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Abstract—In consideration of the limitation of the communica-
tion and the possibility that redundant robots might deliver infor-
mation at different power levels, cases under weight-unbalanced
directed graphs from the network topology perspective are
in larger accordance with those in multiple redundant robot
systems. By moving forward along this direction, a distributed
controller is proposed in this paper to handle circumstances
of collaborative control of multiple redundant robots under
weight-unbalanced directed graphs. This kind of control prob-
lem is modelled into generalized quadratic programming (QP)
problems with equality and inequality constraints. Then, the
above QP problems are solved by a proposed neural-dynamics-
based method, whose stability and convergence are theoretically
proved subsequently. Besides, several experimental examples are
conducted, and related comparisons are provided to demonstrate
the feasibility of the proposed controller.

Index Terms—Distributed collaborative control, weight-
unbalanced directed graph, neural dynamics, redundant robot.

I. I NTRODUCTION

W ITH the development of industrial automation and
computer technology, robotics begins to enter the stage

of large-scale production and practical application [1]–[4].
Unlike non-redundant robots, redundant robots possess extra
degrees of freedom (DOFs) and thus enjoy more flexibility
to handle complicated tasks with better performance. The
research on the control of a redundant robot has obtained con-
siderable achievements [5]–[9]. In [5], the kinematic control
of a single redundant manipulator with physical constraints is
analyzed by a recursive recurrent neural network-based model.
The kinematic control of a single redundant robot is analyzed
for tracking a moving object with obstacles involved [6]. Xieet
al. present a data-driven scheme with a neural dynamics solver
involved in [9] to accurately estimate the Jacobian matrix and
realize the kinematic control of a model-unknown robot.
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Due to the high demand in both social and industrial
communities, one single redundant robot nowadays is labored
to cope with complex tasks which are large-scale and overload-
ed. Therefore, two or more redundant robots are introduced
to complete given complicated missions collaboratively. For
instance, in the recent automobile industry, multiple redundant
robots are utilized for coordinated welding [10], which canbe
seen as the collaborative control of redundant robots. Besides,
in the clinical medicine field, the robot-assisted surgery [11],
which requires multiple redundant robots to complete an
operation collaboratively with high accuracy, can also be seen
as a promising application scenario. As a result, the research
on the collaborative control of multiple redundant robot sys-
tems (MR2S) has been flourishing in the past decades with
different contributions. Gueaiebet al. present a decentralized
adaptive hybrid intelligent scheme in [12] for the position
synchronizing and force control in MR2S. A decentralized
kinematic controller for the collaborative control of MR2S is
investigated in [13]. Then, in [14], the energy and manipulabil-
ity of multiple mobile robots are optimized for their distributed
cooperative transportation control. Geet al. design a unified
framework and a scalable platooning control method for the
distributed cooperative control of multiple movable robots
[15]. A method containing both holonomic and nonholonomic
structures is introduced in [16] for the tracking control of
multiple mobile robots with disturbances. Besides, impedance
learning is applied in a fuzzy neural network for carrying
objects in MR2S [17], and a summary of the latest outcomes of
coordinated control of multiple autonomous surface vehicles
are introduced in [18].

Neural-dynamics-based controllers in MR2S have been de-
veloped in the past few years and have obtained satisfying
results. Neural dynamics, which is deemed a powerful strategy
to deal with complex problems, has attracted more and more
attention from researchers around the world, with various
high-level outcomes published consequently [19]–[22]. For
instance, in [21], a neural dynamics method with variant
gain is presented and applied for handling time-variant matrix
formulas. In general, neural dynamics methods own better
performance than traditional ones [23] when conducting high
nonlinear tasks because of their outstanding computational
power and low consumption, which can be applied as an
effective algorithm for the motion planning of redundant
robots that is established in the form of an ordinary differ-
ential equation. Therefore, it would be a rational decision
to utilize neural dynamics methods for controlling MR2S.
For example, reference [24] puts forward a neural-dynamics-
based distributed cooperative control scheme for MR2S to
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Fig. 1. The research route of this paper.

improve communication efficiency from a game-theoretical
perspective. An optimization model and its associated solver
based on neural dynamics are constructed for the distributed
and delay-considered collaborative control of MR2S [25].
Yet, it can be found that previous published papers related
to the distributed collaborative control of MR2S only focus
on undirected or weight-balanced directed topologies, which
is not applicable for the common realistic scenarios whose
topologies are weight-unbalanced directed. In order to solve
this problem, we propose a distributed and weight-unbalanced
neural dynamics controller for MR2S based on the graph
theory for the first time.

