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Abstract—In consideration of the limitation of the communica-
tion and the possibility that redundant robots might deliver infor-
mation at different power levels, cases under weight-unbahced
directed graphs from the network topology perspective are
in larger accordance with those in multiple redundant robot
systems. By moving forward along this direction, a distribued
controller is proposed in this paper to handle circumstance
of collaborative control of multiple redundant robots under
weight-unbalanced directed graphs. This kind of control piob-
lem is modelled into generalized quadratic programming (QF
problems with equality and inequality constraints. Then, he

above QP problems are solved by a proposed neural-dynamics-

based method, whose stability and convergence are theoresily
proved subsequently. Besides, several experimental exatap are
conducted, and related comparisons are provided to demonstte
the feasibility of the proposed controller.

Index Terms—Distributed collaborative control, weight-
unbalanced directed graph, neural dynamics, redundant rolot.

|. INTRODUCTION

Due to the high demand in both social and industrial
communities, one single redundant robot nowadays is labore
to cope with complex tasks which are large-scale and overloa
ed. Therefore, two or more redundant robots are introduced
to complete given complicated missions collaborativelyr F
instance, in the recent automobile industry, multiple rethnt
robots are utilized for coordinated weldirig [10], which da:
seen as the collaborative control of redundant robots.d8ssi
in the clinical medicine field, the robot-assisted surg&rj[
which requires multiple redundant robots to complete an
operation collaboratively with high accuracy, can also &ens
as a promising application scenario. As a result, the rekear
on the collaborative control of multiple redundant robos-sy
tems (MR'S) has been flourishing in the past decades with
different contributions. Gueaiegt al. present a decentralized
adaptive hybrid intelligent scheme inh_]12] for the position
synchronizing and force control in M. A decentralized
kinematic controller for the collaborative control of MR is
investigated in[[13]. Then, in[14], the energy and manipida

ITH the development of industrial automation angty of multiple mobile robots are optimized for their digtuted
computer technology, robotics begins to enter the staggoperative transportation control. @e al. design a unified

of large-scale production and practical application [4]-[ framework and a scalable platooning control method for the
Unlike non-redundant robots, redundant robots possesa exfistributed cooperative control of multiple movable rabot
degrees of freedom (DOFs) and thus enjoy more flexibiliff5]. A method containing both holonomic and nonholonomic
to handle complicated tasks with better performance. TR&uctures is introduced i [16] for the tracking control of
research on the control of a redundant robot has obtained cafultiple mobile robots with disturbances. Besides, impeda
siderable achievements] [S]+[9]. Il [5], the kinematic coht learning is applied in a fuzzy neural network for carrying
of a single redundant manipulator with physical constgist objects in MRS [17], and a summary of the latest outcomes of
analyzed by a recursive recurrent neural network-base@mo@oordinated control of multiple autonomous surface velsicl

The kinematic control of a single redundant robot is anayzeyre introduced in[[18].

for tracking a moving object with obstacles involved [6]eXit

Neural-dynamics-based controllers in KERhave been de-

al. present a data-driven scheme with a neural dynamics solvefoped in the past few years and have obtained satisfying
involved in [€] to accurately estimate the Jacobian matria a results. Neural dynamics, which is deemed a powerful gjyate

realize the kinematic control of a model-unknown robot.
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to deal with complex problems, has attracted more and more
attention from researchers around the world, with various
high-level outcomes published consequenily] [19-[22]r Fo
instance, in [[21], a neural dynamics method with variant
gain is presented and applied for handling time-variantimat
formulas. In general, neural dynamics methods own better
performance than traditional ones [23] when conductindy hig
nonlinear tasks because of their outstanding computdtiona
power and low consumption, which can be applied as an
effective algorithm for the motion planning of redundant
robots that is established in the form of an ordinary differ-
ential equation. Therefore, it would be a rational decision
to utilize neural dynamics methods for controlling F&R

For example, reference [24] puts forward a neural-dynamics
based distributed cooperative control scheme for’SIRo
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Fig. 1. The research route of this paper.

