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ABSTRACT

We  evaluate  two  Evolution  Strategy-based
optimisation  algorithms  that  are  known  to  perform
well  with multi-modal fitness landscapes,  comparing
them  with  each  other  and  a  standard  Evolution
Strategy. We apply these algorithms to a simple FM
synthesiser timbre matching problem, which exhibits
rugged  multi-modal  characteristics.  All  three
algorithms are shown to be capable of finding globally
optimal  solutions.  The  Fuzzy  Clustering  Evolution
Strategy is both computationally expensive and slow
to  converge.  However,  it  produces  globally  optimal
results with very high probability, compared with the
other  two  algorithms.  In  contrast,  whilst  both  the
Evolution Strategy and the Cooperative Co-Evolution
Strategy  are  significantly  less  computationally
expensive,  the Cooperative Co-Evolution  Strategy is
significantly quicker to converge than the other two.

1. INTRODUCTION
There  are  now  many  complex  synthesis
methodologies, each of which is capable of producing
a diverse range of timbres. Normally, the synthesiser
interface  is  a  reflection  of  the  underlying  synthesis
process,  rarely  do  the  controls  relate  to  sound  in
human  terms.  Consequently,  there  is  often  a  large
discrepancy between the dimensions of the synthesiser
parameter space and the perceived sound space. This
discrepancy  renders  most  synthesisers  difficult  to
control  and often unintuitive  to  learn.  Inexperienced
users/programmers  would  benefit  from  a  timbre-
specifying  procedure  that  relates  to  their  mental
picture of the sound. In other words, a synthesiser user
could  greatly  benefit  from  being  able  to  produce
sounds that are like those desired, and then have the
synthesiser  search of  the parameters that  best  match
that  sound,  leaving  the  user  to  tune  the  sound
thereafter. A process is therefore required that is able
to  map  a  generated  sound  onto  sound  synthesis
parameters.

Earlier  attempts  have  been  made  to  transfer
synthesiser control into a more intuitive domain (e.g.
[3]  [15]).  The  most  promising  recent  developments
utilise  the  optimisation  principles  of  Evolutionary

Computation  (EC)  for  sound  navigation  and
exploration  [4]  [5]  [9]  [12]  [13]  [14].  When EC is
used,  assistance is generally provided in one of  two
forms:  interactive evolution,  where the user  controls
the direction of the search as evolution takes place, or
sound  matching,  where  the  evolutionary  search
attempts to find a close match to a given target sound.
It is the latter that is of interest here.

In this paper, we build on our previous work [16] [17]
in  employing  advanced  forms  of  optimisation
algorithms  based  on  the  Evolution  Strategy  (ES)  in
this  application  domain.  More  generally,  our  work
builds upon the previous work, presented by Horner
[6] [7], and has wider implications as a platform for a
generic synthesiser interface that is not specific to the
underlying synthesis type. In some of our other work,
we have dealt with dynamic audio domains, i.e., those
in which  the  sound  to  be  matched  varies  with  time
[17].  However,  for  this  paper,  to  ease  accurate
performance  measurement  of,  and  comparison
between, three presented algorithms we have imposed
the following limitations to the application domain;

• Only  Frequency  Modulation  (FM)  synthesiser
parameters will be optimised.

• We will deal with only static-spectra

• We  will  generate  the  target  sounds  themselves,
also  with  an  FM  synthesiser;  we  call  these
contrived sounds.

The  work  is,  of  course,  not  limited  to  such  special
cases; in real-world application it would be desirable
to  extract  matches  of  non-contrived,  time-varying
tones from a variety of synthesis types. The limits are
imposed to help us investigate the performance of the
evolutionary algorithms in this domain.