Graph theory, which can be used to describe the topology
of a network, is seen as one of the significant fundamentals of
MR2S and under wide discussions nowadays. It is worth men-
tioning that circumstances under weight-unbalanced directed
graphs are very common in both industrial and social domains,
especially in a distributed network. For example, in the latest
Russia-Ukraine conflict, the air force of Russia dispatches
four Sukhoi Su-57 for target-tracking missions. They adopt
a distributed information network to decrease the detection
from the target’s radars [26], in which only one Sukhoi Su-
57 opens the radar and then transfers the obtained coordinate
of the target to others in a distributed manner. It can be seen
that the topology among the target and four Sukhoi Su-57
is weight-unbalanced. Besides, there often exists a situation
where an agenti can be aware of another agentj but not vice
versa because of the restricted field of vision. Additionally,
different agents are likely to utilize devices that possess
different propagation power levels when communicating with
other agents. Furthermore, if the stability and convergence
of a proposed scheme are still guaranteed after an original
ideal weight-balanced directed graph transfers to be weight-
unbalanced, this scheme is evidently more trusted. Therefore,
considering circumstances under weight-unbalanced directed

graphs when analyzing the distributed collaborative control of
MR2S is necessary and beneficial. Actually, there have been
a few high-quality results related to the weight-unbalanced
directed graph in recent years [27]–[30]. In [28], a con-
strained convex optimization problem is solved by a distributed
randomized protocol of multi-agent systems under weight-
unbalanced directed graphs. Two algorithms are designed in
[29] for investigating the distributed average tracking problems
under weight-unbalanced directed graphs. However, existing
results under weight-unbalanced directed graphs are basedon
multi-agent systems that are developed at the particle level,
and none of them introduces circumstances under weight-
unbalanced directed graphs into the collaborative controlof
MR2S with robot kinematics contained. As such, those pre-
vious outcomes are not able to be utilized to handle the
collaborative control under weight-unbalanced directed graphs
in MR2S. In this paper, a distributed scheme and an associated
neural dynamics controller are firstly proposed to handle the
above circumstances.

In this work, the authors propose a neural dynamics-based
controller for the collaborative control of MR2S under weight-
unbalanced directed graphs. Fig. 1 displays the research route
for briefly introducing this paper. In detail, this control system
can be modelled and constructed as a quadratic program-
ming (QP) optimization problem, in which a generalized
performance index is set as the objective function. Then, a
neural dynamics controller is designed to solve it online with
theoretical analyses conducted subsequently. Additionally, the
effectiveness of the proposed neural dynamics controller is
validated by several simulative examples and comparisons.
Specifically, there are two essential challenges about handling
weight-unbalanced directed graphs in the investigation process
of this paper. The first challenge is how to integrate weight-
unbalanced directed graphs into the control scheme of the
distributed collaborative control of MR2Ss, and the second one
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is how to analyze the stability and convergence of the proposed
scheme rigorously with practical redundant robots considered.
These challenges are solved in Section II and Section III. In
sum, the main contributions of this work are listed as follows:

1) It investigates the distributed collaborative control of
MR2S under circumstances of weight-unbalanced di-
rected graphs for the first time with robot kinematics
contained.

2) It models the distributed collaborative control of MR2S
as a generalized QP optimization problem with equality
and inequality constraints, and an estimator for the
required left eigenvector is introduced. Then, the above
QP problem is solved by a proposed neural-dynamics-
based method, whose stability and convergence are
theoretically proved.

There are four sections being provided for the rest of this
work. In detail, Section II models an optimization problem for
the distributed collaborative control of MR2S under weight-
unbalanced directed graphs. In Section III, the corresponding
neural dynamics controller and related theoretical analyses
are designed and proved. Then, Section IV analyzes several
simulative examples and offers comparisons to verify the
validity of the proposed distributed controller. At last, Section
V concludes the whole paper.

II. PRELIMINARIES

This section offers preliminaries of the graph theory and
redundant robots. Then, a distributed collaborative controller
of MR2S under weight-unbalanced directed graphs is modelled
as a convex optimization problem. Before introducing prelim-
inaries, Table I provides explanations of important symbols in
this paper.

TABLE I
EXPLANATIONS OF IMPORTANT SYMBOLS IN THIS PAPER

Ñi The set of in-neighbors of roboti in which Ñ0

represents the robots that are accessed to the
information of the command center

k The number of robots
T The transpose of a vector or a matrix
̟i(t) ∈ Ru

̟i(t) denotes the actual path of the roboti’s
end-effector

̟̂(t) ∈ Ruk ̟̂(t) =
[
̟T

1
(t), · · · ,̟T

k
(t)

]T

ζi parameterζi is used for reflecting the accessing
relationship between roboti and the command
center, i.e.,i ∈ Ñ0 → ζi = 1 and i /∈ Ñ0 →

ζi = 0
Γ ∈ Rk×k A diagonal matrix whose diagonal element isζi
⊗ The Kronecker product
hi ∈ Rk The estimate of the left eigenvector of roboti

when the eigenvalue of̃L equals0, andhii is
the ith element ofhi

H ∈ Rk×k H = diag([h11, h22, · · · , hkk])

h ∈ Rk2

h = [hT
1
, · · · ,hT

k]
T

1k ∈ Rk A vector composed byk elements 1
Iu ∈ Ru×u An identity matrix with orderu
L̃ ∈ Rk×k The Laplacian matrix
â(t) ∈ Rmk

