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Random Boolean networks have been used widely to explore aspects of
gene regulatory networks. As the name implies, traditionally the model
has used a binary representation scheme. This paper uses a modified
form of the model through which to systematically explore the effects
of increasing the number of gene states. These random multi-valued
networks are evolved within rugged fitness landscapes to explore their
behaviour. Results suggest the basic properties of the original model
remain regardless of the update scheme or fitness sampling method.
Changes are seen in sensitivity to high levels of connectivity, the mu-
tation rate and the ability to vary network size.
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1. Introduction

Gene regulatory networks (GRN) have long been cast as a form of
discrete dynamical system through which to study their general prop-
erties, after [1]. In the vast majority of known cases, the underlying
representation in the model is binary: genes are assumed to be either
on or off at any given time and update using Boolean logic to cap-
ture the regulatory relationships between them. Such models have also
been used to accurately predict aspects of the regulatory dynamics
seen in mammalian cells [2], Drosophila [3], yeast [4], amongst others.
However, the binary assumption is potentially a simplification and ex-
amples of increasing the number of gene expression states in dynamical
system GRN vary from using the triplet low, medium, high (e.g., [5])
through to continuous values (e.g., [6]). Following [7], this paper adds
a new parameter to the well-known random Boolean network (RBN)
model [1] which enables the systematic exploration of the effects of al-
tering the size of the alphabet (A) of the underlying gene expression
state representation and logic. Moreover, the placement of gene regu-
latory networks within fitness landscapes is used to explore the effects
of increasing the logic alphabet on evolutionary behaviour, specifically
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within versions of the NK model [8].
Results suggest that a number of the basic properties of the original

binary model remain, whilst aspects such as how fitness is sampled
and how many genes contribute explicitly to the fitness calculation can
significantly vary behaviour, particularly when network size evolves.

A comprehensive review of the significant body of work using other
classes of gene regulatory network models – including ordinary differ-
ential equations, chemical reaction systems, Petri nets, etc. - is beyond
the scope of this paper and the reader is referred to [9] for an overview.

2. The RBN Model

Within the traditional form of RBN, a network of R nodes, each with
B directed connections randomly assigned from other nodes in the
network, all update synchronously based upon the current state of
those B nodes. As noted above, gene states are traditionally from a
binary alphabet (A=2) and use a randomly assigned Boolean update
function. Hence those B nodes are seen to have a regulatory effect upon
the given node, specified by the given Boolean function attributed to
it. Since they have a finite number of possible states and they are
deterministic, such networks eventually fall into an attractor. It is
well-established that the value of B affects the emergent behaviour
of RBN wherein attractors typically contain an increasing number of
states with increasing B (see [10] for an overview). Three regimes of
behaviour exist: ordered when B=1, with attractors consisting of one
or a few states; chaotic when B > 2, with a very large number of states
per attractor; and, a critical regime around B=2, where similar states
lie on trajectories that tend to neither diverge nor converge (see [11]
for formal analysis). Note that the size of an RBN is labelled N , as
opposed to R here, and the degree of node connectivity labelled K, as
opposed to B here. The change is adopted due to the traditional use
of the labels N and K in the NK model of fitness landscapes which are
also used in this paper, as will be shown.

This paper uses a form of multi-valued logic (e.g., after [12]) over
the original binary model: each node can exist in one of A states and
is assigned a randomly created logic table for each of the AB possi-
ble configurations (Figure 1). Figure 2 shows the typical number of
nodes changing state per update cycle in such discrete dynamical sys-
tems where R=50, with various connectivity B and number of gene
expression states A, using 0< B <6 and 1< A <9. As can be seen,
in these random multi-valued networks (RMN) for low connectivity
(B < 3) behaviour is not significantly changed with increasing A but
becomes more chaotic with larger B thereafter. That is, significantly
more nodes change state per update cycle than when A=2.
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Figure 1. An example random multi-valued regulatory network model, with

R=3, B=2 and A=3

(a) (b)

Figure 2. Showing the effects on the typical behaviour of the multi-valued

regulatory networks with varying connectivity B and states A. Results are

the average of one hundred randomly created networks per parameter con-

figuration.

