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Abstract 7 

This study develops displacement- and kinetic energy-based tuning methods for the design of the tuned 8 

inerter dampers (TIDs) coupled to both linear and nonlinear primary systems. For the linear primary system, 9 

the design of the TID is obtained analytically. The steady-state frequency-response relationship of the 10 

nonlinear primary system with a softening or hardening stiffness nonlinearity is obtained using the harmonic 11 

balance (HB) method. Analytical and numerical tuning approaches based on HB results are proposed for 12 

optimal designs of the TID to achieve equal peaks in the response curves of the displacement and the kinetic 13 

energy of the primary system. Via the developed approaches, the optimal stiffness of the TID can be 14 

obtained according to the stiffness nonlinearity of the primary system and the inertance of the absorber. 15 

Unlike the linear primary oscillator case, for a nonlinear primary oscillator the shape of its resonant peaks 16 

is mainly affected by the damping ratio of the TID, while the peak values depend more on the stiffness ratio. 17 

The proposed designs are shown to be effective in a wide range of stiffness nonlinearities and inertances. 18 

This study demonstrates the benefits of using inerters in vibration suppression devices, and the adopted 19 

methods are directly applicable for nonlinear systems with different types of nonlinearities.  20 

Keywords: tuned inerter damper; dynamic vibration absorber; nonlinear stiffness; equal-peak method; 21 

vibration power flow; vibration suppression 22 

1. Introduction 23 

Tuned mass dampers (TMDs) or dynamic vibration absorbers are widely used for suppressing the 24 

vibrations of engineering structures subjected to external loads. To reduce the peak dynamic response of a 25 

primary vibrating system, a classical TMD comprising a mass, spring, and damper can be attached to the 26 

system to achieve the desired frequency-response behaviour of the integrated system. The response curve 27 

of a harmonically excited single-degree-of-freedom (DOF) primary system with a TMD was shown to pass 28 

through two fixed points [1]. Thus, the equal-peak method can be used to find approximate optimal values 29 

of the stiffness and damping of an absorber with a given mass. Recently, the exact closed-form solutions of 30 

the optimal stiffness and damping of a TMD were found [2, 3].  31 
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While vibration absorbers have been widely used for linear structures [4-7], high-performance 32 

vibration-suppression devices are required for nonlinear primary systems. Some studies have included 33 

nonlinear passive elements in TMDs to achieve enhanced performance. Silveira et al. [8] proposed the use 34 

of nonlinear asymmetrical shock absorber to improve the passenger comfort in vehicles. Casalotti et al. [9] 35 

studied the vibration absorption capability and dynamic response behaviour of a metamaterial beam with 36 

the embedded array of nonlinear spring-mass absorbers. Potential use of nonlinear vibration absorbers in 37 

rotor and propulsion systems has also been investigated for vibration attenuation purpose [10, 11]. Viguie 38 

and Kerschen [12, 13] proposed a qualitative tuning method to suppress vibrations using a nonlinear 39 

dynamic absorber. They used a frequency-energy plot based on the energy conservation law and obtained 40 

the parameter values of the absorber by computational iterations. Batou and Adhikari [14] investigated the 41 

dynamic performance of a vibration absorber with viscoelastic properties. Yang et al. [15] examined the 42 

power flow characteristics of a nonlinear vibration absorber coupled to a nonlinear primary system with 43 

stiffness and damping nonlinearity. They found that a softening stiffness absorber could effectively improve 44 

the power absorption efficiency of a hardening stiffness primary system. 45 

In addition to the inclusion of stiffness and damping nonlinearities, the recently proposed inerter, can 46 

be used to improve the performance of dynamic vibration absorbers. The inerter is a passive mechanical 47 

element with two terminals whose relative acceleration is proportional to the force applied [16]. This device 48 

can be built using a flywheel-based (e.g., [16]) or fluid-based (e.g., [17], [18]) mechanisms. The introduction 49 

of inerter has fundamentally enlarged vibration absorbers’ performance that can be achieved passively, 50 

which significant benefits identified for trains [19], building structures [20-22], cables [23, 24], and aircraft 51 

landing gear [25]. Another benefit of inerter in a vibration suppression device is that it reduces the total 52 

physical weight compared to the traditional TMD, while maintaining similar performance. Based on these 53 

benefits, a specific network connection of the inerter, damper and spring elements, namely the tuned inerter 54 

damper (TID) has attracted a lot of interest [26, 27]. Pietrosanti et al. [28] used a tuned mass damper inerter 55 

(TMDI) to reduce dynamic vibrations excited by a white noise. The corresponding optimisation was carried 56 

out by minimizing displacement and acceleration and maximizing of the ratio of the dissipated energy to 57 

total input energy. Marian and Giaralis [29] proposed a closed-form analytical expression for the design of 58 

a linear TMDI attached to a linear system so as to achieve vibration control and energy harvesting. Brzeski 59 

et al. [30] examined a pendulum-based absorber with an inerter attached to a nonlinear Duffing oscillator 60 

and showed that it could eliminate the unwanted bifurcations and the instabilities of the primary system. 61 

It is noted that many previous studies on vibration suppression systems have been focused on the use 62 

of individual displacement responses in quantifying the vibration level. The power flow and energy transfer 63 

information have been usually ignored. The power flow analysis (PFA) is a widely accepted tool for 64 

dynamic analysis and performance evaluation of linear and nonlinear dynamical systems, including inerter-65 
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based suppression systems [31]. Yang et al. [32] explored the vibration power flow and energy transmission 66 

behaviour of a proposed inerter-based nonlinear vibration isolator. Zhu et al. [33] studied the vibration 67 

suppression performance and energy transfer path of laminated composite plates with different inerter-based 68 

suppression devices. Zhuang et al. [34] examined the vibration energy transmission behaviour for 69 

performance analysis of coupled systems with a nonlinear inerter-based joint. There has been much recent 70 

research interest in developing nonlinear energy sink (NES) acting essentially as passive vibration absorbers 71 

without the linear restoring force term [35]. Compared with conventional vibration absorbers, NES has been 72 

shown to have a wide effective frequency range. With an NES attached to a primary vibrating system, 73 

targeted energy transfer (TET) occurs from the vibrating source to a nonlinear attachment in a one-way and 74 

irreversible manner, which was also referred to as energy pumping [36, 37]. Zhang et al. [38] proposed a 75 

type of NES that replaced the conventional mass in an attachment by an inerter. The inerter-based NES was 76 

shown to have a better vibration suppression performance compared with the conventional NES. 77 

Javidialesaadi and Wierschem [39] studied the optimal design of a novel structure with NES and inerter. 78 

The use of inerter-based NES devices in a number of vibration control applications including fluid pipe [40], 79 

suspension system [41] and elastic beam [42] has been investigated. Ding and Chen [43] presented a 80 

comprehensive review on the recent development of NES in design, analysis, and engineering applications. 81 

While there has been work reported on TID and its applications, its optimum parameter tuning when 82 

connected with a nonlinear primary system has not yet been discussed. Some work has been reported to 83 

present an explicit formula of the optimal nonlinear stiffness of a conventional TMD attached to a primary 84 

system [44, 45]. In this study, a displacement- and kinetic energy-based tuning method is developed for a 85 

TID attached to linear and nonlinear primary systems. The main novelties of this work are: (1) the closed-86 

form expressions of optimal stiffness and damping ratios of tuned inerter dampers for nonlinear primary 87 

systems are obtained; (2) optimal equal peaks of the response amplitude or the kinetic energy of the 88 

nonlinear primary system mass are achieved; (3) systematic tuning methods based on analytical and 89 

numerical (semi-analytical) approaches are proposed. For the linear primary system, the optimal stiffness 90 

and damping ratios of the TID for achieving equal peaks of the displacement response amplitude and kinetic 91 

energy curves are obtained using the fixed-point theory. For the nonlinear primary system with possible 92 

softening or hardening stiffness nonlinearity, the frequency-response relationship is obtained by using the 93 

harmonic balance (HB) method. Expressions for the optimal stiffness and damping ratios of the TID are 94 

obtained analytically and numerically based on iterations and regression fitting. It has been shown that both 95 

methods can identify the optimum TID parameters with minor discrepancies and works for a large range of 96 

nonlinearities and inertance values.  97 

The rest of this paper is organised as follows. Section 2 presents the displacement- and kinetic energy-98 

based equal-peak design of the TID for a linear primary system. Section 3 derives the analytical frequency-99 
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response relationship of the system with a TID attached to a nonlinear primary system using the HB method. 100 

In Section 4, the analytical and numerical tuning methods are developed for the design of the TID to achieve 101 

equal peaks in the displacement and in the kinetic energy curves of the nonlinear primary mass. The 102 

conclusions are presented in the final section of the paper. 103 

2. TID coupled to a linear primary system 104 

2.1 Displacement-based equal-peak method 105 

Figure 1(a) shows a dynamical system comprising a harmonically forced linear single-DOF primary 106 

system with mass 𝑚1, spring constant 𝑘1, and damping factor 𝑐1. A TMD with mass 𝑚2, linear spring 107 

constant 𝑘2, and viscous damping factor 𝑐2, is attached to a single-DOF primary system, to reduce its 108 

response amplitude at the original resonance. The displacements of the primary system and absorber are 109 

denoted by 𝑥1 and 𝑥2, respectively.  110 

Den Hartog [1] pointed out that, for a given absorber mass, the steady-state response of the 111 

harmonically excited primary system passes through two fixed points, independently of the absorber 112 

damping. Based on this property, the equal-peak method was proposed to achieve the equal response peaks 113 

of the primary system, by setting the optimal stiffness and optimal damping of the TMD as 114 