â(t) =
[
a

T
1
(t), · · · ,aT

k(t)
]T

A. Graph Theory

Define G̃ = (Ṽ , Ẽ , W̃) as a weighted-unbalanced digraph
with Ṽ = {1, · · · , k} the set of nodes and̃E ⊆ Ṽ×Ṽ the set of
edges. For example, if(j, i) is an edge, the nodej can deliver
its information to nodei. W̃ = [wij ] ∈ Rk×k denotes the
weighted adjacency matrix withwij ∈ {0, w̄}, wij = w̄ ∈ R+,
if (j, i) ∈ Ẽ andwij = 0 otherwise. LetÑi = {j ∈ Ṽ : (j, i) ∈
Ẽ} denote the set of in-neighbors of nodei. A directed path is
a sequence of nodes connected by edges. A digraph is strongly
connected if for every pair of nodes there is a directed path
connecting them. Thek-dimensional square Laplacian matrix
L̃ is composed of[lij ], which is defined aslii =

∑k

j=1,j 6=i wij

and lij = −wij , wherei 6= j. It can be seen that̃L1k = 0k.
A directed graph is weight-balanced if and only if1

T
kL̃ = 0

T
k,

and
∑

j∈Ṽ wij =
∑

j∈Ṽ wji for i ∈ Ṽ . A left eigenvector

pT = [p1, · · · ,pk] corresponding to an eigenvalueλ of L̃
means thatpTL̃ = λpT. Then, we have the following Lemma.

Lemma 1: [31] [32] The strong-connect digraph̃G =
(Ṽ , Ẽ , W̃) with its Laplacian matrixL̃ = [lij ] ∈ Rk×k meets
the following items.

1) Its Laplacian matrixL̃ possess a left eigenvectorqT =
[q1, · · · , qk] corresponding to the eigenvalue 0, which
satisfies thatqi > 0, i = 1, · · · , k, qTL̃ = 0

T
k, and∑k

i=1
qi = 1.

2) minβTb=0,b 6=0k
bTL̂b > λ2(L̂)bTb/k, in which β > 0

andb are arbitrary vectors,̂L = L̃T Q̃+ Q̃L̃ with Q̃ =
diag(q) ∈ Rk×k, andλ2(L̂) denotes the second smallest
eigenvalue ofL̂.

3) lim
t→∞

exp(−L̃t) = 1kq
T.

B. Forward Kinematics

As for an m-DOF redundant roboti, whose join-
t angles can be expressed in a vector-formai(t) =
[ai1 (t) ,ai2 (t) , · · · ,aim (t)]

T ∈ Rm. Besides, roboti’s u-
dimensional coordinate in the work spaceri(t) ∈ Ru can
be acquired byri (t) = Φ (ai (t)), in which Φ(·) can be
seen as a mapping operation. Specifically, roboti’s desired
path is denoted asrdi(t) ∈ Ru in the following with rd(t)
representing that of the command center, andm is supposed
to be larger thanu according to the redundant properties.
Then, differentiating both sides of the above equation, we
can obtain thatṙi (t) = J (ai (t)) ȧi (t), whereJ (ai (t)) =
dΦ (ai (t)) /dai (t) ∈ Ru×m represents the Jacobian matrix.

C. Problem Modelling

In this section, a distributed collaborative controller of
MR2S under weight-unbalanced directed graphs is proposed.
Assuming a system composed ofk redundant robots, its
interaction topology can be depicted by a weight-unbalanced
directed graph̃G.

Assumption 1:̃G is invariable and strongly connected.
In real-world scenarios, the suitable left eigenvectorqT

associated with the zero eigenvalue of the Laplacian matrix
L̃ is quite hard to obtain, especially for large-scale MR2S.
Therefore, in order to analyze the above control problem under
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weight-unbalanced directed graphs, an estimatorh(t) of q is
designed as follows:

ḣi(t) = −
∑

j∈Ñi

wij(hi(t)− hj(t)), (1)

where hi(t),hj(t) ∈ Rk denote the estimates of the left
eigenvector of roboti and robotj when the eigenvalue of
L̃ equals0, respectively.

