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Abstract

The extraordinary growth in computation in single processors for almost half a century
is becoming increasingly difficult to maintain. Future computational growth is expected
from parallel processors, as seen in the increasing number of tightly coupled processors in-
side the conventional modern heterogeneous system. The graphics processing unit (GPU)
is a massively parallel processing unit that can be used to accelerate particular digital
audio processes; however, digital audio developers are cautious of adopting the GPU into
their designs to avoid any complications the GPU architecture may have. For example,
linear systems simulated using finite-difference-based physical model synthesis is highly
suited for the GPU, but developers will be reluctant to use it without a complete evalua-
tion of the GPU for digital audio. Previously limited by computation, the audio landscape
could see future advancement by providing a comprehensive evaluation of the GPU in
digital audio and developing a framework for accelerating particular audio processes.

This thesis is separated into two parts; Part One evaluates the utility of the GPU as a
hardware accelerator for digital audio processing using bespoke performance benchmark-
ing suites. The results suggest that the GPU is appropriate under particular conditions;
for example, the sample buffer size dispatched to the GPU must be within 32 to 512
to meet real-time digital audio requirements. However, despite some constraints, the
GPU could support linear finite-difference-based physical models with 4× higher resolu-
tion than the equivalent CPU version. These results suggest that the GPU is superior
to the CPU for high-resolution physical models. Therefore, the second part of this thesis
presents the design of the novel HyperModels framework to facilitate the development
of real-time linear physical models for interaction and performance. HyperModels uses
vector graphics to describe a model’s geometry and a domain-specific language (DSL) to
define the physics equations that operate in the physical model. An implementation of
the HyperModels framework is then objectively evaluated by comparing the performance
with manually written CPU and GPU equivalent versions. The automatically generated
GPU programs from HyperModels were shown to outperform the CPU versions for reso-
lutions 64x64 and above whilst maintaining similar performance to the manually written
GPU versions. To conclude part 2, the expressibility and usability of HyperModels is
demonstrated by presenting two instruments built using the framework
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Chapter 1

Introduction

Since the 1960’s, the reported processing power from microprocessors has been doubling
every two years, primarily because of the transistor density improving. The frequently
quoted Moore’s law predicted this trend would continue and has held up as a reliable
forecast ((Moore et al., 1965) & (Moore, 1998)). However, since 2010, manufacturers
have been reporting increasing difficulties in maintaining this rate of growth (Ahmed and
Schuegraf, 2011). As a result, the traditional methods for improving computing power
are becoming less effective, as described illustriously by (Sutter, 2005) in “The free lunch
is over”. The primary factor affecting computing power growth is the approaching hard
limit on capacitor density, along with other issues affecting clock speeds, like overheating
(Denning and Lewis, 2017). In Figure 1.1 it can be seen that around 2005, even with the
continually increasing transistor density, the clock speeds were already plateauing.

In the past, when processing power was increasing at a reliable rate, it was often
acceptable to wait for the development of more powerful single-threaded hardware. Con-
sidering the expected continual decline in computational growth, alternative methods
of improving processing power need to be explored. Recently, hardware manufacturers
have developed multi-threading and multi-core architectures to improve compute power
by processing data in parallel. As software support is initially immature and sub-optimal,
the transition to multi-core architectures requires the necessary software to support the
performance scaling expected of the novel architectures. This challenge is often referred
to as the programmability-specialisation trade-off. Therefore, software must be developed
that synergises with parallel architectures correctly. Multi-core parallel processors have
a long history dating back to the 1960s Solomon computer (Slotnick et al., 1962); but
it was not until the late 1990s to early 2000s that they were ready to be adopted for
mainstream systems (Blake et al., 2009).
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Figure 1.1: Intel CPU Trends 1970 - 2010. From, Sutter (2005)

Operating systems schedule applications across the cores and threads, improving over-
all performance considerably using task parallelism (Reinders, 2007). Task parallelism
handles the simultaneous processing of separate independent programs, but because of
the overhead involved with sharing memory and synchronisation, it does not scale to han-
dle large amounts of data (Gaster et al., 2012). Data parallelism is another approach that
uses hundreds of processors to execute the same instructions across significant amounts
of data. Graphics processing units (GPU) are based on data parallelism and achieve
massive parallel processing and increase the data throughput considerably. Data parallel
architectures require data to be independent of one another, but as a result, avoid the
overhead of memory sharing and synchronisation. As the name suggests, GPUs have
been the de facto hardware accelerator in graphics processing as the architecture is in-
trinsically suited for graphics, leading to GPUs being fully adopted for almost all graphics
processing (Blythe, 2008).

Interestingly, data parallelism is not exclusively restricted to graphics processing;
many problems outside the graphics domain are suitable. Moreover, it is becoming in-
creasingly feasible to offload suitable tasks to GPUs for considerable performance scaling.
Utilising each device in parallel for processing the most suitable task is known as hetero-
geneous computing. A well-known and successful example of this is the folding@home
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project (Desell et al., 2010), where speedups of 20−30× were reported on the GPU. Even
highly critical evaluations of heterogeneous computing, such as Lee et al. (2010), con-
cluded there was an average of 2.5× speedup across a range of appropriate processes. In
2006, NVIDIA (Lindholm et al., 2008) released the Tesla GPU, introducing a new unified
architecture that supports general compute for supporting processing outside of graph-
ics. Contemporaneously, AMD made similar developments towards a unified architecture
with the TeraScale GPU. NVIDIA and AMD have continued to develop comprehensive,
general-purpose GPU (GPGPU) support in all subsequent GPU architectures (McClana-
han, 2010), making GPUs an accessible hardware accelerator (Owens et al., 2007). Along
with GPGPU hardware, APIs and frameworks are being developed for programming gen-
eral compute on GPUs in applications. The most popular and widely used are NVIDIA's
proprietary CUDA (Luebke et al., 2006), which is only supported on NVIDIA devices.
Alternatively, an open standard managed by Khronos called OpenCL is designed to allow
any platform and device vendor to support it. Further, it allows other special-purpose
hardware to be used for general compute, not just graphics units.

GPGPU is an essential component in the future advances of heterogeneous computing;
therefore, these frameworks have seen continued development, making the GPU architec-
ture increasingly more programmable. Furthermore, with the growth of single-core clock
speed plateauing, software must adapt to support the state-of-the-art parallel architec-
tures within a heterogeneous environment.

In the 1950s, digital audio synthesis was beginning to gain traction with components
such as digital oscillators, filters and stored lookup tables (Moore, 1979; Bristow-Johnson,
1996), these were used to generate sound, and later, to build synthesis techniques includ-
ing AM and FM (Chowning and Bristow, 1986). These simple techniques are often
highly computationally efficient (Smith, 1997) in order for them to be used in real-time
applications at times when the available computation was very limited by today’s stan-
dards (Bilbao, 2009, p. 3). Furthermore, these methods are considered ‘abstract’ as they
do not directly associate with a physical interpretation. Physical modelling methods
contrast with abstract synthesis as they are built on direct interpretation of physical
phenomena. Although a broad field of physical modelling methods exists, the direct nu-
merical physical models are the most authentic forms that directly simulate vibrations
through a discretised mathematical representation (Berg and Stork, 1990). Direct numer-
ical physical models simulate an environment by approximating vibration values through
N-dimensional space and time. Increasing the resolution of the simulated space has sev-
eral advantages, including: improved accuracy, more stable simulations and the space to
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create more sophisticated instruments. However, increasing the resolution proportionally
increases the computation required to run a simulation. Considering the strict real-time
requirements of audio synthesis (Lavry, 2004) (Jack et al., 2018), the usefulness of these
methods has been heavily restricted. Nevertheless, with the modern advancements in
computer systems, physical modelling synthesis is seeing a possible resurgence (Webb
and Bilbao, 2015). For example, many academics involved in the Next Generation Sound
synthesis (NESS) collaboration project believe physical models will play an important
part in the future developments of sound synthesis. In 2015 and 2016, the NESS project
published dozens of papers and demonstrations related to physical modelling audio syn-
thesis and processing (NESS, 2019), including thorough experimentation and discussions
of utilising GPU acceleration for physical modelling sound synthesis (Bilbao et al., 2019;
Hsu and Sosnick-Pérez, 2013; Bilbao and Webb, 2012). The collective output from the
NESS project highlights the benefit of increasing data throughput using the GPU. For
example, in Hamilton and Webb (2013), GPU acceleration was used to improve offline
processing of room acoustics and, was shown to improve performance by 46× over the
equivalent serial CPU version. However, they also address the issues of processing vari-
ous physical modelling techniques in parallel - particularly the incompatibility of specific
mathematical methods for parallelisation (Bilbao et al., 2013). For instance, iterative
methods like the Newton Raphson (Bilbao et al., 2014) for solving implicit schemes in-
herently involve serial stages that limits some of the parallel capability of the GPU. The
considerable literature on GPU accelerated physical modelling is mainly used for ad-
vanced, non-linear systems that are processed offline. However, simple linear systems
are well suited for the GPU parallel architecture and for meeting real-time performance.
There is a gap in the literature here to comprehensively explore the application of GPUs
for real-time physical modelling synthesis for linear systems. Furthermore, recent designs
and implementations of physical models have been presented within the context of the
CPU; for example, (Willemsen et al., 2021, 2020; Willemsen, Bilbao and Serafin, 2019;
Onofrei et al., 2021; Willemsen, Andersson, Serafin and Bilbao, 2019a; Thibault, 2019),
which are often restricted to one-dimensional or low resolution two-dimensional models.
Research such as Zappi et al. (2017) demonstrates that the GPU can be used to sup-
port higher resolution physical models with significantly greater scale than on the CPU
(zappi, 2019). Zappi’s proposed design requires extensive knowledge of not only physi-
cal modelling synthesis, but the graphics domain and GPUs. Therefore, removing the
complications of the GPU architecture and automating the GPU acceleration of physical
modelling could expand the designers’ accessible synthesis sound space. This thesis pro-

