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Predictive models in emergency medicine and their missing
data strategies: a systematic review
Emilien Arnaud 1,2✉, Mahmoud Elbattah2,3, Christine Ammirati1,4, Gilles Dequen 2 and Daniel Aiham Ghazali1,5

In the field of emergency medicine (EM), the use of decision support tools based on artificial intelligence has increased markedly in
recent years. In some cases, data are omitted deliberately and thus constitute “data not purposely collected” (DNPC). This accepted
information bias can be managed in various ways: dropping patients with missing data, imputing with the mean, or using
automatic techniques (e.g., machine learning) to handle or impute the data. Here, we systematically reviewed the methods used to
handle missing data in EM research. A systematic review was performed after searching PubMed with the query “(emergency
medicine OR emergency service) AND (artificial intelligence OR machine learning)”. Seventy-two studies were included in the
review. The trained models variously predicted diagnosis in 25 (35%) publications, mortality in 21 (29%) publications, and
probability of admission in 21 (29%) publications. Eight publications (11%) predicted two outcomes. Only 15 (21%) publications
described their missing data. DNPC constitute the “missing data” in EM machine learning studies. Although DNPC have been
described more rigorously since 2020, the descriptions in the literature are not exhaustive, systematic or homogeneous. Imputation
appears to be the best strategy but requires more time and computational resources. To increase the quality and the comparability
of studies, we recommend inclusion of the TRIPOD checklist in each new publication, summarizing the machine learning process in
an explicit methodological diagram, and always publishing the area under the receiver operating characteristics curve—even when
it is not the primary outcome.
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INTRODUCTION
Predictive models are increasingly being used in the field of
emergency medicine (EM), where they particularly deal with the
prediction of triage, admission, and mortality1. A model is trained
to predict an outcome variable (e.g., discharge status) as a
function of covariables (e.g., vital signs or the reason for
admission) that are also referred to as “predictors” or “features”.
In the classical case of supervised machine learning (ML), the
model is trained on a set of labeled data. In this context, the
model’s performance depends directly on the dataset’s quality
and exploitation.
In a supervised ML process, the dataset is split into a training set

(used to predict the outcome on the basis of the predictors) and a
test set (used to compare the algorithm’s prediction with the
known outcome). The most usual train-test split ratio is 80:20. The
model’s performance is measured by the area under the receiver
operating characteristic curve (AUROC): a value of 0.5 corresponds
to a random prediction, whereas a value of 1 corresponds to a
perfect prediction. One of the risks associated with supervised ML
is overfitting: the trained model is tightly correlated with the
training set and will not accurately predict the outcome for new
data. Hence, to ensure that the model’s performance is not overly
dependent on the training set, external validation is required, this
consists in computing the AUROC for an independent dataset (i.e.,
not just a randomized part of the training set), and comparing
ground-truth outcomes with predictions.
A predictor can be a numerical variable, a categorical variable, a

media variable (sound recordings, images, videos, etc.), or a text-
based variable. Numerical and categorical variables correspond to

structured data, whereas media data and text-based variables
correspond to unstructured data. Media and text-based variables
can be included in the ML process; however, these variables would
require the use of specialized processing methods.
According to the state of the art2–4, the probability of missing

data depends on the observed part of the dataset (Yobs), the
missing part of the dataset (Ymiss), the missing data mechanism
(described by the parameter ψ), and the fact that the data are
observed (R= 1) or not (R= 0):

PrðR ¼ 0jYobs; Ymiss;ψÞ (1)

Using the parameter θ to represent the dataset model, the
probability of observed data can be represented by a density
function:

f ðYobs; Rjθ;ψÞ (2)

Missing data can be classified into three categories: missing
completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR)4. In the case of MCAR data, the
probability of missing data is independent of the observed or
missing data and depends solely on the missing data mechanism.
Hence, the probability of missing data can be simplified, as
follows:

Pr R ¼ 0jYobs; Ymiss;ψð Þ ¼ PrðR ¼ 0jψÞ (3)

In the case of MAR data, the probability of missing data
depends on observed data and the missing data mechanism. The
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probability of missing data can be then simplified, as follows:

Pr R ¼ 0jYobs; Ymiss;ψð Þ ¼ PrðR ¼ 0jYobs;ψÞ (4)

Lastly, in the case of MNAR data, the probability of missing data
depends on all the data and the missing data mechanism and so
cannot be simplified.
All three types of missing data can be found in EM-related

datasets. The MCAR data might be collected but not reported; for
example, the triage nurse might forget to report the collected
data. The MAR data might be not collected because they are not
necessary or ethical with regard to the reason for attending the
emergency department (ED); for instance, a capillary blood
glucose measurement is not relevant for a young patient with
an unremarkable medical history and who presents at the ED with
a traumatic ankle injury. Lastly, MNAR data might be not collected
because the collection is time-consuming (e.g., measurement of
the respiratory rate).
Patients attend the ED for many different reasons. Firstly,

several variables are systematically collected: administrative data,
demographic data, the reason for attending, etc. Secondly, some
variables are not collected systematically: blood pressure, pain
scale, capillary blood glycemia, etc. In both cases, these variables
can be categorical (e.g., the pain scale is from 0 to 10 and can
include the additional category “not completed”) or numerical
(e.g., the capillary blood glycemia value).
One can consider the simple situations summarized in Table 1;

the reasons for missing data are all different and depend on
several variables other than the capillary blood glycemia
measurement. Many rules determine whether or not glycemia is
measured. In line with this analysis, one can say that because the
glycemia measurement depends on other variables, it could be
missing at random. Given that the absence of these data is
governed by medical and ethical rules, we further consider that
the missing data are “data not purposely collected” (DNPC, a
subtype of MAR data).
There are several algorithmic approaches; each has particular

requirements with regard to the completeness of data. By design,
basic logistic regression and deep-learning methods do not accept
missing values as inputs in the low-level algorithm. Decision trees
and derived methods (boosted decision trees, random forest, etc.)
do not require a complete dataset, and missing data are

interpreted as a specific category5. More complex logistic
regression algorithms (such as the stochastic approximation
version of expectation-maximization (SAEM) algorithm) also
accept missing data with low bias and low standard error. This
method consists in estimating the parameter θ in a logistic
regression by maximizing the stochastic approximation of the
simulated samples from the target in three steps: simulating an
initial guess θ0, performing k loops of a stochastic approximation,
and maximizing the estimation of θk6. Filling in missing data is a
common strategy when building a predictive model. In the field of
healthcare, several strategies for dealing with missing numerical
and categorical data have been applied: (A) using autonomous
missing data preprocessing algorithms (i.e., in decision tree
algorithms or SAEM, missing data are natively managed); the
researcher does not do anything to the initial dataset and
delegates the missing data management to the final ML algorithm
(referred to as “no-op” hereafter), (B) not using autonomous
preprocessing algorithms (basic logistic regression, and deep
learning), which includes (i) a dropping strategy (removing
patients with missing data) (ii) a mean imputation strategy (filling
missing data with the variable’s mean value (a numerical variable)
or mode value (a categorical value)), (iii) a fixed strategy (filling
missing data with a fixed (physiological or reference) value), and
(iv) an imputation strategy (imputing missing data with other ML
techniques, such as logistic regression and chained equations, to
impute missing data), and (C) additional process (missingness, i.e.,
adding a variable in the dataset which indicates whether the value
is present or not). These strategies are shown in Fig. 1. Naemi et al.
tested the impact of the data strategy by testing the same training
process on the same initial dataset filled by different strategies:
the AUROC of an extreme gradient-boosting decision tree model
increased from 84% to 94% after completion of the dataset using
Gaussian processing and synthetic minority oversampling techni-
ques of class samples that were close to the borderline7. A
complementary method consists in marking patients with missing
data in novel variables in parallel with the application of another
obligatory strategy. This additional information can improve the
performance of ML methods.
The imputation strategy must take into account the ignorability

of the missing data mechanism. Missing data are considered8 to

Table 1. Examples of how missing data can arise among patients attending the ED.

