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This speculative article discusses research and development relating to
computational intelligence (CI) technologies comprising powerful machine-based
search and exploration techniques that can generate, extract, process and present
high-quality information from complex, poorly understood biotechnology
domains. The integration and capture of user experiential knowledge within such
CI systems in order to support and stimulate knowledge discovery and increase
scientific and technological understanding is of particular interest. The manner in
which appropriate user interaction can overcome problems relating to poor
problem representation within systems utilising evolutionary computation (EC),
machine-learning and software agent technologies is investigated. The objective
is the development of user-centric intelligent systems that support an improving
knowledge-base founded upon gradual problem re-definition and reformulation.
Such an approach can overcome initial lack of understanding and associated
uncertainty.

Introduction

Uncertainty and poor problem definition

are inherent features during early stages

of many problem-solving processes.

Immediate requirements for relevant

information to improve understanding

can be confounded by complex problem

descriptions comprising many interacting

variable parameters. Problem constraints

and multiple objectives that defy com-

plete quantitative representation and

therefore require a degree of subjective

user evaluation can further inhibit mean-

ingful progression. Indeed, problem

representation in the first instance may

be merely based upon qualitative mental

models arising from experiential knowl-

edge, group discussion and slight empiric

investigation. However, such representa-

tions, coupled with user intuition, play a

significant role in the identification of

future direction and further investiga-

tion. Initial concepts and hypotheses

based upon current understanding

require exploration in a breadth-first

manner to generate relevant information

that supports and enables meaningful

progress.

Compound design perhaps presents a

typical example where the chemist is

faced with a problem of such magnitude

in terms of the number of possible

solutions that finding an appropriate

starting point upon which to base

empiric study is a major task involving

extensive experiential knowledge, skill

and intuition. Although some computa-

tional representations may be available

to provide an indication of performance

of, say, reagent combinations against

specific criteria, a degree of uncertainty

with regard to the fidelity of their output

is generally inherent. Hence the need

for human evaluation to eliminate poor

reagent combinations that have survived

machine-based evaluation whilst

identifying high potential combinations

for further empiric investigation. Due to

the number of possible combinations

across multiple reagent libraries some

form of computational search and

exploration capability is essential to

identify potential high performance solu-

tions for further evaluation by the

chemist.1 Thus a machine/human proce-

dure could ensure that experimental

effort is concentrated upon ‘best’ candi-

dates thereby significantly reducing

design lead time. The above example is

used in the paper to aid understanding of

the proposed speculative approaches.

Given the potential in the compound

design domain it is apparent that the

development of similar human/computer

based search, exploration and classifica-

tion capabilities would also be of sig-

nificant benefit in other biotechnology

domains. The analysis of data sets

from gene expression experiments to

provide insights into gene activity under

differing environmental conditions and

the identification of gene regulatory

networks is another area currently receiv-

ing attention.2

Problem redefinition and
reformulation

Generally, the development of machine-

based representations can support

exploration through the evaluation of

identified combinations against criteria

perceived to be relevant. Initial represen-

tations may comprise simple rule sets

coupled with basic statistical models

generated from any available relevant

data. Although the degree of user-

confidence in the output of each criteria

representation may vary considerably

such representations can provide

essential problem insight despite their

apparent shortfalls. Seemingly high per-

formance solutions identified in terms of

quantitative criteria followed by qualita-

tive human evaluation utilising experien-

tial knowledge and intuition provides an

indication of the viability of concepts and

hypotheses and of the fidelity of the

initial computational representations. An

iterative user/machine-based exploratory

process can commence where gradual
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improvements in understanding con-

tribute to better representations, a

developing knowledge-base and the

eventual establishment of computational

models that support more rigorous

analysis. A highly interactive process

thus emerges supporting the develop-

ment of representation through

knowledge discovery. Such a human/

machine-based development may run

concurrently with, and be enhanced

by, conventional empiric investigation

and other forms of data/information

gathering.