improve communication efficiency from a game-theoreticgraphs when analyzing the distributed collaborative cruf
perspective. An optimization model and its associatedesoMVIRS is necessary and beneficial. Actually, there have been
based on neural dynamics are constructed for the distdbuge few high-quality results related to the weight-unbalahce
and delay-considered collaborative control of %8R [25]. directed graph in recent years [27]30]. In_[28], a con-
Yet, it can be found that previous published papers relatsttained convex optimization problem is solved by a disted

to the distributed collaborative control of MR only focus randomized protocol of multi-agent systems under weight-
on undirected or weight-balanced directed topologiesclvhiunbalanced directed graphs. Two algorithms are designed in
is not applicable for the common realistic scenarios who§29] for investigating the distributed average trackinglgems
topologies are weight-unbalanced directed. In order toesolunder weight-unbalanced directed graphs. However, agisti
this problem, we propose a distributed and weight-unba@dnaesults under weight-unbalanced directed graphs are ased
neural dynamics controller for MiS based on the graphmulti-agent systems that are developed at the particld, leve
theory for the first time. and none of them introduces circumstances under weight-
unbalanced directed graphs into the collaborative cordfol

2 . . B .
. I S with robot kinematics contained. As such, those pre-
of a network, is seen as one of the significant fundamentals\ﬁ P

MR?S and under wide discussions nowadays. It is worth meQ us outcomes are not able to be utiized to handle the
. ) . ’ . ollaborative control under weight-unbalanced direc s
tioning that circumstances under weight-unbalanced ttcec g ol

: . : . “in MR?S. In this paper, a distributed scheme and an associated
graphs are very common in both industrial and social domai

"Weural dynamics controller are firstly proposed to handée th
especially in a distributed network. For example, in thedat y y prop

: . X . A above circumstances.
Russia-Ukraine conflict, the air force of Russia dispatches

four Sukhoi Su-57 for target-tracking missions. They adopt In this work, the authors propose a neural dynamics-based
a distributed information network to decrease the detactigontroller for the collaborative control of M under weight-
from the target’s radars [26], in which only one Sukhoi Sudnbalanced directed graphs. Fig. 1 displays the reseauth ro
57 opens the radar and then transfers the obtained cocedirfat briefly introducing this paper. In detail, this contrgistem

of the target to others in a distributed manner. It can be seean be modelled and constructed as a quadratic program-
that the topology among the target and four Sukhoi Su-%7ing (QP) optimization problem, in which a generalized
is weight-unbalanced. Besides, there often exists a ®tuatperformance index is set as the objective function. Then, a
where an agentcan be aware of another aggnibut not vice neural dynamics controller is designed to solve it onlinghwi
versa because of the restricted field of vision. Additionalltheoretical analyses conducted subsequently. Additigrtak
different agents are likely to utilize devices that posses$fectiveness of the proposed neural dynamics controdler i
different propagation power levels when communicatindhwitvalidated by several simulative examples and comparisons.
other agents. Furthermore, if the stability and convergen8pecifically, there are two essential challenges aboutlmnd

of a proposed scheme are still guaranteed after an origimadight-unbalanced directed graphs in the investigatiocgss
ideal weight-balanced directed graph transfers to be weigbf this paper. The first challenge is how to integrate weight-
unbalanced, this scheme is evidently more trusted. Thexrefaunbalanced directed graphs into the control scheme of the
considering circumstances under weight-unbalanced tduecdistributed collaborative control of MiSs, and the second one

Graph theory, which can be used to describe the topolo



is how to analyze the stability and convergence of the pregposA. Graph Theory

scheme rigorously with practical redundant robots comsidle  pefine G = 07757 VNV) as a weighted-unbalanced digraph
These challenges are solved in Section Il and Section Ill. |, 1 — {1,---,k} the set of nodes anflC Vx ) the set of
sum, the main contributions of this work are listed as foﬂowedges_ For example, {fi, i) is an edge, the_nodjacan deliver
1) It investigates the distributed collaborative contrdl dits information to nodei. W = [w;;] € R¥*k denotes the
MR?S under circumstances of weight-unbalanced diveighted adjacency matrix with;; € {0, @}, w;; = w € RT,
rected graphs for the first time with robot kinematic§ (j,i) € £ andw,; = 0 otherwise. Let\; = {j € V : (j,i) €
contained. £} denote the set of in-neighbors of node\ directed path is
2) It models the distributed collaborative control of MR a sequence of nodes connected by edges. A digraph is strongly
as a generalized QP optimization problem with equalionnected if for every pair of nodes there is a directed path
and inequality constraints, and an estimator for thénnecting them. Thé-dimensional square Laplacian matrix
required left eigenvector is introduced. Then, the aboveis composed ofl;;], which is defined ag; = Z§:1 i Wi
QP problem is solved by a prpposed neural-dynamicgsq l;j = —w;;, wherei # j. It can be seen thaEl,; — 0.
based _method, whose stability and convergence a(€&jirected graph is weight-balanced if and onlylﬁfz or,
theoretically proved. and ) . pwi; = Y pwy fori € V. A left eigenvector
There are four sections being provided for the rest of thjsr _ fph Pl cJorresponding to an eigenvalue of £