𝛾opt =
𝜔2

𝜔1
= √

𝑘2𝑚1

𝑘1𝑚2
≈

1

1+𝜆𝑚
,       𝜁opt =

𝑐2

2√𝑘2𝑚2
≈ √

3𝜆𝑚

8(1+𝜆𝑚)
,                     (1a, 1b)                                  115 

respectively, where  𝜔1 = √𝑘1 𝑚1⁄  and 𝜔2 = √𝑘2 𝑚2⁄  are the undamped natural frequencies for the 116 

primary system and the TMD, respectively, and 𝜆𝑚 = 𝑚2/𝑚1 is the mass ratio, the maximum value of 117 

which is often constrained in practical designs. If the values of 𝑚2  and 𝜆𝑚  are set, the optimal spring 118 

stiffness of the TMD can be obtained using Eq. (1a), and its damping can then be determined using Eq. (1b). 119 

Note that Eq. (1) only provides approximate solutions of the TMD parameter values for the realization of 120 

the equal response peaks.  121 
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Fig. 1. Application of the (a) TMD and (b) TID to a linear primary system.  123 
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Figure 1(b) shows the application of the TID consisting of an inerter with inertance 𝑏, spring constant 124 

𝑘2 , and damping factor 𝑐2  to the same harmonically excited primary system. Many studies have been 125 

reported using inerter-based devices with one terminal grounded as a vibration absorber ([46-49]), in 126 

particular for vibration reduction of civil engineering structures subject to base excitation [50]. The 127 

displacements of the inerter terminals are denoted by 𝑥1 and 𝑥2. The equations of motion of the system are  128 

𝑚1�̈�1 + 𝑐1�̇�1 + 𝑘1𝑥1 − 𝑏(�̈�2 − �̈�1) = 𝑓𝑒 cos 𝜔𝑡,                                          (2a) 129 

𝑏(�̈�2 − �̈�1) + 𝑘2𝑥2 + 𝑐2�̇�2 = 0.                                                        (2b) 130 

To facilitate the later derivation process, the following parameters are introduced: 131 

𝜔1 = √
𝑘1

𝑚
, ω20 = √

𝑘2

𝑏
, 𝛾 =

ω20

𝜔1
,   𝑙0 =

𝑚1𝑔

𝑘1
,  𝜆 =

𝑏

𝑚1
,      𝜁1 =

𝑐1

2𝑚1𝜔1
,    132 

 𝜁2 =
𝑐2

2𝑏𝜔20
,   𝑋1 =

𝑥1

𝑙0
,   𝑋2 =

𝑥2

𝑙0
,  𝐹𝑒 =

𝑓𝑒

𝑘1𝑙0
, Ω =

𝜔

𝜔1
, 𝜏 = 𝜔1𝑡, 133 

where 𝜔1 and 𝜔20 are the natural frequencies of the primary system and TID, respectively; 𝛾 is the ratio of 134 

these two frequencies; 𝑙0 is a characteristic length used for later nondimensionalisation; 𝜆 is the inertance-135 

to-mass ratio; 𝜁1 and 𝜁2 are the damping ratios of the primary system and absorber, respectively; 𝑋1 and 𝑋2 136 

are the dimensionless displacements of the two terminals of the inerter; 𝐹𝑒  and Ω are the dimensionless 137 

external force amplitude and frequency, respectively, and 𝜏 is the non-dimensional time. Then, Eq. (2) can 138 

be transformed into a dimensionless matrix form as follows: 139 

[
1 + 𝜆 −𝜆

−𝜆 𝜆
] {

𝑋1
′′

𝑋2
′′} + [

2𝜁1 0
0 2𝜁2𝜆𝛾

] {
𝑋1

′

𝑋2
′ } + [

1 0
0 𝜆𝛾2] {

𝑋1

𝑋2
} = {𝐹𝑒eiΩ𝜏

0
},               (3) 140 

where the primes denote the differentiation operations with respect to 𝜏. The steady-state solutions of Eq. 141 

(3) can be written as 142 

𝑋1 = 𝑅1eiΩ𝜏,   𝑋2 = 𝑅2eiΩ𝜏,                                                           (4a, b) 143 

where 𝑅1  and 𝑅2  are the response amplitudes of the primary mass and the absorber, respectively. By 144 

inserting Eq. (4) and its first and second order derivatives into Eq. (3), we obtain 145 

[
−Ω2(1 + 𝜆) + 2Ω𝜁1i + 1 Ω2𝜆

Ω2𝜆 −Ω2𝜆 + 2Ω𝜁2𝜆𝛾i + 𝜆𝛾2] {
𝑅1

𝑅2
} = {

𝐹𝑒

0
}.                         (5) 146 

Eq. (5) can be further transformed into 147 

{
𝑅1

𝑅2
} = [

−Ω2(1 + 𝜆) + 2Ω𝜁1i + 1 Ω2𝜆

Ω2𝜆 −Ω2𝜆 + 2Ω𝜁2𝜆𝛾i + 𝜆𝛾2]

−1

{
𝐹𝑒

0
} ,              (6) 148 

where [ ]−1 denotes the operation of taking the inverse matrix. Therefore, the nonlinear receptance function 149 

of the primary mass is 150 

𝑅1

𝐹𝑒
=

−Ω2𝜆+𝜆𝛾2+2Ω𝜁2𝜆𝛾i

((−Ω2(1+𝜆)+1)(−Ω2𝜆+𝜆𝛾2)−4Ω2𝜁1𝜁2𝜆𝛾−Ω4𝜆2)+(−Ω2𝜆𝜁1+𝜆𝛾2𝜁1+𝜁2𝜆𝛾−Ω2𝜁2𝜆𝛾−Ω2𝜁2𝜆2𝛾)2Ωi
  ,       (7) 151 
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For an undamped primary system with 𝜁1 = 0, the square of 𝑅1/𝐹𝑒 can be expressed as 152 

(
𝑅1

𝐹𝑒
)

2
=

(𝛾2−Ω2)
2

+4𝜁2
2Ω2𝛾2

(Ω2(Ω2−1−𝛾2−𝜆𝛾2)+𝛾2)2+4𝜁2
2Ω2𝛾2(1−Ω2−Ω2𝜆)2  .                               (8) 153 

For the TID, the displacement-based equal-peak approach can also be applied to find the approximate 154 

optimal stiffness and damping parameters [29], which should be set as  155 

𝛾opt ≈
1

1+𝜆
,      𝜁opt ≈ √

3𝜆

8(1+𝜆)
,                                               (9a, 9b) 156 

where 𝛾opt and 𝜁opt are the optimal stiffness and damping ratios required for the TID system to achieve 157 

equal resonant peaks of the response amplitude. The optimal stiffness and damping ratios of the TMD and 158 

TID (shown by Eqs. (9) and (1), respectively) share the same expression just be changing 𝜆𝑚 to 𝜆. If the 159 

inertance-to-mass ratio 𝜆 of the TID is set equal to the mass ratio 𝜆𝑚 of the TMD, their optimal stiffness 160 

and damping coefficients will also be the same. 161 

Figure 2(a) and (b) shows the application of the displacement-based equal-peak approach to the TID 162 

with an inertance-to-mass ratio 𝜆 of 0.02 and 0.05, respectively. The parameters are set as  𝜁1 = 0.001 and 163 

𝐹𝑒 = 0.05.  The optimal stiffness ratio is 𝛾opt = 0.9804 and the optimal damping of the TID is 𝜁opt =164 

0.0857 when 𝜆 equals 0.02, according to Eq (9). When the damping coefficient takes the other values of 165 

0.1 or 0.05, the two peaks in each curve of the displacement response have different heights. Nevertheless, 166 

the frequency-response curves of all three cases pass through the two invariant points 𝑃 and 𝑄, see in Fig. 167 

2(a). When the inertance-to-mass ratio increases from 0.02 to 0.05, two equal-height peaks of displacement 168 

still can be obtained with the optimal parameters 𝛾opt = 0.9524 and 𝜁opt = 0.1336 based on Eq. (9). It is 169 

also noted that the optimal equal peaks cam be further reduced as the increase of inertance-to-mass ratio. 170 

 171 

Fig. 2. Displacement-based equal-peak approach for the TID coupled to a linear primary system with (a) 𝜆 = 0.02 and 172 

(b) 𝜆 = 0.05. The parameters are set as  𝜁1 = 0.001 and 𝐹𝑒 = 0.05. 173 



7 

 

2.2 Kinetic energy-based equal-peak method  174 

In some applications, the kinetic energy of the primary system is important for vibration suppression. 175 

Therefore, it is useful to develop the equal-peak method based on the kinetic energy. The dimensionless 176 

kinetic energy 𝐾p of the primary mass is defined as 177 

𝐾p(Ω) =
1

2
(|𝑋1

′ |max)2 =
1

2
𝑅1

2Ω2,                                                              (10) 178 

where |𝑋1
′ |max represents the maximum dimensionless velocity of the primary system. Fig. 2 suggests that, 179 

with set spring stiffness and mass ratios of the TID, the kinetic energy curves of the primary system maintain 180 

the invariant points at 𝑃|Ω=Ω1
 and 𝑄|Ω=Ω2

 regardless of the changes in the damping of the absorber. 181 

Therefore, for the absorber with zero or infinite damping,  182 

lim
𝜁2→∞

1

2
𝑅1

2Ω2 = lim
𝜁2→0

1

2
𝑅1

2Ω2,                                                          (11) 183 

have to be satisfied at Ω = Ω1  and Ω = Ω2 . By using Eq. (8) to replace 𝑅1  in Eq. (10), and further 184 

simplifying the resultant equation, we have 185 

Ω4(2 + 𝜆) − 2(𝜆𝛾2 + 𝛾2 + 1)Ω2 + 2𝛾2 = 0,                                      (12) 186 

which is a quadratic equation of Ω2; the solutions are Ω1
2 and Ω2

2, providing the corresponding frequencies 187 

of the invariant points. Based on the property of the quadratic equations, we have  188 

Ω1Ω2 = 𝛾√
2

(2+𝜆)
.                                                                     (13) 189 

