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Abstract. This paper describes a co-evolutionary learning-optimisation
approach to Protein Structure Prediction which uses a Memetic Algo-
rithm as its underlying search method. Instance-specific knowledge can
be learned, stored and applied by the system in the form of a popu-
lation of rules. These rules determine the neighbourhoods used by the
local search process, which is applied to each member of the co-evolving
population of candidate solutions.

A generic co-evolutionary framework is proposed for this approach, and
the implementation of a simple Self-Adaptive instantiation is described.
A rule defining the local search’s move operator is encoded as a {condition
: action} pair and added to the genotype of each individual. It is demon-
strated that the action of mutation and crossover on the patterns encoded
in these rules, coupled with the action of selection on the resultant pheno-
types is sufficient to permit the discovery and propagation of knowledge
about the instance being optimised.

The algorithm is benchmarked against a simple Genetic Algorithm, a
Memetic Algorithm using a fixed neighbourhood function, and a similar
Memetic Algorithm which uses random (rather than evolved) rules and
shows significant improvements in terms of the ability to locate opti-
mum configurations using Dill’s HP model. It is shown that this “meta-
learning” of problem features provides a means of creating highly scalable
algorithms.

1 Introduction

The performance benefits which can be achieved by hybridising evolutionary
algorithms (EAs) with local search operators, so-called Memetic Algorithms

(MAs), have now been well documented across a wide range of problem do-
mains such as combinatorial optimisation [1], optimisation of non-stationary
functions [2], and multi-objective optimisation [3] (see [4] for a comprehensive
bibliography). Commonly in these algorithms, a local search improvement step
is performed on each of the products of the generating (recombination and mu-
tation) operators, prior to selection for the next population There are of course



many variants on this theme, for example one or more of the generating oper-
ators may be absent,or the order in which the operators are applied may vary.
The local search step can be illustrated by the pseudo-code below:

Local Search(i) :
Begin

/* given a starting solution i and a neighbourhood function n */
set best = i;

set iterations = 0;
Repeat Until ( iteration condition is satisfied ) Do
set counter = 0;
Repeat Until ( termination condition is satisfied ) Do

generate the next neighbour j ∈ n(i);
set counter = counter + 1;
If (f(j) is better than f(best)) Then
set best = j;

Fi
Od
set i = best;

set iterations = iterations + 1;
Od

End.

There are three principal components which affect the workings of this lo-
cal search. The first is the choice of pivot rule, which can be Steepest Ascent

or Greedy Ascent. In the former the termination condition is that the entire
neighbourhood n(i) has been searched, i.e. counter =| n(i) |, whereas the lat-
ter stops as soon as an improvement is found; i.e. the termination condition is
(counter =|n(i) |)∨(best 6= i). Note that some authors resort to only considering
a randomly drawn sample of size N <<| n(i) | if the neighbourhood is too large
to search.

The second component is the depth of the local search, i.e. the iteration
condition which lies in the continuum between only one improving step being
applied (iterations = 1) to the search continuing to local optimality ((counter =|
n(i) |) ∧ (best = i)). Considerable attention has been paid to studying the effect
of changing this parameter within MAs e.g. [5]. Along with the choice of pivot
rule, it can be shown to have an effect on the performance of the Local Search
algorithm, both in terms of time taken, and in the quality of solution found.

The third, and primary factor that affects the behaviour of the local search
is the choice of neighbourhood generating function. This can be thought of as
defining a set of points n(i) that can be reached by the application of some move
operator to the point i. An equivalent representation is as a graph G = (v, e)
where the set of vertices v are the points in the search space, and the edges relate
to applications of the move operator i.e eij ∈ G ⇐⇒ j ∈ n(i). The provision
of a scalar fitness value, f , defined over the search space means that we can
consider the graphs defined by different move operators as “fitness landscapes”



[6]. Merz and Freisleben [7] present a number of statistical measures which can
be used to characterise fitness landscapes, and have been proposed as potential
measures of problem difficulty. They show that the choice of move operator can
have a dramatic effect on the efficiency and effectiveness of the Local Search,
and hence of the resultant MA.

In some cases, domain specific information may be used to guide the choice
of neighbourhood structure within the local search algorithms. However, it has
recently been shown that the optimal choice of operators can be not only in-
stance specific within a class of problems [7, pp254–258], but also dependent on
the state of the evolutionary search [8]. This result is not surprising when we
consider that points which are locally optimal with respect to one neighbour-
hood structure may not be with respect to another (unless of course they are
globally optimal). Thus if a set of points has converged to the state where all
are locally optimal with respect to the current neighbourhood operator, then
changing the neighbourhood operator may provide a means of progression, in
addition to recombination and mutation. This observation forms the heart of the
Variable Neighbourhood Search algorithm [9].

This paper describes one mechanism whereby the definitions of local search
operators applied within the MA may be changed during the course of optimi-
sation, and in particular how this system may usefully be applied to a simpli-
fied model of the Protein Structure Prediction Problem. This system is called
Co-evolving Memetic Algorithms (COMA). The rest of this paper proceeds as
follows:

– Section 2 discusses some previous work in this area, describes the proposed
approach, and the development of a simplified model within that framework.
It also summarises the results of initial investigations published elsewhere.