Reason for coming Medical
history

Glycemia Missing data Reason

1 Minor mechanical
trauma to the ankle

No Not
measured

Missing for a clinical
decision: no
Missing for a statistical
analysis: yes

The reason for attending does not require a measurement

2 Minor mechanical
trauma to the ankle

Type 1
diabetes

Measured Missing for a clinical
decision: no
Missing for a statistical
analysis: no

A diabetic patient’s glycemia must be measured, whatever the reason
for attending

3 Minor ankle trauma due
to fainting

No Measured Missing for a clinical
decision: no
Missing for a statistical
analysis: no

The glycemia of a patient attending for fainting must be measured,
whatever the medical history

4 Minor ankle trauma due
to fainting

No Measured
Not
reported

Missing for a clinical
decision: no
Missing for a statistical
analysis: yes

The glycemia has been measured and clinically evaluated but is not
reported in the software

5 Minor ankle trauma due
to fainting

No Not
measured

Missing for a clinical
decision: yes
Missing for a statistical
analysis: yes

The glycemia should have been measured but has not been. This is an
error and constitutes real missing data
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be ignorable if they are MAR and if ψ and θ are distinct:

p θ;ψð Þ ¼ pðθÞpðψÞ (5)

If the missing data mechanism is ignorable, the distribution of Y
is the same in the observed and non-observed groups3:

p YjYobs; R ¼ 1ð Þ ¼ pðYjYobs; R ¼ 0Þ (6)

In this case, there is no need to consider the missing data
mechanism in the imputation, and a simple imputation model can
complete most of the data without introducing bias. In contrast,
the missing data mechanism must be included in a more complex
imputation model (like the multiple imputation chained equation
(MICE)) when the missing data mechanism is linked to the data
themselves.
Given that reporting on an ML-based study is complex and

highly technical, a group of methodologists developed the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) statement. The TRIPOD
statement is a checklist of 22 items that we consider to be
essential for good reporting of studies developing or validating
multivariable prediction models. It is intended to improve the
transparency of reporting of a prediction model study, regardless
of the predictive methods used9.
Wards and EDs differ in several respects. Firstly, the types of

patients and reasons for admission are less specific in the ED than
in wards: patients attend the ED for problems related to any
specialty, whereas the patients admitted to ward often have a
problem related to the ward’s specialty. Thus, not all data are
systematically collected for all patients; it mostly depends on the
patient’s reason for attendance. Secondly, the flow of patients
attending the ED is continuous, whereas the flow in wards stops
when all the beds are occupied. In the latter case, most of the
patients stay for longer than one day. Thus, the time devoted to
the patient differs, which impacts the data collection. When a

patient attends the ED, some variables are always collected (e.g.:
demographic data, admission and discharge dates, the final
diagnosis, etc.) and others are only collected if dictated by the
context or when possible (for instance, nurses might have to
collect only essential data if the ED is overcrowded).
The distinctive context of EM yields a heterogeneous dataset.

Missing data (also referred to as “DNPC”) do not constitute a bias
per se because their absence is deliberate. Hence, the completion
of DNPC is not the same as the completion of missing data in a
standard, prospective study in which data should have been
collected but were not. Thus, we posed the following question:
how are DPNC addressed in ML-based studies within the
field of EM?
The objectives of the present study were as follows. Firstly we

sought to systematically review published DNPC strategies for
building predictive models in the field of EM. Secondly, we sought
to determine whether one strategy is clearly better than the
others within this specific context.