To achieve two equal peaks in the kinetic energy curve, two conditions have to be established. The 190 

first one is that the two peaks in the kinetic energy curve are of the same height at the frequencies associated 191 

with the two fixed points. When the absorber damping tends to infinity, the kinetic energy of the primary 192 

system at the corresponding frequencies Ω1 and Ω2 should remain the same: 193 

lim
𝜁2→∞

1

2
Ω1

2(𝑅1|Ω=Ω1
)2 = lim

𝜁2→∞

1

2
Ω2

2(𝑅1|Ω=Ω2
)2.                                          (14) 194 

By inserting Eq. (8) into Eq. (14), we have 195 

Ω1Ω2 =
1

𝜆+1
.                                                                     (15) 196 

Based on Eqs. (13) and (15), the optimal stiffness ratio of the TID is found to be 197 

𝛾opt =
√2+𝜆

(𝜆+1)√2
.                                                                   (16) 198 
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The other condition for achieving equal peaks of the kinetic energy is that the gradient of the kinetic 199 

energy 𝐾p at the frequencies of the invariant points is zero [2, 29], i.e.,   200 

d(
1

2
 𝑅1

2Ω2)

dΩ
|

Ω=Ω1 

=
d(

1

2
 𝑅1

2Ω2)

dΩ
|

Ω=Ω2 

=
d(

𝐺2+4𝜁2
2𝐻2

𝑃2+4𝜁2
2𝑄2)

dΩ
= 0,                                       (17) 201 

where 𝐺 = (𝛾2 − Ω2)Ω, 𝐻 = 𝛾Ω2, 𝑃 = Ω2(Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 𝛾2, and 𝑄 = Ω𝛾(1 − Ω2 − Ω2𝜆). Eq. 202 

(17) is equivalent to    203 

(𝐺2 + 4𝜁2
2𝐻2)′(𝑃2 + 4𝜁2

2𝑄2) − (𝐺2 + 4𝜁2
2𝐻2)(𝑃2 + 4𝜁2

2𝑄2)′ = 0,                 (18) 204 

where the primes denote the first order derivatives of the function with respect to Ω, and 205 

 (𝐺2 + 4𝜁2
2𝐻2)′ = (2Ω(𝛾2 − Ω2)(𝛾2 − 3Ω2) + 16𝜁2

2𝛾2Ω3),                              (19)   206 

(𝑃2 + 4𝜁2
2𝑄2)′ = 4Ω(Ω2(Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 𝛾2)(2Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 8Ω𝜁2

2𝛾2(1 − 3Ω2 −207 

3Ω2𝜆)(1 − Ω2 − Ω2𝜆).                                                  (20) 208 

By substituting Eqs. (19) and (20) into Eq. (18), it follows that 209 

(2Ω(𝛾2 − Ω2)(𝛾2 − 3Ω2) + 16𝜁2
2𝛾2Ω3)((Ω2(Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 𝛾2)2 + 4𝜁2

2Ω2𝛾2(1 − Ω2 −210 

Ω2𝜆)2) − (Ω2(𝛾2 − Ω2)2 + 4𝜁2
2𝛾2Ω4) (4Ω(Ω2(Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 𝛾2)(2Ω2 − 1 − 𝛾2 − 𝜆𝛾2) +211 

8Ω𝜁2
2𝛾2(1 − 3Ω2 − 3Ω2𝜆)(1 − Ω2 − Ω2𝜆)) = 0,                                    (21) 212 

Eq. (21) could be further simplified into 213 

(𝐴 + 16𝜁2
2𝛾2Ω3)(𝐵 + 4𝜁2

2Ω2𝛾2(1 − Ω2 − Ω2𝜆)2) − (𝐶 + 4𝜁2
2𝛾2Ω4) (𝐷 + 8Ω𝜁2

2𝛾2(1 − 3Ω2 −214 

3Ω2𝜆)(1 − Ω2 − Ω2𝜆)) = 0                                                     (22) 215 

where 216 

𝐴 = 2Ω(𝛾2 − Ω2)(𝛾2 − 3Ω2),                                                          (23a) 217 

𝐵 = (Ω2(Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 𝛾2)2,                                             (23b) 218 

𝐶 = Ω2(𝛾2 − Ω2)2,                                                                            (23c) 219 

 𝐷 = 4Ω(Ω2(Ω2 − 1 − 𝛾2 − 𝜆𝛾2) + 𝛾2)(2Ω2 − 1 − 𝛾2 − 𝜆𝛾2),     (23d) 220 

Using the notations in Eq. (23), Eq. (22) becomes 221 

(32𝛾4Ω5(1 − Ω4(1 + 𝜆)2)) 𝜁2
4 + (4Ω2𝛾2(1 − Ω2 − Ω2𝜆)2𝐴 + 16𝛾2Ω3𝐵 − 8Ω𝛾2(1 − 3Ω2 −222 

3Ω2𝜆)(1 − Ω2 − Ω2𝜆)𝐶 − 4𝛾2Ω4𝐷)𝜁2
2 + 𝐴𝐵 − 𝐶𝐷 = 0 ,          (24) 223 

which is a quadratic equation of 𝜁2
2, and its solutions are denoted as ζ2,Ω1

2  and ζ2,Ω2

2 , the squares of the 224 

damping values at two invariant points. This single algebraic equation can be solved either analytically or 225 
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numerically. The approximate mean of the two values of the damping ratio can be used as the optimal 226 

damping [2]: 227 

𝜁opt ≈
1

4(2+𝜆)
√

𝜆(24+24𝜆+5𝜆2)

1+𝜆
.                                                        (25) 228 

Eqs. (16) and (25) present the optimal stiffness and damping ratios of the TID required to achieve equal 229 

peaks of the kinetic energy curve for the primary mass.  230 

Figure 3(a) and (b) shows the use of the kinetic energy-based equal-peak approach for the TID with 231 

an inertance-to-mass ratio 𝜆 of 0.02 and 0.05, respectively, 𝜁1 = 0.001, and 𝐹𝑒 = 0.05. Based on Eqs. (16) 232 

and (25), the values of the optimal stiffness and optimal damping coefficients of the TID in Fig. 3(a) are 233 

calculated to be 0.9853 and 0.0857, respectively. The kinetic energy curves associated with a lower damping 234 

𝜁2 = 0.05 of the TID and a higher damping 𝜁2 = 0.1 are also included for comparison. Fig. 3(a) shows that 235 

when the optimal parameter values of the TID are used, equal peaks in the kinetic energy are achieved. It is 236 

interesting to note that when the TID damping is set as 𝜁2 = 0.05, the peak values of 𝐾p become much 237 

larger, compared with the optimal case. However, for the same case with 𝜁2 = 0.05, the local minimum 238 

value of 𝐾p at the anti-peak near Ω ≈ 0.99 is much smaller than the other two cases. Fig. 3(b) shows that 239 

when a larger inertance-to-mass ratio of 𝜆 = 0.05 is used for the TID, equal peaks in the curve of kinetic 240 

energy can be achieved by setting 𝛾 = 0.9642 and 𝜁2 = 0.1336. A comparison of Fig. 3(a) and 3(b) shows 241 

that the peaks of 𝐾p for the optimal design cases become lower when the inertance-to-mass ratio 𝜆 of the 242 

TID increases, suggesting the potential benefits of having a larger inertance in the absorber. 243 

 244 

Fig. 3. Kinetic energy-based equal-peak method for the TID with an inertance-mass ratio 𝜆 of (a) 0.02 and (b) 0.05. 245 

Parameters are set as 𝜁1 = 0.001, and 𝐹𝑒 = 0.05. 246 
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3. TID coupled to a nonlinear primary system 247 

3.1 Mathematical Modelling 248 

In certain applications, the primary structure, the vibration response of which needs to be suppressed, 249 

may behave nonlinearly. In this section, a nonlinear primary system is considered; the TID is attached to 250 

the system to obtain equal peaks in the displacement and kinetic energy curves. As shown in Fig. 4, the 251 

nonlinearity of the primary system is modelled with a nonlinear spring with restoring force 𝑔(𝑥1) = 𝑘𝑛𝑥1
3. 252 

The excitation force and other system parameters are defined as shown in Fig. 1(b). 253 

The equations of motion of the integrated system can be written as 254 

𝑚1�̈�1 + 𝑐�̇�1 + 𝑘1𝑥1 + 𝑘𝑛𝑥1
3 − 𝑏(�̈�2 − �̈�1) = 𝑓𝑒 cos 𝜔𝑡,                            (26a) 255 

𝑏(�̈�2 − �̈�1) + 𝑘2𝑥2 + 𝑐2�̇�2 = 0.                                                     (26b) 256 

By using parameters 𝜔1, ω20, 𝛾, 𝑙0, 𝜆, 𝜁1, 𝜁2, 𝑋1, 𝑋2, 𝐹𝑒 , Ω, and 𝜏 defined in Section 2.1 and introducing a 257 

nonlinear stiffness ratio 𝜀 = 𝑘𝑛𝑙0
2 𝑘1⁄  for the nonlinear spring of the primary system, Eq. (26) is rewritten 258 

into a dimensionless form as  259 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝜀𝑋1
3 − 𝜆(𝑋2

′′ − 𝑋1
′′) = 𝐹𝑒 cos Ω𝜏,                                  (27a) 260 

𝜆(𝑋2
′′ − 𝑋1

′′) + 𝜆𝛾2𝑋2 + 2𝜁2𝜆𝛾𝑋2
′ = 0.                                            (27b) 261 

These two differential equations can be transformed into a set of first-order differential equations, which 262 

may be solved using a time-marching method. Analytical approximations based on the HB method are made 263 

to find the steady-state response of the system and to determine the optimal parameters of the TID based on 264 

the application of the equal-peak method. 265 

m

Nonlinear primary oscillator TID

𝑥1 

𝑚1 
𝑘1 

𝑘𝑛  

𝑐1 

𝑥2 

𝑘2 

𝑐2 

𝑏 

𝑓𝑒 cos 𝜔𝑡 
 266 

Fig. 4. Schematic of a nonlinear primary system with an attached TID. 267 
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3.2 Frequency-response relationship 268 