– Section 3 draws some parallels between this work and related work in dif-
ferent fields, in order to place this work within the context of more general
studies into adaptation, development and learning.

– Section 4 details the particular application under concern, namely Protein
Structure Prediction using Dill’s HP model [10].

– Section 5 presents the results and analysis of a set of preliminary experiments
designed to investigate whether the use of adaptive rules is able to benefit
the optimisation process.

– Section 6 goes on to investigate the benefits of restricting the search to
feasible solutions, rather than using a penalty function approach.

– Section 7 presents some analyses of the behaviour of the evolving rule-bases,
and then Section 8 discusses the implications of these results, before drawing
conclusions and suggesting future work.



2 A Rule-Based Model for the Adaptation of Move

Operators

2.1 The Model

The aim of this work is to provide a means whereby the definition of the local
search operator (LSO) used within a MA can be varied over time, and then to
examine whether evolutionary processes can be used to control that variation,
so that a beneficial adaptation takes place. Accomplishing this aim requires the
provision of five major components, namely:

– A means of representing a LSO in a form that can be processed by an
evolutionary algorithm

– Intimately related to this, a set of variation operators, such as recombination
and mutation that can be applied to the LSO representation, and a means
for initialising a population of LSO operators.

– A means of assigning fitness to the LSO population members
– A choice of population structures and sizes, along with selection and replace-

ment methods for managing the LSO population
– A set of experiments, problems and measurements designed to permit eval-

uation and analysis of the behaviour of the system.

The representation chosen for the LSOs is a tuple <Pivot Rule, Depth, Pair-

ing, Move, Fitness>.
The first two elements in the tuple have been described above and can be

easily mapped onto an integer or cardinal representation as desired, and manip-
ulated by standard genetic operators.

The element Pairing effectively co-ordinates the evolution of the two popu-
lations. When an candidate solution is to be evaluated, a member of the LSO
population is chosen to operate on it, hopefully yielding improvements. The fit-
ness of the candidate solution is thus affected by the choice of LSO to operate
on it, and the fitness assigned to the LSO is in turn affected by the candidate
solution to which it is applied.

Values for Pairing are taken from the set {linked, fitness based, random}. The
purpose of this element is to allow the system to be varied between the extremes
of a fully unlinked system, in which although still interacting the two populations
evolve separately, and a fully linked system in which the LS operators can be
considered to be self-adapted. The different values have the following effects:

– For a linked pairing strategy, the LSOs can be considered to be extra genetic
material which is inherited and varied along with the problem representation.
Thus if the kth candidate solution is created from parents i and j, then a LSO
is created by the actions of recombination and mutation on members i and
j of the current LSO population. This new LSO is used to evaluate the new
candidate solution and becomes the kth member of the next LSO population.
Note that this assumes the two population are the same size. The fitness is
assigned to the new LSO is immaterial since selection to act as parents
happens via association with good members of the solution population.



– For a fitness-based pairing strategy, when a candidate solution requires eval-
uation, a LSO is created and put into the next LSO population as above.
However the two LSOs which acts as parents for recombination are now cho-
sen using a standard selection mechanism acting on those members of the
current LSO population which do not have Pairing = linked. A number of
methods can be used to define the fitness of an LSO.

– For a random pairing strategy, the same process occurs as for the fitness-
based method, except that parents are selected randomly from the unlinked
members of the LSO population, without regard to their fitness.

Although the long-term goal is to examine a “mixed-economy” of paring
strategies, for the purposes of this paper the system is restricted to the situation
where the whole population uses the same value, initially Pairing = linked.

The representation chosen for the move operators was as condition:action

pairs, which specify a pattern to be looked for in the problem representation,
and a different pattern it should be changed to. Although this representation at
first appears very simple, it has the potential to represent highly complex moves
via the use of symbols to denote not only single/multiple wildcard characters
(in a manner similar to that used for regular expressions in Unix) but also
the specifications of repetitions and iterations. Further, permitting the use of
different length patterns in the condition and action parts of the rule gives
scope for cut and splice operators working on variable length solutions.

In themselves, the degrees of freedom afforded by the five components listed
above provide basis for a major body of research, and the framework described
above is intended to permit a full exploration of these issues which is currently
underway [11, 12].

This paper presents results from a simplified instantiation of this framework,
focusing on the benefits of knowledge discovery and re-use. In order to achieve
this focus, some of the adaptive capabilities are restricted, i.e., the LSOs always
use one of greedy or steepest ascent, a single improvement step, and full link-
age. These choices are coded into the LSO chromosomes at initialisation, and
variation operator are not used on them. This restriction to what are effectively
self-adaptive systems provides a means of dealing with the credit assignment
and population management issues noted above

The COMA system is also restricted to considering only rules where the
condition and action patterns are of equal length and are composed of values
taken from the set of permissible allele values of the problem representation,
augmented by a “don’t care” symbol # which is allowed to appear in the con-

dition part of the rule but not the action, although this could be interpreted as
“leave alone”. The neighbourhood of a point i then consists of all those points
where the substring denoted by condition appears in the representation of i and
is replaced by the action. The neighbourhood of i therefore potentially includes
i itself, for example by means of a rule with identical condition and action parts.