work. In detail, Section Il models an optimization probleon f \1,a5ns thap'Z = \p". Then, we have the following Lemma.
the distributed collaborative control of M8 under weight- Lemma 1:[31] [32] The strong-connect digrapf =
unbalanced directed graphs. In Section Ill, the corresimand (9,’5, VNV) with its Laplacian matrixt — [l;;] € RF¥F meets
neural dynamics controller and related theoretical amalysye following items.

are designed and proved. Then, Section IV analyzes sever

simulative examples and offers comparisons to verify the ) Its Laplacian matrixC possess a left eigenvectgf =

validity of the proposed distributed controller. At lasecion [ql{i ' f| ’ ‘iﬁ] cgrres%ordeglto thekelg%lvElu(e):TO, Vr\:EICh
V concludes the whole paper. s;:\ks es f‘t’lz > 0,i = 1,---,k,g L = 0;, a
i=14i = 1. . R
2) mingrp_o pro, b'Lb > Ag(g)lez/kLin which 3 > 0
I[I. PRELIMINARIES andb are arbitrary vectorsf = LT Q + QL with Q =

diag(q) € R*** and\,(£) denotes the second smallest
This section offers preliminaries of the graph theory and eigenvalue of’.
redundant robots. Then, a distributed collaborative cdleir 3) lim eXp(_Zﬁ) =1,q".
of MR?S under weight-unbalanced directed graphs is modelled ~ ~*°
as a convex optimization problem. Before introducing pneli

inaries, Table | provides explanations of important syrabiol B- Forward Kinematics

this paper. As for an m-DOF redundant roboti, whose join-
t angles can be expressed in a vector-fom(t) =
TABLE | [@i1 (t), @i (t), -, ai, ()] € R™. Besides, robot’s u-

EXPLANATIONS OF IMPORTANT SYMBOLS IN THIS PAPER dimensional coordinate in the work Spaee(t) c R* can

be acquired byr; (t) = @ (a;(t)), in which ¢(-) can be

N; The set of in-neighbors of robatin which /\70 . . e .
represents the robots that are accessed to the SE€EN @S & mapping operatlon._ Specmcally_, robs_Jtdeswed
information of the command center path is denoted asgy;(t) € R* in the following with r4(t)

k me number of f?bOtS _ representing that of the command center, ands supposed

e transpose of a vector or a matrix : .

@i (t) € R 5(t) denotes the actual path of the robist to be Igrger th_aryu accordm_g to the redundant properues.
end-effector Then, differentiating both sides of the above equation, we

=(t) € Ruk w(t) = [w] (), -, = ()] can obtain that; (t) = J (a; (t)) a; (t), whereJ (a; (t)) =

Gi parametex;; is used for reflecting the accessing ¢ (a; (t)) /da; (t) € R“*™ represents the Jacobian matrix.

relationship between robatand the command
center, i.e.i € Nop — ¢ =1 andi ¢ Ny —

Gi=0 C. Problem Modellin
I € RFxk A diagonal matrix whose diagonal elementis ' . ) 9 o .
® The Kronecker product In this section, a distributed collaborative controller of
h; € R Tf;e e;ﬁ'ma@ of tTE ";% e'genlv‘zcmf O‘I’; robiot MR?2S under weight-unbalanced directed graphs is proposed.
when the eigenvalue equals0, and h;; is . .
the ith element off; Assuml_ng a system composed_ &f redundan_t robots, its
H € RExk H = diag([h11, ka2, -, hiek]) interaction topology can be depicted by a weight-unbaldnce
h € R¥ h=[h], - Al directed graptg.
1, € ka A vector composed by elements 1 Assumption 1@ is invariable and strongly connected.
I, eR*" An identity matrix with orderu In real-world scenarios, the suitable left eigenvectr
LR The Laplacian matrix associated with the zero eigenvalue of the Laplacian matrix
~ m o~ T
a(t) e R™* a(t) = [aj(t), -, a;(1)]

L is quite hard to obtain, especially for large-scale 18R
Therefore, in order to analyze the above control probleneund



weight-unbalanced directed graphs, an estimatgj of g is where
designed as follows:

J(@(t) =
. J1 aq t 0 0
ha(t) = = 3w (lt) — by (1), o YY" e 0
j€/\7i : : . : c ]Rukxm,k7
(.) 0 <o Jg(ag(t))

where h;(t),h;(t) € R denote the estimates of the left _ _ _
eigenvector of robot and robot;j when the eigenvalue of With Ji(a:(t)) € R**™ standing for the Jacobian matrix of
£ equals0, respectively. roboti; a(t) = [al(t), - ,a(t)] .
Besides, allk redundant robots are connected in a dis- Furthermore, in order to limit the velocities of end-effarst,
tributed manner, which means that a robaian only receive &0 inéquality constraint is introduced as follows:
information from the robots in its set of in-neighbors, e.g. aL(t) <a(t) <au(t), (5)
N;, in which Vg represents the robots that are accessed to ) )
the information of the command center, which means that tie Which a.(t) and ay(¢) denote the lower bound and
signal from the command center can only transfer to robdfie upper bound ofi(t), respectively. Then, this inequality
whose set of in-neighbors contains it in other words. Theg9nstraint can be reconstructed @¢t)a(t) < 7(t), where
we formulate a distributed equation for robiotith estimator O(t) = [~ Lk, kT, T(t) = [—ay (t), ay(1)]".
(@) associated for realizing the above distributed behavio Before continuing to design the available scheme, the con-
vergence of the formulated equality constraifits (3) is iregl
. . to be proved. According to the distributed protocol presdént
hai(t) Z {2 (8) = o5 (8) + eo(t) — o=, (1) in (@), it can be seen that the desired paglit) and its time
Je . derivativer4(t) only deliver to robots whose serial numbers
+Gi[wi(t) —7a(t) + @i(t) —ra(t)]} = 0, exist in . Besides, the correctness of the estimdibr (1) also
hi(t) = — Z wij (hi(t) — hj;(1)), (2) needs to be verified to reflect the effectiveness of equality
JEN, constraints. Based on Assumption 1, Theorem 1 below offers
proofs to verify that equality constraints inl (4) have thensa

where h;;(t) is the ith element ofh;(t), h;;(0) = 1 when impact witha; (t) = ra(t), @i(t) = #a(t). andtlggoﬂ - <

= 9, andhij (O) = 0 wheni 7& j, w;j is a connection We|ght Theorem 1MR28 equipped with the distributed consensus
between robot and robotj; Wt(t) c R* denotes the actual filter is modelled in IIB), of each robot has the desired tFajeC
path of the roboti’s end-effector; parametqj‘i is used for tory and joint velocities when Assumption 1 maintains,,i.e.
reflecting the accessing relationship between raband the @i(t) = ra(t) and @o;(t) = 7q(t). Besides, the estimator
command center, i.ei,c Ny — ¢; = 1 andi ¢ Ny — ¢; =0; for the equivalent Laplacian matrix of the weight-balanced
74(t) represents the desired velocity of the end-effector ofdirected graph in[{3) is effective, i.elim H — Q.

robot. Compact forms of{2) for all robots are Proof: From the first formula ofI]S)?%ne can deduce that
_ . . (HL+T)® L)(@(t) + (1))
(HE® L)@ (1) + B(1) + (I @ L) () Pl 1k (Falt) + ra(t) = 0. ©)
* () “he® (Fa(t) +7a(t)) =0, A matrix M is designed as follows:
h(t) = —(L ® I)h(t), 3 -
(t) = —(L @ Ix)h(t) 3) C[ME+T T -
M = T r eR .
where H = diag([h11, hoo, -, hik]) is a k-dimensional .
matrix: h(t) _ [hl (t)T, ho (t)T, o hy (t)T]T I RkZ; Then, m) can be rewritten -tO
T(t) = [wlt), =@ € R* m(1) = (M I,)e(t) =0, ()