2.  EVOLUTIONARY  SOUND  MATCHING
USING FREQUENCY MODULATION 

2.1Frequency Modulation Synthesis
FM audio synthesis, presented originally by
Chowning [2],  provides a synthesis  method
by  which  complex  spectra  can  be  created



simply  and  efficiently.  In  what  is  termed
simple  FM,  the  instantaneous  frequency  of
one  oscillator  is  modulated  by  another,  to
produce  a  tone  with  multiple  frequency
partials.  The  amplitude  function  for  simple
FM is given by the formula;

e = Asin( ct + Isin mt) -(1)

Where  e is  the  modulated  carrier  amplitude,  A the
peak amplitude of the carrier,  c and m the carrier and
modulator  angular  frequency,  and  I the  modulation
index, given by the ratio of the frequency deviation to

the modulating frequency. Modulation produces side-
bands in the frequency domain, with partials deviating
from the carrier at integer multiples of the modulating
frequency.  The  bandwidth  of  the  output  signal
increases as the modulation index is raised, as can be
observed  in  Fig.  1.  Notice  that  as  I  is  raised  the
amplitude of each partial varies according to a non-
linear  (Bessel)  function.  This  can  make  it  hard  to
achieve  a  target  sound when altering  parameters  by
hand.  For  further  reading  into  the  spectral
decomposition of FM signals, the reader is referred to
[11].  Chowning’s  basic  FM arrangement  is  the  one
used for the experiments described here.
2.2 Evolutionary  Frequency  Modulation
Sound Matching
To  facilitate  the  matching  of  acoustic  instrument
tones,  Horner’s  algorithm [6]  [7]  optimises  a  set  of
static  basis-spectra  generated  via  FM,  which  are
recombined to simulate a given harmonic target tone.
The synthesis process is therefore very close to that of
wavetable  synthesis,  with  FM  used  only  in  the
production  of  basis-spectra.  The  basis-spectra  are

generated by a simple FM arrangement in which the
modulator  is tied to the fundamental  frequency,  and
the carrier frequency is set to integer multiples thereof,
known as formant FM. This arrangement is excellent
for  use  in  conjunction  with  wavetable  synthesis,  as
bands  of  the  target  spectrum can  be  reproduced  by
separate  basis-spectra,  from  which  the  optimum
spectral envelopes can be established.

Restricting the carrier frequency to an integer multiple
of  the  modulating  frequency  ensures  that  all  of  the
basis-spectra are harmonic, and supports the use of a
Genetic  Algorithm  (GA)  for  optimisation  purposes:
GAs perform their  genetic  operations  on  bit-strings,
which  make  them  ideal  for  integer  based
combinatorial  search domains, such as this. Horner’s
wavetable FM model [6] cannot be applied directly to
explore the sound space of regular FM, as it exploits
an alternative synthesis paradigm. When the synthesis
variables are not limited to integer numbers, the search
may be performed across the entire parameter space,
which may yield better timbre matches. This operation
is a non-trivial process, as the FM object landscape is
extremely complex and multi-modal.

Our  early  attempts  with  simple  evolutionary
optimisers, like the simple GA and basic ES proved
insufficient for the FM matching problem. As a result,
we  have  been  following  a  programme  of  work  in
which  we  have  been  applying  more  specialised
optimisation  algorithms.  In  [16]  we  looked  at  the
performance of an ES to this problem domain. In [17]
we applied a more complex algorithm, called FCES,
and  describe  briefly  below  and,  in  this  paper,  we
compare performance of these two to a third algorithm
we have developed, CCES, also described below.

3. DESCRIPTION OF ALGORITHMS

Fig. 1: Synthesised FM spectra with increasing 
modulation index I



The  algorithms  all  use  an  Evolution  Strategy  (ES).
Performance  is  tested  for  ES  and  FCES,  with  both
discrete  and  intermediate  recombination.  However,
discrete recombination is not meaningful in the case of
CCES,  as  only  a  single  parameter  is  represented  in
each subpopulation. All other operators and parameter
values  remain  constant  across  algorithms  and
experiments,  unless  specifically  stated  otherwise.
There is only space below for a brief description of the
ES, readers are referred to [17] for a fuller treatment.

3.1 Evolution Strategy (ES)
The Evolution  Strategy  was  originally  developed  in
the 1960’s by two students of the Technical University
of  Berlin  [21]  [22].  Presented  as  an  automatic
engineering  design  optimiser,  shown  to  outperform
traditional  gradient  oriented  techniques,  evolution
strategies  have  since  undergone  numerous
modifications  and enhancements  Schwefel [22].  The
only  ES parameter  that  is  varied in  the experiments
that  follow  is  recombination,  which  normally  takes
one of two main classes [1]:

• Intermediate  -  the  genotype/phenotype  vector  of
each  offspring  is  obtained  by  taking  the  mean
vector of its parents’ vectors.