3. The NK Model

Kauffman and Levin [8] introduced the NK model to allow the sys-
tematic study of various aspects of fitness landscapes (see [10] for an
overview). In the standard NK model an individual is represented by
a set of N binary genes or traits, each of which depends upon its own
value and that of K randomly chosen others in the individual (Fig-
ure 3). Thus, increasing K, with respect to N , increases the epistasis.
This increases the ruggedness of the fitness landscapes by increasing
the number of fitness peaks. The NK model assumes all epistatic inter-
actions are so complex that it is only appropriate to assign (uniform)
random values to their effects on fitness. Therefore, for each of the
possible K interactions, a table of 2(K+1) fitnesses is created, with all
entries in the range 0.0 to 1.0, such that there is one fitness value for
each combination of traits. The fitness contribution of each trait is
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n  k f0

0   0 0.76
0   1          0.23
1   0          0.63
1   1 0.56
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Fitness = 1/N S fn
Fitness(001) = ( f0 + f1 + f2 ) / 3

= (0.76 + 0.74 + 0.02)/3

= 0.51

n  k f1

0   0 0.43
0   1          0.74
1   0          0.30
1   1 0.86

n  k f2

0   0 0.99
0   1          0.83
1   0          0.02
1   1 0.38

Fitness table gene 0 Fitness table gene 1 Fitness table gene 2

Figure 3. An example traditional binary NK model, with N=3 and K=1.

found from its individual table. These fitnesses are then summed and
normalised by N to give the selective fitness of the individual. Exhaus-
tive search of NK landscapes [13] suggests three general classes exist:
unimodal when K=0; uncorrelated, multi-peaked when K >3; and, a
critical regime around 0< K <4, where multiple peaks are correlated.

The traditional binary NK model has recently been extended to
higher alphabets, i.e., fitness tables of size A(K+1) are created per gene,
finding that the general properties of the landscapes are seemingly
preserved [14]. This form of the NK model is here used to explore
the evolutionary behaviour of the multi-valued regulatory networks
introduced above – a version of the RBNK model [15].

4. The RMNK Model

The combination of the discrete dynamical networks and the NK model
enables the exploration of the relationship between phenotypic traits
and the genetic regulatory network by which they are produced [15].
In this paper, the following simple scheme is adopted: N phenotypic
traits are attributed to the first N nodes within the network of R genes
(where 0< N ≤ R, Figure4). Thereafter all aspects of the two models
remain as described above, with simulated evolution used to evolve the
RMN on NK landscapes. Hence the NK element creates an explicitly
tuneable component to the overall RMN’s fitness landscape.

5. Evolving RMN

Simulated evolution has previously been used to design RBN, begin-
ning with a simple feedforward network architecture [16] (see [15] for
an overview). Following [10], the simple case of a greedy, genetic hill-
climber is considered here. For a given RMN, mutation can either
alter the logic function of a randomly chosen node or alter a randomly
chosen connection for that node (equal probability).
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Figure 4. Example RMNK model. Each network consists of R nodes, each

node containing B integers in the range [1, R] to indicate input connections

and an A-ary string of length AB to indicate the multi-valued logic function

over those connections.

A single fitness evaluation of a given RMN is ascertained by first
assigning each node to a randomly chosen start state (uniform in A)
and updating each node synchronously for U cycles. Here U is chosen
such that the networks have typically reached an attractor (U=50).
At update cycle U , the value of each of the N trait nodes is then
used to calculate fitness on the given NK landscape. This process
is repeated ten times on the given NK landscape, repeated for ten
randomly created NK landscapes, i.e., 10x10=100 runs, with the fitness
assigned to the RMN being the average fitness. Then a mutated RMN
becomes the parent for the next generation if its fitness is higher than
that of the original (ties are broken at random).

5.1 Synchronous Updating

Figure 5 shows the typical evolutionary performance of R=50 RMN
with various internal connectivity B (0< B <6) and logic alphabet
A (1< A <9), on landscapes of varying ruggedness K (0≤ K <5)
after 5000 generations. When N=10 (left column), fitness generally
decreases with increasing B, regardless of K or A. That is, results
for B=1 or B=2 are always statistically better (T-test, p <0.05) than
for B=4 or B=5. When K=0, increasing A typically decreases fitness
regardless of B. The relative decrease in fitness is highest when A >2
and B >2, with B <3 RMN seemingly most robust to increasing A.
When K >0 and B <3 fitnesses increase with increasing A. Fitnesses
are all roughly equally poor for B >2, regardless of A. Figure 5 (right
column) also shows the effects of increasing the number of nodes by
which fitness is explicitly calculated, with N = R. As can be seen, the
same general behaviour as for N=10 emerges. However, the drop in
fitness for increasing B from B=1 to B=2 is much larger and fitness
levels are generally decreased for all B and A, regardless of K (T-test,
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Showing fitness reached after 5000 generations for combinations of

network connectivity (B), different logic alphabets (A), for various degrees of

fitness landscape ruggedness (K). Left column N=10, right column N=50.

p <0.05 comparing each N=10 with N = R cases). That is, it appears
to be a significantly more difficult task, perhaps as might be expected.