The above could be considered a

general description of how we progress

when faced with problems that initially

seem beyond our perceived analytic

capabilities. Using this description the

following sections explore the human-

centric utilisation of evolutionary

computation, machine learning and

agent-based approaches integrated with

enabling computational technologies to

significantly enhance this iterative,

knowledge discovery and representation

development process. Particular areas

requiring attention are:

N the development of meaningful com-

putational representations from experi-

ential knowledge, sparse data and

collective reasoning;

N non-linear search and exploration

processes that can negotiate the complex

solution spaces described by such repre-

sentations (where the solution space is

described by all possible combinations of

variables e.g. reagent libraries);

N the capture of user experiential

knowledge and intuition during

re-definition of machine-based represen-

tations and reformulation and subse-

quent exploration of innovative solution

spaces;

N development of software agent-based

activities for information extraction,

processing and succinct presentation to

the user resulting in a reduction in

cognitive load.

The overall objective is the establish-

ment of user-interactive computationally

intelligent search and exploration

environments that support rapid concept

and hypothesis formulation, exploration

and evaluation. Novel human-centred

problem-solving processes integrated

with such ‘virtual laboratories’ may lead

to innovation and scientific break-

through within an academic research

environment whilst supporting competi-

tive product development through

continuous knowledge discovery in an

industrial context.

The author has been actively research-

ing the development and integration of

such user-centric CI systems primarily

in the field of conceptual engineering

design3,4 Recent involvement with phar-

maceutical and biotechnology design

through close collaboration with Evotec

OAI, Milton Park, Abingdon, UK

(http://www.oai.co.uk/) indicates a very

real potential for the integration of

similar systems with these areas.

Search and exploration in
complex space

Concepts relating to multi-dimensional

(i.e. multi-variable) search and explora-

tion require description to clarify termi-

nology. A search space comprises the set

of all possible solutions described by

combinations of the problem’s para-

meters (e.g. reagents within selected

reagent libraries). Dimensionality of the

space relates to the number of variables

(e.g. reagent libraries) involved. The

size of the search space relates to the

dimensionality and the number of

values relating to each variable. For

instance two reagent libraries each con-

taining two hundred reagents would

describe a search space of 40,000 possible

combinations. Adding a third reagent

library comprising a further 200 reagents

results in a space containing 8,000,000

possible combinations. This non-linear

relationship creates very large search

spaces even when considering relatively

small numbers of variables. Such spaces

can be visualised as multi-dimensional

surfaces or landscapes. For instance,

imagine a problem comprising two con-

tinuous (real number) variables repre-

sented along orthogonal horizontal axis

with a vertical axis relating to the relative

performance of combinations of these

variables in terms of some criteria. A

three-dimensional landscape representing

all possible solutions at a given resolu-

tion can then be plotted and visualised as

shown in Fig. 1.

Obviously, a problem defined by

larger numbers of variables rapidly

becomes impossible to visualize or

imagine in terms of the resulting high

dimensional landscape. The complexity

of this high-dimensional landscape is

significantly increased when integer

variables or when complex mixes of

integer and continuous variables are

involved in the problem description. In

addition, the presence of local optima

representing best values relating to

the criteria under consideration

will create a multi-modal surface

(region A in Fig. 1) comprising peaks/

troughs upon which any form of search

Fig. 1 Search space/fitness landscape described by values of two continuous variable

parameters (X1, X2) with solution performance indicated on the vertical axis. Regon A: multi-

modal characteristics. Region B: unimodal characteristics.
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and optimization procedure may prema-

turely converge. Region B is unimodal

i.e. only one peak is evident within the

region. This offers a far lesser challenge

as a variety of gradient-based optimizers

would rapidly converge upon the optimal

point. The surface described by the

reagent combination example would

likely be extremely rugged with many

local optima due to the random ordering

of reagents within the reagent libraries.

