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Abstract This paper uses a recent explanation for the fundamental haploid-
diploid lifecycle of eukaryotic organisms to present an evolutionary algorithm that
differs from previous known work that is using diploid representations. A form
of the Baldwin effect has been identified as inherent to the evolutionary mecha-
nisms of eukaryotes and a simplified version is presented here which maintains such
behaviour. Using a well-known abstract tuneable model, it is shown that varying
fitness landscape ruggedness varies the benefit of haploid-diploid algorithms. More-
over, the methodology is applied to optimise the targeted delivery of a therapeutic
compound utilizing nanoparticles to cancerous tumour cells with the multicellular
simulator PhysiCell.

Keywords Baldwin effect · diploid · NK model · cancer · nano-particles ·
PhysiCell

1 Introduction

The vast majority of work within evolutionary computation has used an underly-
ing haploid representation scheme; individuals are each one solution to the given
problem [6]. Typically, bacteria contain one set of genes, whereas the more complex
eukaryotic organisms — such as plants and animals — are predominantly diploid,
containing two sets of genes [19]. A small body of work exists using a diploid rep-
resentation scheme, i.e., individuals carry two solutions to the given problem. In
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such cases recombination typically occurs between corresponding haploids/genes
in each parent, essentially doubling the standard process, and a dominance scheme
is utilized to reduce the diploid down to a traditional haploid solution for eval-
uation. That is, as individuals carry two sets of genes/variables, a heuristic is
included to choose which of the genes to use (see [3] for a review).

Eukaryotes exploit a so-called haploid-diploid cycle where haploid cells are
brought together to form the diploid cell/organism. At the point of reproduction
by the cell/organism, the haploid genomes within the diploid each form haploid
gamete cells that (may) join with a haploid gamete from another cell/organism
to form a diploid (Fig. 1). Specifically, each of the two genomes in an organism is
replicated, with one copy of each genome being crossed over. In this way copies of
the original pair of genomes may be passed on, mutations aside, along with two
versions containing a mixture of genes from each. Previous explanations for the
emergence of the alternation between the haploid and diploid states are typically
based upon its being driven by changes in the environment (after [14]). Recently,
an explanation for the haploid-diploid cycle in eukaryotes has been presented [5]
which also explained other aspects of their sexual reproduction, including the
use of recombination, based upon the Baldwin effect [1]. The Baldwin effect is
here defined as the existence of phenotypic plasticity that enables an organism
to exhibit a different (better) fitness than its genome directly represents. Over
time, as evolution is guided towards such regions under selection, higher fitness
alleles/genomes which rely less upon the phenotypic plasticity can be discovered
and become assimilated into the population.

The rest of the paper is arranged as follows: the next section presents the
new understanding of how eukaryotic organisms evolve, a new simplified haploid-
diploid algorithm is then presented, which maintains the basic mechanisms of the
natural case. Finally, the new approach is applied to a high-throughput multicel-
lular simulator to find potentially new therapeutic designs that maximise cancer
tumour regression.

2 Background and Related Works

Key to the new explanation for the evolution of eukaryotes is to view the process
from the perspective of the constituent haploids: a diploid organism may be seen
to simultaneously represent two points in the underlying haploid fitness landscape.
The fitness associated with those two haploids is therefore that achieved in their
combined form as a diploid; each haploid genome will have the same fitness value
and that will almost certainly differ from that of their corresponding haploid or-
ganism due to the interactions between the two genomes. That is, the effects of
haploid genome combination into a diploid can be seen as a simple form of phe-
notypic plasticity for the individual haploids before they revert to a solitary state
during reproduction. In this way evolution can be seen to be both assigning a sin-
gle fitness value to the region of the landscape between the two points represented
by a diploid’s constituent haploid genomes and altering the shape of the haploid
fitness landscape. In particular, the latter enables the landscape to be smoothed
under a rudimentary Baldwin effect process [9], whilst the former can be seen to
represent a simple form of generalization over the landscape. Note this is in direct
contrast to typical cases of bacteria — and evolutionary algorithms — where in-
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Fig. 1: Two-step meiosis with recombination under haploid-diploid reproduction
as seen in most eukaryotic organisms (after [17]).

dividuals represent a single point in the (haploid) fitness landscape only and the
fitness assigned is that due solely to their given gene combination. The same is
also true in all known previous diploid representation schemes.