RESULTS
Study characteristics
The literature search yielded 628 publications. After screening the
titles, we selected 213 publications for analysis of the abstracts. A
total of 141 publications were excluded on the basis of the
abstract (n= 102) or the full text (n= 41). Hence, 72 full-text
publications were included and analyzed (Fig. 2 and Supplemen-
tary Table 1). The mean (standard deviation) numbers of patients
were 18,222,672 (1,119,747) overall, 5,635,600 (307,467) for the
training sets, and 699,702 (60,254) for the validation sets. Only four
publications complied with the TRIPOD checklist. None of the
publications included a low risk of bias.
As outcome predicted by the models: a diagnosis is used in 25

publications (35%), mortality in 21 (29%), and the probability of
admission in 21 (29%). The 12 remaining publications (16%)

Fig. 1 Missing data strategies applied before the final (predictive) algorithm. A Missing data strategy using autonomous missing data
preprocessing algorithms. B Missing data strategies using non autonomous preprocessing algorithm. C Missing data strategies using
additional process.
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predicted a triage score or treatment administration. Eight
publications (11%) predicted more than one outcome (Supple-
mentary Table 2).

Models and imputation strategies
Considering the type of model used to provide the best
validation AUROC, the proportions of studies using XGBoost
and logistic regression techniques grew by, respectively, 11%
and 18% between 2018 and 2021. The use of deep learning
models grew by 39% from 2018 to 2019 and then decreased by
52% to 2021 (Supplementary Fig. 1). In 2021, 13 (44.8%) of the
29 studies used the XGBoost as their best model and 10 (34.5%)
used a logistic regression model. Thirty-seven studies (51.4%)
tested multiple algorithms, and 35 (48.6%) only tested one. Of
the 26 studies that tested the XGBoost, 16 (61.5%) tested it alone
and 10 (38.5%) compared it with other algorithms. It is
interesting to note that of the 16 studies that tested XGBoost
alone, 9 (34.6%) used a missing data preprocessing strategy: one
(11.1%) replaced missing data with fixed values, three (33.3%)
dropped patients with missing data, three (33.3%) imputed with

the mean, two (22.2%) using missingness, and two (22.2%)
performed multiple imputation before training the
XGBoost model.
The missing data strategies applied in the publications are

listed in Table 2. Forty-eight publications (67%) used a single
strategy (the cells with bold values in Table 2), 14 publications
(19%) used more than one strategy (the other cells in Table 2),
and 10 publications (14%) did not specify the strategy. The most
frequently applied strategy was dropping (30 publications; 41%),
followed by the mean value method (17 publications; 23%), ML
strategies (13 publications; 18%), imputation (6 publications;
8%), and the physiological/reference value method (3 publica-
tions; 4%). Four publications (5%) stated whether or not each
individual value was missing in the study database; this
approach is henceforth referred to as “Marked”. Ten publications
(14%) did not specify the missing data strategy at all. The use of
these strategies has clearly changed over time: the proportion of
studies that used a dropping method fell from 67% in 2017 to
33% in 2021, whereas the proportion that used imputation rose
from 6% in 2020 to 17% in 2021 (Fig. 3; some publications used
more than one strategy, and so the total can exceed 100%).

Records iden�fied from
Databases (n = 628)
Registers (n=0)

Records screened
(n=628)

Reports sought for retrieval
(n=213)

Publica�ons excluded
(n = 415)

Duplicates, unrelated topics, other discipline or 
pediatric

Reports excluded
Publica�ons without studies (n=28)
Did not concern ar�ficial intelligence (n=2)
Did not feature pa�ent data (n=38)
Prior ED (n=22)
Concerning other departments (n=27)
Used natural language processing only (n=15)

Studies included in review (n=72)
Reports of included studies (n=72)
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Fig. 2 Identification, screening and inclusion of studies via databases and registers.
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The most frequently reported patient-related predictors were
age (70 publications; 97%) and gender (66 publications; 92%),
although only 15 of the two groups of publications (21% and
23%, respectively) described their missing data. The missing
data for other predictors are described in Table 3.