Various constraints (e.g. maximum

allowable weight) will create infeasible

regions of a surface and these regions

may be convoluted and disjoint. Several

quantitative criteria may be involved

(e.g. similarity, QSAR, docking etc.)

introducing varying degrees of conflict

and creating landscapes with differing

characteristics relating to a particular

criteria. This introduces a requirement

to search for common regions of these

landscapes offering best compromise

solutions.

Searching the two-dimensional land-

scape in Fig. 1 presents little problem.

Given existing computational capability

a coarse exhaustive search of solutions

would be possible. An increase in the

number of variables and the inclusion of

the additional complexities described

above presents a far greater challenge.

An exhaustive search becomes non-

viable and the investigator has to rely

upon sophisticated search, exploration

and optimisation algorithms.

If the problem is well-defined in terms

of variables, constraints and objectives

that are quantifiable and of known

relative importance then a range of

search and optimisation techniques can

be utilised that can handle the above

complexities to a varying degree. Modern

heuristic techniques involving popula-

tions of trial solutions and stochastic

operators that promote search and

exploration and eventual convergence

are particularly well-suited to the

negotiation of such complex problem

spaces. The term evolutionary com-

putation tends to cover techniques

such as these and perhaps the genetic

algorithm (GA)5 has become the best

known.

In most cases, however, high problem

definition is characteristic of the latter

stages of a problem-solving process.

These final stages may represent the tip

of the iceberg given the time and effort

involved in initial problem understand-

ing, definition, formulation and repre-

sentation. During early stages a high

degree of assumption, particularly relat-

ing to objective representation, generally

provides a starting point for our investi-

gations. An initial variable set may be

selected with later addition or removal of

variables as the sensitivity of the problem

to various aspects becomes apparent.

Constraints may be treated in the same

way with the added option of softening

them to allow exploration of non-feasible

regions. Included objectives may change

as significant payback becomes apparent

through a re-ordering of objective pre-

ferences. Some non-conflicting objectives

may merge whilst difficulties relating to

others may require serious re-thinking

with regard to problem formulation. The

initial problem space is therefore a

moving feast rich in information which,

when extracted and coupled with the

investigators’ experiential knowledge

and intuition supports significant pro-

blem insight and subsequent problem

re-formulation. It is quite possible that

final solutions will be identified from a

space that bears little resemblance to the

search space that provided a starting

point for our investigations.

We are, perhaps, considering two

problem search spaces:

(1) The machine-based quantitative

space that is bounded and inflexible

when considered stand-alone (i.e. the

space defined by reagent libraries within

a compound design situation). Search

and exploration algorithms utilizing

machine-based criteria representations

to evaluate solutions can rapidly provide

novel information from this space that

aids problem understanding at a human

level. Such understanding and subse-

quent search space redefinition can

remove the initial bounds.

(2) The investigators’ mental represen-

tations of the problem. These representa-

tions are only bounded by current

knowledge and understanding. The

development of this problem space relies

upon external stimuli and human intui-

tion and judgement at both a quantita-

tive and qualitative level.

The indication from previous concep-

tual design work in the engineering

domain is that the appropriate melding

of these two spaces will support a

holistic, knowledge-based approach

that can result in significant step changes

to machine-based objective representa-

tion and in scientific/technological

understanding.

Problem reformulation

The concept of problem formulation and

reformulation is well established within

the engineering design research commu-

nity especially when considering innova-

tive and creative design.6,7 This is

associated with the development of a

designer’s understanding of a problem

during the early investigative stages

that may result in radical changes in

problem representation. Another concept

relates to the integration of knowledge

from other sources through, say, analo-

gical or metaphorical transfer from

another problem area. This can be of

significant benefit especially with regard

to the development of innovative

approaches. Also, much attention has

been paid in the design research area to

holistic aspects of the design process and

the manner in which initial qualitative

modelling of a problem domain even-

tually translates into more definitive

representations.