Page 10 of 260



Harri Renney The University of the West of England

poses the HyperModels framework for facilitating the development of GPU accelerated
physical modelling instruments. This framework aims to provide a means of describing
physical models in a high-level form that is automatically translated into the optimised
GPU low-level equivalent code.

1.1 Research Targets

This thesis explores the idea of using the GPU as a hardware accelerator within the field
of digital audio processing. The thesis begins by evaluating the objective performance
of the GPU for offline and real-time requirements, comparing results to the CPU. Then,
using the newfound understanding of the GPU, the strengths and weaknesses are used
to design a GPU accelerated physical modelling synthesis framework for simple linear
systems.

This thesis evaluates the GPU as a digital audio processing device, particularly with
an application for real-time physical modelling synthesis. To clarify the contributions of
the thesis, it has been split into two parts. Part 1 aims to evaluate the effectiveness of
the GPU for digital audio in general. This leads into Part 2, where a GPU accelerated
physical modelling framework called HyperModels is proposed.

1.1.1 Part 1

Part 1 contains three chapters. The first Chapter 3 evaluates the GPU in the domain
of digital audio in general, using a benchmarking suite of performance profiling tests.
This chapter highlights key strengths and limitations of the GPU and what parameters
are critical to utilising it to best effect. Next, with a revised understanding of the GPU,
Chapter 4 proposes the design for an offline, GPU accelerated sound matching application.
Finally, observing the impressive results from the GPU for physical modelling synthesis,
Chapter 3 comprehensively compares and contrasts the CPU and GPU for finite-difference
based physical modelling synthesis. As a whole, Part 1 aims to answer the following
research questions:

• Question_1 - What is the acceptable range of audio buffer lengths on the GPU for
supporting real-time audio requirements for digital musical instruments? (Chapter
3)

• Question_2 - How does the chosen GPU interfacing software effect the performance
of audio processing? (Chapter 3, 4 and 5)
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• Question_3 - How do the data transfers rates between integrated and discrete GPUs
effect the overall performance of audio processing? (Chapter 3 and 4)

• Question_4 - Can the GPU be used to accelerate an offline sound matching appli-
cation that involves a combination of evolutionary algorithms and advanced FM
synthesis? (Chapter 4)

• Question_5 - How does the performance of GPUs compare to CPUs when scaling
the resolution of finite-difference based physical model synthesisers? (Chapter 5)

The answers to these research questions, while being intrinsic contributions on their
own, lead into and inform the direction of the second part of the thesis to develop a
high-level framework for describing physical model based instruments.

1.1.2 Part 2

Part 2 proposes the HyperModels framework - a solution for describing linear finite-
difference based physical model instruments that are translated into optimised, low-level
GPU programs. HyperModels proposes using a DSL for defining the physics equations
that simulate models and a vector graphics-based approach for describing the shape of
the models. Part 2 aims to explore the following research questions:

• Question_6 - Can a high-level description of a physical model instruments be trans-
lated into optimised low-level code that utilises the parallel processing capabilities
of the modern GPU to achieve real-time audio synthesis. (Section 7.2.1)

• Question_7 - Can physics equations for physical modelling synthesis be defined
using a domain-specific language? (Section 7.2.2)

• Question_8 - Can the geometry of a physically modelled environment be described
with vector graphics? (Section 7.3)

• Question_9 - How does the performance of automatically generated GPU acceler-
ated physical modelling synthesis programs compare to manually written equiva-
lents? (Chapter 8)

The HyperModels framework proposed in Part 2 will then be used to develop two
example real-time instruments outlined as:
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• The Hyper Drumhead based on the GPU accelerated design proposed by Zappi
et al. (2017) (Section 9.1)

• String-Plate Connection based instruments based on the designs presented byWillem-
sen, Andersson, Serafin and Bilbao (2019a) (Section 9.2)
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Chapter 2

Background

This chapter contains the prerequisite background knowledge required to understand and
appreciate the thesis’s content and contributions fully. Four broad fields are covered
in the following Sections: digital audio, numerical physical modelling, general-purpose
graphics processing units and programming languages.

2.1 Digital Audio

Digital audio is often considered as a sub-field of digital signal processing (Pohlmann,
2000), where audio waves are represented as a signal composed of a sequence of samples
through time. Each sample measures the displacement of air pressure at a given point in
time. As each sample is considered, the pressure value constantly changes according to
the signal that simulates pressure vibrations. The human auditory system perceives the
sound as pressure vibrations through physical mediums such as air.

2.1.1 Digital Signal Processing

Digital signal processing (DSP) is the application of digital computer systems for signal
processing. In reality, signals are continuously measurable sequences of some quantifiable
phenomena. For example, the average temperature of a room over time can be considered
a signal. However, due to the nature of digital systems, they must represent signals with
a finite number of points and values with a fixed degree of precision (Broesch, 2008).
This means a digital system must discretise the signal between equal spaces in time and
quantise/approximate the accuracy of the values at each discrete point. Fortunately,
modern systems can represent signals with an acceptable number of points and precision
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for most DSP problems. The sequence of discrete values taken from a continuous signal
are often referred to as samples and are acquired or generated through time at a set
sample rate. The sample rate is the number of samples used to represent a signal over
time (Weik, 2012) and is measured in Hz, the number of samples per second.

Special hardware known as digital signal processors are specifically designed for pro-
cessing digital signals efficiently. For example, in Thompson (2000), they are used to
reduce the power consumption of medical devices by efficiently processing signals. How-
ever, digital signal processors are limited by their design to specifically process signals.
For this reason, they have not been exposed as accessible programming devices as they
do not support enough general-purpose processing.

2.1.2 Musical Oscillators

The oscillator was one of the first digital sound synthesis components to be used, with
literature dating back to the 1960s with Risset (1965) and Freedman (1967). An os-
cillator is an operator that produces a waveform with a fundamental frequency and a
peak amplitude. Often, when considering frequency in terms of oscillator functions, the
SI unit of angular frequency Radians per second (rad/s) is used instead of Hertz (Hz)
for trigonometric functions such as sin(\) and cos(\) (Ifeachor and Jervis, 2002). Using
radians has the benefit of representing circular rotation, which suits the mathematical
descriptions of musical oscillators. One cycle of oscillation is 1Hz and is equivalent to 2c
rad/s. Therefore, when using the oscillator functions that expects frequency l as rad/s,
the frequency 5 in Hz can be mapped using 5 = l

2c .
The characteristics that give a waveform its timbre are frequency and the shape of

the waveform (De Poli and Prandoni, 1997). Different oscillators can be defined that
produce different waveforms and have parameters for controlling the shape and frequency
of oscillation. An exact solution for a single sinusoidal oscillator can be described using
an exact method:

D(C) = �cos(l0C +q) (2.1)

Where C is the independent variable time, and �, l0, q are the amplitude, frequency
and initial phase. An example of a sinusoidal waveform generated from Equation (2.1)
is shown in Figure 2.1. Oscillators were immediately adopted as key musical synthesis
components because of the perceptual significance they have with the human auditory
system. Ultimately, every sound synthesis method mentioned in this text, including the
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Figure 2.1: Output form sinusoidal operator Equation (2.1) across time C.

intricate physical models, is an oscillator.