To give an example, if a solution is represented by the binary string 1100111000
and a rule by 1#0:111, then this rule matches the first, second, sixth and sev-
enth positions, and the neighbourhood is the set {1110111000, 11111111000,



1100111100,1100111110}. In practice a random permutation is used to specify
the order in which the neighbours are evaluated, so as not to introduce posi-
tional bias into the local search when greedy ascent is used. Note that in this
work the string is not considered as toroidal (although this will be considered in
later work).

In practice, each rule was implemented as two 16 bit strings, and was aug-
mented by a value rule length which detailed the number of positions in the
pattern string to consider. This permits not only the examination of the ef-
fects of different fixed rule sizes, but also the ability to adapt via the action of
mutation operators on this value. This representation for the rules means that
“standard” genetic operators (uniform/1 point crossover, point mutation) can
be used to vary this part of the LSO chromosome.

2.2 Initial Results

The results of initial investigations using this system were reported in [11]. The
test suite was problems made out of a number of sub-functions either interleaved
or concatenated. Two different classes of sub-function were used which posed
either entropic (Royal Road) or fitness (Deceptive) barriers to the discovery
of the global optimum. Greedy versions of the COMA (GComa) algorithm were
tested against the GA,MA, GRand algorithms described below, and it was shown
that a version of the system with adaptive rule lengths was able to perform better
than these three, and comparably with variants of GComa with optimal fixed
rule-lengths for the different problems. Analysis showed that these algorithms
discovered and used problem specific information (such as optimal patterns for
different sub-problems).

Subsequent work [12] has shown them to be highly scalable with respect to
problem length on problems where there are repeated patterns in the regions of
the search space corresponding to high quality solutions. This behaviour arises
from the discovery and re-use of knowledge about these patterns. It was also
shown that in the absence of such patterns, the systems still displays better
performance (both in terms of mean best fitness and the reliability of locating
the global optimum). In this case the improved performance arose from the
maintenance of a diverse set of move operators, and hence from the examination
of multiple search landscapes, which provides a better means of escaping local
optima.

3 Related Work

The COMA system can be related to a number of different branches of re-
search, all of which offer different perspectives and means of analysing it’s be-
haviour. These range from MultiMemetic Algorithms and the Self-Adaptation of
search strategies, through co-evolutionary, learning and developmental systems,
to the evolutionary search for generalised rules as per Learning Classifier Sys-
tems. Space precludes a full discussion of each of these, so the more important
are briefly outlined below.



Although the authors are not aware of other algorithms in which the LSOs
used by an MA are adapted in this fashion, there are other examples of the use
of multiple LS operators within evolutionary systems. Krasnogor and Smith [8]
describe a “MultiMemetic Algorithm”, in which a gene is added to the end of
each chromosome indicating which of a fixed set of static LS operators (“memes”)
should be applied to the individual solution. Variation is provided during the
mutation process, by randomly resetting this value with a low probability. They
report that their systems are able to adapt to use the best meme available for
different instances of TSP.

Krasnogor and Gustafson have extended this and proposed a grammar for
“Self-Generating MAs” which specifies, for instance, where in the evolutionary
cycle local search takes place [13]. Noting that each meme potentially defines
a different neighbourhood function for the local search part of the MA, we can
also see an obvious analogy to the Variable Neighbourhood Search algorithm
[9], where a heuristic is used to control the order of application of a set of local
searchers (using different, fixed, neighbourhood structures) to a single improving
solution. The difference here lies in the population based nature of COMA, so
that not only do we have multiple candidate solutions, but also multiple adaptive
neighbourhood functions in the memes.

As noted above, if the populations are of the same size, and are considered
to be linked, then this instantiation of the COMA framework can be considered
as a type of Self Adaptation. The use of the intrinsic evolutionary processes to
adapt step sizes governing the mutation of real-valued variables has long been
used in Evolution Strategies [14], and Evolutionary Programming [15]. Similar
approaches have been used to self-adapt mutation probabilities [16, 17] and re-
combination operators[18] in genetic algorithms as well as complex generating
operators which combined both mutation and recombination [19]. This body
of work contains many useful results concerning the conditions necessary for
strategy adaptation, which could be used to guide implementations of COMA.

If the two populations are not linked, then COMA is a co-operative coevolu-
tionary system, where the fitness of the members of the LSO population is as-
signed as some function of the relative improvement they cause in the “solution”
population. Paredis has examined the co-evolution of solutions and their repre-
sentations [20], and Potter and DeJong have also used co-operative co-evolution
of partial solutions in situations where an obvious problem decomposition was
available [21], both with good reported results. Bull [22] conducted a series of
more general studies on co-operative co-evolution using Kauffmann’s static NKC
model [23]. In [24] he examined the evolution of linkage flags in co-evolving “sym-
biotic” systems and showed that the strategies which emerge depend heavily on
the extent to which the two populations affect each others fitness landscape,
with linkage preferred in highly interdependent situations. He also examined the
effect of different pairing strategies, [25] with mixed results, although the NKC
systems he investigated used fixed interaction patterns, whereas in the systems
used here are more dynamic in nature.