Here, a first-order approximation of the steady-state frequency-response relationship of the system is 269 

derived using the HB method. The steady-state dimensionless displacements, velocities, and accelerations 270 

for the periodic response of the system are approximated as 271 

𝑋1 = 𝑅1 cos(Ω𝜏 + 𝜙) , 𝑋1
′ = −𝑅1Ω sin(Ω𝜏 + 𝜙),  𝑋1

′′ = −𝑅1Ω2 cos(Ω𝜏 + 𝜙),           (28a-28c) 272 

𝑋2 = 𝑅2 cos(Ω𝜏 + 𝜃) , 𝑋2
′ = −𝑅2Ω sin(Ω𝜏 + 𝜃),   𝑋2

′′ = −𝑅2Ω2 cos(Ω𝜏 + 𝜃),             (28d-28f) 273 

where 𝑅1 and 𝑅2 represent the non-dimensional displacement amplitudes of 𝑋1 and 𝑋2, respectively, and 𝜙 274 

and 𝜃 are the corresponding phase angles. By inserting Eq. (28) into Eq. (27) and neglecting high order 275 

terms, we have 276 

𝑅1 (1 − Ω2 +
3

4
𝜀𝑅1

2 − 𝜆Ω2) cos(Ω𝜏 + 𝜙) − 2𝜁1𝑅1Ω sin(Ω𝜏 + 𝜙) + 𝜆Ω2𝑅2 cos(Ω𝜏 + 𝜃) = 𝐹𝑒 cos Ω𝜏,                                        277 

(29a) 278 

𝜆Ω2𝑅1 cos(Ω𝜏 + 𝜙) + 𝜆𝑅2(𝛾2 − Ω2) cos(Ω𝜏 + 𝜃) − 2𝜁2𝜆𝛾𝑅2Ω sin(Ω𝜏 + 𝜃) = 0.        (29b) 279 

By balancing the coefficients of the harmonic term cos(Ω𝜏 + 𝜙) in Eq. (29a), we have 280 

𝑅1 (1 − Ω2 +
3

4
𝜀𝑅1

2 − 𝜆Ω2) + 𝜆𝑅2Ω2 cos(𝜃 − 𝜙) = 𝐹𝑒 cos 𝜙,                        (30) 281 

where terms cos(Ω𝜏 + 𝜃)  and cos Ω𝜏  in Eq. (29a) can be rewritten as cos(Ω𝜏 + 𝜙 + 𝜃 − 𝜙)  and 282 

cos(Ω𝜏 + 𝜙 − 𝜙) for using the trigonometric identities cos(𝛼 + 𝛽) = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 retaining 283 

the terms with cos(Ω𝜏 + 𝜙) and sin(Ω𝜏 + 𝜙). Similarly, by equating the coefficients of the harmonic term 284 

sin(Ω𝜏 + 𝜙) in Eq. (29a), we obtain 285 

−2𝜁1𝑅1Ω − 𝜆𝑅2Ω2 sin(𝜃 − 𝜙) = 𝐹𝑒 sin 𝜙.                                              (31) 286 

The term cos(Ω𝜏 + 𝜙) in Eq. (29b) is equivalent to cos(Ω𝜏 + 𝜃 + 𝜙 − 𝜃) for using the trigonometric 287 

identities cos(𝛼 + 𝛽) = cos 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 retaining the terms with cos(Ω𝜏 + 𝜃) and sin(Ω𝜏 + 𝜃). 288 

By balancing the coefficients of the harmonic term cos(Ω𝜏 + 𝜃) in Eq. (29b), it follows that 289 

𝜆𝑅2(𝛾2 − Ω2) + 𝜆𝑅1Ω2 cos(𝜃 − 𝜙) = 0.                                         (32) 290 

Equating the coefficients of the harmonic term sin(Ω𝜏 + 𝜃) in Eq. (29b), we have 291 

−2𝜁2𝜆𝛾𝑅2Ω + 𝜆𝑅1Ω2 sin(𝜃 − 𝜙) = 0.                                          (33) 292 

By using Eqs. (32) and (33), the trigonometric terms cos(𝜃 − 𝜙) and sin(𝜃 − 𝜙) are expressed as 293 

cos(𝜃 − 𝜙) = −
𝑅2(𝛾2−Ω2)

𝑅1Ω2 ,                                                       (34a) 294 
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sin(𝜃 − 𝜙) =
2𝜁2𝛾𝑅2Ω

𝑅1Ω2 ,                                                               (34b) 295 

The sum of the squares of Eqs. (34a) and Eq. (34b) to remove the terms with cos(𝜃 − 𝜙) and sin(𝜃 − 𝜙), 296 

we have 297 

𝑅2
2(𝛾2 − Ω2)2 + 𝑅2

2(2𝜁2𝛾Ω)2 = 𝑅1
2Ω4,                                                (35) 298 

A replacement of the trigonometric term cos(𝜃 − 𝜙) in Eq. (30) with Eq. (34a) leads to 299 

𝑅1 (1 − Ω2 +
3

4
𝜀𝑅1

2 − 𝜆Ω2) −
𝜆𝑅2

2(𝛾2−Ω2)

𝑅1
= 𝐹𝑒 cos 𝜙,                               (36) 300 

Similarly, the term sin(𝜃 − 𝜙) in Eq. (31) can be replaced by using Eq. (34b). In this way, Eq. (31) becomes 301 

−2𝜁1𝑅1Ω −
2𝜁2𝛾𝜆Ω𝑅2

2

𝑅1
= 𝐹𝑒 sin 𝜙.                                              (37) 302 

Based on Eqs. (36) and (37), the trigonometric terms cos 𝜙 and sin 𝜙 can be cancelled out, and we have 303 

((1 − Ω2 +
3

4
𝜀𝑅1

2 − 𝜆Ω2) 𝑅1
2 − 𝜆(𝛾2 − Ω2)𝑅2

2)
2

+ (2𝜁1𝑅1
2Ω + 2𝜁2𝜆𝛾Ω𝑅2

2)2 = 𝑅1
2𝐹𝑒

2.          (38) 304 

Note that Eqs. (35) and (38) are nonlinear algebraic equations providing the frequency-response 305 

relationship of the system. When the system and the excitation parameter values are known, the 306 

displacement variable 𝑅1 can be expressed as a function of 𝑅2, using Eq. (35). By inserting the resultant 307 

expression of 𝑅1  into Eq. (38), we obtain a single nonlinear algebraic equation of dimensionless 308 

displacement amplitude 𝑅2, which can be subsequently solved by using a standard bisection method [51]. 309 

Then, all the responses of the system in terms of amplitudes 𝑅1 and 𝑅2 and phase angles can be obtained. 310 

Alternatively, Eqs. (35) and (38) can be solved using the Newton–Raphson algorithm to find the steady-311 

state response. It is then possible to apply the equal-peak method to the analysis and design of the TID for 312 

a nonlinear primary system. For the validation of the frequency-response relationship obtained by using the 313 

HB method, the displacement and kinetic energy curves obtained based on the solutions of FRFs and Eq. 314 

(27) using HB and the fourth order Runge–Kutta method are plotted in Fig. 5(a) and (b), respectively. Both 315 

the hardening stiffness nonlinearity with a nonlinear stiffness ratio of 𝜀 = 1 and the softening stiffness 316 

nonlinearity with 𝜀 = −0.05  are considered. The other parameters are set as 𝐹𝑒 = 0.05, 𝜁1 = 𝜁2 =317 

0.001, 𝜆 = 0.1,  and 𝛾 = 1. The figure shows a good agreement between the analytical approximations and 318 

the numerical integration results. Therefore, Eqs. (35) and (38) are used in the subsequent section for 319 

determining the optimal parameter values for the TID required to achieve equal peaks in the displacement 320 

response and kinetic energy curves.  321 
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 322 

Fig. 5. Frequency-response relationship of the (a) displacement amplitude and (b) kinetic energy ( 𝜁1 = 𝜁2 =323 

0.001, 𝛾 = 1, 𝜆 = 0.1, 𝐹𝑒 = 0.05). Solid lines and squares for 𝜀 = 1; dashed lines and circles for 𝜀 = −0.05. Lines: 324 

HB results; Symbols: Runge–Kutta results. 325 

4. Tuning approaches for TID coupled to nonlinear systems 326 

4.1 Displacement-based equal-peak method 327 

4.1.1 Analytical tuning approach  328 

Based on the frequency-response relationship in Eqs. (35) and (38), Fig. 6(a) and (b) shows the effects 329 

of the damping and stiffness of the attached TID on the displacement response of the nonlinear primary 330 

system, respectively. The parameters of the primary system are set as 𝜀 = 0.08 and 𝜁1 = 0.001, indicating 331 

the presence of a hardening stiffness nonlinearity and a light damping, respectively. The excitation 332 

magnitude is 𝐹𝑒 = 0.05. For the TID, the inertance-to-mass ratio is set as 𝜆 = 0.02. By using Eq. (9), the 333 

optimal stiffness and damping of the TID designed for a corresponding linear primary system are calculated 334 

to be  𝛾 = 0.9804 and 𝜁2 = 0.0857, respectively, and the corresponding response curves are shown by the 335 

dashed lines. Fig. 6 shows that the use of linear optimal values does not lead to equal peaks of the 336 

displacement amplitude 𝑅1. Therefore, Eq. (9) cannot be directly used for the design of TIDs when the 337 

primary system is nonlinear. In Fig. 6(a), the damping coefficient 𝜁2 of the TID reduces from 0.11 to 0.07 338 

at intervals of 0.01 while fixing 𝛾 = 0.9804, and the results are represented by solid lines. The curve for 339 

the correspondingly linear primary system attached with an optimal TID based on Eq. (9) is shown by the 340 

dash-dotted line. The figure reveals that, regardless of the variations of 𝜁2 , the response curve of the 341 

nonlinear primary system passes through two invariant points of different heights. When the absorber 342 

damping is 𝜁2 = 0.11, there is only one peak in the curve of 𝑅1. With the reduction in 𝜁2 from 0.11 to 0.07, 343 

firstly the peak value reduces, and then two peaks appear. In Fig. 6(b), the stiffness ratio 𝛾 of the TID 344 