2.1.3 FM Synthesis

One of the first commercially available and successful digital audio synthesis methods was
Frequency Modulation (FM) synthesis (Chowning and Bristow, 1986). Invented by John
Chowning, FM for audio synthesis was discovered and initially developed in the 1970s
(Chowning, 1973). The technique was adopted by Yamaha in the DX and TX synthesis-
ers that were commercially produced throughout the 1980’s (Fukuda, 1985) and is still
a prevalent technique used in many plugins and synthesisers that are currently available
(Albano, 2016). It is regarded as a highly efficient method for generating complex and
rich audio timbres with simple graphs of interconnected sinusoidal oscillators. The origi-
nal simple FM synthesis equation is defined as:

H(C) = � sin(2C + � sin(<C)) (2.2)

Where four parameters are exposed: peak amplitude A, carrier frequency c (rad/s),
modulation frequency m (rad/s) and modulation index I. The function y generates an
instantaneous output for FM at a given time t. The modulation frequency m sets the
frequency of the modulating oscillator, the output of which is multiplied by the modula-
tion index I to control the intensity of the frequency modulation applied to the carrier
oscillator. This is then added to the input for the carrier oscillator’s frequency c. Finally,
the variable A is used to control the peak amplitude output. When the modulation index
� = 0, the modulation oscillator has no effect. When � > 0, the modulation oscillator
begins to affect the carrier oscillator, and symmetrically spaced intervals of frequencies
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occur above and below the carrier frequency. The number of side frequencies relates to
the modulation index; therefore, as I increases, energy is taken from the carrier frequency
and distributed further across the sideband frequencies. Bessel functions determine the
amplitudes of the carrier and side frequencies (Chowning and Bristow, 1986). FM syn-
thesis has a nonlinear mapping between parameters and the resulting sound (Roth and
Yee-King, 2011), this means that there is a non-trivial correlation between a synthesiser’s
parameter space and the resulting timbre space, i.e., minor changes to the input param-
eters can generate vastly different changes in the resulting sound. This can make it a
challenging synthesis method to navigate using the exposed parameters. This has led to
the development of optimisation tools that map sounds back to the FM parameters that
produce them (Mitchell, 2020).

2.1.4 Buffering

Buffering is a commonly used technique in computing to significantly improve the perfor-
mance of processing and data transfers. Buffering uses a region of memory to temporarily
store data while moving from one place to another. For example, in the case of an in-
put microphone, the sequence of audio samples is collected temporarily in a buffer and
processed when the processor is available. This contrasts with the method of processing
each sample one at a time, as it arrives (Orfanidis, 1995, Chapter 4). Buffering improves
performance by taking advantage of simultaneous data transfers and processing. When
a data buffer has been processed, it can be moved out of memory to the output audio
playback device. Then, the following audio buffer can be processed while the audio is
still being transferred from the main memory to the device. Contrasting this with a
sample-by-sample approach, buffering instead uses the time waiting on memory transfers
to process more samples. The time it takes for a buffer of some length N to be processed
is known as the audio buffer period and is important as it has effects on the real-time
suitability of a process.

2.1.5 Offline & Real-time Processing

Digital audio processing that does not need to meet any immediate time requirements
is referred to as an offline process. An example of this is generating a distribution pack
of audio samples for various different digital instruments. The distributions do not need
to be immediately used, but instead can take hours or even days to process and then
store as samples in the distribution pack. The samples can then be played in real-time
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when loaded from the distribution pack into memory. However, numerous audio processes
and applications depend on meeting real-time requirements that can consistently process
audio samples as time advances. For example, an instrument used in live performance
must consistently operate fast enough to avoid negatively impacting the performance.
Therefore, real-time audio is the requirement to consistently meet a set of time limited
requirements for a particular application.

The requirements vary between applications (Annett et al., 2014), where variable
amounts of data must be processed within a fixed and inflexible time frame. In the case
of real-time audio, a consistent number of audio samples needs to be produced every
second to avoid aliasing. The real-time requirement in audio is stringent, as even a few
missed samples or delays results in instantly noticeable ‘glitches’ in the perceived sound
(MacKenzie and Ware, 1993; Meehan et al., 2003). To measure a process’ ability to
sustain this real-time performance, the audio-sound latency will be approximated using
the audio buffer period described in Section 2.1.4. For a process that must produce
samples at a chosen sample rate, the process must be able to produce the buffer length of
samples within the time window determined by the fraction of a second a buffer can take
for the sample rate. This means that the maximum acceptable audio buffer period for
a real-time process is ?B = 1B

AB
where ?B is the maximum acceptable audio buffer period,

AB is the chosen sample rate and 1B is the chosen buffer length. Using this formula, the
maximum real-time audio buffer period at 44.1KHz for all of the profiled audio buffer
lengths used in this thesis are presented in Table 2.1. If the processing of the audio buffer
period exceeds the maximum acceptable period from Table 2.1, it is expected that the
process will fail to maintain real-time performance and will produce buffer drops outs
that result in audible pops and clicks that are unacceptable for using an audio process in
real-time.

The core real-time performance metric using the audio-sound latency against the
audio buffer period validates the suitability of an audio process for producing samples in
real-time. However, in this thesis one of the objectives outlined in research question 1 is to
evaluate the suitability of the audio processes for use in digital musical instruments (DMIs)
that are suitable for performance without disruption. Therefore, a set of additional real-
time sonic interaction requirements will be defined for evaluating audio processes. The
real-time sonic interaction requirements depend on a metric known as the action-sound
latency and action-sound latency variation. The action-sound latency is the delayed
auditory feedback between tactile interaction to the sound output. Delayed auditory
feedback between tactile-sound interaction has been shown to be disruptive to musical
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Audio Buffer Length Maximum Audio Buffer Period (ms)
1 0.023
2 0.045
4 0.091
8 0.181
16 0.363
32 0.726
64 1.451
128 2.902
256 5.805
512 11.610
1024 23.220
2048 46.440
4096 92.880
8192 185.760
16384 371.519
32768 743.039

Table 2.1: The maximum acceptable real-time audio buffer periods for all audio buffer lengths at
44.1KHz.

performance as early as the 1960’s in works such as Havlicek (1968) and Gates et al.
(1974). Action-sound latency variation is the variability observed in the action-sound
latency in the context of non-isochronous control and audio signals. Although this is a
sophisticated process to evaluate in its entirety, a preliminary approach would be to take
these requirements and compare them to the audio buffer period as well as the original
audio-sound latency requirement. The exact range of real-time requirements for DMIs
are still being discussed, but (Repp and Su, 2013), Lavry (2004) and Jack et al. (2018)
have established the following ranges presented in Table 2.2 and these will be used in this
thesis when evaluating sonic interaction for real-time performance.

Requirement Recommended Acceptable

Sample Rate 96000 44100
Action-Sound Latency 10ms 20ms
Action-Sound Latency Variation ±1ms ±3ms

Table 2.2: The chosen real-time sonic interaction audio requirements used in this thesis.

Meeting the audio-sound latency and real-time sonic interaction requirements is of
prime importance for building compelling digital musical instruments. Within the context
of this thesis, we propose to evaluate the real-time capability of a process if it fits into
the following requirements: 1. The maximum audio sound latency to sustain acceptable
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real-time performance and avoid buffer underruns Table 2.1, and 2. The real-time audio
sonic interaction requirements concerned with interaction using Table 2.2.

2.2 Physical Modelling Sound Synthesis

Physical modelling sound synthesis refers to the methods that generate audio using math-
ematical models that simulate the physical phenomena of acoustics. Physical modelling
techniques can use alternative mathematical methods for simulating physical wave propa-
gation through time and space, from which an audio waveform can be extracted. Various
mathematical methods are available for physical modelling; analytical methods are exact
and highly efficient but are usually limited to basic physical models that do not cap-
ture complex physical behaviours. Numerical methods are used for simulating advanced
physics using approximation and discretisation, making them intrinsically suitable meth-
ods for computation. Finite-difference methods are a type of numerical method for solving
differential equations by approximating derivatives with finite-differences (Thomas, 1995).
In order to understand finite difference based physical models, foundational mathematics
must be covered, starting with ordinary differential equations.