• Discrete  -  dynamic  n-point  crossover:  each
component  of  the  genome  of  the  offspring  is
produced by choosing a single vector component
from the parents.

In  all  cases  below,  the  ES  uses  a  derandomised
mutation  operator  described  in  [18],  which  is  self-
adaptive.

3.2 Fuzzy Clustering ES (FCES)
FCES combines the powerful  local search properties
of the Evolution Strategy with the strengths of Fuzzy
Clustering, by partitioning the search population into
fuzzy  clusters  that  locally  recombine  and  progress.
With a sufficient number of clusters, and an adequate
population size, all of the locally optimal peaks can be
identified and thus, a global optimum is consistently
found.  Clustering,  as  a  tool  for  global  optimisation
[23], was previously utilised to provide multiple start
points  for  a  local  hill-climber  optimisation.  FCES
follows  essentially  the  same  framework  but  uses  a
stochastic population-based search (the ES) in place of
the  local  optimisation  algorithm  and  proceeds  by
alternate  application  of  optimisation  and  clustering.
The  aim  is  to  achieve  the  reliability  of  clustering
methods  with  the  efficient  self-adaptive  search
behaviour  of  the  ES  approach.  The  basis  of  the
approach is that a clustering algorithm is used to form
a partition of  the parent population in a regular ES.
The  algorithm,  therefore,  is  consistent  with  the
standard  generational  model  of  an  Evolutionary

Fig. 2: ES
Fig. 3: FCES



Algorithm  with  global  selection.  Subsequent
recombination blends genetic material from all parents
in  proportion  to  their  degree  of  membership  of  a
particular  cluster  (fuzzy  clustering).  This  allows
clusters, within the population, to form independently
at regions of high fitness within the object landscape,
preventing  premature  global  convergence  at  locally
optimal  peaks.  For  a  fuller  description  of  this
algorithm,  and  its  application  to  a  dynamic  sound
matching domain, see [17]. It is worthy of note that a
population member constitutes a complete solution in
the  ES  and  FCES  algorithms,  whereas  in  the
Cooperative  Co-Evolutionary  approaches,  a  single
population  member  normally  represents  only  a
component of a complete solution.

3.3 Cooperative Co-ES (CCES)
When  applying  co-evolution  to  problems  such  as
these,  a  standard  approach  is  to  identify  a  natural
decomposition  of  the  problem  into  subcomponents.
Each component is assigned to a subpopulation, such
that  individuals  in  a  given  subpopulation  represent
potential  components  to  the  greater  problem.
Subsequently,  each  component  is  evolved
simultaneously,  but  in  isolation  from each  other.  In
order  to evaluate the fitness of an individual from a
given subpopulation,  collaborators  are selected from
the other subpopulations in order to form a complete
solution. The co-evolutionary approach adopted here
arises  directly  from  that  of  Potter  et  al  [20],  in
developing  their  ‘Cooperative  Co-Evolutionary
Algorithms’  (CCGAs).   However,  in  [20]  a  Genetic
Algorithm is used as the evolutionary component  in
the architecture.

Potter et al describe two versions of CCGA. In both
versions, a separate sub-population is instantiated for
each functional variable in the system to be optimised.
To gain an initial fitness value,  each sub-population
member  is  combined  with  a  randomly  selected
individual  from  each  of  the  other  species.  The
resulting set of values is applied to the target function
for evaluation. Subsequently, for CCGA-1, the fitness
of  any  given  subpopulation  member  is  found  by
combining  it  with  the  current  best  subcomponents
from  the  other  subpopulations,  that  are  temporarily
frozen. Potter et al go on to describe an experimentally
verified weakness in this credit assignment procedure,
which  appeared  only  to  work  well  when  applied  to
problems in which the members of the subpopulations
were quite independent of each other. In fact, for some
of the problems they used that displayed high inter-
subpopulation  dependencies,  CCGA-1  performed
worse than a standard GA. CCGA-2,  therefore,  was
equipped  with  an  enhanced  credit  assignment
procedure. In CCGA-2, each subpopulation member is
evaluated  using  the  procedure  defined  for  CCGA-1