Numerous explanations exist for the benefits of recombination in both natural
(e.g., [2]) and artificial systems (e.g., [18]). The latter focusing solely upon haploid
genomes and neither considering the potential Baldwin effect under the haploid-
diploid cycle. The role becomes clear under the new view: recombination facilitates
genetic assimilation within the simple form of the Baldwin effect. If the haploid
pairing is beneficial and the diploid is chosen under selection to reproduce, the
recombination process can bring an assortment of those partnered genes together
into new haploid genomes. In this way the fitter allele values from the pair of
partnered haploids may come to exist within individual haploids more quickly
than the under mutation alone (see [5] for full details). Hence, in the emergence
of more complex organisms, natural evolution appears to have discovered a more
sophisticated approach to navigating their fitness landscapes.

The Baldwin effect has long been used within evolutionary computation (after
[9]). This paper aims to show how the benefits of a haploid-diploid cycle can be
exploited as a form of evolutionary computation. However, rather than just adopt
nature’s scheme under which a single individual requires both haploid genomes to
be evaluated (as in [5]), a simpler scheme is proposed as a form of post-processing
for a traditional evolutionary algorithm. This is first explored using the NK model
of fitness landscapes.
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Fig. 2: An example NK model (N=3, K=1) showing how the fitness contribution of
each gene depends on K random genes (left). Therefore there are 2(K+1) possible
allele combinations per gene, each of which is assigned a random fitness. Each
gene of the genome has such a table created for it (right, centre gene shown).
Total fitness is the normalized sum of these values.

3 Methods

3.1 The NK model

The NK model [11] was introduced to allow the systematic study of various aspects
of fitness landscapes (see [12] for an overview). In the standard model, the features
of the fitness landscapes are specified by two parameters: N , the length of the
genome; and K, the number of genes that has an effect on the fitness contribution
of each (binary) gene. Thus, increasing K with respect to N increases the epistatic
linkage, increasing the ruggedness of the fitness landscape. The increase in epistasis
increases the number of optima, increases the steepness of their sides, and decreases
their correlation.

The model assumes all intragenome interactions are so complex that it is only
appropriate to assign random values to their effects on fitness. Therefore for each of
the possible K interactions a table of 2(K+1) fitnesses is created for each gene with
all entries in the range 0.0 to 1.0, such that there is one fitness for each combination
of traits (Fig. 2). The fitness contribution of each gene is found from its table. These
fitnesses are then summed and normalized by N to give the selective fitness of the
total genome. The results reported in the next section are the average of 10 runs
(random starting populations) on each of 10 NK functions, i.e. 100 runs, for 20,000
generations. Here 0 ≤ K ≤ 15, for N = 50 and N = 100.

3.2 A Simple Haploid-Diploid Algorithm

This. Figure 3(a) shows a schematic of a traditional evolutionary algorithm (EA)
which exploits binary tournament selection, one-point recombination, single-point
mutation (randomly chosen gene), and creates one offspring per cycle (steady
state) which is evaluated and replaces the worst individual in the population here.
Figure 3(b) shows how the learning mechanism described above is implemented
on top of that process. As can be seen: a traditional population of evaluated
haploid individuals is maintained (A); a temporary population of diploid solutions
is created from them by copying each haploid individual and then another haploid
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(a)

(b)

Fig. 3: A schematic of the traditional evolutionary algorithm (a) and of the simple
haploid-diploid algorithm (b).

is chosen at random (B), with the fitness of the two haploids averaged (C); binary
tournament selection then uses those fitnesses to pick two diploid parents (D);
the haploid-diploid reproduction cycle with two-step meiosis as shown in Fig. 1 is
then used for the two chosen parents (E); one of the resulting haploids is chosen
at random, mutated (single-point), and evaluated (F); the offspring haploid is
inserted into the original population replacing the worst individual (G).