decreases from 0.99 to 0.97 at intervals of 0.01, while the damping is fixed at 𝜁2 = 0.0857 . The 345 
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corresponding results are denoted by solid lines. It can be seen that the variations in 𝛾 can effectively modify 346 

the peak values of the displacement. It is also observed that the left resonant peak is higher than the right 347 

with 𝛾 = 0.99, while the right peak is higher than the left one with 𝛾 = 0.97. As a result, there must exist 348 

an optimal stiffness value between 0.97 and 0.99 to achieve equal resonant peaks. The optimal value could 349 

be determined manually with the relative difference of the two peaks height meets the tolerance requirement 350 

of 0.1%. Furthermore, the equal resonant peaks of 𝑅1 may be achieved by setting 𝛾opt = 0.9560, as shown 351 

by the dotted line. It also shows that the nonlinear optimal results match well with the numerical RK method, 352 

which is denoted by the square symbols.  353 

 354 

Fig. 6. Effects of different (a) damping ratio 𝜁2 with 𝛾 = 0.9804 and (b) stiffness ratio 𝛾 with 𝜁2 = 0.0857 of the TID 355 

on the displacement response of the primary mass (𝜀 = 0.08, 𝜁
1

= 0.001, 𝐹𝑒 = 0.05, and 𝜆 = 0.02).  356 

Figure 6 shows that the damping ratio 𝜁2 of the TID mainly affects the shape of the resonant peaks, 357 

while its stiffness ratio 𝛾 considerably affects the peak values. Therefore, to achieve equal peaks of 𝑅1, the 358 

value of the stiffness ratio 𝛾 can be determined while setting the damping ratio 𝜁2 at its linear optimal value 359 

obtained by Eq. (9b). The frequency-response relationship in Eqs. (35) and (38) can be used to find the 360 

optimal parameter values of the TID for the nonlinear primary system.  In Fig. 6(b), the average peak value 361 

𝑅𝑁𝑃 of the dotted line associated with the nonlinear primary system with an optimally designed TID, is 362 

0.4877. In comparison, in Fig. 6(a), the average peak value 𝑅𝐿𝑃  of the dash-dot line, i.e., for the 363 

corresponding linear primary system with an optimally designed TID is 0.4942. It shows that these two peak 364 

values are similar, i.e., 𝑅𝑁𝑃 ≈ 𝑅𝐿𝑃. The reason may be that the nonlinear and the corresponding linear 365 

primary systems are attached with optimally designed TIDs, their vibrations of the primary systems are 366 

suppressed with low peak response amplitudes. Correspondingly, the nonlinear term in the governing 367 

equation arising from the stiffness nonlinearity will be small, such that the optimal peak values for the two 368 
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cases will be approximately the same. This property will be used to develop an analytical tuning approach 369 

of the TID coupled to nonlinear primary system. Fig. 6(a) shows that the frequency-response curves 370 

corresponding to different values of the damping ratio 𝜁2 in the TID pass through two fixed points. This 371 

behaviour indicates that an analytical tuning approach can be proposed and developed for the design of TID 372 

coupled to a nonlinear primary oscillator. Note that Eq. (35) can be further transformed into 373 

𝑅2
2 =

𝑅1
2Ω4

𝐴
,                                                                       (39) 374 

where 𝐴 = (𝛾2 − Ω2)2 + (2𝜁2𝛾Ω)2. By substituting the Eq. (39) into Eq. (38), we have 375 

(
𝑅1

𝐹𝑒
)

2
= 1/ ((1 − Ω2 +

3

4
𝜀𝑅1

2 − 𝜆Ω2 − 𝜆(𝛾2 − Ω2)
Ω4

𝐴
)

2

+ (2𝜁1Ω + 2𝜁2𝜆𝛾
Ω5

𝐴
)

2

).        (40) 376 

Here, to facilitate design of the TID, the value of 𝑅1 on the right-hand-side of Eq. (40) may be approximately 377 

by using 𝑅𝐿𝑃, the peak value of the corresponding linear primary system attached with an optimal TID.   378 

When the response amplitudes associated with the two fixed points do not change with damping ratio 𝜁2 of 379 

the TID, we have 380 

lim
𝜁2→∞

(
𝑅1

𝐹𝑒
)

2
= lim

𝜁2→0
(

𝑅1

𝐹𝑒
)

2
.                                                            (41) 381 

Eq. (41) is equivalent to  382 

Ω4(2 + 𝜆) − (2 +
3

2
𝜀𝑅𝐿𝑃

2 + 2𝛾2 + 2𝜆𝛾2) Ω2 + (2 +
3

2
𝜀𝑅𝐿𝑃

2 ) 𝛾2 = 0,                 (42) 383 

which is a quadratic equation of Ω2. Here the two solutions to Eq. (42) are denoted as Ω1
2 and Ω2

2, the sum 384 

of which should be 385 

Ω1
2 + Ω2

2 =
4+3𝜀𝑅𝐿𝑃

2 +4𝛾2+4𝜆𝛾2

2(2+𝜆)
.                                                         (43) 386 

To achieve equal peaks in the curve of the steady-state displacement response for the nonlinear 387 

primary system at the two excitation frequencies Ω1 and Ω2, we also need 388 

lim
𝜁2→∞

(
𝑅1|Ω=Ω1

𝐹𝑒
)2 = lim

𝜁2→∞
(

𝑅1|Ω=Ω2

𝐹𝑒
)2.                                                           (44) 389 

Eq. (44) can be further transformed into 390 

Ω1
2 + Ω2

2 =
4+3𝜀𝑅𝐿𝑃

2

2(𝜆+1)
.                                                                (45) 391 

By combining Eqs. (43) and (45), we obtain 392 

𝛾DA =
√4+3𝜀𝑅𝐿𝑃

2

2(1+𝜆)
,                                                                        (46) 393 

where 𝛾DA is the optimal stiffness ratio for TID to achieve equal peaks in the displacement response curve 394 

based on the analytical tuning approach, 𝜀 is the nonlinear stiffness ratio of the primary system and 𝜆 is the 395 

inertance-to-mass ratio of the TID. When 𝜀 = 0, i.e., when the primary oscillator is linear, Eq. (46) becomes 396 

equivalent to Eq. (9a).  397 
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It is noted that to obtain more accurate results of the optimal stiffness of the TID, the whole derivation 398 

process can be iterative. The idea is that in the first iteration, the linear optimal resonant peak value 𝑅𝐿𝑃 is 399 

used in Eq. (46) to obtain the stiffness of the absorber. With the first set of parameter values of the TID, the 400 

averaged peak values of 𝑅1 can be obtained using Eqs. (35) and (38), and used to replace 𝑅𝐿𝑃 in Eq. (46) to 401 

obtain the updated stiffness ratio 𝛾DA. By following this iterative process, the optimal stiffness of the TID 402 

can be obtained with sufficient accuracy.    403 

4.1.2 Numerical (semi-analytical) tuning approach 404 

Apart from analytical tuning approach to obtain the optimal design of the TID coupled to nonlinear 405 

primary systems, numerical tuning is also carried out as follows. It should be pointed out that the numerical 406 

method in this paper refers to the numerical solution to the frequency-response equations derived by the HB 407 

method, not the direction numerical integration of the system equations of motion. Therefore, it can also be 408 

called as a semi-analytical approach. As Fig. 6 confirms that equal peaks in the response curve of a nonlinear 409 

primary system can be achieved by designing the stiffness ratio 𝛾 of the TID while setting the damping to 410 

the linear optimal value. Following this procedure, the required optimal stiffness ratio 𝛾 required for the 411 

TID to achieve equal peaks in the displacement response is plotted in Fig. 7 as function of the nonlinear 412 

stiffness ratio 𝜀 of the primary system; the system parameters are 𝜁1 = 0.001 and 𝐹𝑒 = 0.05. At set values 413 

of 𝜀 and 𝜆, the damping coefficient 𝜁2 of the TID is obtained using Eq. (9b), and the frequency-response 414 

relationship in Eqs. (35) and (38) is used to obtain the optimal stiffness ratio 𝛾. The results are firstly shown 415 

in Fig. 7 and are then curve-fitted to obtain the curves corresponding to specific values of the inertance-to-416 

mass ratio 𝜆 from 0.01 to 0.1 at intervals of 0.01. Fig. 7 shows that at a fixed value of the nonlinear stiffness 417 

ratio 𝜀, the optimal stiffness ratio 𝛾DN generally decreases as the inertance-to-mass ratio 𝜆 increases. It also 418 

shows that at a set value of 𝜆, 𝛾DN of the TID has an approximately linear relationship with 𝜀 between −0.1 419 

and 0.1. This mathematical relationship can be expressed as 420 

𝛾DN = 𝑓1(𝜆)𝜀 + 𝑓2(𝜆),                                                          (47) 421 

where 𝛾DN denotes the optimal stiffness ratio to achieve equal peak in displacement obtained based on the 422 

numerical tuning, while 𝑓1(𝜆) and 𝑓2(𝜆) are functions of the inertance-to-mass ratio 𝜆; the function values 423 

are denoted by the solid dots in Fig. 8. By curve-fitting the results, the following expressions are obtained: 424 

𝑓1(𝜆) ≈ 0.0017𝜆−1.01,       𝑓2(𝜆) ≈ −0.8986𝜆 + 0.9976.                       (48a, 48b) 425 

Therefore, 𝑓1(𝜆) has an approximately negative power relationship with the inertance-to-mass ratio 426 

𝜆, and 𝑓2(𝜆) has an approximately linear relationship with 𝜆. By inserting Eq. (48) into Eq. (47), the optimal 427 

stiffness ratio of the TID can be expressed as a function of 𝜀 and 𝜆: 428 

𝛾DN ≈ 0.0017𝜆−1.01𝜀 − 0.8986𝜆 + 0.9976.                                       (49) 429 
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This ratio can be used when the primary system exhibits either hardening stiffness (i.e., 𝜀 > 0) or softening 430 

stiffness (i.e., 𝜀 < 0) nonlinearities. According to Eq. (49), for a fixed value of 𝜆, the value of 𝛾DN increases 431 

with the nonlinear stiffness ratio 𝜀, in accordance with the results shown in Fig. 7. 432 