Besides, allk redundant robots are connected in a dis-
tributed manner, which means that a roboti can only receive
information from the robots in its set of in-neighbors, e.g.
Ñi, in which Ñ0 represents the robots that are accessed to
the information of the command center, which means that the
signal from the command center can only transfer to robots
whose set of in-neighbors contains it in other words. Then,
we formulate a distributed equation for roboti with estimator
(1) associated for realizing the above distributed behaviors:

hii(t)
∑

j∈Ñi

{wij [ ˙̟ i(t)− ˙̟ j(t) +̟i(t)−̟j(t)]

+ζi[ ˙̟ i(t)− ṙd(t) +̟i(t)− rd(t)]} = 0,

ḣi(t) = −
∑

j∈Ñi

wij(hi(t)− hj(t)), (2)

wherehii(t) is the ith element ofhi(t), hii(0) = 1 when
i ∈ Ṽ , andhij(0) = 0 wheni 6= j; wij is a connection weight
between roboti and robotj; ̟i(t) ∈ Ru denotes the actual
path of the roboti’s end-effector; parameterζi is used for
reflecting the accessing relationship between roboti and the
command center, i.e.,i ∈ Ñ0 → ζi = 1 andi /∈ Ñ0 → ζi = 0;
ṙd(t) represents the desired velocity of the end-effector of a
robot. Compact forms of (2) for all robots are

(HL̃ ⊗ Iu)( ˙̟̂ (t) + ̟̂(t)) + (Γ⊗ Iu)( ˙̟̂ (t)

+ ̟̂(t))− 1k ⊗ (ṙd(t) + rd(t)) = 0,

ḣ(t) = −(L̃ ⊗ Ik)h(t), (3)

where H = diag([h11, h22, · · · , hkk]) is a k-dimensional
matrix; h(t) = [h1(t)

T,h2(t)
T, · · · ,hk(t)

T]T ∈ Rk2

;
̟̂(t) =

[
̟T

1 (t), · · · ,̟T
k(t)

]T ∈ Ruk; ˙̟̂ (t) =[
˙̟ T
1(t), · · · , ˙̟ T

k(t)
]T ∈ Ruk; Γ = diag([ζ1, ζ2, · · · , ζk]) ∈

Rk×k; Iu andIk represent two identity matrices with their di-
mensions beingu×u andk×k, respectively. Specifically,HL
means the equivalent Laplacian matrix of the weight-balanced
directed graph. Then, deducing from the forward kinematics,
we can obtain two equality constraints by substituting˙̟̂ (t)
to Ĵ(â(t)) ˙̂a(t):

((HL̃+ Γ)⊗ Iu)(Ĵ(â(t)) ˙̂a(t) + ̟̂(t))

− Γ⊗ Iu · 1k ⊗ (ṙd(t) + rd(t)) = 0,

ḣ(t) = −(L̃ ⊗ Ik)h(t), (4)

where

Ĵ(â(t)) =


J1(a1(t)) 0 · · · 0
0 J2(a2(t)) · · · 0
...

...
. . .

...
0 0 · · · Jk(ak(t))


 ∈ R

uk×mk,

with Ji(ai(t)) ∈ Ru×m standing for the Jacobian matrix of
robot i; â(t) =

[
aT
1(t), · · · ,aT

k(t)
]T

.
Furthermore, in order to limit the velocities of end-effectors,

an inequality constraint is introduced as follows:

˙̂aL(t) ≤ ˙̂a(t) ≤ ˙̂aU(t), (5)

in which ˙̂aL(t) and ˙̂aU(t) denote the lower bound and
the upper bound oḟ̂a(t), respectively. Then, this inequality
constraint can be reconstructed asO(t) ˙̂a(t) ≤ T (t), where

O(t) = [−Imk, Imk]
T, T (t) = [− ˙̂a

T
L(t),

˙̂a
T
U(t)]

T.
Before continuing to design the available scheme, the con-

vergence of the formulated equality constraints (3) is required
to be proved. According to the distributed protocol presented
in (2), it can be seen that the desired pathrd(t) and its time
derivative ṙd(t) only deliver to robots whose serial numbers
exist in Ñ0. Besides, the correctness of the estimator (1) also
needs to be verified to reflect the effectiveness of equality
constraints. Based on Assumption 1, Theorem 1 below offers
proofs to verify that equality constraints in (4) have the same
impact with̟i(t) = rd(t), ˙̟ i(t) = ṙd(t), and lim

t→∞
H → Q̃.

Theorem 1:MR2S equipped with the distributed consensus
filter is modelled in (3), of each robot has the desired trajec-
tory and joint velocities when Assumption 1 maintains, i.e.,
̟i(t) = rd(t) and ˙̟ i(t) = ṙd(t). Besides, the estimator
for the equivalent Laplacian matrix of the weight-balanced
directed graph in (3) is effective, i.e.,lim

t→∞
H → Q̃.

Proof: From the first formula of (3), one can deduce that

((HL̃+ Γ)⊗ Iu)( ˙̟̂ (t) + ̟̂(t))

−Γ⊗ Iu · 1k ⊗ (ṙd(t) + rd(t)) = 0. (6)

A matrix M is designed as follows:

M =

[
HL̃+ Γ −Γ
−Γ Γ

]
∈ R

2k×2k.