wI(ﬁ), ’wZ(ﬁ) ! € RUk; I = diaQ[ClaCQW" aCk]) € = — @ [~ :
I[R’“X’“; I, and I reg)resent two identity matrices with their di'VAvg:J?ngig% 1 n[wfrf'fi)or:rs,ﬁr(wz’ ;];a(?h(ig(ts),trJ(;ng(i)(/w():]().n’r?escted,
mensions being x u andk x k, respectively. Specificallyt{ L so we can obtain that the singular matrx( involves a
means the equivalent Laplacian matrix of the weight-badnc, space for the vectollo;. Afterwards, equation[(7) is
directed graph. Then, deducing from the forward ki”.ematicé/idently consistent Witk (t) = 1o @ (' (t) + w'(t)) =
we can obtain two equality constraints by substitutsagt) (&' (t) + ' ()T, (' (t) + ' ()T, - , (&' (t) + =o' (£)T].
to J(a(t))a(t): Further, as we compare the above equation veitlit) —
[@(t) + @ (t), 1k @ (Pq(t) + r4(t))], we can readily obtain
(HL+T) ® L) (J(@(t))at) + w(t)) a conclusion thatq(t) + rq(t) = ©o1(t) + w1 (t) = woa(t) +
_ . : _ wsy(t) = -+ = o (t) + wi(t). Therefore, when Assumption
. FeL ~1k ® (Fa(t) +a(t) =0, 1 m(ai)ntains and M(% come(tt)a the steady state, (t) = rq(t)
h(t) = —(£ @ Ix)h(t), (4)  andzo;(t) = 7q(t) are satisfied.



Besides, it can be seen thaft) = exp((—L ® I,)t)h(0). where§;(t) € R*, §y(t) € R¥, 65(t) € R2™* indicate

Then, according to Lemma 1, one can get thim h(t) = Lagrange multipliers. Froni[34], one can continue deducing
exp(1xq" @ I;)h(0) = 1, ® q. Therefore, hm 7—[ — Qs _ B R
proved as well when Assumption 1 maintains. [ | 200 + 20z + ((HL +T) ® L,)J(@(t))) 61 (¢)

It can be obtained from Lemma 1 th#tis able to estimate 4 OT(t)ch(t) -0

Q, and it is known thati] QL = 0], which means that the

equivalent Laplacian matrix of the weight-balanced dedct fi2da(t) = ~ . .
graph can be calculated by the estimalidr (1) successfBly [3 (ML + F) ® L) (J(a(t))a(t) + = (t))
In sum, the convergence of distributed equality constsa@} —I'®I, 1, ® (rq(t) + ra(t)) = 0,
is theoretically guaranteed. h(t)

+(£L® IL)h(t) =0,
O(t)a(t) — T(t) <0,85(t) > 0,

33(1)(O(t)a(t) — T(t)) = 0.

Redundant robots have the nature of redundancy, which ) )
means that there may exist not only one solution conformidd€n: a perturbed nonlmear complemen.tary problem functio
to (d). Therefore, an available performance index is reglir[39] is introduced to deal with the equations above:
as the objective function of the optimization problem. listh
paper, we adopt a generalized performance indiés increase

D. Distributed Scheme Design

Nnep(z,y) =vVzoxr+yoy+n—z—y, (10)

the scalability of our proposed scheme: wheren — 0% is a perturbation term, and denotes the
. Hadamard product. Afterwards, the above equations can be
A= \P(g(t)) rebuilt as
=glla(t) + 2|3 29a + 29z + ((HL +T) ® L,)J(a(t)) 61 (t)
- T . .
= g(@ (ta(t) +2z"Ta(t) + ="2), (®) +OT(1)5(t) = 0
whereg > 0; z € R™F represents a criterion, such as joint Ik?‘si(t) =0 R
drift and manipulability. (HL4T) @ L,)(J(@(t))a(t) + = (t))
Afterwards, a QP optimization problem can be modelled by —T®1I, 1, ® (r4(t) +7a(t)) = 0,
combing the objective function and constraints: . ~
h(t) + (L ® I )h(t) = 0,
. AT A TA T "
min g(a (H)a(t) +2z a(t) +z 2), Nner(ds(t), O(t)a(t) — T(t)) = 0.
st (HL+T)® 1,)(J (@(t))a(t) + (1) Combining the above equations, the distributed and weight-
—T®I, 1, ® (rq(t) + r4(t)) = 0, unbalanced collaborative control scherik (9) is transfetwe
h(t) = —(L ® Iy)h(t), T F(t) = F (1), (11)
O(t)alt) < T(), ©  where
which is termed the distributed and weight-unbalancedbell Lok 0 YIt) 0 O
orative control scheme. 0 0 0 I 0
YT()= |Ti(t)/2g O 0 0 o |,
[11. NEURAL DYNAMICS CONTROLLER AND 0 I 0 0 0
THEORETICAL ANALYSES o(t) 0 0 0 Lok
In this section, a neural dynamics controller is designed .
for the above distributed and weight-unbalanced collaara 29“@) —2gz
control scheme9) with rigorous theoretical analysesstive h(t) 0
gated as well. F@) =1 6:(t) [, F &)= |F1(t)|,
52(” F2(t)
S3(t) Fs(t)