2.2.1 Simple Harmonic Oscillator

Ordinary differential equations (ODE) are differential equations containing one or more
functions of one independent variable and the derivatives of those functions (Butcher and
Goodwin, 2008). The simple harmonic oscillator is regarded as one of the essential ODEs
in musical acoustics (Matteson, 2009) and even physics as a whole (Leach and Schei,
1993). Although sinusoidal oscillators have been used extensively in more abstract forms
of synthesis, such as FM and subtractive synthesis, they also emerge in physical model
representations (Peetre, 2000). This thesis will use the following notation for differentials
(Ahmad and Ambrosetti, 2019):

DG =
mD

mG
, DC =

mD

mC
, GGG =

m2D

mG2 , DGC =
m2D

mGmC
, . . . (2.3)

As differentials are abundant, this notation helps readability and conciseness. Using
this notation, the following ODE for the simple harmonic oscillator is defined as:

DCC = −l2
0D (2.4)
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where state variable D describes the displacement of the mass from its equilibrium
(in m), DCC is its acceleration and l0 is the angular frequency of oscillation (rad/s). The
harmonic oscillator involves the second-order derivative DCC ; therefore, it requires two
initial starting conditions, the state of D at C = 0 and the state of the first derivative of D
at C = 0:

D(0) = D0
mD

mC

����
C=0
= E0 (2.5)

The simple harmonic oscillator emerges in mechanics and acoustics in mass-spring
system (Wu and Chen, 2001) and electrical circuit theory (Chattopadhyay, 2006). ODEs
are typically trivial to solve, and it is well known that the exact solution to Equation
(2.4) is the sinusoidal operator discussed previously in Equation (2.1) (Leach and Schei,
1993). The concepts in ODE lead to partial differential equations; these are not as trivial
to solve using exact methods as the simple harmonic oscillator. Therefore, numerical
methods become an alternative solution that can handle the challenges of solving more
advanced equations.

2.2.2 Partial Differential Equations

Partial differential equations (PDE) are an extension to ODEs where instead of a single
independent variable, there is more than one in the equation (Evans et al., 2012). The
1-dimensional wave equation is an example of a partial differential equation:

DCC = 2
2DGG (2.6)

where state variable D now involves two independent variables: time C as well as spatial
coordinate G. Assuming a system of length ! (in m), the spatial domain becomes G ∈ [0, !].
Furthermore, 2 is the wave speed (in m/s). The two independent variables C and G are
both controlled and affect the dependent function D. An analytical method finds the exact
solution for the given PDE for the specific boundary and initial conditions. Many PDEs
do not have a known analytical solution, and some that are known are still not practical to
solve analytically (Shampine, 2018, Chapter 1). Alternatively, numerical methods can be
used to find an approximate solution (Kirby, 2009). To prepare differential equations for
numerical method simulation, they must be mapped into a discrete domain; this process
is known as discretisation.
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2.2.3 Discretisation

To prepare PDEs for the finite-difference method, they must be mapped into the dis-
crete domain (Har and Tamma, 2012, Chapter 13). The temporal and spatial domains
are discretised by introducing uniformly partitioned time and space mesh (Langtangen,
2016b). The points in the time dimension are C= = =ΔC, where = = 0,1, . . . , # is the num-
ber of time steps up to an indefinite value # and ΔC is the constant size between the
time steps. Points making up the space mesh are formed similarly and can be defined in
the one-dimensional case by G; = ;ΔG, where ; = 0,1, . . . , ! is the number of spatial grid
points and ΔG = -

!
is the constant distance between points. When considering further

spatial dimensions, if the space between spatial grid points is constant and uniform in all
variables, it is often represented as ℎ for finite differences, in this case, ΔG = ΔH = · · · = ℎ.
Therefore for clarity, the timestep size will also be represented as the letter : = ΔC. Vi-
sually, a one-dimensional example using this notation would result in a mesh as seen in
Figure 2.2. In this example, the discretised independent variables are G and C; the value
at each point is calculated by inputting the variables into the unknown function D=

;
using

ΔC = 0.01 and ℎ = 0.2. Previously, the notation D is used for the function when defining
differential equations. However, when transitioning to the discrete domain, the function
must be described as a specific point in time and space using the notation D=

;
. The white

points indicate that the unknown function D=
;
can be approximated using finite-differences

using neighbouring values either side of the white point. However, the black points at the
edge of the system do not have adequate neighbour information and must therefore be
calculated using an alternative boundary condition Φ(;). Finite differences can be used
to map the equation from a continuous/exact form into the discrete domain. With the
right finite-differences, a recursively solvable system can be formed where the state of the
system across all spatial steps G can be approximated at C from which the system can be
incremented forward in time by ΔC and used to calculate the next time step C +ΔC.

2.2.4 Initial and Boundary Conditions

Many PDEs require either initial conditions (IC) or boundary conditions (BC) to establish
the specific problem correctly. Conditions are a necessary part of making a problem well-
posed, as described by Kahane (1991). A well-posed problem: has a solution that exists,
the solution is unique, and the solution depends on the initial conditions in a continuous
way. A problem that is not well-posed will have none or too many solutions leading
to unpredictable errors (Sizikov et al., 2011). Therefore, to satisfy these properties, it
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Figure 2.2: Example of a discrete space and time mesh for a single time-step.

is essential to define the right conditions to establish a well-posed problem that can be
solved. Simple well-posed initial and boundary conditions are well understood for the
heat diffusion equation in works such as in Mebrate (2015). For sound synthesis, more
advanced and contextually interesting conditions are explored by (Willemsen, Andersson,
Serafin and Bilbao, 2019b).

Initial conditions define the initial/starting state of the system, usually considered at
C = 0. This condition specifies the values of all the spatial grid points at C = 0. Therefore,
the initial condition can be defined as D(0, ;) =Φ(;), where Φ is a function which generates
initial values for a position. For audio synthesis applications, the initial condition for all
points can be set to Φ(;) = 0, setting all points to 0 at the beginning. After the simulation
begins from the initial conditions, the models are then excited at later points by external
forces referred to as excitations.

Boundary conditions define the values for the spatial variables at the edges of a sys-
tem of equations through all steps in time (Zwillinger, 1998, Chapter 17). In the one-
dimensional case, this requires two assignments at G0 and G!. These are D(C,0) = Ψ(C,0)
and D(C, !) = Ψ(C, !) respectively, where Ψ is a function which generates values at the
extremes ends of the spatial variable ; for all points in time C. The simplest case is to
set it to a clamped value, like Ψ(C,0) = 0 and Ψ(C, !) = 1, this is known as a Dirichlet
boundary condition (John, 1941). Boundary conditions start to get interesting when they
interact in a meaningful way with interior values in the mesh. For example, the boundary
condition can be set as the derivative of the boundary. At Ψ(C,0), the derivative can be
set to XG

XC
= 0.5, this is known as the Neumann condition. The Neumann condition can be

used to reflect a portion of the energy back into the system. Other advance boundary con-
ditions include the Robin condition (Ryan et al., 2010), which is a hybrid of the Dirichlet
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Figure 2.3: Reflection of left-travelling wave on boundary (a) with inversion using dirichlet condition
and (b) without inversion using a Neumann condition. (Bilbao, 2009)

and Neumann conditions. Defining the boundary conditions in the discrete domain will
be covered after finite-differences are introduced.

2.2.5 Finite Differences

Finite differences are used to replace the discrete derivatives in an equation so that they
can be approximated numerically at each spatial and temporal point. Finite differences
are derived from applying Taylor’s theorem to a PDE, resulting in approximations at
grid points (Folland, 2020). There are different forms of finite differences, including
forward and backward differences; these determine the grid points taken into account.
Forward differences comprise grid points that involve the current and next points in
time. Backward differences use the previous and current grid points in time. The central
difference involves the current, next and previous points in time. The formal definitions
of all the relevant finite differences used in this thesis have been collected in Table 2.3 for
the example of replacing derivatives with respect to G.