Then, (6) can be rewritten to

(M⊗ Iu) ˙̟̆ (t) = 0, (7)

where ˙̟̆ (t) = [ ˙̟̂ (t) + ̟̂(t),1k ⊗ (ṙd(t) + rd(t))]. As
Assumption 1 mentions, the graph is strongly connected,
so we can obtain that the singular matrixM involves a
null space for the vector12k. Afterwards, equation (7) is
evidently consistent with ˙̟̆ (t) = 12k ⊗ ( ˙̟ ′(t) + ̟′(t)) =
[( ˙̟ ′(t)+̟′(t))T, ( ˙̟ ′(t)+̟′(t))T, · · · , ( ˙̟ ′(t)+̟′(t))T].
Further, as we compare the above equation with˙̟̆ (t) =

[ ˙̟̂ (t) + ̟̂(t),1k ⊗ (ṙd(t) + rd(t))], we can readily obtain
a conclusion thaṫrd(t) + rd(t) = ˙̟ 1(t) +̟1(t) = ˙̟ 2(t) +
̟2(t) = · · · = ˙̟ k(t) +̟k(t). Therefore, when Assumption
1 maintains and MR2S come to the steady state,̟i(t) = rd(t)
and ˙̟ i(t) = ṙd(t) are satisfied.
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Besides, it can be seen thath(t) = exp((−L̃ ⊗ Iu)t)h(0).
Then, according to Lemma 1, one can get thatlim

t→∞
h(t) =

exp(1kq
T ⊗ Ik)h(0) = 1k ⊗ q. Therefore, lim

t→∞
H → Q̃ is

proved as well when Assumption 1 maintains. �

It can be obtained from Lemma 1 thatH is able to estimate
Q̃, and it is known that1T

kQ̃L̃ = 0
T
k, which means that the

equivalent Laplacian matrix of the weight-balanced directed
graph can be calculated by the estimator (1) successfully [33].
In sum, the convergence of distributed equality constraints (3)
is theoretically guaranteed.

D. Distributed Scheme Design

Redundant robots have the nature of redundancy, which
means that there may exist not only one solution conforming
to (4). Therefore, an available performance index is required
as the objective function of the optimization problem. In this
paper, we adopt a generalized performance indexA to increase
the scalability of our proposed scheme:

A = Ψ(â(t))

= g‖ ˙̂a(t) + z‖22
= g( ˙̂a

T
(t) ˙̂a(t) + 2zT ˙̂a(t) + zTz), (8)

whereg > 0; z ∈ Rmk represents a criterion, such as joint
drift and manipulability.

Afterwards, a QP optimization problem can be modelled by
combing the objective function and constraints:

min g( ˙̂a
T
(t) ˙̂a(t) + 2zT ˙̂a(t) + zTz),

s.t. ((HL̃+ Γ)⊗ Iu)(Ĵ(â(t)) ˙̂a(t) + ̟̂(t))

− Γ⊗ Iu · 1k ⊗ (ṙd(t) + rd(t)) = 0,

ḣ(t) = −(L̃ ⊗ Ik)h(t),

O(t) ˙̂a(t) ≤ T (t), (9)

which is termed the distributed and weight-unbalanced collab-
orative control scheme.

III. N EURAL DYNAMICS CONTROLLER AND

THEORETICAL ANALYSES

In this section, a neural dynamics controller is designed
for the above distributed and weight-unbalanced collaborative
control scheme (9) with rigorous theoretical analyses investi-
gated as well.

A. Neural Dynamics Controller

According to the Karush-Kuhn-Tucker conditions [34], a
Lagrange functionLF( ˙̂a(t), ḣ(t), δ1(t), δ2(t), δ3(t)) can be
obtained:

LF( ˙̂a(t), ḣ(t), δ1(t), δ2(t), δ3(t)) = g ˙̂a
T
(t) ˙̂a(t) + 2gzT ˙̂a(t)

+ gzTz + δT
1 (t)(((HL̃+Γ)⊗Iu)(Ĵ(â(t)) ˙̂a(t) + ̟̂(t))

−Γ⊗Iu ·1k⊗(ṙd(t) + rd(t))) + δT
2 (t)(ḣ(t) + (L̃ ⊗ Ik)h(t))

+ δT
3 (t)(O(t) ˙̂a(t)− T (t)),

where δ1(t) ∈ Ruk, δ2(t) ∈ Rk2

, δ3(t) ∈ R2mk indicate
Lagrange multipliers. From [34], one can continue deducing:





2g ˙̂a+ 2gz + (((HL̃ + Γ)⊗ Iu)Ĵ(â(t)))
Tδ1(t)

+OT(t)δ3(t) = 0,

Ik2δ2(t) = 0,

((HL̃ + Γ)⊗ Iu)(Ĵ(â(t)) ˙̂a(t) + ̟̂(t))

− Γ⊗ Iu · 1k ⊗ (ṙd(t) + rd(t)) = 0,

ḣ(t) + (L̃ ⊗ Ik)h(t) = 0,

O(t) ˙̂a(t)− T (t) ≤ 0, δ3(t) ≥ 0,

δT
3 (t)(O(t) ˙̂a(t)− T (t)) = 0.