A. Neural Dynamics Controller

According to the Karush-Kuhn-Tucker conditioris [34], &1 Which T, (1)
Lagrange functionLF(a(t), h(t), 51 (t), 82(), 65(t)) can be L1k @ (Ta(t )+7’d

= (HL+ D)@ L,)J(@(1), F1(t) =T @1,
()) ((HE+F)®I) ()fz() —(L®

obtained: Lh(t), Fa(t) = T(t) + /03(t) 0 65(t) +y(t) o y(t) +n

) T with y(t) = O(¢ ) ( ) T(t). Then we can define an error
LF(a(t), h(t), 61(t), 62(t), 05(t)) = ga (t)a(t) +2gz"a@(t)  functione(t):
+ QZTZ + 6T( )(((Hﬁ‘f’F)@[u)(j(a(t))a(t) +/1W\(t)) e(t) _ T(t)f(t) B F(t) c R2k2+37nk+uk. (12)
~T®L,-1®(Fg(t) + (1)) + 03 (1) (h(t) + (£ © I k(1))

Then, the neural dynamics design forméla) = —ce(t) with

+05()(O(alt) - T(1)), e > 0 is introduced to realize the convergenceetf). As a



result, a distributed and weight-unbalanced neural dyogami 1V. EXPERIMENTAL SIMULATIONS AND COMPARISONS
controller that describes the solution of the QP optimaati

problem (9) is built In this part, related experimental examples and compasison

are implemented to illustrate that the proposed distrithaied
T F) =T Ft) — (YO F(E) — F () + £ (t). (13) Weight-unbalanced collaborative control scheifile (9) ared th
distributed and weight-unbalanced neural dynamics ctetro

(I3) are both feasible.
B. Theoretical Analyses

In this part, theoretical analyses are conducted for the
distributed and weight-unbalanced neural dynamics ctietro
(I3) with stability and convergence proved in Theorem 2.

Theorem 2As e > 0, the distributed and weight-unbalanced
neural dynamics controllef (IL3) is stable in the Lyapunasse
and is convergent exponentially to a global optimal pgfiht
which is the desired solution of the distributed and weight-
unbalanced collaborative control scherik (9).

Proof: The stability of the distributed and weight-
unbalanced neural dynamics controller](13) can be proved b
designing a Lyapunov function(t) = e?(¢) > 0. Then, we
can use the neural dynamics design formi(lg = —ce(t) to
compute its time derivative () = —2ce*(t) < 0. Therefore, Fig. 2. Topology of the weight-unbalanced directed graplthizse experi-
according to the Lyapunov stability theorems, the proposéegnts.
distributed and weight-unbalanced neural dynamics ctetro
'S staple. . Distributed Collaborative Control Under Weight-

Besides, the convergence proof of the proposed control Ibalanced Directed Graphs
(I3) is provided as follows. . .

First, we present an error functiaft) denoting the differ-  The proposed schemél(9) and its corresponding neural

£ (b): laborative control of MRS under weight-unbalanced directed

graphs, so they can be applied in plenty of circumstances.
e(t) = f(t) — (). (14) For instance, in the automobile industry, multiple robats a

o . i _ . utilized for coordinated weldind [10], which can be seen as
Then, substitutingf (¢), f(¢) by e(t)+ f*(t) andé(t)+ f*(t)  the collaborative control of MBS under weight-unbalanced

in the proposed controllef (I1.3), respectively: directed graphs, and thus the proposed scheme and controlle
[T (elt) + F5 (1) — £ (1) = (15) :)r(zrs\éleglable. This subsection offers a related experiahent
—T(t)(e(t) + £ () = T(t)(e(t) + £ (1) + F (1). URS is a redundant robot with six DOFs which is launched

by the Universe Robots company. We consider ten UR5
robots as experimental devices for collaborative contimol.
eY(t)e(t) + X (@) f*(t) —eF (t) = (16) MR?S, moving an object together can be seen as one of
_ () TSN o~ * : the significant application scenarios of collaborative tooin
TBew) = TMF (1) = Y(t)elt) = TOF (@) +F (). which requires the relative trajectories of all robots’ end
It can be found thayf*(t) satisfiesY (t) f*(t) — r (t) = 0, as effectors to stay consistent. The following experimentaira-
well as its time derivativel () £*(t)+ Y () f*(t)— F (t) = 0. ple simulates the above circumstance. These ten UR5 robots