The choice of finite-difference affects the overall accuracy of the scheme. The growth
of error (and therefore inaccuracy) of a finite-difference is described using big O notation
and grows with respect to the variable step size ℎ (Iwaniec and Kowalski, 2004). In
algorithm analysis, big O notation describes how an algorithm’s execution time or memory
requirements grow as the input size grows. This method can be used in the context
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Type Notation Derivative finite difference
Forward XG+ DG

D;+1−D;
ℎ

Backward XG− DG
D;−D;−1

ℎ

Central XG· DG
D;+1−D;−1

2ℎ

Centered Second-order XGG = XG+XG− DGG
D;+1−2D;+D;−1

ℎ2

Discrete Laplacian XΔ� = XGG + XHH ΔD
D;+1,<+D;−1,<+D;,<+1+D;,<−1−4

ℎ2

Discrete Biharmonic XΔ�,Δ� = XΔ�XΔ� ΔΔD 1
ℎ4

©­­­«
(u;+2,< +D;−2,< +D;,<+2 +D;,<−2)

+2(D;+1,<+1 +D;+1,<−1 +D;−1,<−1 +D;−1,<+1)
−8(D;+1,< +D;−1,< +D;,<+1 +D;,<−1)

+20

ª®®®¬
Table 2.3: Lookup table containing all relevant finite-differences used in this thesis.

of finite differences to describe how the error introduced by approximating grows with
the step size, ℎ. $ (ℎ) describes the error growth is proportional as the step size h
increases. $ (ℎ2) grows at a rate of the input size h multiplied by h, an exponential
growth. Therefore, for $ (ℎ2), the error decreases at a faster rate than $ (ℎ), when ℎ < 1.
Forward and backward differences have an error growth of $ (ℎ), while central differences
have $ (ℎ2) (Chazarain and Piriou, 2011), meaning the central difference converges to 0
error at a faster rate. In sound synthesis applications, due to perceptual considerations, it
is agreed that highly accurate models are rarely needed (Bilbao, 2009, Chapter 2 p. 33).
This is because the temporal resolution is relatively high such that the sample rate is
supported. With the high temporal resolution, the spatial resolutions can afford to be
much lower. To work out the exact ranges of acceptable spatial, stability conditions are
calculated.

Applications like acoustics that require a high temporal resolution are most suited for
forming explicit finite-difference schemes. Explicit schemes calculate the state of a system
at a later unknown time step using the state of the system from the current and previously
known time steps (Ascher et al., 1997). This means that when replacing derivatives with
finite-differences, only a single unknown point in the next time step D=+1... should be in the
equation. The unknown point can then be isolated on one side of the equation and all
known points on the other side such that all the known points can be used to calculate
the unknown point. The explicit scheme can then be solved recursively by repeatedly
calculating the equation and stepping forward through time. By recursively solving the
scheme, a simulation of the environment emerges.
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2.2.6 Wave Equation

The wave equation is a core PDE that arises in various fields, including electromagnetics
(Zubair et al., 2011), fluid dynamics (Durran, 2013) and particularly acoustics (Alford
et al., 1974). Constraining the wave equation to 1-dimension is not a realistic represen-
tation on its own. However, it is often used as a test problem in numerical models or
extended to incorporate more advanced physics. Furthermore, it operates with only a sin-
gle spatial dimension, forming a physical model with significantly small computation and
memory requirements. The 1-dimensional wave equation from Equation (2.6) is a second-
order PDE that can be used naively as a first approximation for the transverse motion of
strings (Gerver, 1970). When applied in this way, the wave speed 2 =

√
)0/d�, where )0

is the applied string tension, d is the string density, and � is the strings cross-sectional
area. It can also be used to approximate the longitudinal motion of a uniform bar (Morse
and Ingard, 1986, Chapter 5) where instead, 2 =

√
�/d and uses an additional constant

Young’s Modulus � . The context of the equation can also be adjusted to approximate a
wind instrument by modeling air vibrations through a tube of uniform cross-section by
instead assigning 2 =

√
�/d, where � is the bulk modulus and the material density of d

is the air density.
Using the finite-differences from Table 2.3, the differentials in Equation (2.6) can be

replaced to form the explicit finite-difference equation:

D=+1
;
−2D=

;
+D=−1

;

ΔC2
= 22 (D

=
;+1−2D=

;
+D=

;−1)
ℎ2 (2.7)

Here, DCC and DGG have been replaced with a second-order finite-differences XCC and XGG
respectively. This finite-difference scheme can now be re-arranged to form a recursive
algorithm for simulating a model:

D=+1; = 2D=; +_
2(D=;+1−2D=; +D

=
;−1) −D

=−1
; (2.8)

Where _ = ΔC2
ℎ
, is the key coefficient that captures the timestep ΔC, spatial step ℎ and

wave propagation speed 2. The control of this coefficient determines if the simulation is
stable. This recursive equation can now be updated explicitly at each time step = from
previously computed values. The entire physical model can be simulated by continually
updating values, storing them, and incrementing the timestep. Defining the boundary
conditions for this one-dimensional equation can be done with the following form:
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D80 = D
8
#G
= 0∀G, (�8A82ℎ;4C, 5 8G43) (2.9)

XGD
8
0 = XGD

8
#G
= 0∀G, (#4D<0==, 5 A44) (2.10)

where two finite-difference points on either end of the one-dimensional system can
be identified as boundary points for all points in time 8 by defining the index of spatial
points at the first edge of the system 0 and then at #G which is the number of spatial
finite-difference points in the system and therefore the point at the far edge of the system
opposite the index at 0.

The 1-dimensional models considered so far involve one temporal and one spatial
variable. As further dimensions are added, the number of spatial variables increases. In
the case of the wave equation, when it is extended to 2-dimensions, it becomes 1:

ECC = 2
2(EGG + EHH) (2.11)

Adding further dimensions adds second-order derivatives but for additional spatial
dimensions. To concisely define these equations, the Laplace operator (LLC, 2021) can
be used to describe the summation of the second-derivatives of all spatial variables as
ΔD = DGG +DHH. Therefore, the two-dimensional wave equation can be defined as:

ECC = 2
2ΔE (2.12)

The explicit scheme for the two-dimensional equation can be formed by replacing the
derivatives DCC , DGG and DHH with second-order finite differences XCC , XGG and XHH respectively:

E=+1;,< = 2E=;,< − E
=−1
;,< +_

2(E=;+1,< + E
=
;−1,< + E

=
;,<+1 + E

=
;,<−1−4E=;,<) (2.13)

Another useful shorthand notation as difference equations start to involve higher
derivatives (like linear plate equations) is to use the biharmonic operator:

ΔΔD = DGGGG +DGGHH +DHHHH (2.14)

As covered, boundary conditions can be defined for 1-dimensional equations with
D80 = 0 and D8

#G
= 0 for clamped Dirichlet conditions. However, a comprehensive definition

for the entire edge in a two-dimensional system needs to be formally defined. An example

1To improve consistency in this thesis, the notation D will be used for one-dimensional models and E for
two-dimensional

Page 27 of 260



Harri Renney The University of the West of England

of boundary conditions for a two-dimensional system, such as the wave Equation (2.13),
can be defined using the following form:

D80,H = D
8
#G ,H

= 0∀H,

D8
G,0 = D

8
G,#H

= 0∀G,

 (�8A82ℎ;4C, 5 8G43) (2.15)

XGD
8
0,H = XGD

8
#G ,H

= 0∀H,

XHD
8
G,0 = XHD

8
G,#H

= 0∀G,

 (#4D<0==, 5 A44) (2.16)

Here, values across the edge of the system override the calculation of Equation (2.13)
and instead set them to an alternative value, in the case above, to 0.