3.3 PhysiCell: A Physics-based Multicellular Simulator

Among an increasing amount of computational models [15] studying different as-
pects of cancer physiology, PhysiCell [8] is one of the leading ones. The open source
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simulator is based on a biotransport solver (BioFVM [7]) and simulates a multi-
cellular environment. While PhysiCell simulates cell cycling, death states, volume
changes, mechanics, orientation and motility, it relies on BioFVM to simulate sub-
strate secretion, diffusion, uptake, and decay. A significant advantage of PhysiCell
is its open-source code that enables addition of new environmental substrates, cell
types, and systems of cells, resulting in a general-purpose tool for investigating
systems with multiple kinds of cells. This includes the ability to design cell-cell in-
teraction rules to create a multicellular cargo delivery system that actively delivers
a cancer therapeutic compound beyond regular drug transport limits to hypoxic
cancer regions. We are currently exploring the use of evolutionary computing and
other related techniques to optimise the design of such nano-particle (NP) delivery
systems [16].

To evaluate the efficiency of the design of these NP delivery systems, the 2-D
anti-cancer biorobots scenario of PhysiCell v.1.5.1 [8] was studied. This scenario
utilizes three types of agents to simulate a high-throughput testing of a simple
targeted drug delivery therapy. Namely, these types of agents are cancer cells,
worker cells and cargo cells. Cancer cells consume oxygen and secrete a chemoat-
tractant. The resulted gradient in oxygen concentration is employed to steer NPs,
simulated as worker cells. These worker cells can be bonded with cargo cells, sim-
ulating the therapeutic compound. When a worker cell carries a cargo cell, it
executes a random walk (migration) towards the gradient of the oxygen and, thus,
towards accumulation of cancer cells. Whereas, when a worker cell does not carry
a cargo cell it executes a random walk towards the area of the cargo cells. These
random walks or migrations are controlled by input parameters of the simulator, in
the range [0, 1], with 0 representing Brownian motion and 1 deterministic motion.

Finally, cargo cells simulating the therapeutic compound, can attract worker
cells by exuding another simulated chemoattractant (which diffuses under BioFVM
rules). As described before, worker cells can carry the cargo cells and deposit them
in the affinity of cancer cells, resulting in apoptosis of these cells. The specific
proximity is given by the parameter defined as cargo release O2 threshold.

As per the initial example [8] and other relevant studies [16], in the 2-D anti-
cancer biorobots scenario an initial 200 µm radius tumour is simulated to grow for
7 days. Then, 450 cargo cells and 50 worker cells are added in a simulated vein close
to the tumour. Note here that while in previous studies a random number of each
type of cells with its mean as in the aforementioned was added, here we add exactly
450 and 50 cells for every simulation to alleviate one factor of stochasticity. The
simulated drug delivery system is simulated for 3 more days and then the results
are analyzed.

One paradigm of this simulation (whole 10 days) takes approximately 5 minutes
of wall-clock time on an Intel R© Xeon R© CPU E5-2650 at 2.20GHz with 64GB RAM
using 8 of the 48 cores. To accelerate the computations and further alleviate the
effect of the stochastic nature of the simulator on the results, a single tumour was
used for testing every possible individual in the search space. For each test, one
pre-grown tumour (for 7 days) was loaded to the simulator and the treatment was
applied immediately. The test was finalized after 3 days from the introduction of
the treatment, resulting in a minimization of wall-clock time to approximately 1,5
minutes. A static sampling approach is used, where the average of the outputs
after 5 runs of the simulator with the same set of parameters was examined. The
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Table 1: Unaltered parameters of PhysiCell simulator.

Parameter Value

Maximum attachment distance 18 µm
Minimum attachment distance 14 µm

Worker apoptosis rate 0 min−1

Worker migration speed 2 µm/min
Worker O2 relative uptake 0.1 min−1

Cargo O2 relative uptake 0.1 min−1

Cargo apoptosis rate 4.065e-5 min−1

Maximum relative cell adhesion distance 1.25
Maximum elastic displacement 50 µm

Damage rate 0.03333 min−1

Repair rate 0.004167 min−1

Drug death rate 0.004167 min−1

Cargo relative adhesion 0
Cargo relative repulsion 5

Elastic coefficient 0.05 min−1

Motility shutdown detection threshold 0.001
Attachment receptor threshold 0.1

objective was determined as the remaining amount of cancer cells in the simulated
area after the 3 days of treatment.

The search space was defined as a 6-dimensional space, with the 6 most prolific
parameters for the behaviour of worker cells (or simulated NPs). Namely, the
parameters under investigation were: the attached worker migration bias [0,1]; the
unattached worker migration bias [0,1]; worker relative adhesion [0,10]; worker
relative repulsion [0,10]; worker motility persistence time (minutes) [0,10]; and the
cargo release O2 threshold (mmHg) [0,20]. The rest of the parameters on the
simulator are not altered from the initial distribution of the simulator [8] and
depicted in Table 1.