DISCUSSION
The objective of the present review was to study the completion
strategies used to address the DNPC problem in ML studies
related to EM. The models described in the 72 included
publications predicted a variety of outcomes and varied with
regard to the predictor and the type and size of the patient
population. These heterogeneous studies could not be compared
directly and so any inferences must be applied with caution.
However, most of the publications used the AUROC as the main
performance indicator. Consequently, we used the AUROC as a
comparator of our study, although no firm conclusions can be
made on that basis.
Failure to describe missing data (rather than having missing

data per se) can be considered as a significant source of bias. Since
2014, several publications have described how missing data
should be reported10. For all predictors (other than text data),
fewer than 25% of the reviewed publications described their

missing data. The number of missing values was probably
underestimated because of this under-description, which would
have introduced significant bias into the interpretation. This
proportion is nevertheless higher than that reported by a 2019
review of clinical pharmacy research11, in which only 19.7% of the
selected publications mentioned how they handled missing data.
We recommend explicitly specifying the amount of missing data
and describing how missing data are handled. This information
could be summarized in an explicit, methodological diagram
(Supplementary Fig. 2). Independently of the strategy applied, an
algorithm’s in fine performance is the most important result. Even
when an imputation strategy poorly estimates the missing values,
it might help to improve the in fine prediction. This corresponds to
the objective of the present study.
The dropping strategy was the most frequently used strategy.

This is probably because dropping is the easiest to implement: all
patients with missing data are simply excluded. The dropping
technique is the only one that does not require completion. Its
main drawback is the decrease in the size of the dataset. However,
this strategy could lead to hidden selection bias and might mean
that the study population is no longer representative of the target
population4. If patients are dropped because of MCAR data, then
no bias would be introduced. Dropping patients because of MCAR
is rare but must be documented; this is not often done,

Table 2. Missing data strategies applied in the reviewed publications.

Strategy Total number of publications Dropping Mean Missingness No-op Fixed Imputation Not defined Mean AUROC

Dropping 30 23 2 2 1 1 1 0.87

Mean 17 11 2 1 1 0.84

Missingness 7 0 2 1 0.85

No-op 13 9 0.86

Fixed 3 2 0.89

Imputation 6 3 0.88

Not defined 10 10 0.84

The bold values correspond to the number of publications applying a single strategy. The other cells correspond to combinations of two missing data
strategies. The mean AUROC values were computed only from publications that used a single strategy.
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Fig. 3 Change over time in the frequency of use of missing data strategies. NB: some publications used more than one strategy, and so the
total can exceed 100%.
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particularly in the field of medicine12. Some publications used a
slightly more sophisticated threshold approach (e.g., only patients
with more than a certain amount of missing data (e.g., 50%) are
excluded) or composite strategies (Table 1). However, the
associated AUROC values were high, which might indicate that
the dropping strategy did not have a negative impact on the
training stage. The other common strategy for handling missing
data was the “no-op” strategy. Indeed, the decision tree family of
algorithms deals perfectly with missing data by using different
methods (for instance, the surrogate split, probabilistic split, block
propagation, and missing incorporated in attribute (MIA))13. This
strategy is easy to implement and does not require preprocessing
but obliges the investigators to use an autonomous ML-based
approach to missing data preprocessing.
In the particular context of DNPC, the use of the mean capillary

blood glucose value might be influenced by selection bias, which
might explain why the “mean value” strategy had the lowest
AUROC, on average (Table 2). Other measurements of the same
type include (for example) alcohol levels, the bladder volume,
some biochemical assay (e.g., troponin and C-reactive protein).
The selection bias associated with DNPC is accepted in the EM for
ethical, organizational and economic reasons. The enforced
measurement of glycemia for every patient (especially when it is
as intrusive as a needle stick) is not ethical when it is medically
irrelevant.
Imputation consists in training a predictive model to impute