After reorganizing, we can obtain the following formula:

To simplify (16), we can deduce an equation: are set to complete an astroid line with the line equation
_ _ z(t) = 0.3cos’(t),y(t) = 0.3sin’(¢). As for the distributed
eX(t)e(t) = =Y (t)e(t) — T(t)e(t). (17) manner, it is ruled that only robotlRand robot B can access

ttrp]% command center, i.el}(i,7) = 1 when: = 1,5, and the

We can observe that equation (17) has the same form as weight-unbalanced directed graph of robots is plotted o Fi

ordinary differential equation and can be converted to

2.
d_® L0 =0 (18) In this examplez in the objective function is designed as
dt - z = 10(a(t) — a(0)), @(0) = [af(0), -~ ,ag(0)]" € R™
where © — Y(t)e(t). This kind of ordinary differential with a;(0) representing robot’s initial joint angles. The

equation has a general solutién= Ce~=* with C € R, which values of paramsters defined above are stipulatedias
can be finally concluded that the proposed contro[let (13) is2 * 1gy, rad/s,&U = 2.1 % 1g; rad/s,g = 0.5, ¢ = 10, the
exponentially convergent. number of UR5 robots: = 10, the experimental example

In a nutshell, the proposed controlldr {13) is stable amtlrationT = 27 s. The Laplacian matrix of the weight-
convergent to a global optimal poirft*. B unbalanced directed graph in this example is calculated as



(d) (e) ®

Fig. 3. Experimental example conducted by applying theritlisied and weight-unbalanced collaborative control swa€d) and the corresponding neural
dynamics controller{13) for the collaborative control eAtUR5 robots to track a desired astroid line. (a) 3-D graptefURS5 robots in the whole process.
(b) Detailed attitude of robot Rfrom the beginning to the end. (c) Position errors of enéetfirs. (d) Tendency of diagonal elementstf(e) Joint angles.
(f) Joint velocities with a constraint.

Fig. 4. Four experiment snapshots of ten UR5 robots on Cigiel applying the proposed distributed and weight-unizd neural dynamics controller
(I3) to execute an astroid line.



TABLE I
COMPARISONS OF THECONTROL SCHEMES OFREDUNDANT ROBOTSAMONG DIFFERENTPAPERS

Weight-Unbalanced Directed Robots Topology Limited Perfance Problem
Graph Considered Numbers Type Communication Index Forioola
Schemel[(D) in this paper Yes Multiple Distributed Yes &P Optimization
Scheme in[[B] No Single N/A N/AS CMG® Optimization
Scheme in[[12] No Two Decentralized No N/A Adaptive Control
Scheme in[[18] No Multiple  Decentralized No MVN Optimization
Scheme in[[14] No Multiple Distributed Yes Manipulability pBmization
Scheme in[[24] No Multiple Distributed Yes MVN Game-Theoretic
Scheme in[[25] No Multiple Distributed Yes RMP Optimization
Scheme in[[20] Yes N/A Distributed N/ N/AS Graph Theory

f: GPI is a shortened form of generalized performance index.

§: N/A denotes that the comparing item is not practicable at trticle.
2: CMG is a shortened form of cyclic motion generation.

1: MVN is a shortened form of minimum velocity norm.

“: RMP is a shortened form of repetitive motion planning.

follows: only conduct a given mission but also satisfy the defined
- q generalized performance index. In Fig. 3(f), joint velwst
f2 g 8 8 8 8 8 8 8 _06 of ter_1 URS5 robots in the e_xperiment_c_iuration are dis_playe_d,
and it can be found that joint velocities are constrained in
0-=2 2 0 0 0 0 0 0 0 a required scope, which demonstrates the feasibility of the
N 8 _01 63 g (1) 8 _01 8 8 8 inequl_ity constraint. In a nu_tshfall, the above r.esuItS/pmbne
=lo -4 0 0 0 4 0 0 0 0 feasibility .of the proposed distributed .and Welght—ur!haltad
0 0 0 -1 0 -3 4 0 -1 o0 collabo_ratlve control schemg](9) and its correspondingaleu
0 0 0 0 -3 -1 0 8 —4 0 dynamics controllef(13).
In order to demonstrate the correctnesdof (13), we conduct
o0 0 0 0 -4 -1 0 5 -1 an experiment on CoppeliaSim by placing ten UR5 robots to
[0 0 0 0 -3 0 0 —4 0 7] track the astroid line. CoppeliaSim is a common-used tool