4 Results

First the abstract model was utilised to study the effect of fitness landscape
rugednes on the efficiency of the haploid-diploid EA (HDEA). Figure 4 shows
example results from running both the standard EA and the HDEA on various
NK fitness landscapes. Here population size P = 30. As can be seen, when K > 4,
the HDEA performs best for N = 50 and K > 2 for N = 100 (T-test, p < 0.05).
Thus, as anticipated, the simple Baldwin effect process proves beneficial with in-
creased fitness landscape ruggedness due to its ability to smooth the underlying
shape. Figure 5 shows examples of how this is also true for different P , although
the benefit is lost for higher K when P = 10. Related to this, since the HDEA
makes a temporary population of diploids containing extra copies of randomly cho-
sen haploid solutions, it might be argued that a larger population is available to
selection than in the standard EA. Moreover, as the underlying traditional haploid
population converges upon higher fitness solutions, the random sampling could be
increasing their number and, thereby, altering the comparative selection pressure
over time. However, results from simply creating a temporary haploid population
of size 2P , in the same way as the temporary diploid population, does not alter
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performance significantly (not shown here, e.g., see [10] for discussions of dynamic
population sizing in general).

Whilst it is beyond the scope of this paper to exhaustively review previous
diploid EAs (DEAs)(see [3]), a simple diploid version of the traditional EA has
been created and explored. Here the fitness of the diploid is the average of its two
constituent haploids and the corresponding haploids undergo one-point recom-
bination. For comparison, without a dominance mechanism, populations contain
either half as many individuals or are run for half as many generations as the
EA and HDEA to maintain the same number of function evaluations. The results
find no significant difference in performance over the traditional EA for any of the
parameters explored here (not shown).

(a) (b)

Fig. 4: Showing examples of the fitness reached after 20,000 generations on land-
scapes of various size (N) and ruggedness (K). Error bars show min and max
values.

(a) (b)

Fig. 5: Showing examples of the fitness reached after 20,000 generations with
differing population sizes (P ).



Title Suppressed Due to Excessive Length 9

Initial growth Loading tumour

360

380

400

420

440

460

480

500

520

540

560

R
em

ai
ni

ng
 c

an
ce

r 
ce

lls

Initialization options

Fig. 6: Boxplot of 100 samples for each of the initialization options.

The findings with this abstract model are now explored in the context of simu-
lating nano-particle therapy delivery for cancer tumour regression within PhysiCell
v.1.5.1 (see [15] for an overview of computational modelling in cancer biology).

Initially, as described in Section 3.3, the option to load a tumour rather than
simulate its growth for 7 days was investigated. In Fig. 6 the boxplot of 100 simu-
lations for each initialization option with the same input parameters is illustrated.
When comparing the initial growth (7 days tumour growth and 3 days treat-
ment simulation, mean=475.06, SD=32.9, median=480, kurtosis=3.3515) with
the loading tumour alternative (loading a tumour and 3 days treatment simula-
tion, mean=494.12, SD=29.11, median=491, kurtosis=2.7698), the latter produces
more consistent results (based on smaller standard deviation and kurtosis). Addi-
tional to the aforementioned acceleration of computations (from 5 minutes to 1,5
minutes) the loading tumour was selected for the tests presented in the following.

To study the performance of HDEA, another control algorithm was utilized to
optimize the behaviour/design of worker cells, namely a steady-state genetic EA.
The population size was set to P = 50, the selection and replacement tournament
size to T = 3, a uniform crossover probability toX = 80% and a per allele mutation
rate to µ = 20% with a uniform random step size of range s = [−5, 5]%. The HDEA
was set up with the same parameters as the EA in order for the comparison to be
meaningful. All comparison runs started by evaluating a randomly produced, same
for each run, initial population (P = 50) under PhysiCell simulator, and then using
the corresponding EA to evolve the design of worker cells, with a computational
budget of 100 individual evaluations (100 individuals × 5 samples = 500 PhysiCell
simulations). In total, 30 comparison runs were executed.