missing data from existing data in the same dataset, using a
chaining equation algorithm. The most commonly used of these is

the MICE14, which gave a slight advantage in the study by Faris
et al.15. However, several other techniques are available, such as
Gaussian processing and synthetic minority oversampling techni-
ques. The mean AUROC computed from publications using this
strategy appears to confirm Faris et al.’s observation. However, the
imputation strategy might involve more complex preprocessing
and thus requires more time and more computational resources—
especially when the number of features is large. Various options in
the MICE implementation package can speed up the imputation,
albeit at the price of greater approximation. The fixed strategy
consists in filling missing data by a constant value (often a
physiological or reference value) for each predictor. This method is
not expected to yield a higher mean AUROC than for the
imputation method. The same value is considered for each
patient, with no consideration of other variables. Hence, a diabetic
with a missing capillary glucose value would be given a normal
capillary glucose value, which is not intuitive. The “not defined”
strategy referred to studies that did not describe how they
managed missing data. However, the trained algorithm in these
studies performed worst - indicating that not specifying the
missing data strategy is not a quality indicator. The strategy used
to manage missing data was related to the type of algorithm
chosen. More specifically, if the researchers had chosen an
autonomous missing data preprocessing algorithm, they do not
have to manage the missing data themselves. However, we found
that some of the researchers who used XGBoost still preferred to
manage the missing data themselves (depending on which data

Table 3. Description of missing data in publications.

Predictor Number of publicationsa Total patientsb Missing description in publicationsc %d Total missing valuese %f

Age 70 24,554,988 15 21 13,109 0.05

Gender 66 24,297,072 15 23 1614 0.01

Race 27 9,401,259 6 22 30,691 0.33

Attendance mode 29 19,180,914 5 17 15,509 0.08

Reason for attendance 30 22,097,032 4 13 10,319 0.05

Time of visit 12 16,046,251 0 0 0.00

Day of visit 13 14,327,915 0 0 0.00

Triage 29 17,241,664 3 10 9166 0.05

GCS score 35 16,776,293 5 14 346,993 2.07

HR 56 18,959,043 11 20 82,330 0.43

RR 56 18,959,885 11 20 116,461 0.61

SBP 56 18,960,674 9 16 110,033 0.58

DBP 47 16,887,450 7 15 19,404 0.11

Blood oxygen saturation 45 7,678,163 7 16 749,390 9.76

Temperature 49 18,345,680 9 18 336,436 1.83

Pain scale 13 1,132,598 2 15 16,518 1.46

Body weight 10 238,607 3 30 6424 2.69

Prior ED visits 16 8,226,874 1 6 9250 0.11

Prior ICD-10 code 38 6,369,720 4 11 382 0.01

Hematology tests 24 1,595,185 6 25 1352 0.08

Blood electrolyte assay 25 1,837,740 3 12 956 0.05

Text data 4 469,776 2 50 6777 1.44

ECG 9 722,539 1 11 – 0.00

GCS Glasgow Coma Scale, HR heart rate, RR respiratory rate, SBP systolic blood pressure, DBP diastolic blood pressure, ED emergency department, ICD-10
International Classification of Diseases, 10th Revision.
aThe number of publications in which the predictor was used.
bThe total number of patients included in the publications that used the predictor.
c,dThe number or proportion of publications in which the missing data were specified.
e,fThe number or proportion of patients for whom data on at least one predictor were missing.
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were missing); this choice is domain-specific and requires the
physician’s expertise.
The DNPC handling strategies have changed over time, as

