
LP solutions are a critical element of the branch-and-
cut algorithm described by Lancia et al. Further, they
can be used to benchmark heuristic solvers like the EA
we describe in the next section.

3 Multimeme Algorithms

Memetic algorithms [13] are evolutionary algorithms
that include, as part of the “standard” evolutionary
cycle of crossover-mutation-selection, a local search
stage. They have been extensively used and studied
on a wide range of problems. Multimeme evolutionary
algorithms are introduced in Krasnogor et al. [10, 9].
The distinction between memetic and Multimeme al-



gorithms is the use of a family of local searchers.
A memetic algorithm employs a single local search
heuristic, while a Multimeme algorithm relies on a set
of simple local searchers. Multimeme algorithms self-
adaptively select which heuristic to use for different
instances, stages of the search or individuals in the
population.

In a Multimeme algorithm an individual is composed
of its genetic material (that represents the solution to
the problem being solved) and its memetic material
(that defines the kind of local searcher to use). The
mechanisms of genetic exchange and variation are the
usual crossover and mutation operators but tailored
for the specific problem one wants to solve. Memetic
transmission is done during crossover as follows. If the
two parents use the same local searcher then the off-
spring will inherit that local searcher. However, if the
local searchers are different then the offspring inherits
the one associated with the fittest parent. Otherwise
(the heuristics used by both parents are different but
the fitnesses are the same) a random choice between
both local searchers is made.

The rational behind this criterion is to propagate local
searchers that are associated with fit individuals (as it
is hoped that those individuals were improved by their
respective local searchers). Also, during mutation, the
meme of an individual can be overridden and a local
searcher assigned at random (uniformly from the set
of all available local searchers) with the probability
specified by the innovation rate parameter.

4 A Multimeme Algorithm for Max
CMO

We extend here the work on the Max CMO initiated
by Lancia et.al. [11], who employed a standard GA
with specially tailored genetic operators. We briefly
describe those operators and explain how we enlarged
that set for use in our Multimeme approach.

In a GA for Max CMO a chromosome is represented
by a vector ¢ of dimension n, for which each position
can take values in the [—1,...,m — 1] domain. Here,
m is the length of the longer protein and n the length
of the shorter. A position j in ¢, c[j], specifies that
the j'* residue in the longer protein is aligned to the
c[j]t" residue in the shorter. A value of -1 in that posi-
tion will signify that residue j is not aligned to any of
the residues in the other protein. Unfeasible configura-
tions are not allowed, that is, if i < j and v[i] > v[j] or
i > j and v[i] < v[j] ( e.g. a crossing alignment) then
the chromosome is discarded. That is, our algorithms
work only with feasible solutions. It is simple to define

genetic operators that preserve feasibilities based on
this representation. Two-point crossover with bound-
ary checks was used to mate individuals and create
one offspring. Although both parents are feasible valid
alignments, the newly created offspring can result in
invalid (crossed) alignments. After constructing the
offspring, feasibility is restored by deleting any align-
ment that crosses other alignments. Figure 4 shows
a two point crossing over with an unfeasible interme-
diate offspring. At the later stage it is repaired and
completed, i.e. all unassigned vertices are randomly
assign to a vertex on the other protein if no new vio-
lations are produced (not shown in the picture).

The mutation move employed in the experiments is
called a sliding mutation. It selects a consecutive re-
gion of the chromosome vector and adds, slides right,
or subtracts, slides left, a small number. The pheno-
typic effect produced is the tilting of the alignments.
In Figure 5 an example is shown. Again, alignments
that violate the feasibility of the solution are dis-
carded. Lancia et al. [11] describes a few variations
on the sliding mutation.

el
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Figure 5: Sliding mutation under the vector represen-
tation for Max CMOQO. In this example a window size of

9 residues was chosen together with a right sliding by 2
residues.

In this paper we employ a Multimeme algorithm that,
besides using the same mutation and crossover as the
mentioned GA, has a set of 6 local search operators.
Four of the local searchers implemented are parameter-
ized variations of the sliding operator. The direction
of movement, left or right sliding, and the tilting fac-
tor, i.e. the number added or subtracted, were chosen
at random in each local search stage. The size of the
window was taken from the set {2,4,8,16}. Two new
operators were also defined: a “wiper” move and a
“split” move. The wiper move is depicted in Figure 6.
At every iteration of the operator two alignments, rep-
resented by = and y in the lower protein of the picture,
are chosen. The feasible regions of alignment for x
and y are determined (marked with dotted line rect-
angles R1 and R2 in the graph). Subsequently all the
residues within those regions are tested as candidate
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Figure 4: Two-point crossover with boundary checks for a vector representation of Max CMO.

alignments for z and y. The best alignment is chosen.
In the graph this is represented by the vertices that
are end points of the upper contact edge.
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Figure 6: Wiper move under the vector representation
for Max CMO. Two alignments of the lower protein are
selected and tested exhaustively against all the possible
feasible and compatible configurations around them.