In the above, fitness is calculated from the state of the N trait nodes
on the step after U network update cycles, i.e., typically within an
attractor. To explicitly consider the evolution of temporal behaviour,
i.e., particular sequences of gene activity, the state of the RMN can
be sampled on every update cycle, i.e., up to and including within an
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Showing fitness reached after 5000 generations for combinations of

network connectivity (B), different logic alphabets (A), for various degrees of

fitness landscape ruggedness (K) and number of explicit fitness calculation

nodes (left column N=10, right column N=50) where the fitness is calculated

as the average over each network update cycle.
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attractor. Here total fitness is calculated as the average of the fitness
of each successive state of the N nodes for U cycles. Thus, networks
must evolve temporal behaviour which keeps them consistently within
the high optima region(s) of the fitness landscape. Figure 6 shows
examples of how the change causes a significant increase in fitness (T-
test, p <0.05) achieved with any K for B >2 and A=2. Fitnesses are
not significantly affected otherwise (T-test, p ≥0.05). Figure 2 showed
how the A=2 RMN, i.e., traditional RBN, experienced fewer numbers
of nodes changing state for higher B compared to higher A.

The aforementioned work on the use of non-binary representations
within the NK model reported some differences in the effects of varying
the mutation rate between low and high A alphabets [14]. In particular,
higher mutation rates (M) were found to be either neutral or beneficial
for higher values of A in many cases: simply, the larger the search space,
the more beneficial larger jumps in that space can become. Figure 7
shows examples of the effect of increasing the number of mutations, as
described above, from one to three for N=10 and N = R. As can be
seen, in comparison to Figure 5, the higher values of A benefit from the
increased mutation when B <3 and K >0 (T-test, p <0.05). Moreover,
when A=2, the higher degrees of connectivity (B >2) also appear to
benefit from the increased mutation rate for all K when N=10 (T-
test, p <0.05). Again, it is assumed the greater percentage of updating
nodes for the equivalent high A cases means the same improvement is
not achievable. The same is generally true when fitness is calculated
on every time step, as in Figure 6 (not shown).

5.2 Asynchronous Updating

Traditionally, RBN update synchronously, i.e., a global clock signal is
assumed to exist. It has long been suggested that this assumption is
less than realistic for natural systems and hence discrete dynamical
models have also used asynchronous updating (after [17]). Harvey and
Bossomaier [18] were first to present an asynchronous form of RBN
wherein a node is picked at random (with replacement) to be updated,
with the process repeated R times per cycle to give equivalence to the
synchronous case. The resulting loss of determinism means such net-
works no longer fall into regular cyclic attractors, rather they either fall
into point attractors (one state) or so-called “loose” attractors where
“the network passes indefinitely through a subset of its possible states”
[18]. Many forms of asynchronous updating are possible (e.g., see [19]
for an overview) but the simple random scheme is used here to explore
such updating in RMN. Simulated evolution has previously been used
with asynchronous RBN, beginning with attractor matching to exhibit
defined rhythmic behaviour [20].

Figure 8 shows the typical performance of asynchronous RMN over
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(a) (b)

(c) (d)

Figure 7. Showing fitness reached after 5000 generations for combinations of

network connectivity (B), different logic alphabets (A), for various degrees

of fitness landscape ruggedness (K) and three mutations per offspring pro-

duction (left column N=10, right column N=50).

the parameter ranges used above. As can be seen, despite the change
in the underlying update scheme, there is generally no significant dif-
ference in behaviour from that seen in Figure 5. Primarily, results for
B=1 or B=2 are again always statistically better (T-test, p <0.05)
than for B=4 or B=5, regardless of A. The use of fitness calculations
on each update cycle, as in Figure 6, has also been explored with no
significant changes observed (not shown). Similarly, the change in up-
date scheme does not significantly alter the results reported above for
an increase in the mutation rate (not shown): the higher values of A
benefit from the increased mutation when B <3.

There is typically no significant difference in the fitness reached be-
tween the two updating schemes in all cases, with two notable excep-
tions: when B=2, for N = R and K >0, for any A, the asynchronous
fitnesses are significantly higher (T-test, p <0.05); and, when B=2, for
any N , K and A, with the constant fitness calculation used, the asyn-
chronous fitnesses are significantly lower (T-test, p <0.05). In the latter
case it appears evolution finds it relatively harder to design such RMN
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which must take consistently high fitness paths through the basins of
attraction, presumably due to the stochastic nature of their updating.
However, in the former case, when landscapes experience the highest
levels of explicitly imposed ruggedness through the trait nodes, such
stochasticity appears beneficial. It is here suggested a form of fitness
landscape smoothing is occurring due to the randomness in the final at-
tractors of the RMN reached; a typically low fitness RMN may achieve
an atypically high fitness due to the loose attractors it exhibits, en-
abling evolution to move between peaks in the fitness landscape (after
[21]).