There has also been a large body of research into competitive-coevolution,
(an overview can be seen in [26]) whereby the fitnesses assigned to the two
populations are directly related to how well individuals perform “against” the
other population, what has been termed “predator-prey” interactions.

In both the co-operative and competitive co-evolutionary work cited above,
the different populations only affect each other’s perceived fitness, unlike the
COMA framework where the LSO population can directly affect the genotypes
within the solution population. A major source of debate and research within
the community has focused around the perception that this phase of improve-
ment by LS can be viewed as a kind of lifetime learning. This has lead naturally
to speculation and research into whether the modified phenotype which is the
outcome of the improvement process should be written back into the genotype
(Lamarkian Learning) or not (Baldwinian Learning). Note that although the
pseudo code of the local search, and the discussion above assumes Lamarkian
learning, this is not a prerequisite of the framework. However, even if a Bald-
winian approach was used, the principal difference between the COMA approach
and the co-evolutionary systems above lies in the fact that there is a selection
phase within the local search, that is to say that if all of the neighbours of a
point defined by the LSO rule are of inferior fitness, then the point is retained
unchanged within the population.

If one was to discard this criterion and simply apply the rule (possibly it-
eratively), the system could be viewed as a type of “developmental learning”
akin to the studies in Genetic Code e.g. [27] and the “Developmental Genetic
Programming” of Keller and Banzhaf [28, 29]

Finally, and perhaps most importantly, it should be considered that if a
rule has an improving effect on different parts of a solution chromosome over
as number of generations, then the evolution of rules can be seen as learning
generalisations about patterns within the problem representation, and hence the
solution space. This point of view is akin to that of Learning Classifier Systems.
For the case of unlinked fitness-based selection of LS operators, insight from this
field can be used to guide the credit assignment process.

It is tempting to draw a further generalisation which would see the condi-

tions as representing schema and the actions as representing higher fitness (and
possibly higher order) alternatives, but this is a more dubious analogy as the
conditions are allowed to match anywhere within the string, i.e. even a fully
specified rule of length l matches L − l schema within a string of length L.

4 Dill’s HP model of Protein Structure Prediction

The problem of Protein Structure Prediction (PSP), i.e. the prediction of the
”native” three-dimensional form of a protein from knowledge of the sequence
of its constituent amino-acid residues is one of the foremost challenges facing
computational biology. Current approaches to PSP can be divided into three
classes; comparative modelling, fold recognition, and ab initio methods. The first
two explicitly search the ever-growing databases of known structures for simi-



lar sequences (homologues) and sub-sequences. In contrast, the third approach
represents the ”last chance” scenario of trying to predict the tertiary structure
by minimising a free energy model of the structure. Approaches that make use
of existing knowledge currently represent the state of the art (and are likely to
remain so), however ab initio approaches are important for two main reasons.
The first of these relates to the situation where a sequence does not correspond
to any known fold. The second, and more fundamental reason is that the devel-
opment of true ab initio methods can give greater insight into the relationship
between different fold families, and to the dynamical process of folding.

Current approaches to ab initio PSP can be divided according to two criteria,
namely the nature of the choice of energy function, and the number of degrees of
freedom in the conformation, as exemplified by the granularity (all atom models
vs. virtual atom) and locational constraints (e.g. lattice based models vs. off-
lattice models). Although most lattice based models are physically unrealistic,
they have proved a useful tool for exploring issues within the field. Some of
the more complex models, e.g. SICHO [30] have been shown to be capable of
accurate predictions of the conformations of simple proteins, especially when
used in conjunction with techniques for subsequent refinement to an all-atom
model [31].

The HP model for PSP [10] provides an estimate of the free energy of a fold
of a given instance, based on the summation of pair-wise interactions between
the amino acid residues. It is a ”virtual residue” model, that is to say that each
amino acid residue is modelled by a single atom, whose properties are reduced
to a quality of being hydrophobic or hydrophilic, thus simplifying the energy
calculations still further. Hydrophobic residues avoid interacting with the water
molecules of the solvent, whereas hydrophilic (or polar) residues are able to form
hydrogen bonds with the water molecules. Thus, polar residues are often found
at the surface of the protein and hydrophobic residues are normally found buried
in the inner part, or core, of the protein. The HP model captures this behaviour,
despite its extreme simplicity. In the model, a sequence of l amino acid residues
is represented by s ∈ {H, P}l, where H represents a hydrophobic amino acid and
P represents a hydrophilic one. The space of valid conformations is restricted to
self-avoiding paths on a selected lattice, with each amino acid located on a vertex.
The torsion angles of the peptide bonds between residues are thus restricted by
a finite set determined by the shape of the lattice. The first amino acid of the
sequence is located on a randomly selected vertex, and an orientation is assumed
for it. From there, according to the orientation, the chain grows, placing every
subsequent amino acid either ahead of the previous one, at 90 degrees to the
left or at 90 degrees to the right (assuming a square lattice). Hydrophobic units
that are adjacent in the lattice but non-adjacent in the sequence add a constant
negative factor to the energy level. All other interactions are ignored. In some
cases, to make feasible conformations more attractive, the infeasible folds suffer
penalisation in the form of adding a substantial positive factor to their energy
levels. In this way, the model reflects the tendency of hydrophobic amino acids
to form a hydrophobic core. Despite the apparent simplicity of this model, the



search for the global energy minimum in the space of possible conformations of
a given sequence has been shown to be NP complete on various lattices [32].