During our investigations, it became evident that some
sort of redistribution of consecutive alignments might
be beneficial. We implemented a split operator to ac-
complish this. The split move, depicted in Figure 7,
tries to rearrange regions of consecutive alignments. In
the example, the first section of six consecutive align-
ments is broken into two regions of three alignments
each. Note that the end points of the alignments are
not changed in contrast with the sliding and wiper
moves.

5 Experiments and Results

In order to evaluate our Multimeme algorithm we first
implemented a GA, following as closely as possible the
GA described by Lancia et al. [11].2 We were able
to reproduce Lancia et al.’s results and, although we
found a small improvement of the final-values in our
implementation, they were minor and we consider both
GA’s implementations to be very similar.

“Some extra experimental details were kindly given to
us in private communications with the authors.

VN
SRV

Figure 7: Split operator under the vector representation
for Max CMO. This operator splits regions of consecutive
alignments.

The GA used a population of size 300. The mutation
rate was 0.15 per individual and crossover probabil-
ity was set to 0.75. Fitness proportional selection was
used to select the mating pool. An elitist (elite set
size of 1) (300, 300) selection strategy was employed.
These parameters were selected after an initial assess-
ment of parameter values with a few pairs of proteins.
The Multimeme algorithm used the same basic GA
setting and parameters, but also employed as memes
the four variations of the sliding move, a split move
and a wiper move as described in the previous section.
The probability of local search was set to one, i.e., local
search was applied to every individual in every gener-
ation. Each meme was iterated two times (short local
searches). The values of mutation and crossover prob-
abilities were not optimized for the Multimeme code
but as mentioned before, taken from the GA setting.
The innovation rate for the Multimeme algorithm was
1.0 and 0.15 (see below).

We performed two experiments on a set of 18 pairs
of protein structures from the Protein Data Bank [1].
For these 18 pairs we had the upper bound values ob-



Instance GA | Multimeme IR=1.0 | LP Instance GA | Multimeme IR=0.15 | LP
1a80-1122 25 23 28 la80-1f22 25 25 28
lavy-1bct 19 22 25 lavy-1bct 22 22 25
1b6w-1bw5 || 23 23 24 1b6w-1bws || 23 24 24
1bct-1bwb || 20 17 20 1bct-1bw5 17 20 20
1bct-1£22 20 18 22 1bct-1£22 16 21 22
1bct-1ilp 18 18 23 1bct-1ilp 18 19 23
lc7v-1c7w || 62 62 62 1c7v-1c7w || 62 62 62
1c9o0-1kdf || 29 29 40 1c90-1kdf 31 34 40
1df5-1122 21 22 27 1df5-1122 24 24 27
1hlh-1hrf 19 21 24 1hlh-1hrf 20 22 24
1hlh-1nmf || 22 22 27 1hlh-1nmf || 22 23 27
1kst-2new || 20 22 26 1kst-2new || 22 23 26
Inmf-2new || 23 23 27 Inmf-2new || 23 25 27
Inmg-1wdc || 18 19 23 Inmg-1wdc || 18 19 23
1pfn-1svf 16 16 16 1pfn-1svf 16 16 16
lutr-1wdc 16 24 28 lutr-1wdc || 26 26 28
1vnb-1bhb || 17 21 27 1vnb-1bhb || 19 23 27
2new-3mef || 21 19 26 2new-3mef | 23 22 26

Table 1: Maximum Contact Map Overlap values for sev-
A GA, a Multimeme algorithm with
innovation rate 1.0 are compared. The value of the LP

eral protein pairs.

results are also displayed to the right.

tained by the LP formulation described earlier. It is
important to remark that, the LP gives estimations
(i.e. upper bounds) on the possible maximum objec-
tive value for a particular instance of the problem. It
does not produce (explicit) solutions to the problem
instances.

The metric used in the experiments was the value of
best alignment obtained out of 5 runs for each pair of
proteins.

In the first experiment we assessed the performance of
a Multimeme algorithm with an innovation rate set to
1 in a relatively fast experiment. For both the Multi-
meme and the GA the maximum number of function
evaluations was 3 * 10%. The results are presented in
Table 1.

From the table we can see that the two algorithms pro-
duce the same results in 7 cases, the GA outperforms
the Multimeme in four cases and the Multimeme out-
performs the GA in 7 cases. We can thus say that
the Multimeme algorithm with innovation rate of 1.0
generates similar or better results than the GA (both
algorithms using the same number of fitness evalua-
tions) in 14 out of 18 cases.

The second experiment was meant to test the behavior
of both the GA and the Multimeme algorithms in the
same set of 18 pairs of proteins but employing more

Table 2: Maximum Contact Map Overlap values for sev-
A GA, a Multimeme algorithm with
innovation rate = 0.15 compared. The value of the LP

eral protein pairs.

results are also displayed to the right.

fitness evaluations, 5% 10 in this case. Also the inno-
vation rate was reduced to 0.15. The alignment values
obtained are presented in Table 2.

From inspection of the table, and comparing it with
the previous one, we can see that both algorithms
profit from longer runs. However, the difference be-
tween the two approaches is more noticeable in this
case. Qut of 18 protein pairs the GA outperformed
the Multimeme in just one case, instance 2new-3mef,
as opposed to four in Table 1. The Multimeme pro-
duced better results in 11 cases while for the remaining
pairs, 6 instances, the values obtained with both algo-
rithms were equivalent.