described in Fig. 3. We distinguished between three periods: a
period lacking a specific strategy (before 2016), a period with a
single strategy (from 2016 to 2018), and a period with
combinations of strategies (from 2019 to present). During the
first period, prior, the publications either did not describe the
strategy applied or used the “dropping” strategy. During the
second period, a single, basic strategy was applied: dropping,
using a physiological constant for all patients, or a native
algorithm. During the last period, investigators chose more
complex methods and combined them: marking patients with
DNPC, using the mean, or imputing DNPC from patients with no
missing data. The proportion of publications using simple
strategies (mean, ML, and dropping) decreased; conversely, the
proportion using the most complex strategy (imputation)
increased to 17% in 2021.
The data collected here do not enable us to affirm that one

particular strategy is always clearly more effective than the others.
However, with reference to the AUROC, the no-op strategy
appears to produce the best results and is being increasingly used.
SAEM16 is a more recently developed algorithm and was not
frequently used in the included studies; it might, however,
perform better than MICE imputation prior to a logistic regres-
sion6. Even though the fixed value and dropping strategies gave
good results, their use became less frequent over time.
Perez-Lebel et al.’s benchmarking of the different strategies for

dealing with missing data in real health databases demonstrated
than (i) the MIA-boosted trees give the best predictive models at
little cost (a no-op strategy), (ii) missingness is informative, and (iii)
using MICE in a large database is very costly17. However, Austin
et al.18 demonstrated that using MICE on clinical data is valuable
—especially when the missing data mechanism is nonignorable.
In the publications reviewed here, the missing data strategies

were applied to the whole dataset. We hypothesize that the best
strategy is dependent on the variable. Based on this review and on
our experience, we recommend keeping all patients (i.e., not
applying a dropping strategy) if the study in question covers all
patients attending the ED. Next, physicians with expertise in the
included population could choose a specific strategy variable by
variable. For example, some variables could be completed by
applying decision rules based on medical expertise (e.g., the
Glasgow coma scale should be rated as 15 out of 15 in many
patients with minor injuries). If logistic regression can be
performed, we recommend applying SAEM to the dataset
containing the rest of the missing data. In other cases, we
recommend using boosted trees that deal with missing data (such
as MIA). If the missing data mechanism is nonignorable, the MICE
algorithm should be seriously considered because it includes the
missing data mechanism parameter in its model.
The publications did not always describe the missing data, and

the quality of reporting varied from one study to another; these
problems can lead to interpretation bias. We suggest formalizing
the description of missing data in the “Material and methods”
section of publications.
TRIPOD is the reference methodology for building a multi-

variable prediction model9. Its section 9 recommends describing
the missing data. However, this recommendation has not been
formalized. We therefore recommend the inclusion of a formal
table that lists all the missing data and describes the strategy
applied to each variable (Supplementary Fig. 2).
In studies with imbalanced outcomes (e.g., hospital admission

for 70% of the patients and discharge for 30%), the AUROC might
not be the best index of an algorithm’s performance. In such a
case, it might be valuable to compute the area under the
precision–recall curve. However, researchers should always be

required to report the AUROC, since it is the most common index
of performance.
The presentation of the strategies varied from one publication

to another. Even though all publications reported on the
development or use of a predictive model involving supervised
ML, the flowcharts were not standardized. Furthermore, the
missing data were not always described, and the train-test split
was not always mentioned clearly. Accordingly, we propose an
add-on to the TRIPOD checklist, based on Martinez et al.’s
diagram19 (Supplementary Fig. 2). Having this type of diagram in
an ML publication (even as an appendix) might help the reader.
The present study had several limitations. First, we only