 433 

Fig. 7. Variations in the optimal stiffness ratio 𝛾DN of the TID with respect to the nonlinear stiffness ratio 𝜀 and the 434 

inertance-to-mass ratio 𝜆 for equal peaks in the displacement response amplitude (𝐹𝑒 = 0.05, and 𝜁1 = 0.001). 435 

 436 

Fig. 8. Curve fitting of functions 𝑓1(𝜆) and 𝑓2(𝜆) of the TID for a nonlinear primary system using the displacement-437 

based equal-peak method based on numerical optimisation (𝐹𝑒 = 0.05, and 𝜁1 = 0.001).  438 

To validate the effectiveness Eq. (49) in the design of the TID attached to a nonlinear primary system, 439 

Fig. 9 shows the change in the relative differences between the peak values of the displacement response 440 

with respect to the nonlinear stiffness ratio 𝜀 and the inertance-to-mass ratio 𝜆 when 𝐹𝑒 = 0.05. The relative 441 

difference is defined as ∆% = (𝐻1 − 𝐻2) 𝐻1⁄ , where 𝐻1  and 𝐻2  (𝐻1 ≥ 𝐻2) are the peak values. Fig. 9 442 

shows that for a relatively large range of parameter values for nonlinear stiffness 𝜀 and the inertance 𝜆 of 443 
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the TID, the difference between the two peaks is lower than 1% and therefore negligible. Therefore, the 444 

proposed numerical tuning approach, i.e., the use of Eqs. (9b) and (49) to design the damping and stiffness 445 

of TIDs, can achieve the design target of creating approximately equal peaks in the displacement response 446 

of the nonlinear primary mass.  447 

 448 

Fig. 9. Validation of the proposed design of the TID for a nonlinear system following the displacement-based equal-449 
peak method using numerical optimisation. (a) 3-D and (b) 2-D contour plots of the relative percentage difference.  450 

Figure 10(a) and (b) shows the vibration suppression of a nonlinear hardening stiffness primary 451 

system with 𝜀 = 0.1  and a softening stiffness primary system with  𝜀 = −0.1  using the proposed 452 

displacement-based equal-peak method design of the TID, respectively. The solid lines present the 453 

displacement amplitudes of the primary mass by setting the damping value of the TID to be non-optimal at 454 

𝜁2 = 0.001. The dashed lines represent the cases in which the proposed optimal parameters of the TID are 455 

used. Based on Eq. (49), the values of the optimal stiffness ratio 𝛾DN are set as 1.0064 and 0.9708, and the 456 

results are shown in Fig. 10(a) and (b), respectively. Fig. 10(a) reveals that, for the non-optimal cases, there 457 

are two peaks of 𝑅1, both twisting to the right due to the hardening stiffness nonlinearity, while the proposed 458 

design of the TID leads to two equal peaks of the displacement amplitude. Fig. 10(b) shows that for a 459 

softening stiffness primary system, the displacement response curves of the non-optimal cases extend 460 

towards the low-frequency range. In comparison, the use of the proposed optimal TID design can achieve 461 

equal peaks in the displacement response 𝑅1. At the same time, multiple solution branches are eliminated, 462 

which is beneficial for vibration suppression. Figure 10(c) and 10(d) shows the time histories of the 463 

dimensionless displacement of the primary system for the non-optimal, the optimal, and the without TID 464 

cases. Fig. 10(c) shows the responses associated with point M with the excitation frequency Ω = 0.976 465 

and while Fig. 10(d) is for point N with Ω = 1.009, as marked in Fig. 10(a) and 10(b). Fig. 10(c) and 466 

10(d) considers the presence of hardening and softening stiffness nonlinearities with the nonlinear 467 
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stiffness ratio 𝜀 being 0.1 and −0.1, respectively. The steady-state dynamic responses are obtained by 468 

using the fourth order Runge-Kutta method and shown from 1000𝑇 for a time span of 3𝑇,  where 𝑇 =469 

2𝜋/Ω is the excitation period. The time step is set as 𝑇/1024. Fig. 10(c) and (d) shows that the nonlinear 470 

optimal designs of the TID can yield the lowest peaks in the displacement amplitude of the primary 471 

systems among the three cases. In contrast, Fig. 10(c) shows that the use of the TID with the non-optimal 472 

parameters can lead to even larger amplitude in the displacement of the primary system, compared to the 473 

without TID case, i.e., for the primary system without attaching TID. The behaviour demonstrates the 474 

importance of properly setting the parameters of TID to achieve effective vibration suppression. 475 

 476 

Fig. 10. Comparison between nonlinear optimal, without TID, and non-optimal TID cases for: (a) and (c) hardening 477 
stiffness; (b) and (d) softening stiffness nonlinear primary system. (a) and (b): displacement response amplitudes;(c) 478 

and (d) time histories of the dimensionless displacement at Ω = 0.976 and Ω = 1.009, respectively. The parameters 479 

are set as 𝜆 = 0.01, 𝜁1 = 0.001, and 𝐹𝑒 = 0.05. 480 

Figure 11 presents the response curves of the nonlinear primary mass attached to an optimal TID 481 

designed based on Eq. (49) and Eq. (9b). In Fig. 11(a), the nonlinear stiffness ratio 𝜀 changes from 0.01 to 482 
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0.05 and then to 0.1 at the prescribed value 𝜆 = 0.03; in Fig. 11(b), the inertance-to-mass ratio 𝜆 varies 483 

from 0.05 to 007 and then to 0.1 with a fixed nonlinear stiffness parameter 𝜀 = 0.1 of the primary system. 484 

The other parameters are set as 𝐹𝑒 = 0.05 and 𝜁1 = 0.001. Fig. 11(a) shows that with the increase in 𝜀, the 485 

peaks of the displacement response amplitude reduce slightly. The widths of the frequency band between 486 

the two peak frequencies in the three cases considered are almost the same. Fig. 11(b) shows the influence 487 

of the inertance-to-mass ratio 𝜆 of the TID on the displacement response amplitude 𝑅1. As shown in the 488 

figure, when 𝜆 increases from 0.05 to 0.07 and then to 0.1, the peaks of the response amplitude reduce. As 489 

𝜆 increases, the first peak shifts to the left (lower frequencies) because the increase in inertance of the system 490 

leads to smaller natural frequencies. In comparison, the second peak frequency does not change significantly 491 

with different 𝜆. The figure shows a larger value of the inertance-to-mass ratio of the TID leads to improved 492 

vibration suppression of the nonlinear primary system.  493 

 494 

Fig. 11. Effects of (a) nonlinear stiffness ratio 𝜀 and (b) inertance-to-mass ratio 𝜆 on the displacement response of the 495 

primary mass with an attached optimal TID. The parameters are set as 𝐹𝑒 = 0.05 and 𝜁1 = 0.001.  496 

Table 1 shows the comparison between the values of the optimal stiffness ratio of the TID obtained 497 

using Eqs. (46) and (49), based on the analytical and numerical (or semi-analytical) tuning approaches, 498 

respectively. The system parameters are set as 𝜁1 = 0.001, 𝐹𝑒 = 0.05, 𝜀 = 0.05 and the inertance-to-mass 499 

ratio 𝜆 increases from 0.02 to 0.1. In the table, 𝑅𝑁𝑃_𝐴 and 𝑅𝑁𝑃_𝑁 denote the averaged resonant peak values 500 

of 𝑅1  obtained using analytical tuning with one iteration and numerical tuning, respectively. The table 501 

shows that the optimal stiffness ratios 𝛾DA and 𝛾DN obtained to achieve equal peak in the displacement 502 

response amplitudes are very close. The largest relative difference |𝛾DA − 𝛾DN|/𝛾DN is approximately 0.15% 503 

when the inertance-to-mass ratio is 0.1.  The table shows that the response peak values 𝑅𝑁𝑃_𝐴 and 𝑅𝑁𝑃_𝑁 504 

obtained using the two tuning approaches are similar with their relative difference |𝑅𝑁𝑃_𝐴 − 𝑅𝑁𝑃_𝑁|/𝑅𝑁𝑃_𝑁 505 
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being close to zero when 𝜆 increases from 0.04 to 0.08. The table shows that the value of 𝑅𝐿𝑃 used to obtain 506 

the 1st iteration of 𝛾𝐷𝐴 using Eq. (46) is generally close to 𝑅𝑁𝑃_𝐴. If not, the current value of 𝑅𝑁𝑃_𝐴 can be 507 

used to replace 𝑅𝐿𝑃 in Eq. (46) to find the next design iteration to achieve improved designs. The table again 508 

shows that the response amplitude peak value will reduce when 𝜆 increases. It also shows that the optimal 509 

stiffness ratio decreases with the increase of inertance-to-mass ratio 𝜆. 510 

Table 1. Comparison of the optimal stiffness ratio (𝛾𝐷𝐴, 𝛾𝐷𝑁) and the averaged response peak values (𝑅𝑁𝑃_𝐴, 𝑅𝑁𝑃_𝑁) 511 

based on the analytical and numerical tuning approaches.  512 

𝜆 

Inertance

-to-mass 

ratio 

𝑅𝐿𝑃 

Linear 

optimal 

peak 

value 

𝛾𝐷𝐴  

Optimal 

stiffness 

ratio using 

analytical 

tuning  

𝛾𝐷𝑁 

Optimal 

stiffness 

ratio using 

numerical 

tuning 

|𝛾𝐷𝐴

− 𝛾𝐷𝑁|

/𝛾𝐷𝑁 

Relative 

error 

𝑅𝑁𝑃_𝐴 

Averaged peak 

value using 

analytical 

tuning 

𝑅𝑁𝑃_𝑁 

Averaged 

peak value 

using 

numerical 

tuning 

|𝑅𝑁𝑃_𝐴

− 𝑅𝑁𝑃_𝑁|

/𝑅𝑁𝑃_𝑁 

Relative 

error  

0.02 0.503 0.9850 0.9840 0.100% 0.4895 0.4897 0.041% 

0.03 0.411 0.9739 0.9736 0.031% 0.4031 0.4033 0.050% 

0.04 0.357 0.9638 0.9639 0.010% 0.3514 0.3514 0.000% 

0.05 0.320 0.9542 0.9544 0.021% 0.3158 0.3158 0.000% 

0.06 0.293 0.9449 0.9451 0.021% 0.2894 0.2894 0.000% 

0.07 0.272 0.9359 0.9359 0.000% 0.2690 0.2690 0.000% 

0.08 0.255 0.9271 0.9268 0.032% 0.2525 0.2525 0.000% 

0.09 0.241 0.9184 0.9177 0.076% 0.2389 0.2388 0.041% 

0.1 0.229 0.9100 0.9086 0.150% 0.2273 0.2272 0.044% 

4.2 Kinetic energy-based equal-peak method 513 

4.2.1 Analytical tuning approach 514 

Here, we analyse the design of a TID for a nonlinear primary system using the kinetic energy-based 515 

equal-peak tuning approach. Fig. 12(a) and 12(b) show the effects of the damping ratio 𝜁2 and the stiffness 516 

ratio 𝛾 of the TID on the non-dimensional kinetic energy 𝐾p, respectively. The curves of 𝐾p for the primary 517 

mass are obtained from Eqs. (10), (35) and (38). The other parameters are set as 𝜀 = 0.1, 𝜁1 = 0.001, 𝐹𝑒 =518 