Evolutionary algorithms (in particular Genetic Algorithms) have been ap-
plied, with some success, to the PSP using the HP and all-atom off-lattice mod-
els, by a number of authors since [33, 34]. In [35] the effect of different encoding
schemes and constraint management techniques were examined, and a modified
fitness function was developed which extends the basic HP model to permit the
allocation of reward for non-adjacent pairs of Hydrophilic residues. More recent
work has demonstrated the use of self-adaptation within a memetic algorithm
to permit the selection from amongst a fixed set of predetermined local search
strategies, using different move operators such as local “stretches”, reflections
etc [36, 37]. The work described here extends this by not relying on a fixed set of
move operators encoding domain-specific knowledge, but rather evolving a set
of move operators, thus learning that domain-specific knowledge.

5 Experimental Results

5.1 The Test Suite and Experimental set-up

In order to investigate the value of this approach, 20 instances and parameter
settings from [38], were used, which use a two-dimensional triangular lattice.
These instances are detailed in Table 1.

The representation used a a relative encoding. In this, where the alleles come
from the set {leftback, leftforward, front, rightforward, rightback} and represent
the direction of the next move on the lattice from the point of view of the head
of the growing chain. This is an alternative to the absolute encoding used by
Unger and Moult [33], where alleles specify directions to move relative to an
external frame of reference. Results presented in [35] have suggested that this
relative encoding is preferable, not least because the absence of a “back” move
means that all conformations that can be represented are one-step self-avoiding.

The generational genetic algorithm used (500+500) selection. One Point
Crossover was applied with probability 0.8 and a Double Mutation was made
with probability 0.3. Viewed from an external frame of reference the mutation
operator has the effect of causing the mutation point to act as a pivot, about
which one half of the structure is rotated through some multiple of π/6 (for a
triangular lattice). Mutation was applied to the rules with a probability of 0.0625
of selecting a new allele value in each locus (the inverse of the maximum rule
length).

For each combination of algorithm and instance, 25 runs were made, each
run continued until the global optimum was reached, subject to a maximum of
1 million evaluations. Note that since one iteration of a local search may involve
several evaluations, this allows more generations to the GA, i.e. algorithms are
compared strictly on the basis of the number of calls to the evaluation function.
The algorithms used (and the abbreviations which will be used to refer to them
hereafter) are as follows:



Id Sequence Length Optimum

1 HHPHPHPHPHPH 12 11
2 HHPPHPHPHPHPHP 14 11
3 HHPPHPPHPHPHPH 14 11
4 HHPHPPHPPHPPHPPH 16 11
5 HHPPHPPHPHPHPPHP 16 11
6 HHPPHPPHPPHPPHPPH 17 11
7 HHPHPHPHPHPHPHPHH 17 17
8 HHPPHPPHPHPHPPHPHPHH 20 17
9 HHPHPHPHPHPPHPPHPPHH 20 17
10 HHPPHPPHPHPPHPHPPHPHH 21 17
11 HHPHPPHPPHPHPHPPHPPHH 21 17
12 HHPPHPHPHPPHPHPPHPPHH 21 17
13 HHPPHPPHPHPHPPHPPHPPHH 22 17
14 HHHPHPHPHPHPHPHPHPHPHHH 23 25
15 HHPPHPPHPPHPPHPPHPPHPPHH 24 17
16 HHHPHPHPPHPHPHPHPHPHPHHH 24 25
17 HHHPHPHPHPPHPHPHPHPHPHHH 24 25
18 HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 25
19 HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 25
20 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH 37 29

Table 1. HP instances used in these experiments

– A GA i.e. with no use of Local Search (GA).
– A simple MA using a bit-flipping neighbourhood, with one iteration of greedy

ascent (SMA).
– Versions of COMA using a randomly created rule in each application, i.e.

with the learning disabled. One iteration of steepest (SRand) or greedy
(GRand) ascent local search was applied.

– Adaptive versions of COMA with the two pivot rules (SComa and GComa).
In these the rule lengths are randomly initialised in the range [1,16]. During
mutation, a value of +/− 1 is randomly chosen and added with probability
0.0625.

These results are analysed according to three different performance criteria:
firstly the Success Rate (the number of runs in which the global optimum was
found), secondly in terms of efficiency, as measured by the average number of
evaluations to solution (AES) in those successful runs, and thirdly in terms of the
mean performance measured in terms of the best value found in the maximum
time alloted, averaged over 25 runs.