searched the PubMed databases; databases such as Google
Scholar or IEEE Xplore were not used. However, PubMed indexes
all the relevant journals in the field of EM, and the number and
variety of publications indexed in PubMed were sufficient for a
methodological review. The same query yielded more than
200,000 hits in Google Scholar and more than 1000 in IEEE
Xplore. Second, we searched for publications in English only and
so might have missed relevant publications in other languages.
Third, we did not consider publications before 2000. However,
research on missing data management did not develop until the
2000s, and the most significant developments occurred over the
last two decades. Fourth, we conducted a systematic review of
methods used in EM studies, rather than results or findings. We
focused on missing data management in heterogeneous studies
that could not be directly compared as evidenced by the risk of
bias analysis. This study does not review all literature on missing
data, nonignorable missing data or all existing methods to learn
the missingness data mechanism. Fifth, we focused on the EM
field only because of the specificities of the ED in comparison with
other wards. Specifically, we considered the number of patients
managed, the variable daily flow rate, the very short length of stay
in the ED, and the great variety of reasons for attending. However,
similar missing data mechanisms could be observed in other
specialties. Lastly, we used the AUROC as a comparator, even
though other indicators20 could be considered (e.g., accuracy,
recall, specificity, precision, F-measure, the Matthews correlation
coefficient, the mean absolute error, and the Brier score).
DNPC constitute the “missing data” in ML studies in the field of

EM. Although DNPC have been handled more rigorously since
2020, the strategies used are still not exhaustive, systematic or
homogeneous. The imputation strategy appears to yield the best
results, but requires more time and computational resources;
however, given the heterogeneity of the studies reviewed, we
cannot say whether one missing data strategy was clearly better
than another. To increase the quality and comparability of these
studies, we recommend filling out the TRIPOD checklist for each
new publication, summarizing the ML process in an explicit
methodological diagram, and always reporting the AUROC (even
when it is not the primary outcome).

METHOD
Design
We extracted data and reported our results in accordance with the
Critical Appraisal and Data Extraction for Systematic Reviews of
Prediction Modelling Studies (CHARMS)21 and the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA)22 guidelines (see the checklist in Supplementary Table
3). With regard to missing data strategies, we extracted the
models, predictors, and outcomes from each publication. The
protocol was not registered before the beginning of the study.

Search strategy
In January 2022, we searched the PubMed database with the
following Medical Subject Headings (MeSH): “(emergency
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medicine OR emergency service) AND (artificial intelligence OR
machine learning)”.

Inclusion and exclusion criteria
We assessed all publications in English concerning the construc-
tion or application of a predictive model for structured data in an
adult ED. Duplicate studies and reviews were excluded, as were
studies published before 2000. We excluded studies whose
predictive model was based solely on natural language proces-
sing, given that the missing data are not typically handled in the
same way as for structured data. Studies based solely on
additional examinations (such as imaging or bacteriologic tests)
and that lacked the clinical context were also excluded. Lastly,
non-clinical studies (i.e., based solely on societal variables) and
publications for which the full text was not available were also
excluded.

The study selection process
Two investigators (E.A. and D.A.G.) screened the PubMed search
results on the basis of each publication title. Next, the two
investigators read the abstracts and excluded ineligible studies.
Lastly, the full-text versions of the remaining publications were
read to determine whether the methodological details met the
inclusion criteria.

The data collection process
Data in the included publications (publication references, the
relevant CHARMS items, missing data strategies, the dataset split,
and best AUROC value for training and validation stages) were
entered on an Excel® (Microsoft Corp., Cupertino, USA) spread-
sheet by one investigator (E.A.) and reviewed by another (D.A.G.).
If the publication did not specify how missing data were handled,
we considered that the strategy was “not specified”. If the
publication did not specify how the dataset had been split into a
training set and a test set, we considered they used the typical
80:20 ratio. Lastly, we considered that the use of an independent
dataset was obligatory for a validation step. When the dataset
used to calculate an algorithm’s performance was not indepen-
dent, we considered that the algorithm had been tested but not
validated.

The data analysis
We counted the missing data strategies applied in the reviewed
publication in a first matrix table. Since multiple strategies could
be applied in a publication, a publication can be counted twice.
We considered the mean of the AUROC to describe the
performance of the publication when a unique strategy was
applied. We described the missing data in a second table by
counting for each variable the number of publications, patients,
and missing data. We reported the publication using the
Prediction model Risk Of Bias ASsessment Tool (PROBAST)23.
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