The Multimeme algorithm was able to match 4 of the
optimum bounds produced by the LP. In the 4 in-
stances where the GA and the Multimeme achieve sim-
ilar results, i.e. pairs 1a80-1f22; lavy-1bct, 1df5-1{22
and lutr-1wdc, the values obtained are below the LP
bounds. However, we speculate that actually those
alignments, i.e. the ones produced with the meta-
heuristics, are indeed optimal and that the LP pro-
gram is able to obtain higher values by using fractional
solutions that cannot possibly have physical meaning.
Also, it is important to note that the gap between the
Multimeme results and the LP bounds is in all cases
smaller than 4 except in the case of the pair 1c9o0-1kdf
for which the gap is 6.




Other experiments were performed with different ge-
netic operators, like DPX crossover and different mu-
tation moves, but the results were not particularly bet-
ter than the ones discussed here; hence they are omit-
ted.

6 Comparison with LGA

In the previous section we verified that the Multi-
meme algorithm introduced in this paper produces op-
timal and almost optimal, i.e. with respect to the LP
bounds, results. In this section we assess whether the
alignments generated for CMO are qualitatively sim-
ilar to other well known methods of structural align-
ment. To accomplish this aim, we will compare our
alignments with those obtained with LGA [18, 17].
The later is a state of the art, publicly available pro-
gram for the comparative analysis of protein struc-
tures.

LGA can be run in two modes, protein sequence aware
mode and sequence independent mode. The former is
suitable when the two proteins to be compared have
the same number of residues and the later for the case
when the two proteins are not necessarily of the same
length. We use LGA in the sequence independent
mode as the illustrative comparison we run was made
with proteins of different size. The parameters used to
run the LGA program were —4 — sia — ol — d_6.5.
Please refer to Zemla [17] for details. The pair of pro-
teins studied was 1c90 and 1kdf (from the Protein Data
Bank). This pair is the one that produces the biggest
gap between the solutions returned by the Multimeme
algorithm and the LP upper bound®. Protein 1c9o is
a cold shock protein from the genome of Bacillus Cal-
dolyticus and 1kdf is an antifreeze protein from Macro-
zoarses Americanus. Because the functions are similar,
it is expected that the structures of the two will have
some resemblance and that either algorithm (LGA or
the Multimeme) will be able to capture it.

Figure 8 plots the alignments obtained by our method
and the LGA program. Axis X and Y are indexed by
residues id, where X represents the residues of protein
1c90 and Y that of 1kdf. A mark, circle or square, in
coordinates (z,y) should be interpreted as the align-
ment of residue number z in 1c9o with residue y in
1kdf. The closer to the diagonal the full alignment is
the more similar are the structures. As it is possible
to see from the graph there is only one mismatched
region between the two alignments, the area between
residue 14 and 20. In that window the difference be-

5It is a worst case comparison as it represents our poor-
est result.

Comparison of Alignments ( 1¢90-1kdf pdb proteins)
LGA and Multimeme algorithm
s I O I O B O

LGA
=—a Multimeme algorithm

Residue id

I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Residue id

Figure 8: Comparison of the structural alignments ob-
tained by LGA and the Multimeme algorithm for proteins
1c90 and 1kdf

tween the two alignment is considerable. In the rest of
the protein the two algorithms produce strikingly sim-
ilar alignments where some perfect matching regions
are visible. The overall shape of both alignments is
also similar. To elucidate which of the two algorithms
calculates the best alignment in the region of discrep-
ancy (i.e better preserves secondary structure features
like beta sheets, alpha helices, etc ), we carried out a
secondary structure analysis in this region. The anal-
ysis performed allows us to conclude that both algo-
rithms produced results of similar quality as the pro-
teins differ substantially on their secondary structure
contents for the region studied.

7 Conclusion and Future Work

In this paper we reproduced the results of Lancia et
al. for the Max CMO problem [11]. Their results pro-
vide the first application of a GA for this problem.
We used a Multimeme algorithm with an architecture
similar to that used in Krasnogor et al. [9, 10] to ob-
tain results that improve over those produced by the
standard GA. No exhaustive testing of parameters for
the Multimeme algorithm was carried out, but rather
the same setting as those produced for the GA were
employed. Furthermore, our method gives results that
are compatible with those obtained with a state of the
art structure comparison algorithm [17, 18]. One im-
mediate advantage of our method over, e.g., LGA is
that being a population based approach it can poten-
tially return not only one “best alignment” but a va-
riety of alternative alignments. Moreover, these set
of candidate alignments can be analyzed for biological



relevance at a later stage by a human expert.

As an immediate follow up of this work a much larger
set of protein pairs is being analyzed and the biolog-
ical significance of the alignments obtained with our
method will be assessed on those pairs. A Master-
Worker parallel version of the LP-Multimeme inte-
grated approach is under development. That platform
will enable one to perform genome scale structures
comparisons.
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