Many design research concepts map

well onto generic problem-solving and

decision-making processes where com-

plexity, high-dimensionality and the

inability of the user to concurrently cope

with many dimensions of information

(cognitive overload) obstructs progress

and inhibits exploration. Computational

intelligence techniques relevant to and

developed within the design domain

are now reaching a level of sophistication

that allows them to be utilised to

support a more holistic approach to

problem solving.8 Machine-based

exploratory systems can better handle

the complexities of high-dimensional

space ensuring that succinct specific

information is available to the inves-

tigator thus enabling a greater user-

concentration upon the significance of

emerging results.

Existing appropriate CI and
enabling technologies

Existing computational intelligence

technologies contribute in a piecewise

manner to the development of user-

interactive CI systems that meld

This journal is � The Royal Society of Chemistry 2005 Analyst, 2005, 130, 29–34 | 31
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machine-based problem processing and

user problem solving. The flexibility of

stochastic search and exploration pro-

cesses provided by evolutionary compu-

tation (EC)9,10 means that complex

search spaces described by mathematical,

statistical, boolean, neural network or

fuzzy inference models can be efficiently

and rapidly negotiated. This flexibility

allows the integration of simple rule-

based models to provide initial

problem representation and the sub-

sequent development and integration

of fuzzy, neural and/or statistical

models11,12 for the evaluation of

solutions as data and knowledge accu-

mulates. Cluster-oriented genetic algo-

rithms13,14 can support information

extraction and multi-objective evolution-

ary compuation approaches can handle

multiple quantitative criteria. On-line

user-centric criteria ranking capabilities

can be achieved via fuzzy preference

techniques.14,15 The integration of quali-

tative criteria is implicitly supported

during problem re-definition and re-

formulation through the influence of

user experiential knowledge. Software

Agent technologies17 can support

information extraction in terms of the

identification of interesting solutions and

support background processing of data

and subsequent meaningful presentation

of results to the user. Multi-agent

systems can provide a machine-based

negotiating capability that may assist

in solution identification and selection,

qualitative objective satisfaction and

the processing of search direction

alternatives.18 A reduction in perceived

problem complexity through machine-

based processing of extracted data

and the subsequent presentation of

succinct information may thus relieve

cognitive load upon the investigator.

The processing of relatively mundane

tasks can be readily achieved via single

function agents thus allowing the user

to concentrate more upon emerging

aspects of interest. In the longer term

it is also possible that embedded

machine learning processes training

upon extracted information may enable

some degree of autonomous agent-based

activity.

The introduction of supporting and

enabling technologies such as state-of-

the-art data visualisation techniques and

high-performance computing (HPC)

would result in interactive CI search

and exploration systems where the

user becomes immersed within an

information-rich computing environment

accepting and analysing output and

introducing change. High-performance

computing capabilities would be essential

to achieve a seamless interface between

interactive processes. On-line data-

mining techniques11 coupled with agent-

assisted data processing and visualisation

would contribute greatly to the immer-

sion concept. Overall integration with

e-Science technology could lead to the

establishment of Grid-based search and

exploration capabilities widely available

to the UK research community whilst

also enabling remote access to very

significant HPC resources and possibly

to diverse information sources that

enhance current knowledge of the pro-

blem at hand.

The establishment of a seamless

user/machine-based information genera-

tion environment as described is

ambitious. However highly efficient

search across changing fitness landscapes

with varying objective preferences

and changing constraint conditions is

achievable. It is also possible to spawn

concurrent/complementary local search

utilising appropriate algorithms.

Constraint-handling techniques can be

introduced that allow exploration and

information extraction relating to con-

straint sensitivity. Search space sampling

techniques can be integrated with

exploration processes to rapidly generate

concepts of problem complexity as land-

scapes change. Statistical and CI-based

modelling techniques are now available

whereas the concurrent utilisation of

differing model types to provide better

overall representation and increased

confidence is accepted practice in some

areas.

A possible configuration of the various

system components and of user inter-

activity is simply illustrated in Fig. 2.

The virtual laboratory

Taking all of the above into account the

concept of a virtual laboratory begins to

emerge. Imagine developing relatively

basic machine-based criteria representa-

tions from current data and constitutive

theories associated with current under-

standing and then being able to rapidly

explore the multi-variate space described

Fig. 2 Simple illustration of a possible system configuration.
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by these representations using combina-

tions of evolutionary algorithms and

other local and global search techniques.