Then, a perturbed nonlinear complementary problem function
[35] is introduced to deal with the equations above:

ℵNCP(x,y) =
√
x ◦ x+ y ◦ y + η − x− y, (10)

where η → 0
+ is a perturbation term, and◦ denotes the

Hadamard product. Afterwards, the above equations can be
rebuilt as




2g ˙̂a+ 2gz + (((HL̃ + Γ)⊗ Iu)Ĵ(â(t)))
Tδ1(t)

+OT(t)δ3(t) = 0,

Ik2δ2(t) = 0,

((HL̃ + Γ)⊗ Iu)(Ĵ(â(t)) ˙̂a(t) + ̟̂(t))

− Γ⊗ Iu · 1k ⊗ (ṙd(t) + rd(t)) = 0,

ḣ(t) + (L̃ ⊗ Ik)h(t) = 0,

ℵNCP(δ3(t),O(t) ˙̂a(t)− T (t)) = 0.

Combining the above equations, the distributed and weight-
unbalanced collaborative control scheme (9) is transferred to

Υ(t)f(t) = ̥(t), (11)

where

Υ(t) =




Imk 0 ΥT
1(t) 0 OT(t)

0 0 0 Ik2 0

Υ1(t)/2g 0 0 0 0

0 Ik2 0 0 0

O(t) 0 0 0 I2mk



,

f(t) =




2g ˙̂a(t)

ḣ(t)
δ1(t)
δ2(t)
δ3(t)



,̥(t) =




−2gz
0

̥1(t)
̥2(t)
̥3(t)



,

in which Υ1(t) = ((HL̃+Γ)⊗ Iu)Ĵ(â(t)), ̥1(t) = Γ⊗ Iu ·
1k⊗ (ṙd(t)+rd(t))− ((HL̃+Γ)⊗ Iu)̟̂(t), ̥2(t) = −(L̃⊗
Ik)h(t), ̥3(t) = T (t) +

√
δ3(t) ◦ δ3(t) + y(t) ◦ y(t) + η

with y(t) = O(t) ˙̂a(t) − T (t). Then, we can define an error
function e(t):

e(t) = Υ(t)f(t)−̥(t) ∈ R
2k2

+3mk+uk. (12)

Then, the neural dynamics design formulaė(t) = −εe(t) with
ε > 0 is introduced to realize the convergence ofe(t). As a
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result, a distributed and weight-unbalanced neural dynamics
controller that describes the solution of the QP optimization
problem (9) is built:

Υ(t)ḟ(t) = −Υ̇(t)f(t)− ε(Υ(t)f(t)−̥(t)) + ˙̥ (t). (13)

B. Theoretical Analyses

In this part, theoretical analyses are conducted for the
distributed and weight-unbalanced neural dynamics controller
(13) with stability and convergence proved in Theorem 2.

Theorem 2:As ε > 0, the distributed and weight-unbalanced
neural dynamics controller (13) is stable in the Lyapunov sense
and is convergent exponentially to a global optimal pointf∗,
which is the desired solution of the distributed and weight-
unbalanced collaborative control scheme (9).

Proof: The stability of the distributed and weight-
unbalanced neural dynamics controller (13) can be proved by
designing a Lyapunov functionv(t) = e

2(t) > 0. Then, we
can use the neural dynamics design formulaė(t) = −εe(t) to
compute its time derivativėv(t) = −2εe2(t) < 0. Therefore,
according to the Lyapunov stability theorems, the proposed
distributed and weight-unbalanced neural dynamics controller
is stable.

Besides, the convergence proof of the proposed controller
(13) is provided as follows.

First, we present an error functione(t) denoting the differ-
ence between the obtained solutionf(t) and the optimal one
f∗(t):

e(t) = f(t) − f∗(t). (14)

Then, substitutingf(t), ḟ(t) by e(t)+f∗(t) andė(t)+ ḟ∗(t)
in the proposed controller (13), respectively:

ε [Υ(t)(e(t) + f∗(t))−̥(t)] = (15)

− Υ(t)(ė(t) + ḟ∗(t)) − Υ̇(t)(e(t) + f∗(t)) + ˙̥ (t).

After reorganizing, we can obtain the following formula:

εΥ(t)e(t) + εΥ(t)f∗(t)− ε̥(t) = (16)

−Υ(t)ė(t)−Υ(t)ḟ∗(t)− Υ̇(t)e(t) − Υ̇(t)f∗(t) + ˙̥ (t).

It can be found thatf∗(t) satisfiesΥ(t)f∗(t)−̥(t) = 0, as
well as its time derivativėΥ(t)f∗(t)+Υ(t)ḟ∗(t)− ˙̥ (t) = 0.
To simplify (16), we can deduce an equation:

εΥ(t)e(t) = −Υ(t)ė(t)− Υ̇(t)e(t). (17)

We can observe that equation (17) has the same form as the
ordinary differential equation and can be converted to

dΘ
dt

+ εΘ = 0, (18)

where Θ = Υ(t)e(t). This kind of ordinary differential
equation has a general solutionΘ = Ce−εt with C ∈ R, which
can be finally concluded that the proposed controller (13) is
exponentially convergent.