In Fig. 7 the evolution of the best individuals found by the two algorithms
is illustrated. Specifically, the average and confidence level at 95% for the best
individuals in all 30 runs are considered. Throughout the evolution steps it is
apparent that the HDEA algorithm is generally finding better solutions faster
(it learns faster). Moreover, the final average of best solutions found by HDEA
is better than the one by the genetic algorithm. The smaller range of the 95%
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Fig. 7: Average and confidence levels (95%) of the best individuals per evolution
step for both algorithms for all 30 runs.
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Fig. 8: Average and confidence levels (95%) of all the individuals per evolution
step for both algorithms for all 30 runs.

confidence levels of HDEA reveal a better consistency in the solutions found by
this algorithm.

Figure 8 shows the relative performance of the average solutions over time
for both approaches. As can be seen, the HDEA finds fitter solutions. Note the
zoomed in region of evaluations 90 to 100 for a clearer comparison. Although,
after 100 evaluations, the best solutions (Fig. 7) are not statistically significantly
better (Wilcoxon signed-rank test, p = 0.3763), the average solutions (Fig. 8) are
(Wilcoxon signed-rank test, p = 0.0256). It can be noted that the best solution
found by the HDEA was significantly better (Wilcoxon signed-rank test, p =
0.0215) for the first ten runs of the thirty shown here.
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Fig. 9: Boxplot of parameters of best individuals found by GA (in normalized
ranges). Parameters: 1) attached worker migration bias 2) the unattached worker
migration bias 3) worker relative adhesion 4) worker relative repulsion 5) worker
motility persistence time 6) and the cargo release O2 threshold.

In Figs. 9 and 10 the boxplots of the parameters of the best individual discov-
ered during the 30 runs by GA and HDEA, respectively, are presented. In Figs. 11
and 12 the scatter plots of the parameters of the best individual discovered dur-
ing the 30 runs by GA and HDEA, respectively, are depicted. It is clear that the
most prolific parameter value for optimizing the design of NPs is the cargo release
O2 threshold parameter. The majority of solutions are quite close to 11 mmHg,
similar to findings from previous works [8,16]. Although, for three of the param-
eters the results can not be conclusive (namely, attached and unatached worker
migration bias and worker relative adhesion having almost uniform distribution
like boxplots), the graphs for the other two parameters can convey the fact of the
solutions being skewed towards smaller values for worker relative repulsion and
higher values for worker motility persistence time.

5 Conclusion

In the standard evolutionary computing approach each individual solution can be
seen to represent a single point in the fitness landscape. Typically, the same is
true of bacteria in natural evolution. It has recently been suggested that natu-
ral evolution is using a more sophisticated approach with eukaryotes, exploiting
a generalization process, whereby each individual represents a region in the fit-
ness landscape [5]. Of course, landscape smoothing can be achieved by numerous
mechanisms (after [9]) but they all require extra fitness evaluations. The scheme
presented in this paper is intended to exploit the Baldwin effect through what is
essentially simple population manipulation rather than through altering the un-
derlying representation and evaluations of the standard evolutionary computing
approach.
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Fig. 10: Boxplot of parameters of best individuals found by HDEA (in normalized
ranges). Parameters: 1) attached worker migration bias 2) the unattached worker
migration bias 3) worker relative adhesion 4) worker relative repulsion 5) worker
motility persistence time 6) and the cargo release O2 threshold.
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Fig. 11: Scatter plot of parameters of best individuals found by GA for all 30 runs.
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Fig. 12: Scatter plot of parameters of best individuals found by HDEA for all 30
runs.

It can also be noted that the shape of the fitness landscape varies based upon
the haploid genomes, which exist within a given population at any time and how
they are paired. This is significant since, as has been pointed out for coevolu-
tionary fitness landscapes [4], such movement potentially enables the temporary
creation of neutral paths, where the benefits of (static) landscape neutrality are
well-established (after [13]).

The proposed HDEA method was also compared with a simple haploid EA
in a more complicated simulator (PhysiCell). Again, the HDEA seems to perform
better than the traditional and well-established haploid method. After analyzing
the results of the methodology on the cancer treatment simulator, it can be con-
cluded that it reaches fitter solutions faster, despite the high stochasticity injected
into the fitness landscape to capture some of the dynamics of the biology. Current
work is exploring the inclusion of a sexual selection-like process into the HDEA to
further improve performance.
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