0.05, and 𝜆 = 0.05. In Fig. 12(a), the solid lines represent the results of the TID with 𝜁2 decreasing from 519 

0.18 to 0.13 at intervals of 0.01. Using Eqs. (16) and (25), the optimal parameters of the TID designed for 520 

the corresponding linear primary system (𝜀 = 0) are 𝛾opt = 0.9642 and 𝜁2 = 0.1336, and the curves are 521 
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represented by dashed lines; the stiffness ratio 𝛾 is obtained by Eq. (16), and thus is the same as that in Fig. 522 

12(a). The figure reveals two invariant points of different heights in each curve of 𝐾p. This demonstrates 523 

that the equations for the kinetic energy-based design approach of the TID developed in Section 2.2 for a 524 

linear primary system are not directly applicable when there is stiffness nonlinearity. It also shows that the 525 

heights of the two invariant points are not sensitive to the changes in the damping level of the TID. In Fig. 526 

12(b), the stiffness ratio 𝛾 of the TID changes from 0.99 to 0.96 at intervals of 0.01, while its damping ratio 527 

𝜁2 is fixed at 0.1336, as determined using Eq. (25). After several iterations, equal peaks of the kinetic energy 528 

curve of the primary system can be achieved by setting 𝛾opt = 0.9681, as shown by the dotted lines. This 529 

suggests that the TID can be designed by tailoring its spring stiffness while setting its damping to the linear 530 

optimal value.  531 

 532 

Fig. 12. Effects of the (a) damping ratio 𝜁2 and (b) stiffness ratio 𝛾 of the TID on the kinetic energy of the nonlinear 533 

primary system (𝜀 = 0.1, 𝜁1 = 0.001, 𝐹𝑒 = 0.05, and 𝜆 = 0.05). 534 

Figure 12(a) shows that the kinetic energy curves for the different cases with various values of the 535 

damping ratio 𝜁2 all pass through two fixed points. Therefore, analytical tuning approach can be developed 536 

to obtain the optimal stiffness ratio of the TID to achieve equal peaks in the kinetic energy curves of the 537 

nonlinear primary system. When the magnitude of the kinetic energy 𝐾p does not change with the damping 538 

ratio 𝜁2 of the TID, we have: 539 

lim
𝜁2→∞

(
1

2
𝑅1

2Ω2) = lim
𝜁2→0

(
1

2
𝑅1

2Ω2),                                                  (50) 540 

where the expression of the dimensionless kinetic energy 𝐾𝑝 = Ω2𝑅1
2/2 has been recalled. A conversion of 541 

Eq. (50) leads to the same quadratic equation of Ω2 as Eq. (42), the two solutions of which are again denoted 542 

as Ω1
2 and Ω2

2. Based on the property of quadratic equations, we have 543 
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Ω1Ω2 = 𝛾√
4+3𝜀𝑅𝐿𝑃

2

2(2+𝜆)
.                                                             (51) 544 

where 𝑅𝐿𝑃 has been used to as a first approximation of the peak value of 𝑅1 when the nonlinear primary 545 

system is attached with an optimally designed TID. To have equal peaks in the curve of 𝐾p at Ω = Ω1 and 546 

Ω = Ω2, we need  547 

lim
𝜁2→∞

1

2
Ω1

2(𝑅1|Ω=Ω1
)2 = lim

𝜁2→∞

1

2
Ω2

2(𝑅1|Ω=Ω2
)2.                              (52) 548 

Eq. (52) can be further transformed into 549 

Ω1Ω2 =
4+3𝜀𝑅𝐿𝑃

2

4(1+𝜆)
,                                                                (53) 550 

where again the approximation 𝑅1 ≈ 𝑅𝐿𝑃 has been used. By equating the right-hand-sides of Eqs. (51) and 551 

(53), the optimal stiffness ratio 𝛾𝐾𝐴 achieving equal resonant peaks of kinetic energy is obtained as 552 

𝛾𝐾𝐴 =
4+3𝜀𝑅𝐿𝑃

2

4+4𝜆
√

2(2+𝜆)

4+3𝜀𝑅𝐿𝑃
2 .                                                        (54) 553 

It is noted that the design can be made iterative by using the current value of 𝛾𝐾𝐴 to find the peak response 554 

amplitude 𝑅1, the value of which is then assigned to 𝑅𝐿𝑃 in Eq. (54) for the next iteration of improved design 555 

of the stiffness ratio for the TID. 556 

4.2.2. Numerical (semi-analytical) tuning approach 557 

It is noted that Eq. (54) and Eq. (16) are the same when nonlinear stiffness ratio 𝜀 = 0, i.e. TID 558 

attached to a linear primary oscillator. Again, it is reiterated that the numerical tuning approach refers to the 559 

numerical solution of the frequency-response relationship derived from the HB method, not the direction 560 

numerical integration of the system governing equations. Fig. 12 shows the results with set values of the 561 

inertance-to-mass ratio 𝜆 of the TID and the nonlinear stiffness ratio 𝜀 of the primary system. For other sets 562 

of values of 𝜆 and 𝜀, the optimal stiffness ratio of the TID required to achieve equal peaks in the kinetic 563 

energy 𝐾p curve can be obtained by following the same analysis procedure. Fig. 13 shows plots of the 564 

optimal stiffness 𝛾𝐾𝑁 against the stiffness nonlinearity 𝜀 at different values of inertance for the TID. The 565 

optimal values are denoted by symbols and are curve-fitted based on linear regression. The other parameters 566 

are set as 𝐹𝑒 = 0.05 and 𝜁1 = 0.001. The figure shows a range of values for 𝜀 from −0.1 to 0.1, considering 567 

both softening and hardening stiffness nonlinearities. The figure shows that for a given value of 𝜆, the 568 

optimal stiffness ratio 𝛾KN of the TID has an approximately linear relationship with the nonlinear stiffness 569 

coefficient 𝜀 of the primary system: 570 

𝛾KN = 𝑓3(𝜆)𝜀 + 𝑓4(𝜆),                                                        (55) 571 

where 𝛾𝐾𝑁 represents the optimal stiffness ratio of the TID designed to achieve equal peaks in the kinetic 572 

energy curve using numerical integrations;  𝑓3(𝜆) and 𝑓4(𝜆) are functions of 𝜆, the values of which shown 573 

by solid dots in Fig. 14 for different values of 𝜆.  Fig. 14(a) shows that the value of 𝑓3(𝜆) generally decreases 574 
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with 𝜆 following a power function, while 𝑓4(𝜆) has an approximately linear relationship with 𝜆. By using a 575 

power function fitting for 𝑓3(𝜆) and a linear regression curve fitting for 𝑓4(𝜆), we have 576 

𝑓3(𝜆) ≈ 0.002𝜆−0.973,         𝑓4(𝜆) ≈ −0.6716𝜆 + 0.9981.                 (56a, 56b) 577 

Therefore, the optimal stiffness ratio 𝛾KN for achieving equal peaks of the kinetic energy curve for the 578 

nonlinear primary system can be approximated as  579 

𝛾KN ≈ 0.002𝜆−0.973𝜀 − 0.6716𝜆 + 0.9981.                                               (57) 580 

 581 

Fig. 13. Variations in the optimal stiffness ratio 𝛾KN of the TID with respect to the nonlinear stiffness ratio 𝜀 and the 582 

inertance-to-mass ratio 𝜆 for equal peaks in the kinetic energy curve (𝐹𝑒 = 0.05 and 𝜁1 = 0.001). 583 

It is useful to investigate the accuracy of Eq. (57) for the design of the optimal stiffness ratio of the 584 

TID with the design target of achieving equal peaks in the kinetic energy curve. In Fig. 15, the system 585 

parameters are set as 𝐹𝑒 = 0.05 and 𝜁1 = 0.001 while the damping of the TID is set at the linear optimal 586 

value expressed as Eq. (25). Both the nonlinear stiffness ratio 𝜀 of the primary system and the inertance-to-587 

mass ratio 𝜆 of the TID change from 0.01 to 0.1. The first and second peak values of the kinetic energy of 588 

the primary system are denoted by 𝐻3 and 𝐻4, respectively. Fig. 15(a) shows a plot of the relative difference 589 