In a nutshell, the proposed controller (13) is stable and
convergent to a global optimal pointf∗. �

IV. EXPERIMENTAL SIMULATIONS AND COMPARISONS

In this part, related experimental examples and comparisons
are implemented to illustrate that the proposed distributed and
weight-unbalanced collaborative control scheme (9) and the
distributed and weight-unbalanced neural dynamics controller
(13) are both feasible.

Fig. 2. Topology of the weight-unbalanced directed graph inthese experi-
ments.

A. Distributed Collaborative Control Under Weight-
Unbalanced Directed Graphs

The proposed scheme (9) and its corresponding neural
dynamics controller (13) mainly focus on the distributed col-
laborative control of MR2S under weight-unbalanced directed
graphs, so they can be applied in plenty of circumstances.
For instance, in the automobile industry, multiple robots are
utilized for coordinated welding [10], which can be seen as
the collaborative control of MR2S under weight-unbalanced
directed graphs, and thus the proposed scheme and controller
are available. This subsection offers a related experimental
example.

UR5 is a redundant robot with six DOFs which is launched
by the Universe Robots company. We consider ten UR5
robots as experimental devices for collaborative control.In
MR2S, moving an object together can be seen as one of
the significant application scenarios of collaborative control,
which requires the relative trajectories of all robots’ end-
effectors to stay consistent. The following experimental exam-
ple simulates the above circumstance. These ten UR5 robots
are set to complete an astroid line with the line equation
x(t) = 0.3 cos5(t), y(t) = 0.3 sin5(t). As for the distributed
manner, it is ruled that only robot R1 and robot R5 can access
the command center, i.e.,Γ(i, i) = 1 when i = 1, 5, and the
weight-unbalanced directed graph of robots is plotted in Fig.
2.

In this example,z in the objective function is designed as
z = 10(â(t) − â(0)), â(0) = [aT

1(0), · · · ,aT
k(0)]

T ∈ Rmk

with ai(0) representing roboti’s initial joint angles. The

values of parameters defined above are stipulated as˙̂a
T
L =

−2 ∗ 16k rad/s, ˙̂a
T
U = 2.1 ∗ 16k rad/s,g = 0.5, ε = 10, the

number of UR5 robotsk = 10, the experimental example
durationT = 2π s. The Laplacian matrix̃L of the weight-
unbalanced directed graph in this example is calculated as
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Fig. 3. Experimental example conducted by applying the distributed and weight-unbalanced collaborative control scheme (9) and the corresponding neural
dynamics controller (13) for the collaborative control of ten UR5 robots to track a desired astroid line. (a) 3-D graph often UR5 robots in the whole process.
(b) Detailed attitude of robot R1 from the beginning to the end. (c) Position errors of end-effectors. (d) Tendency of diagonal elements ofH. (e) Joint angles.
(f) Joint velocities with a constraint.

Fig. 4. Four experiment snapshots of ten UR5 robots on Coppeliasim applying the proposed distributed and weight-unbalanced neural dynamics controller
(13) to execute an astroid line.
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TABLE II
COMPARISONS OF THECONTROL SCHEMES OFREDUNDANT ROBOTSAMONG DIFFERENTPAPERS

Weight-Unbalanced Directed Robots Topology Limited Performance Problem
Graph Considered Numbers Type Communication Index Formulation

Scheme (9) in this paper Yes Multiple Distributed Yes GPI♯ Optimization
Scheme in [9] No Single N/A§ N/A§ CMGa Optimization
Scheme in [12] No Two Decentralized No N/A§ Adaptive Control
Scheme in [13] No Multiple Decentralized No MVN♮ Optimization
Scheme in [14] No Multiple Distributed Yes Manipulability Optimization
Scheme in [24] No Multiple Distributed Yes MVN♮ Game-Theoretic
Scheme in [25] No Multiple Distributed Yes RMP♥ Optimization
Scheme in [29] Yes N/A§ Distributed N/A§ N/A§ Graph Theory

♯: GPI is a shortened form of generalized performance index.
§: N/A denotes that the comparing item is not practicable in that article.
a: CMG is a shortened form of cyclic motion generation.
♮: MVN is a shortened form of minimum velocity norm.
♥: RMP is a shortened form of repetitive motion planning.

follows:

L̃=




6 0 0 0 0 0 0 0 0 −6
−2 2 0 0 0 0 0 0 0 0
0 −2 2 0 0 0 0 0 0 0
0 0 −3 3 0 0 0 0 0 0
0 −1 0 0 1 0 −1 0 0 0
0 −4 0 0 0 4 0 0 0 0
0 0 0 −1 0 −3 4 0 −1 0
0 0 0 0 −3 −1 0 8 −4 0
0 0 0 0 0 −4 −1 0 5 −1
0 0 0 0 −3 0 0 −4 0 7




.