and with a randomly selected individual from each of
the  other  subpopulations.  The  fitness  of  the  better
performing combined vector of values is then returned
as the individual’s fitness. The result was an algorithm
that performed better on those problems that CCGA-1
was  not  good  at,  at  the  expense  of  slightly  lower
performance  on  problems  with  independent
subpopulations.  They  were  able  to  present
experimental results on a small selection of problems
in which their approach outperformed a standard GA,
in terms of both convergence speed and quality of best
solutions. In the discussion section of their paper, they
suggest that any evolutionary algorithm could be used
in place of the GA and, indeed, we have done just this
with an ES. The architectures that we call CCES-1 and
CCES-2 are thus formed, having the matching credit
assignment  approaches as  those  described above for
CCGA-1 and CCGA-2.

4. EXPERIMENTAL SETUP

4.1 Sound Generation
For  the  matching  procedure  to  commence,  the
algorithm requires a target. It is possible to insert any
sound into the model at this point; however, for testing
purposes,  it  is  useful  to  follow  the  methodology
presented  by  Justice [10]  and  Payne [19]:  matching
contrived target  sounds  produced  by  a  FM  model
identical  in structure to the matching synthesiser.  In
such  circumstances,  a  successful  match  will  yield
parameters equal to those with which the target tone
was produced and, with repeated tests with a variety of
targets, demonstrates that any point within the sound
space is accessible via the matching process.

The  FM  circuit  under  test  is  constructed  from  two
sinusoidal  oscillators.  Each  oscillator  has  two  input
parameters.  A  ‘Frequency’  parameter  controls  the
oscillator  frequency  expressed  as  a  multiple  of  the
synthesiser  fundamental;  for  these  experiments  this
fundamental  is  200Hz.  These  are  named  c, for  the
carrier oscillator and m for the modulating oscillator in
equation 1. The second parameter relates to amplitude.
In the case of the carrier oscillator, this parameter, A
in equation 1, simply controls synthesiser amplitude;
whereas for the modulating oscillator,  this parameter
controls the modulation index, I, described earlier. 40
random  FM  timbres  were  created  by  randomly
generating these 4 parameters within a range of 0.0 to
8.0. For the carrier oscillator amplitude, this range is
scaled  to  the  full-scale  deflection  at  the  synthesiser
output.

4.2 Algorithm Structure Details & Parameters
The underlying ES common to all of the algorithms
tested was of the following form. Where intermediate
crossover  was  used,   =  ,  i.e.,  all  parents  are  used



equally in recombination as described in [1]. The ES
and FCES ran for 50 generations with the exogenous
parameters  (200,2000).  In  the  co-evolutionary field,
some alternative terminology is used, which is briefly
described below. The iteration of one sub-population
is called a generation. Of more interest is the situation
when  each  sub-population  has  advanced  by  one
generation, which is called a 'round' according to [8].
To retain parity across our experiments, CCES-1 ran
for 50 rounds and CCES-2 ran for 25 rounds, because
CCES-2  performs  two  fitness  evaluations  per
offspring.  Although  the  ES  and  FCES  were
operationally similar enough to use the same number
of generations and exogenous parameters,  for CCES
they  needed  to  be  scaled  by  the  number  of
subpopulations.  Each  subpopulation,  of  which  there
are  four  (one  per  parameter),  therefore  had  the
exogenous parameters (50,500),  i.e.,  ¼ of the values
used for ES and FCES.