5.3 Network Size

Novel sequences of DNA can originate through a variety of mecha-
nisms including retrotransposons, horizontal gene transfers, during re-
combination events, whole genome duplications, etc. For example, it
is estimated that over half the genes in GRN are the result of gene
duplications (e.g., [22]), a process that may aid robustness as well as
providing a mechanism for subsequent innovation through function di-
vergence (e.g., [23]). Aldana et al. [24] examined the effects of adding a
new, single gene into a given RBN through duplication and divergence.
They showed the addition of one gene typically only slightly alters the
attractors of the resulting RBN when B <3 but that attractor struc-
ture is not conserved for higher B.

The experiments reported above have been repeated with the ad-
dition of two extra “macro” mutation operators: one to delete a ran-
domly chosen node (the N trait nodes cannot be deleted), randomly
re-assigning all of its connections; and, one to duplicate an existing
node, connecting it to a randomly chosen node in the network. These
two operators occur with equal probability to the two previously de-
scribed mutation operators above, i.e., one of four mutations are chosen
to create the offspring per generation. The replacement process is also
altered such that, when fitnesses are equal, the smaller network is kept,
with ties again broken at random. Networks are initialised at size R,
as before, and labelled as of size R’ thereafter.

No significant change in the fitness of solutions is seen with the
macro-structure mutation operators added regardless of whetherN=10
or N = R (not shown). However, as can be seen in Figure 9 (left col-
umn), when N=10, regardless of K, the networks decrease significantly
in size when B <3 (T-test, p <0.05). The decrease in size decreases
with increasing A. A=2 networks decrease in size when B <5. That
is, not only do low connectivity networks evolve the highest fitnesses
for all K and A, they are able to do so with a smaller number of nodes
R’. It is known that both the number of states in an attractor and the
number of attractors are dependent upon R within traditional RBN,
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Showing fitnesses after 5000 generations for combinations of asyn-

chronous network connectivity (B), logic alphabets (A), for various degrees

of fitness landscape ruggedness (K).

and that the general form of those relationships changes for low and
high connectivity. For example, when B=2, attractors are typically of
size R0.5, whereas, when B = R, attractors typically contain 0.5 x 2R/2

states (e.g., see [10] for a summary). Hence, regardless of A, the evo-
lutionary process appears able to exploit the potential for ever smaller
attractors for the low B cases, driven by the additional selection pres-
sure for network size reduction, and to do so whilst maintaining fitness.
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This result is somewhat anticipated by those of Aldana et al. [24] but is
in the opposite direction and with A >2: small reductional changes are
maintained as the attractor space appears to be sufficiently conserved
in both directions.

Figure 9 (right column) also shows the case when N = R, i.e.,
where there is no scope for network size reduction from the initial
size. As can be seen, some growth occurs for all B and A, regardless
of K (R′ >50). The largest growth is typically seen when B=2 and
increases with A (T-test, p <0.05). That is, B=2 connectivity appears
to enable evolution to explore the space of larger networks without
a drop in fitness: evolvability is increased under such conditions and
further increased with increasing degrees of freedom in the gene state
space A.

Figure 10 shows examples of the effects on network size explicitly
considering the evolution of temporal behaviour by sampling the state
of the RMN on every update cycle. Again, there is no significant ef-
fect on fitness (not shown) but there is a change in the type of growth
seen from the single point (attractor) fitness sampling case. Regard-
less of N , A, and K, size is typically highest for B <3. When A=2,
networks are largest with B ≥2. That is, significant growth occurs
where the lower fitnesses emerge in such networks (see Figure 6). That
networks do not decrease in size here for N=10 suggests that the re-
moval of genes is more disruptive than the addition: when the path to
attractors explicitly contributes to the overall fitness of the RMN, it
seems gene deletion causes more change to the basins than addition.
That is, gene deletion appears to affect the basins of attractors more
than the attractors themselves since networks sampled after U updates
experienced significant size reduction (Figure 9, left column).

Asynchronous updating gives the same general result as the syn-
chronous case (i.e., as in Figure 9 with N=10 but does not show the
significant increase in network size around B=2 when N = R, instead
growth is very minimal for all B and A combinations regardless of K
(not shown). Results are the same as for the synchronous case when
fitness calculations are made on each update (not shown).