2.2.7 Excitation

Interacting with physically modelled instruments involves adding energy into the system.
Spreading operators are used for adding a signal coherently into a centre position and
its neighbouring points (Bilbao, 2009, Chapter 5 p. 101). In the continuous domain, the
Dirac Delta function X(G8 − G) (Hassani, 2009) identifies that at positions G8 ∈ [0,1], an
excitation signal is input into the system according to a function that is defined when
mapping to the discrete domain. Taking the 1-dimensional wave Equation (2.6) with the
same parameters, it can be coupled to an excitation mechanism, giving:

DCC = W
2DGG − X(G8 − G)4 (2.17)

Here, the Dirac Delta function and a force function are appended onto the one-
dimensional wave equation. The excitation function 4 can be any function that produces
an excitation signal that can be inserted into the system. When transitioning to the
discrete domain, the Dirac Delta operator is replaced with a spreading operator. The no-
tation � (G=

8
) is used to define spreading functions, the most basic being the zeroth-order

spreading distribution that generates input at a single point G8 that is mapped to the
nearest grid point to the left using ;8 = 5 ;>>A (G8/ℎ):

9;,0(G8) =
1
ℎ

for ; = ;8, otherwise 0 (2.18)
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Notice the spreading function effectively scales the excitation function 4 by 1/ℎ when
on an excitation point G8. There are more advanced spreading operators used for more
realistically modelling excitation distributions, such as linear and cubic operators that
are elaborated on in (Bilbao, 2009, Chapter 5 p. 101). The discrete spreading component
� (G=

8
) can now be integrated into explicit finite-difference schemes. For example, continu-

ing from the one-dimensional explicit scheme in Equation (2.19), the following scheme is
formed:

D=+18 = 2D=8 +_2(D=8+1−2D=8 +D=8−1) −D
=−1
8 − 9;,0(G8)� (C) (2.19)

The scheme now has values generated from the discrete excitation function � into
positions in the system through the spreading operator 9;,0.

2.2.8 Stiff String

The "ideal" string is often presented using the one-dimensional wave equation; it generates
an output with harmonic partials that are integer harmonics of the configured fundamen-
tal frequency (Morse et al., 1948, Chapter 3). However, real strings exhibit dispersion
because of the material stiffness. Stiffness can be modelled by adding an additional 4th-
order derivative term to the one-dimensional wave equation, along with parameters for
controlling material properties. The following PDE can be used to simulate the additional
tension and stiffness resonating forces (Ducceschi and Bilbao, 2016):

d�DCC =)DGG −��DGGGG (2.20)

where d is the material density, � = cA2 and A are the cross-sectional area and radius
of the string, ) is the tension and E is the Young’s modulus and the area moment of
inertia is � = cA4/4. By grouping a number of parameters into the following coefficients
2 =

√
)/d� and ^ =

√
��/d�, the compact form of Equation (2.20) can be written as:

DCC = 2
2DGG − ^2DGGGG (2.21)

The 4th-order spatial derivative models stiffness causes desired wave dispersion through
the string. This phenomenon causes higher frequencies to travel faster than lower frequen-
cies. Furthermore, frequency dispersion also causes some inharmonicity effects. This
results in a string equation that models a more realistic and interesting string and will
be used in this thesis’s more advanced physical model designs.

Page 29 of 260



Harri Renney The University of the West of England

2.2.8.1 Multiple Strings

Once a single physical model like a string or bar has been created, it is possible to begin
arranging multiple versions. Multiple models can be used to synthesise different notes
for an instrument using different parameters and dimensions. Another interesting use of
multiple models is employing several at once to synthesise a single note. A real example
of this is found in pianos, where several strings are struck at once for each note. Various
characteristics can be introduced by changing properties of each model - For example,
unique tensions for each string can produce desirable beating effects .

To consider a collection of " uncoupled strings using the explicit scheme formed from
the one-dimensional wave (Equation (2.19)) the following notation can be used (Bilbao,
2009, Chapter 7 p. 185):

D=+1@,; = 2D=@,; +_
2(D=@,;+1−2D=@,; +D

=
@,;−1) −D

=−1
@,; for @ = 1, . . . , " (2.22)

Here, " is the number of strings and D=
@,;

indicates the transverse displacement of the
"th string at discrete time point = and position ;. This form can be extended to model
piano strings, using a centre pitch of 50 = _@/2 and detuning parameter D in cents as:

_@ = 21+ (2@−1−" )�
2400("−1) 50 for @ = 1, . . . , " (2.23)

2.2.9 Ideal Linear Plate

Thus far, the two-dimensional wave equation has been covered for simulating a vibrating
membrane for sound synthesis. However, materials with inherent stiffness properties
are of further interest in musical acoustics (Hambric, 2006). The physics of vibrating
plates are considered far more complex than that of a membrane described using the
two-dimensional wave equation (Junger and Feit, 1986, Chapter 7). Although considered
more complex, linear plate equations can result in less computation than two-dimensional
wave equations (Bilbao, 2009, Chapter 7 p. 168). The Kirchoff thin plate (Morse and
Ingard, 1986, Chapter 5 p. 213) equation for modelling a uniformly thin isotropic plate
is defined as:

d�ECC = −�ΔΔE (2.24)

where � = ��3/12(1−E2) is a stiffness coefficient parameterised by Young’s Modulus
� (Wang, 1984), thickness � and the dimensionless Poisson’s ratio E. Being a linear
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equation, it does not hold for relatively thick plates and only accounts for low-amplitude
vibrations. These constraints can be assumed in instrument simulations making the model
sufficient for musical applications. Using a centred second-order XGG finite-difference to
approximate DGG and the discrete biharmonic XΔ�,Δ� for ΔΔD, the following explicit scheme
is formed:

d�

:2 (E
=+1
;,< −2E=;,< + E

−1=
;,< ) = −

�

ℎ4 ((E
=
;+2,< + E

=
;−2,< + E

=
;,<+2 + E

=
;,<−2)

+2(E=;+1,<+1 + E
=
;+1,<−1 + E

=
;−1,<−1 + E

=
;−1,<+1)

−8(E=;+1,< + E
=
;−1,< + E

=
;,<+1 + E

=
;,<−1) +20)

(2.25)

This scheme requires not only accessing the adjacent neighbouring spaces (like the one-
dimensional wave equation), but neighbouring points two spaces in each spatial direction.
Rearranging this explicit scheme for a suitably recursively solvable scheme leads to:

E=+1;,< = −
�:2

d�ℎ4 ((E
=
;+2,< + E

=
;−2,< + E

=
;,<+2 + E

=
;,<−2)

+2(E=;+1,<+1 + E
=
;+1,<−1 + E

=
;−1,<−1 + E

=
;−1,<+1)

−8(E=;+1,< + E
=
;−1,< + E

=
;,<+1 + E

=
;,<−1) +20)

+2E=;,< − E
−1=
;,<

(2.26)

2.2.10 Damping Components

In the physical world, vibrating media lose energy and dampen out over time because of
resisting forces from air viscosity (Sasajima et al., 2010) and thermoelastic effects (Serra
and Bonaldi, 2009). Adding general damping attenuates all frequencies uniformly and
can be modelled by adding a frequency-independent damping component f0DC where f0

controls the intensity of the frequency-independent damping that emerges from DC . Fur-
thermore, real materials exhibit complex frequency dependant loss characteristics. Var-
ious frequencies do not decay at the same rate, and instead, the amount of attenuation
increases with frequency. This leads to sounds with wide-band attacks such that the
vibration decays to only a few particular harmonics. Modelling frequency-dependent loss
in linear strings was used in Bensa et al. (2003) as a component defined as f1DCGG where
f1 controls the intensity of the frequency-dependent damping that emerges from more in-
volved DCGG. The frequency-dependent and frequency-independent damping components
can be added to the stiff string Equation (2.20) leading to:
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DCC = 2
2DGG − ^2DGGGG −2f0DC +2f1DCGG (2.27)

2.2.11 Connections

Modelling more advanced musical instruments begins with interactions between individ-
ual resonators. Thus far, the physical models are described as being formed by a single
model describing one physics equation which will now be referred to as a resonator. By
forming two or more resonators inside the modelled environment, these can be connected
using connection techniques to form complex instruments that exhibit non-linear be-
haviour. Connections apply an external force to two separate positions between two or
more physics equations. Like the excitation methods discussed in Section 2.2.7, these use
Dirac Delta functions X(G−G8) in the continuous formulation of the equations to describe
connection force from one equation being added to a position in another equation. An
example of two one-dimensional wave equations D and F with domains G ∈ �D and j ∈ �F

connected at G2 ∈ �D to j2 ∈ �F yields the following PDEs:

DCC = 2
2
DDGG + X(G− G8)

5

dD�D

FCC = 2
2
FFjj − X(j− j8)

5

dF�F

(2.28)

where d and � are each string’s density and cross-sectional area is each string 2 and 5

is the connection force, which must be equal and opposite for the two connected systems
according to Newton’s third law (note the inverse signs between both equations) (Helling-
man, 1992). The definition of 5 depends on the connection type used and determines
the behaviour between the interacting resonators. These are then transformed into the
discrete domain with the following form:

D=+1; = · · · + �;,D (G8)
�=

dD�D

F=+1< = · · · − �<,F (j8)
�=

dF�F

(2.29)

Here, the definition of the force function can take the form of a rigid connection. A
bidirectional rigid connection between two resonators is defined as D(C, G) = F(C, j), where
G is the connection point in the first resonator D and j is the connection point in the second
resonator F. Following the definition of the discrete rigid connection defined in Willemsen

2Recall 2 =
√
)/d�
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(2021) where zeroth-order spreading operators are used, the following connection force
function is formed:

�= =
22
DXGGD

=
;
− 22

FXjjF
=
j

1
dD�DℎD

+ 1
dF �F ℎF

(2.30)

Within the context of this thesis, the connection forces will not advance beyond the
rigid connections using zeroth-order spreading operators shown in Equation (2.30). The
physical modelling methods covered in this section are fundamental to understanding
this thesis’s instrument designs and implementations. The following section will cover
the parallel processing paradigms and architectures of the graphics processing unit used
for processing these physical models in parallel.