Besides, assigning the rest parameters to zero. Then, the
experimental results are illustrated in Fig. 3.

It can be seen that six subfigures are shown in Fig. 3. Figure
3(a) shows the 3-D graph of all joints of ten UR5 robots in a
whole experimental process with black lines denoting the end-
effector trajectories. We can notice that different redundant
robots have different poses to conduct a same given task. What
is more, it can be seen that Fig. 3(b) illustrates the detailed
attitude of robot R1 from the beginning to the end, from which
we can see that the entire motion of robot R1 is very smooth.
Besides, the colorful lines instead of the black line in Fig.3(a)
and Fig. 3(b) represent the whole three-dimensional posture of
robots at various historical moments. The end-effector position
errors are depicted in Fig. 3(c), from which we can see
that the position errors are all of the order10−6 m, so the
proposed scheme and the corresponding controller possess
satisfying accuracy. Figure 3(d) provides the tendency of
diagonal elements ofH, where the red dashed lines represent
the calculated left eigenvectorqT = [0.0985, 0.2954, 0.0042,
0.0028, 0.3797, 0.0506, 0.0084, 0.0422, 0.0338, 0.0844] ofL̃
with eigenvalue being0. It can be seen that all the diagonal
elements ofH converge to red dashed lines no more than4
s, which means that our proposed scheme can estimateqT

effectively, thus available for handling circumstances under
weight-unbalanced directed graphs. Joint angles of ten UR5
robots are plotted in Fig. 3(e). As we can see, the initial
joint anglesâ(0) of UR5 robots are discrepant, and the final
states equal̂a(0) intuitively, which means that these UR5
robots possess the property of redundancy as they can not

only conduct a given mission but also satisfy the defined
generalized performance index. In Fig. 3(f), joint velocities
of ten UR5 robots in the experiment duration are displayed,
and it can be found that joint velocities are constrained in
a required scope, which demonstrates the feasibility of the
inequality constraint. In a nutshell, the above results prove the
feasibility of the proposed distributed and weight-unbalanced
collaborative control scheme (9) and its corresponding neural
dynamics controller(13).

In order to demonstrate the correctness of (13), we conduct
an experiment on CoppeliaSim by placing ten UR5 robots to
track the astroid line. CoppeliaSim is a common-used tool
with a large number of devices, such as desks and redundant
robots. All the parameters in this experiment are identical
to those before. In Fig. 4, four experiment snapshots of ten
UR5 robots on Coppeliasim applying the proposed distributed
and weight-unbalanced neural dynamics controller (13) are
shown to execute an astroid line successfully. This experiment
intuitively manifests that (13) is applicable and feasible.

B. Comparisons

This subsection makes some comparisons on related items
about the control of MR2S among the proposed scheme (13)
and other schemes presented in [9], [12]–[14], [24], [25], [29],
respectively. In detail, a scheme with its performance index
being cyclic motion generation is presented in [9] for the
control of a single redundant robot. As for [12], the decentral-
ized cooperative control scheme of two robots is investigated
with the help of adaptive control. In [14], the manipulability
of multiple mobile robots is optimized for their distributed
cooperative transportation control. Besides, schemes in [24],
[25] are mainly devoted to the distributed control of MR2S
with different emphases, such as communication efficiency
and the game-theoretical perspective [24], time delays [25].
Additionally, the distributed average tracking problems under
weight-unbalanced directed graphs in a particle level in multi-
agent systems are investigated in [29] by presenting two algo-
rithms. It can be clearly seen that weight-unbalanced directed
graphs are firstly taken into account in the proposed scheme (9)
in this paper for the distributed collaborative control of MR2S
with robots kinematics and strict theorems on the stability



9

and convergence contained. Besides, our proposed method
(9) adopts a generalized performance index to increase the
scalability and a joint velocity constraint to protect the robot.
Table II is intuitively tabulated with the above discussions and
comparisons included.

V. CONCLUSIONS

A distributed and weight-unbalanced neural dynamics
scheme for the collaborative control in multiple redundant
robot systems (MR2S) has been proposed in this paper. The
proposed scheme merges weight-unbalanced directed graphsin
the collaborative control of MR2S with robot kinematics con-
tained for the first time, and the required left eigenvector has
been estimated satisfyingly to ensure that the scheme is stable
and convergent. Besides, constraint on the joint velocities and
generalized performance index are designed for increasingthe
safety and scalability of the proposed scheme. Then, a neural
dynamics controller has been designed to solve the above
problems with theoretical proofs provided to substantiateits
feasibility. Additionally, the results of experimental examples
and comparisons have proved the validity of the proposed
scheme and controller. Furthermore, the collaborative control
of MR2S with switching topology is one of the significant
directions in the future.
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