5.2 Success Rate

Table 2 shows the Success Rate for each algorithm itemised by instance and
in total. Using a non-parametric Friedman’s test for k-related variables shows



that the differences in success rate between algorithms is significant, and a series
of paired t-tests confirms that the results for the SComa algorithm are signifi-
cantly better than any of the others with over 95% confidence. This difference is
particularly noticeable on the longer instances. Of the other results, the simple
MA (SMA) performs well on the shorter instances, and the GComa and GRand
results are surprisingly similar. This may well be due to the noise inherent in the
greedy ascent mechanism making it hard for the credit assignment mechanism
to function properly as was previously noted in [12]. Significantly, whatever the
form of the local search phase, all but one of the Memetic Algorithms perform
much better than the simple GA. The least reliable algorithm was SRand, and
possible reasons for this will be discussed further in the following section.

algorithm
instance GComa SComa GRand SRand SMA GA

1 13 25 16 16 25 13
2 14 25 15 7 23 13
3 15 24 10 11 22 7
4 19 25 17 2 24 13
5 13 25 13 7 22 9
6 10 24 11 0 20 9
7 9 24 5 1 14 3
8 7 25 6 0 11 2
9 4 22 5 0 4 2
10 4 21 4 0 10 2
11 5 21 7 0 7 2
12 7 22 7 0 12 4
13 6 21 3 0 7 2
14 0 7 0 0 0 0
15 0 9 1 0 0 2
16 1 7 0 0 1 0
17 0 8 0 0 0 0
18 0 1 0 0 0 0
19 0 1 0 0 0 0

Total 127 337 120 44 202 83

Table 2. Number of runs (out of 25) in which the minimum energy conformation was
identified

5.3 Efficiency

Figure 1 shows the Average Evaluations to Solution (i.e., the globally optimal
conformation) for the runs in which algorithms were successful. Immediately
we can see that even when it is successful, the SRand algorithm is far slower
than all of the other algorithms. Like the more successful GRand algorithm, it



is using randomly created rule to define the neighbourhood for each solution
in each generation. However, unlike the GRand algorithm it is searching the
whole of each neighbourhood, and the increase in the AES values suggests that
the neighbourhoods are generally quite large. This suggests the frequent use of
short, low rules of low specificity, i.e. with lots of #’s. It is possible that left
to run for longer, the Success Rate of the SRand algorithm would have been
improved.

Of the others, the GA is always fastest, followed by the SMA. The rest of the
picture is less clear, although the greedy versions are usually faster than their
steepest ascent counterparts. A two way Analysis of Variance, with instance
and algorithm as factors, shows that both are significant, and post-hoc analysis
using the Least-Significant Difference test shows that the ordering GA < SMA
< {GRand,GComa} < SComa < SRand is significant with 95% confidence. If
we do not assume equal variance, Tamhane’s T2 test shows that the GA is
significantly faster, but under these more cautious assumptions the SMA is only
significantly faster than GRand with 93% confidence and is not significantly
faster than GComa. Similarly GRand and SComa are no longer significantly
different in speed of finding solutions.
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Fig. 1. Average Evaluations to Solution (when found) by algorithm.



5.4 Mean Best Fitness

As was evidenced in Table 2 it is not hard to find solutions for the shorter
instances. Therefore when comparing performance on the basis of the quality
of the best solutions found, i.e., mean best fitness (MBF), only results for the
longer and harder instances 14-20 have been considered. Figure 2 shows these
results graphically for each algorithm, sorted by instance. From these it is clear
that the SComa reaches consistently higher values and with a smaller variance in
performance than the others, and that the SRand algorithm is correspondingly
worse.

14 15 16 17 18 19 20
Instance

10

15

20

25

30

M
ea

n 
of

 B
es

t V
al

ue
 F

ou
nd

G-Coma
S-Coma
G-Rand
S-Rand
SMA
GA

Fig. 2. Mean and std deviation of best values found for instances 14-20, analysed by
algorithm

In order to investigate the statistical significance of these results, a two-
way ANOVA test was performed on the values for the best solution found in
each run, with instance number and algorithm as the factors. This confirmed
the significance of the algorithm in determining the performance, and so two
sets of post-hoc tests were performed to analyse the differences between pairs



of algorithms. These were Least-Significant Difference, and Tamhane’s T2 test
(the latter is more conservative as it does not make any assumptions about the
samples having equal variances). The results of these tests are summarised in
Table 3. An entry r or R indicates that the algorithm indicated by the row index
was significantly better than the one indicated by the column index, with 95%
confidence according to the LSD or T2 test respectively. Similarly an entry of c
or C indicates that the column algorithm is better than the row algorithm with
95% confidence according to the LSD or T2 test respectively.

SComa - R R R R R
GComa c - R - - R
SRand c c - C C C
GRand c - r - - -
SMA c r r r - R
GA c c r c c -

Algorithm SCOMA GComa SRand GRand SMA GA
Table 3. Statistical significance of pairwise comparisons between algorithms on basis of
best values found. – indicates no significant difference. r[c] denotes algorithm indicated
by row[column] is better with 95% confidence. Lower triangle (lower case) is for LSD
test, upper quarter (upper case) is for Tamhane’s T2 test.