4.3 Fitness Evaluation
Clearly,  each  of  the  algorithms  tested  required  a
means  by  which  good  and  bad  solutions  can  be
differentiated.  A  metric  is  required  to  provide  the
‘distance’ between (synthesis of) the potential solution
and the target sound. The objective function identifies
strong offspring, facilitating their selection as parents
from  which  subsequent  offspring  can  be  produced.
Within  this  work,  the  ‘distance’  is  measured  by
calculating  the  normalised  error,  referred  to  as  the
‘relative error’ in [7], which is measured between the
target and candidate spectra. This error  measure has
proved  effective  in  previous  studies  [5]  [6]  [7]  and
offers  an  excellent  balance  between  detail  and
execution speed. The relative spectral error is given by
the equation;

relative error = ∑b=0

N bin

T b − Sb 
2

∑
b=0

N bin

T
b2

Where T is a vector of the target spectrum amplitude
coefficients,  S a  vector  of  synthesised  candidate
spectrum amplitude coefficients and  Nbin the number
of  frequency  bins  produced  by  spectrum  analysis.
Each algorithm under test attempts to find a match on
each of the waveforms using the relative spectral error
as  an  objective  function.  In  earlier  experiments,  we
found  that,  in  this  application,  an  ES-based  search
could become trapped at locally-optimal points of the
fitness  landscape,  a  problem  that  any  optimisation
engine  (including  EC)  would  encounter  for  this
application  domain.  To  overcome  this  problem,  the
spectrum  of  the  target  and  synthesised  tones  are
modified  to  produce  windowed  spectra.  Windowing
allows spectrum error to be measured across a band,

which has a smoothing effect on the object landscape.
The Windowing function  is  more  fully  described  in
our  paper  [16].  The  same  window  function  and
parameters are used for experiments described here, as
that  described  in  [16].  A  complete  cycle  of  the
objective function is as follows:

1. Insert candidate solution into the FM model,
2. Subject the corresponding synthesised waveform to

spectral analysis,
3. Calculate relative spectral error between target and

synthesised candidate spectra.
4. Return this value as a fitness rating.

Clearly a perfect match yields the original parameters
used to generate the sounds,  and an error  of 0.  It  is
possible  that  non  optimal  matches,  in  these  terms,
could be good perceptual matches, however, this is an
analytical  survey;  consequently,  such  perceptual
matches are not considered.
5. RESULTS

For  each  algorithm  type,  ES,  FCES  and  CCES,  a
graph is provided to illustrate performance, figs. 2 - 4.
Each  graph  shows an  algorithm’s  convergence  rate,
for successful runs. Each line on a graph shows one of
the  two  variants  of  an  algorithm  tested,  and  is  the
average fitness of the best individual selected from the
5 successful runs over the total of 40 runs for each.
Table 1 below, shows the relative performance of the
algorithms and their variants that were tested here, in
terms  of  the  numbers  of  times  that  each  algorithm
converged to a globally optimal solution over 40 runs.

Table 1: Proportion of runs that 
converged to a near optimal solution

Algorithm Converged
Runs  (out  of
40)

ES - Intermediate Recombination 9
ES – Discrete Recombination 20
FCES Intermediate Recombination 25
FCES Discrete Recombination 38
CCES – 1 12
CCES – 2 19

6. DISCUSSION

It is clear from the graphical data, that all variants of
all  algorithms  were  able  to  find  globally  optimal
solutions.  It  is  also  clear  that  the  choice  of
intermediate or discrete recombination for the ES and
FCES algorithms is not crucial to performance in this
application  in  terms  of  convergence  speed,  but
significantly affects convergence reliability. However,
it is also clear that, although FCES does not give any
clear  advantage,  in  terms  of  convergence  velocity



compared with the ES, both variants of CCES do, with
CCES-1 giving best performance in this respect. It is
worth  noting  however,  from  the  tabular  data,  that
FCES most reliably finds the optimal solutions. CCES
was  the  least  computationally  expensive of  all  the
algorithms, only slightly so with respect to the ES, but
60% faster  than  FCES,  principally  because  of  time
spent partitioning the population into clusters.

7. CONCLUSIONS

We have tested three  Evolution  Strategy  (ES)-based
optimisation algorithms for  a simple FM synthesiser
timbre matching problem. All three were capable of
finding  globally  optimal  solutions.  The  Fuzzy
Clustering  ES  (FCES)  was  both  computationally
expensive  and  slow  to  converge.  However,  it
produced  globally  optimal  results  with  very  high
probability, compared with the other two algorithms.
In contrast,  whilst  both  the ES and the Cooperative
Co-Evolution  Strategy  (CCES)  are  significantly  less
computationally  expensive,  CCES  was  significantly
quicker to converge than either the ES or FCES.
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