As search progresses the system is

extracting and accumulating information

relating to complex characteristics of the

problem domain whilst also discovering

viable solutions. Solutions are initially

identified that best satisfy objectives/

constraints seemingly relevant in terms

of current understanding whilst back-

ground processes extract information

from areas of the problem space pre-

viously visited and present this, in a

succinct manner, on-screen to the user.

The degree of difficulty of satisfying

initial objectives within existing variable

bounds or within existing objective pre-

ference ranking becomes quantifiable

and presentable through background

data processing as search progresses.

On-line user actions such as constraint

softening, objective preference variation

or modification of variable ranges may

change the nature of the space and search

direction whilst machine-based software

agents acting as information collators,

processors and presenters provide indica-

tions of the effects of such changes.

These agents constantly advise the user

on interesting solution correlation or

re-direct you to previously visited areas

now of more interest. Concurrent, finer-

grained, localised search processes may

be spawned to explore specific regions.

These actions become semi-autonomous

as, through a machine-learning capabil-

ity, the agents become more ‘aware’ of

your requirements. The environment

becomes more immersive as the user

reacts to the information being presented

and user on-line actions become an

integral part of the exploration process

negotiating this high dimensional space

reacting to feedback from the system to

make iterative changes to the problem

landscape.

At any point this relatively continuous

exploration process can be paused and

relevant information downloaded and

presented to the decision-making team

for discussion. An easily understood

graphic provides a recorded history of

user-instigated change thereby support-

ing traceability and allowing analysis of

the logical progression of the team’s

thinking based upon extracted informa-

tion. The presentation of such material

promotes discussion and allows the

perspectives of others to be integrated

in further exploratory interactive activity

via appropriate problem re-definition

and re-formulation.

As this iterative interactive process

continues so confidence in the developing

criteria representations increases, the

knowledge-base becomes well-founded

and uncertainty significantly decreases.

A natural result is a reduction in

user-interaction as we move from a

high-risk problem definition phase

through an intermediate phase of

increasing confidence to the final stages

of detailed analysis of a well-defined

problem space. This could be considered

analogous to the conceptual, embodi-

ment and detailed stages of engineering

design.19

Conclusions

There is obviously much further research

required to achieve the goal of the

seamless user-centric system described

above. However, many of the component

parts are at a stage of development

where their collective utilisation is

possible and current research is pushing

hard towards achieving this. Problems

specific to the biotechnology field will

necessitate appropriate development of

any working system based upon these

concepts. It is suggested that the flexi-

bility of CI technologies is such that

specific problems are unlikely to be

insurmountable. For instance, although

a machine-based representation of an

evaluation function may cause problems

the user-centric approach supports com-

plete or partial human evaluation of

solutions and this can initially play an

integral role.

Both research council and industrial

funding plus close interdisciplinary

working will be required to resolve

arising problems. From an industrial

point of view, however, user-centric CI

search and exploration systems could

best utilise seemingly endless increases

in desktop computational processing

capability especially considering that

in-house networked machines potentially

support access to very high levels of

distributed computing power. Such sys-

tems continuously running as back-

ground processes could support the

development of in-house knowledge and

expertise whilst reducing lead times to

the discovery of innovative products

when allied with complementary investi-

gative processes.

From a more academic research-

oriented point of view the further

development and utilisation of such

systems within a research environment

could support significant leaps in

understanding relating to the charac-

teristics of poorly defined complex

problem space. The ability to rapidly

and efficiently play ‘what-if’ whilst

concurrently gathering high-quality

information that either confirms or con-

tradicts current thinking suggests an

environment well-suited to the support

of knowledge discovery and scientific

breakthrough. The role of human intui-

tion, experience and judgement within

such an environment would be para-

mount whilst the inherent support of

agent-based entities in terms of informa-

tion processing and presentation would

be invaluable.
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