2.3 General Purpose Graphics Processing Units

The finite-difference schemes covered in the previous section are naturally suited for
the data-parallelism of the GPU and are often referred to as "embarrassingly parallel"
problems (Moler, 1986). Therefore, this section covers the GPU’s parallel processing
paradigms and architectures and how they are used to process the physical models in
parallel, starting with their position in the heterogeneous environment.

2.3.1 Heterogeneous Computing

Modern computer systems are now built as heterogeneous platforms (Terzo et al., 2019)
that promote the simultaneous use of different processing devices to maximise efficiency.
Heterogeneous computing aims to accelerate overall performance by simultaneously pro-
cessing tasks on the most suitable hardware available (Khokhar et al., 1993) (Yu et al.,
2009). Usually, the CPU takes the role of the controller/host, managing the other hard-
ware devices. Therefore, the CPU manages the allocation of tasks to other devices that
process the task and return the results to the CPU once complete. At the time of writing,
CPUs typically have at least 4 fast cores3, and may have dozens4 or even hundreds of
cores in high-end server CPUs5. These cores are usually reserved for most general pro-

3https://www.intel.co.uk/content/www/uk/en/products/sku/217187/intel-core-i71195g7-
processor-12m-cache-up-to-5-00-ghz/specifications.html

4https://www.amd.com/en/products/cpu/amd-ryzen-9-pro-3900
5https://www.tachyum.com/datasheets/Prodigy%20PB%2016128%20v1.0_220510.pdf

Page 33 of 260

https://www.intel.co.uk/content/www/uk/en/products/sku/217187/intel-core-i71195g7-processor-12m-cache-up-to-5-00-ghz/specifications.html
https://www.intel.co.uk/content/www/uk/en/products/sku/217187/intel-core-i71195g7-processor-12m-cache-up-to-5-00-ghz/specifications.html
https://www.amd.com/en/products/cpu/amd-ryzen-9-pro-3900
https://www.tachyum.com/datasheets/Prodigy%20PB%2016128%20v1.0_220510.pdf


Harri Renney The University of the West of England

cessing whilst the modern GPU contains hundreds6 to tens of thousands7 of specialised
parallel processors that can be used to offload and accelerate suitable tasks like graphics
and physical models.

Heterogeneous computing has become a foundational concept in the continual de-
velopment of computational growth as it supports the inclusion of various processing
devices like the GPU. The tools and frameworks supporting heterogeneous computing
have continuously matured in academia and industry such that now they can be included
in designs and implemented on modern systems (Wen-mei, 2015). A widely adopted
open-source standard and framework for heterogeneous computing is The Open Com-
puting Language (OpenCL). OpenCL offers an abstract programming model for devices
supporting OpenCL. This means that a single OpenCL program can be written and run
across various systems, which then utilises all supported heterogeneous devices available.
(Gaster et al., 2012) describes in detail the abstract model and how to efficiently pro-
gram OpenCL to offload and accelerate particular processes to heterogeneous devices,
like GPUs.

Whilst heterogeneous computing is used to increase computing power, a further benefit
is that it can lead to more efficient power consumption. In (Che et al., 2009, p. 8), the
heterogeneous implementations utilizing the GPU were observed to consume more power
than the CPU versions. However, the power consumption to performance ratio was much
better for the GPU versions in all but one case across the nine benchmarks. This thesis
explores the design of physical modelling audio synthesis within the modern heterogeneous
environment to promote further compute power and energy efficiency.

2.3.1.1 Processing Units

Processing units are a collection of hardware components that collectively enable the
execution of program instructions (Iwai and Ohmi, 2002). There is a variety of processing
unit designs and architectures, the most fundamental being the central processing unit
(CPU). The (CPU) is the primary processor for most computer systems (Baer, 1980), it
handles the processing of arithmetic, logic, control and input/output operations. CPUs
can be made up of many fast processing cores, each core in the range of 3.50 to 4.2
GHz. Although initial CPUs would use a single core and execute programs in sequence,
modern CPUs involve multi-core and multi-threading for parallel processing (Duncan,

6https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/
specifications

7https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3080-3080ti
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1990). Using Flynn’s Taxonomy, this parallel processing environment on modern CPUs
is referred to as a Multiple-Instruction Multiple-Data format (MIMD) (Flynn, 2011).

Graphics processing units (GPU) are a special kind of processing unit originally de-
signed for graphics processing (Hopgood et al., 1986). At its core, the GPU utilises
the Single-Instruction Multiple-Data (SIMD) processing format (Flynn, 1972). Although
initially designed for accelerating the processing of image data for display devices, the
SIMD format used by the GPU is suitable for many other types of problems. Instead
of building a new specialist SIMD device, developers utilise the GPU for accelerating
appropriate SIMD processes because of the commercial success and wide adoption of the
GPU now present in nearly all systems.

In Danalis et al. (2010), a benchmarking suite comprehensively tests and compares
a range of GPUs and CPUs. The GPUs demonstrated superior processing through-
put when compared to the CPUs. However, the GPUs did not always meet the ideal
throughput calculated according to their specification. This is a common challenge when
mapping problems into a GPU environment, the target is to reach the theoretical per-
formance according to the specification of the hardware. However, as is usually the case,
there is overhead for most problems, including memory transfers, synchronisation and
under-utilised resources, but by following the vendor best practices (Allalen et al., 2017),
performance can be maximised. The performance implications of the GPU and the low-
level programmability harms its adoption; therefore, one of the core aims of this thesis is
to highlight the strengths and limitations of the GPU within the context of digital audio.

2.3.2 Parallelism

Task parallelism is a format of parallel processing where several different tasks that can
have unique sets of instructions are executed simultaneously. This enables each task to
independently execute on its own thread or processing core without relying on separate
tasks (Bocchino et al., 2009). However, often tasks need to share data, requiring data shar-
ing techniques to be employed (Chatterjee et al., 2013). An example of task parallelism
is pipelining (Cosnard and Trystram, 1994). Pipelining works by breaking a problem into
sections that can be processed independently and passing their resulting data to the next
stage in the pipeline. In addition, task parallelism usually has coarse-grained features,
meaning it has less communication overhead between parallel elements; thus, the ideal
scenario results in close to negligible overhead (Gordon et al., 2006).

Data parallelism is the processing of a collection of data elements at the same time
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by applying the same sets of instructions to all the data (Reinders, 2007). Data par-
allelism is incorporated into the CPU as additional vector processors that are designed
to execute the same instructions efficiently and effectively large one-dimensional arrays
of data (Eichenberger et al., 2004). Some examples of these vector processors include
SSE (Raman et al., 2000) and the more modern AVX (Lomont, 2011) instructions sets.
These can be accessed using low-level intrinsic functions provided by the hardware ven-
dor (like Intel (Hassan et al., 2016)) or mapped to high-level interfaces like OpenMP
(Chandra et al., 2001). The GPU achieves massive data parallelism using numerous
data-parallel processors, often referred to as streaming multiprocessors. Data parallelism
usually has fine-grained features, meaning it has a high communication overhead. There-
fore, thread communication should be avoided when targeting data parallelism. GPUs
combine the fine-grained SIMD paradigm of data parallelism with the coarse-grained fea-
tures of thread parallelism by arranging multiple streaming multiprocessors resulting in
the Single-Instruction Multiple-Thread paradigm (Kilgariff and Fernando, 2005).