6 Restricting the Search to Feasible Solutions

In [39] results are reported from a detailed study of the fitness landscape of
HP model proteins which suggests that the feasible regions of the search space
are more highly connected than has previously been thought, and that corre-
spondingly there may be performance advantages arising from a restriction of
the search process to only considering feasible solutions.

In order to investigate this, the crossover and mutation operators were mod-
ified so that they only produced feasible offspring. This process is less lengthy
than it would first appear since in practice infeasible offspring can almost always
be quickly identified during the path growth process and the evaluation stopped.
However no attempt was made to restrict the initial population to feasible solu-
tions, as the infeasible ones are quickly weeded out by selection, and preliminary
experimentation revealed that creating a feasible initial population by random
generation of values takes an extremely long time.

The mutation operator still applied one double mutation - a random permu-
tation of the loci was generated, and for each of these a random permutation
of the possible changes was created. Offspring were produced and tested in this
order until a feasible one was created. The crossover operator was modified sim-
ilarly: if the offspring produced using a given crossover point was infeasible the
operator next tested all of the different possible orientation of the two substrings



by varying the allele value in the locus corresponding to that crossover point,
before moving on to trying the next.

6.1 Success Rate

Table 4 shows the results from running the GA, SMA and SComa algorithms
with the modified crossover and mutation operators, alongside those for the un-
modified versions. As can be seen (and statistical testing confirms) there is far
better reliability for the GA-F and SMA-F algorithms than their unrestricted
counterparts. The results for the SComa are less clear - if anything the perfor-
mance is better for short instances and worse for long ones, but the difference is
not statistically significant.

instance algorithm
GA GA-F SMA SMA-F SCOMA SCOMA-F

1 13 23 25 25 25 25
2 13 20 23 25 25 25
3 7 17 22 25 24 25
4 13 20 24 25 25 25
5 9 18 22 24 25 25
6 9 18 20 24 24 25
7 3 9 14 23 24 24
8 2 9 11 24 25 25
9 2 8 4 21 22 23
10 2 8 10 22 21 23
11 2 5 7 24 21 21
12 4 12 12 23 22 23
13 2 4 7 24 21 23
14 0 0 0 5 7 9
15 2 1 0 8 9 6
16 0 1 1 2 7 5
17 0 0 0 4 8 0
18 0 0 0 0 1 0
19 0 0 0 0 1 0

total 83 173 202 328 337 332
Table 4. Effect on Success Rate of restricting search to feasible solutions. Results for
GA, SMA and SComa algorithms are shown alongside those using modified crossover
and mutation (indicated by –F)

6.2 Efficiency

Figure 3 shows the efficiency (AES) comparisons for the same set of algorithms,
again restricted to successful runs. As when comparing Success Rates, there is



little difference between the SComa and SComa-F algorithms, but under this
metric the performance of the GA and GA-F algorithms are not significantly
different, i.e., the GA is still very efficient on those runs when it does find the
optimum, and with the restricted operators it does so far more often. In contrast
to this, the SMA algorithm exhibits much greater AES values when restricted
to feasible solutions, despite being more successful.
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Fig. 3. Effect on efficiency of restricting search to feasible solutions. Plot shows Average
Evaluations to Solution for successful runs of GA, SMA, SComa and their restricted
counterparts (indicated by –F).

6.3 Mean Best Fitness

As evidenced in Table 4, restricting the search to feasible solutions makes it
even easier to find solutions for the shorter instances. Therefore when comparing
performance on the basis of the quality of the best solutions found, i.e., mean best
fitness (MBF), only results for the longer and harder instances 14-20 have been
considered again. Figure 4 shows these results graphically for each algorithm,
sorted by instance.

In order to investigate the statistical significance of these results, a two-
way ANOVA test was performed on the values for the best solution found in
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each run, with instance number and algorithm as the factors. This confirmed
the significance of the algorithm in determining the performance, and so two
sets of post-hoc tests were performed to analyse the differences between pairs
of algorithms. These were Least-Significant Difference, and Tamhane’s T2 test
(the latter is more conservative as it does not make any assumptions about the
samples having equal variances). The results of these tests are summarised in
Table 5. An entry r or R indicates that the algorithm indicated by the row index
was significantly better than the one indicated by the column index, with 95%
confidence according to the LSD or T2 test respectively. Similarly an entry of c
or C indicates that the column algorithm is better than the row algorithm with
95% confidence according to the LSD or T2 test respectively.

In general it is plain the the rank order is GA < GA-F < SMA< SMA-F
< SComa-F < SComa. These differences are generally statistically significant
according to both tests, although it should be noted that this depends to some
extent on the choice of instances considered. If we include all instances, then
the general success on the shorter ones makes the differences less significant,
whereas if we restrict ourselves to only considering a few harder instances, the
significance increases.