Besides, assigning the rest parameters to zero. Then, {f & large number of devices, such as desks and redundant
experimental results are illustrated in Fig. 3. robots. All the parameters in this experiment are identical

It can be seen that six subfigures are shown in Fig. 3. Figdfe those before. In Fig. 4, four experiment snapshots of ten
3(a) shows the 3-D graph of all joints of ten UR5 robots in ¥R° robots on Coppeliasim applying the proposed distribute

whole experimental process with black lines denoting thi erfNd Weight-unbalanced neural dynamics controllet (13) are
effector trajectories. We can notice that different recanmtd SNOWn to execute an astroid line successfully. This experim

robots have different poses to conduct a same given taskt WiRUitively manifests that{13) is applicable and feasible

is more, it can be seen that Fig. 3(b) illustrates the detaile )

attitude of robot R from the beginning to the end, from whichB- Comparisons

we can see that the entire motion of robdt R very smooth.  This subsection makes some comparisons on related items
Besides, the colorful lines instead of the black line in Bi@) about the control of MBS among the proposed scherhe] (13)
and Fig. 3(b) represent the whole three-dimensional pestiir and other schemes presented in [9]) [12--[14]] [24]] [Z59]]
robots at various historical moments. The end-effectoitipos respectively. In detail, a scheme with its performance xnde
errors are depicted in Fig. 3(c), from which we can seeing cyclic motion generation is presented [in [9] for the
that the position errors are all of the ordes—® m, so the control of a single redundant robot. As for [12], the decaltr
proposed scheme and the corresponding controller possessl cooperative control scheme of two robots is investigat
satisfying accuracy. Figure 3(d) provides the tendency wfith the help of adaptive control. In [14], the manipulatyili
diagonal elements ok, where the red dashed lines represemf multiple mobile robots is optimized for their distribdite
the calculated left eigenvectgr = [0.0985, 0.2954, 0.0042, cooperative transportation control. Besides, schemeR4h [
0.0028, 0.3797, 0.0506, 0.0084, 0.0422, 0.0338, 0.0844] of[25] are mainly devoted to the distributed control of KR
with eigenvalue being@. It can be seen that all the diagonaWith different emphases, such as communication efficiency
elements ofH converge to red dashed lines no more tdan and the game-theoretical perspectivel [24], time delay$. [25
s, which means that our proposed scheme can estigiate Additionally, the distributed average tracking problenmsier
effectively, thus available for handling circumstanceslem weight-unbalanced directed graphs in a particle level iftimu
weight-unbalanced directed graphs. Joint angles of ten UR§ent systems are investigated[inl[29] by presenting two-alg
robots are plotted in Fig. 3(e). As we can see, the initigithms. It can be clearly seen that weight-unbalanced titec
joint anglesa(0) of URS robots are discrepant, and the finagraphs are firstly taken into account in the proposed schigme (
states equak(0) intuitively, which means that these URSin this paper for the distributed collaborative control oRKS
robots possess the property of redundancy as they can wih robots kinematics and strict theorems on the stability



and convergence contained. Besides, our proposed methay S. Li, S. Chen, B. Liu, Y. Li, and Y. Liang, “Decentralidekinematic

(@ adopts a generalized performance index to increase the
scalability and a joint velocity constraint to protect ttodbot.

[14]
Table Il is intuitively tabulated with the above discussi@and
comparisons included.
[15]
V. CONCLUSIONS [16]

A distributed and weight-unbalanced neural dynamics
scheme for the collaborative control in multiple redundafpi
robot systems (MRS) has been proposed in this paper. The
proposed scheme merges weight-unbalanced directed gmqug]
the collaborative control of MBS with robot kinematics con-
tained for the first time, and the required left eigenvecias h
been estimated satisfyingly to ensure that the schemetitestd!®!
and convergent. Besides, constraint on the joint velccaied
generalized performance index are designed for incredkang [20]
safety and scalability of the proposed scheme. Then, a heura
dynamics controller has been designed to solve the above
problems with theoretical proofs provided to substantitge [21]
feasibility. Additionally, the results of experimentalarples
and comparisons have proved the validity of the proposed
scheme and controller. Furthermore, the collaborativerobn [22]
of MR?S with switching topology is one of the significant
directions in the future. 23]
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