Thus, despite the selective pressure against growth used here, re-
sults suggest it is a relatively common occurrence during the evolution
of GRN on rugged fitness landscapes. That is, fitness can be increased
by the addition of a random gene due to the large number of rela-
tively low optima typically experienced. Hence a population finds its
progress “reset” within a higher dimension fitness landscape each time;
new routes to optima in a bigger space become available on each gene
addition. Another source of potentially more significant progress dis-
ruption is a change in the fitness landscape. That is, the movement of
optima can cause a GRN to become less fit, increasing the likelihood
of further novel genes being able to make a positive contribution to fit-
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Showing network sizes (R’) reached after 5000 generations for com-

binations of network connectivity (B), different alphabets (A), for various

degrees of fitness landscape ruggedness (K).

ness as it re-adapts. Figure 11 shows an example case of the effect on
fitness and network size when the whole fitness landscape is randomly
recreated for the given K, i.e., each of the entries in the lookup table
of each of the N genes is assigned a new value in the range 0.0 to 1.0,
after 2,500 generations. Here N = R, as in Figure 9 (right column)
where growth was seen for all B, particularly B=2, for all A. As can
be seen, there is a significant drop in the fitness level at the point of
change before it recovers to a similar level achieved before the change.
The effect on network size R’ is to cause a similar level of growth as
from the original length before the change. The same behaviour is seen
in all cases above where network size increased (not shown). Growth
in response to an alternating change in the fitness landscape has pre-

Complex Systems, Volume (year) 1–1+



14 Complex Systems

(a) (b)

Figure 10. Showing example network sizes (R’) reached after 5000 generations

for combinations of network connectivity (B), different alphabets (A) and

number of explicit fitness calculation nodes (N=10 left, N=50 right), where

the fitness is calculated as the average over each update cycle.

(a) (b)

Figure 11. Typical behaviour when the fitness landscape changes randomly

under conditions where growth is seen to emerge during evolution.

viously been noted in a Boolean GRN model [26]. Conversely, under
the conditions where networks decreased in size significantly (Figure
9, left column), further decreases in size are seen in the non-stationary
fitness case (Figure 12).

6. Conclusions

Whilst binary discrete dynamical system models of GRN have proven
useful both theoretically and practically, they clearly represent a sim-
plification of the biology, e.g., in the face of noise [27]. This paper has
explored the effects of increasing the size of the alphabet of gene states
within such models, finding that the general properties are seemingly
preserved, under different updating and fitness sampling schemes. That
is, GRN become increasingly chaotic with increasing connectivity (B),
an effect which increases with the number of states (A), and evolution
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(a) (b)

Figure 12. Typical behaviour when the fitness landscape changes randomly

under conditions where networks decrease in size during evolution.

is better able to manipulate low B networks - since their attractors typ-
ically contain one or a few states - to find high fitness solutions. This
general result is supported by data from biological GRN which appear
to be relatively sparsely connected: on average it seems 1.5 ≤ B ≤ 2
(e.g., see [28]).

It has previously been suggested that increases in genome length
are an inherent property of evolution on rugged fitness landscapes [25].
Despite a selective pressure against growth, results here show it is a
common event in low connectivity networks (B), regardless of the size
of the space of possible gene states (A), when the effects of the under-
lying ruggedness of the landscape (N = R) or the attractor space (U
fitness evaluations) are most prominent. The most significant growth
was seen for A >2.

As noted above, in traditional RBN, B=2 has been formally iden-
tified as a critical regime where similar states lie on trajectories that
tend to neither diverge nor converge. Formal analysis of increasing
the number of gene states A suggests the critical regime of connectiv-
ity tends towards B=1 [7], somewhat contrasting with biology. Such
analysis assumes all multi-valued states and logic functions are equally
likely which has been suggested as potentially unrealistic [29]. How-
ever, with simulated evolution able to shape the logic functions (and
node connections) here, the fitness difference between B=1 and B=2
is typically significant for A >2. Results here indicate the largest in-
creases in complexity typically occur at B=2, regardless of A. The
interaction between these two processes may account for the variation
from the data from biology and the theoretical prediction for B=1 with
increasing A. Note the model is unable to capture how increasing com-
plexity may open new niches where competition is reduced; the lower
fitness for B=2 may be less significant with speciation.

Current work is exploring the effects of increasing the number of
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gene states on the potentially related aspect of the evolution of gene
expression times (after [30]), as well as other mechanisms such as epi-
genetic control (e.g., after [31][32]).
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