GA - C C C C C
GA-F r - - C C C
SMA r - - C C C
SMA-F r r r - C -
SComa r r r r - -
SComa-F r r r - - -

Algorithm GA GA-F SMA SMA-F SComa SComa-F
Table 5. Statistical significance of pairwise comparisons between algorithms on basis of
best values found. – indicates no significant difference. r[c] denotes algorithm indicated
by row[column] is better with 95% confidence. Lower triangle (lower case) is for LSD
test, upper quarter (upper case) is for Tamhane’s T2 test.

7 Analysis of LSO Evolution

In order to gain a greater understanding of the behaviour of the SComa al-
gorithm, a number of test runs were made in which the contents of the LSO
population were output to file at regular intervals.

Examination of the form of the evolving LSOs showed that there was a
strong tendency towards short rules of the form ## → lr or ## → lL. Here l

= leftback, r = rightback, and L = leftforward relative to the previous direction
of growth. Both of these rules act to bring residues i and i + 2 into contact, via
causing a torsion angle of Π/6 at residue i + 1.



Given that the system is evolving conformations in a two-dimensional plane,
these patterns these could possibly be thought of as the two-dimensional equiv-
alent of representing a single turn of an alpha helix. Experimentation on a
square two-dimensional lattice showed that the rules which evolved on a num-
ber of instances tended to have length three and be of the form ### → lll or
### → rrr which is the shortest path that can be made bringing two residues
into contact.

The use of the word “tended” should be noted here: in most cases the rule-
set continued to contain a number of different rules of varying lengths. It has
been argued elsewhere [12] that in addition to the extra scalability attained
by identifying and re-applying regular structural motifs, the presence of a di-
verse, evolving rule-set means that the neighbourhood structure defining which
points around the current population are examined, is continuously changing.
Thus, even if the population is converged to a single point, which is locally op-
timal according to most neighbourhood structures, eventually a rule may evolve
for which the neighbourhood of that point contains a fitter solution. This can
be thought of as continually testing new search landscapes to look for “escape
routes” from local optima.

Looking back to the results for the GRand algorithm, in which the rules
defining neighbourhoods are created at random, this “changing landscape” effect
is noticeable in the superior success rates to the SMA. The fact that the SComa
algorithm is the best performer according to both Success Rate and MBF metrics
points to both modes of operation having a positive effect.

8 Discussion and Conclusions

As can be seen from the results section above, the S-Coma algorithm provides
better performance according to Success Rate and Mean Best Fitness metrics
than the GA, MA or a comparable system with the rule-learning turned off
(SRand, GRand). These results are especially noticeable for the longer instances
where the COMA system is able to learn and then exploit regularities within
energetically favourable conformations, corresponding to secondary structural
motifs. This happens at some expense of speed - the AES results show that
the addition of any local search to a GA slows down the rate of discovery of
globally optimal solutions, and that searching the whole neighbourhood (steepest
ascent) rather than stopping once a better neighbour is found (greedy ascent)
also imposes a cost. Nevertheless it must be emphasised that the results for the
GA and the greedy algorithms come from many fewer successful runs. In other
words, when the genetic search is able to find the optimum, it does so quickly,
but it is prone to premature convergence.

Restricting the crossover and mutation operators to producing feasible so-
lutions has mixed results. The Success Rate and Mean Best Fitness are much
improved for the GA and SMA, and for the SComa on the shorter problems but
if anything is slightly worse for SComa on the long instances. It was suggested
in the previous section that the SComa had two modes of operation, re-use of



secondary structural motifs, and continuously changing neighbourhoods. These
results suggests that possibly the former mode is enhanced by the restriction to
feasible solutions, but that the latter, which permits escape from local optima on
the longer instances, is inhibited. Clearly this warrants further attention. Con-
sidering the efficiency with which solutions are found, this is not significantly
changed for the GA or SComa, but is much worse for the SMA algorithm.

There is a clear place for the use of expert knowledge in the design of search
algorithms, and its encapsulation in the form of carefully designed move op-
erators. Nevertheless the approach outlined in this paper represents a highly
promising prospect given its ability to discover and explicitly represent struc-
tural motifs. As an example, the reliability results reported above are better,
especially for the longer instances, than those reported elsewhere using a self-
adaptive multi-memetic algorithm, with the meme set especially designed after
a comprehensive study of the literature and extensive experimentation [38]. This
suggests that there is a clear role for adaptation of some kind within the speci-
fication of memes, rather than using a fixed set. The results presented here and
elsewhere suggest that evolution may well be a suitable way of achieving that
adaptation.

One obvious path for future work would be to examine the effects of seeding
the rule population with expert-designed rules. Another, perhaps more pressing
path is to examine the behaviour on more complex lattices and for different
energy functions. As indicated above, these results are only the beginning of a
process of investigation, clearly more analysis of the evolving rule-sets is needed,
as well as a thorough investigation of the other algorithmic possibilities. It seems
likely however that this represents a promising direction for the future develop-
ment of scalable optimisation techniques which may yield new insights into the
energy landscapes of the HP and other lattice models of proteins.
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