Δ2 =  |𝐻3 − 𝐻4|/𝐻3 against 𝜀 and 𝜆 in terms of percentage. From the figure, it can be seen that over a large 590 

range of parameter values of 𝜆 and 𝜀, the relative difference between the peak heights is small. Fig. 15(b) 591 

shows that by setting the inertance-to-mass ratio 𝜆 of the TID to more than 0.03, the relative difference 592 

between the peaks of the kinetic energy curves can be less than 1% for a large range for stiffness 593 

nonlinearities 𝜀 in the primary system. It can also be seen that for a set stiffness nonlinearity 𝜀, the difference 594 

between the peaks decreases with the increase in the inertance 𝜆. When 𝜆 = 0.07, the relative difference Δ2 595 
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can be lower than 0.75%. Fig. 15 confirms that Eq. (57) can be used to achieve peaks with equal heights in 596 

the kinetic energy curves for the primary mass. 597 

 598 

Fig. 14. Curve fittings of (a) 𝑓3(𝜆) and (b) 𝑓4(𝜆) for the kinetic energy-based optimal design of the TID. 599 

 600 

Fig. 15. Validation of the optimal designs of the TID for a nonlinear system. (a) 3D surface plot and (b) 2D contour 601 

of the relative difference between the kinetic energy peaks.  602 

Figure 16(a) and (b) shows the significant mitigation of the maximum kinetic energy of the nonlinear 603 

primary system with a hardening 𝜀 = 0.1 and a softening 𝜀 = −0.08 stiffness nonlinearity, respectively. 604 

The solid lines represent the non-optimal cases by setting the damping ratio of the TID with a small value 605 

𝜁2 = 0.001. While the nonlinear optimal cases are shown by the dashed lines, and the corresponding optimal 606 

stiffness ratios using the numerical tuning approach in Eq. (57) are calculated to be 𝛾𝐾𝑁 = 1.0090 and 607 

0.9773 in Fig. 16(a) and (b), respectively. It shows that the maximum kinetic energy of the nonlinear primary 608 

oscillator with hardening or softening stiffness nonlinearity can be modified by adding the TID to achieve 609 
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equal peaks, and its values can be reduced around the resonance region. The addition of the optimal TID 610 

can eliminate multiple solution at a single frequency, and undesirable nonlinear behaviour such as the jump 611 

phenomenon. Therefore, the proposed tuning approach is effective for attenuation of vibration of nonlinear 612 

systems. Fig. 16(c) and 16(d) further shows the time history information of points M′ and N′ at Ω = 0.976 613 

and Ω =1.009, respectively. The dimensionless instantaneous kinetic energy of the nonlinear primary 614 

oscillator is shown for the optimal, non-optimal, and without TID cases, represented by the dashed, solid, 615 

and dotted lines, respectively. The results show that the use of the developed numerical tuning approach 616 

leads to the smallest value of the maximum kinetic energy by using the optimal TID. 617 

 618 

Fig. 16.  Comparisons of the kinetic energy of the primary nonlinear system between nonlinear optimal, without TID, 619 
and non-optimal TID cases. Primary systems with (a) and (c) hardening stiffness; (b) and (d) softening stiffness. (a) 620 

and (b): maximum kinetic energies;(c) and (d) time histories of the dimensionless kinetic energy at Ω = 0.976 and 621 

Ω = 1.009, respectively. Other parameters are set as 𝜆 = 0.01, 𝜁1 = 0.001, and 𝐹𝑒 = 0.05 622 
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Figure 17 examines the effects of the nonlinear stiffness ratio 𝜀 and the inertance-to-mass ratio 𝜆 on 623 

the kinetic energy of the primary system when using optimal design of the TID based on Eqs. (25) and (57). 624 

In Fig. 17(a), three cases are considered with 𝜀 changing from 0.01, to 0.05 and then to 0.1 with 𝜆 fixed 625 

as 0.03. The other parameters are set as  𝐹𝑒 = 0.05 and  𝜁1 = 0.001. The figure shows that as 𝜀 increases, 626 

the stiffness nonlinearity of the primary system becomes stronger, and there are slight reductions in the peak 627 

values of the kinetic energy 𝐾p . It also shows that the variations of the nonlinear stiffness ratio 𝜀 has only 628 

small effects on the bandwidth between the peak frequencies of the kinetic energy. In Fig. 17(b), the 629 

inertance-to-mass ratio 𝜆 of the TID varies from 0.05, to 0.07 and then to 0.1 with a fixed nonlinear stiffness 630 

ratio of 𝜀 = 0.1. The figure shows equal peaks of the kinetic energy curves can be achieved by the proposed 631 

design of the TID.  It also shows that the increase of inertance in the TID can lead to substantial reductions 632 

in the peak values in the kinetic energy 𝐾p of the nonlinear primary system. There are also a wider frequency 633 

band between the two peak frequencies of 𝐾p. These characteristics show that a larger value of the inertance 634 

𝜆 for the TID provides benefits to vibration suppression of the primary system. 635 

 636 

Fig. 17. Effects of (a) the nonlinear coefficient 𝜀 (𝜆 = 0.03), and (b) the inertance-to-mass ratio 𝜆 (𝜀 = 0.1) on the 637 

kinetic energy of the primary mass attached with optimal TIDs. 638 

Table 2 presents the optimal stiffness ratio 𝛾 of the TID to achieve equal peaks in the kinetic energy 639 

curve, using Eqs. (54) and (57) based on the analytical and numerical (semi-analytical) tuning approaches, 640 

respectively. The parameters are set as 𝜁1 = 0.001, 𝐹𝑒 = 0.05 , 𝜀 = 0.05 while 𝜆 increases from 0.02 to 0.1. 641 

The value of 𝛾𝐾𝐴 is obtained only after the 1st design iteration. The variables 𝐾𝑁𝑃_𝐴 and 𝐾𝑁𝑃_𝑁 represent 642 

averaged peak values of the kinetic energy 𝐾𝑝  of the primary system based on the 1st iteration of the 643 

analytical tuning and numerical tuning approaches, respectively. The table shows that for a set value of 𝜆, 644 

the values of the optimal stiffness 𝛾𝐾𝐴 and 𝛾𝐾𝑁 of the TID obtained using the two tuning approaches agree 645 
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very well. The largest relative difference |𝛾𝐾𝐴 − 𝛾𝐾𝑁|/𝛾𝐾𝑁 is approximately 0.07% when the inertance-to-646 

mass ratio 𝜆 = 0.02. As the value of 𝜆 increases, the peak value of the kinetic energy reduces.  The optimal 647 

stiffness ratios 𝛾𝐾𝑁   and 𝛾𝐾𝐴 generally decrease with the increase in the inertance 𝜆 of the TID. The figure 648 

also shows that for all the considered cases, 𝐾𝑁𝑃_𝐴 ≈ 𝐾𝑁𝑃_𝑁  with the largest relative difference 649 

|𝐾𝑁𝑃_𝐴 − 𝐾𝑁𝑃_𝑁|/𝐾𝑁𝑃_𝑁  being 0.294% when 𝜆 = 0.07. The table demonstrates that both analytical and 650 

numerical tuning approaches can be used to find the optimal designs of the TID to achieve equal peaks in 651 

the curve of kinetic energy 𝐾𝑃.  652 

Table 2. Comparison of the optimal stiffness ratios ( 𝛾𝐾𝐴 , 𝛾𝐾𝑁 ) and the averaged kinetic energy peak values 653 

(𝐾𝑁𝑃_𝐴, 𝐾𝑁𝑃_𝑁) based on the analytical and numerical tuning approaches 654 

𝜆 

Inertance-

to-mass 

ratio 

𝛾𝐾𝐴 

Optimal 

stiffness 

ratio using 

analytical 

tuning   

𝛾𝐾𝑁 

Optimal 

stiffness ratio 

using 

numerical 

tuning 

|𝛾𝐾𝐴

− 𝛾𝐾𝑁|

/𝛾𝐾𝑁 

Relative 

error 

𝐾𝑁𝑃_𝐴 

Averaged 

kinetic energy 

peak value using 

analytical tuning  

𝐾𝑁𝑃_𝑁 

Averaged 

kinetic energy 

peak value 

using numerical 

tuning 

|𝐾𝑁𝑃_𝐴

− 𝐾𝑁𝑃_𝑁|

/𝐾𝑁𝑃_𝑁 

Relative 

error 

0.02 0.9899 0.9892 0.071% 0.1178 0.1180 0.170% 

0.03 0.9812 0.9810 0.071% 0.0792 0.0792 0.000% 

0.04 0.9734 0.9735 0.010% 0.0596 0.0596 0.000% 

0.05 0.9661 0.9664 0.031% 0.0477 0.0478 0.209% 

0.06 0.9590 0.9593 0.031% 0.0398 0.0397 0.251% 

0.07 0.9521 0.9524 0.031% 0.0341 0.0340 0.294% 

0.08 0.9454 0.9455 0.011% 0.0297 0.0297 0.000% 

0.09 0.9389 0.9387 0.021% 0.0264 0.0264 0.000% 

0.1 0.9325 0.9319 0.064% 0.0237 0.0237 0.000% 

 5. Conclusions  655 

This study presented displacement- and kinetic energy-based equal peak methods for the design of 656 

the tuned inerter dampers (TIDs) coupled to linear and nonlinear primary systems. For the linear primary 657 

system, the analytical expressions of the optimal damping and stiffness ratios of the TID achieving equal 658 

resonant peaks of the response amplitude and kinetic energy curves were obtained using the fixed-point 659 

theory. For the application of the TID attached to a nonlinear primary system with a cubic stiffness 660 

nonlinearity, analytical and numerical tuning methods based on the HB frequency-response relationship 661 

were carried out to achieve equal peaks in the displacement and kinetic energy responses. Unlike the linear 662 
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primary oscillator case, for a nonlinear primary oscillator the shape of its resonant peaks is mainly affected 663 

by the damping ratio of the TID, while the peak values depend more on the stiffness ratio. Analytical and 664 

numerical tuning approaches have been developed to obtain the optimal stiffness and damping ratios of the 665 

TID. It was shown that the use of the two approaches can achieve equal peaks in the displacement and 666 

kinetic energy curves with good accuracy. It has also been demonstrated that the proposed tunings are valid 667 

for a wide range of stiffness nonlinearities and inertance values. The tuning approaches have been developed 668 

considering nonlinear cubic stiffness in the primary system, however, they are also directly applicable and 669 

can be extended for other types of nonlinearities.  670 
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