2.3.3 GPU Architecture

An abstract view of the modern GPGPU architecture is shown in Figure 2.4 (Weber, 2014).
Here, the CPU interfaces with the GPU unit across a bridge and a host interface loads
instructions and programs onto the GPU (Nickolls and Dally, 2010). The device then
loads the program across the compute devices; these manage the execution of instructions
from the program across their numerous Processing Elements (PE). According to the
program instructions, all the PEs then execute the same instructions simultaneously
on different sections of data in memory by using the ID of the stream of execution to
index into memory. This means that each compute unit supports the single-instruction
multiple-data (SIMD) paradigm. Note that the compute device has multiple compute
units that can each have different sets of program instructions loaded onto them. This
extends the SIMD paradigm to single-instruction Multiple-thread (SIMT) (Corporation,
2009) and this arrangement enables the massively parallel processing environment of the
GPU. Each compute unit can apply the same sets of instructions in lock-step to data
across all its PEs. The lock-step execution blocks diverging branches from executing
simultaneously on a compute unit and negatively impacts performance. However, as
there are multiple compute units providing a SIMT arrangement, the GPU can handle
some branching but must avoid excessive branching. In this paper, the term core will
be used to refer to streams of execution on each PE and not the physical cores. This
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Figure 2.4: The modern GPU architecture (Weber, 2014).

abstraction helps describe how data is processed fully in parallel, but in reality, all of this
processing might not execute simultaneously if the number of items to process exceeds
the number of physical cores.

2.3.4 GPU Programming

The GPU can be programmed in two ways; the original approach is to program the GPU
using the graphics pipeline. The second approach is to use general compute shaders.
The graphics pipeline consists of a series of primary operations that process raw vertex
data into a final presentable image (khronos, 2017). Figure 2.5 presents the stages of the
graphics pipeline8. First, a collection of points describing 3D geometry called vertices
are used to form primitives such as triangles in the vertex shader. The space between
triangles is then rasterised to form a collection of fragments that can then be processed
into coloured pixels in the fragment shader. The frame of pixel data is then sent to a
display device. Graphic shaders are programmed in languages supported by the GPU
standards, such as the OpenGL Shading Language (GLSL) for OpenGL (Marroquim and

8Modern GPU program can involve more advanced stages and programs in the pipeline
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Maximo, 2009).

Figure 2.5: Fundamental graphics rendering pipeline stages.

With the development of the unified architecture from Figure 2.4, an alternative
approach using compute shaders can be used instead of the graphics pipeline. This
approach uses one or more general compute shaders to describe instructions for the PEs
on the compute device to process data elements loaded from memory simultaneously. The
following relevant GPU standards support general compute shaders:

OpenCL - An open standard for parallel programming of heterogeneous systems where
general-compute shaders are describe using the OpenCL kernel language (Trevett, 2013).

CUDA - Parallel computing API for interfacing GPUs as GPGPU units. The GPU
is programmed as CUDA kernels written in the CUDA programming language Sanders
and Kandrot (2010).

OpenGL - OpenGL is primarily a 3D graphics rendering API for interfacing with the
GPU using the graphics pipeline and graphics shaders written in GLSL.

Vulkan - Vulkan is the next-generation 3D graphics rendering API. Known for its
absolute control and low-level intricacies, Vulkan exposes the GPU to its core. Vulkan
supports custom pipelines that can be arranged from graphical shaders and GPGPU
compute kernels that are written in GLSL.

The various GPU interfacing standards use their own notation for describing GPGPU,
this thesis will conform to use the OpenCL programming model (Group et al., 2013)(Gaster
et al., 2012) (Corporation, 2009). Figure 2.6 provides a view of the abstract OpenCL
model; notice how this maps almost directly into the modern GPU architecture shown
in Figure 2.4. Each PE executes as a workitem, which has access to its own region of
fast access private memory. All workitems are contained within a workgroup, which is
essentially a compute unit managing its workitems. All workitems in a workgroup have
access to a shared region of local memory. Local memory is slower than the private mem-
ory accessible to each workitem but is faster than the global memory that all workitems
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can access. The host memory is associated with the CPU and must be transferred to the
GPU over system buses to fill the global memory and then processed and moved to other
regions of GPU memory. This memory hierarchy is similar to that found on the GPU,
where memory types vary in size and access speed (Hestness et al., 2014).

Besides memory visibility between PEs, the GPU also involves different levels of
visibility for the CPU acting as the host. There are three common types of memory
in the relationship between the CPU and GPU (Gregg and Hazelwood, 2011). GPU local
memory is only accessible on the GPU, and all data that is processed on the GPU should
be stored here. Host visible memory is memory on the GPU accessible by the CPU but
is not necessarily accessible by PEs on the GPU. Host visible memory is slower for the
GPU to process and therefore should be used as a staging area to transfer data from
the CPU to the GPU. Finally, there are push constants (Larsen, 2019), these represent
high-speed ways to write constant memory to a limited memory space. Therefore, push
constants are suitable for improving the update speed of constants that do not require
considerable amounts of memory.

Figure 2.6: The abstracted OpenCL memory model used when interfacing with OpenCL. (Tompson and
Schlachter, 2012)

Adhering to the OpenCL model, it can be used to process data in parallel by dispatch-
ing workitems to the GPU and executing a program that uses the ID of each workitem
to index into memory, process and store the calculations. An example demonstrating the
mapping of a list doubling function from a serial approach to an OpenCL parallel form
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is given as follows:

Algorithm 1 Vector Double List
1: function serialDouble(aList, aListSize)
2: for 8 = 1 to aListSize do
3: aList[i] *= 2

4: function vectorisationDouble(aList, aListSize)
5: idxWorkitem = getWorkItemID()
6: idxGroup = getWorkGroupID()
7: stride = idxGroup
8: for 8 = 1 to aListSize when i += stride do
9: aList[i + idxWorkitem] *= 2

Here, a list of data is processed in parallel using the workitem index idxWorkitem and
loop index i. The data is accessed this way to ensure memory coalescing by having each
workitem accessing data adjacent to each other. This improves the access speed of global
memory as a compute unit fetches a block of data once for all adjacent workitems to
access, instead of accessing memory in entirely different locations in memory that would
require fetching data from multiple regions of memory. Failure to arrange programs for
memory coalescing is detrimental to the overall performance. The contrasting memory
access patterns gather and scatter have notoriously poor performance. Gather and scatter
operations require threads to access completely different chunks of memory, often resulting
in long memory accessing overheads that should be avoided and removes the performance
benefits from memory caching. Gather and scatter operations are formally described in
(Duff et al., 2002) with the following linear algebra definitions:

Gather G← H |G G(8) = H(83G(8))
Scatter H |G← G G(83G(8)) = H(8)

Figure 2.7: Linear algebra and mathematical equations for gather & scatter operation.

In Figure 2.7, the gather operation is described as a process that iterates through
every element in the lists x, y. 'i' is used to access the data elements in sequence. 'idx(i)'
is used to access a random element of y. Understanding this, it can be seen that random
values are taken from y, and stored in sequence in x. Hence, this is called gathering.
The scatter operation is described as the values in sequence in y are stored at random
positions x; essentially the inverse of gathering.
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In He et al. (2007), the authors study the gather and scatter operations on GPUs and
compare them to equivalent CPU applications. Their work shows that a naive scatter-
gather is approximately 33.8 times slower than a sequentially accessed benchmark. The
authors highlight that it is best to avoid gather and scatter operations entirely. However, if
a designer has no choice, like with sparse linear algebra operations, there are optimisations.
For example, by using a multi-pass scheme for radix sort, it is seen to achieve a 30%
improvement to a naive implementation on the GPU. Additionally, in comparison to
an Intel CPU, the GPU application achieved a 7.2× speedup for a hash search. These
results highlight the importance of memory coalescing and accessing memory optimally.
Processing finite-difference models provide an optimal data structure to operate on as
gather and scatter operations can be avoided. For example, the recursively solvable
explicit schemes can map each workitem to an adjacent element in memory and only
access neighbouring values to that element in memory.

2.3.5 GPU Type

GPUs are often classed as one of two types, discrete or integrated GPUs. Discrete
GPUs are separate from the CPU and connected across system buses such as Peripheral
Component Interconnect (PCI). However, communicating over the PCI buses involves
data transfer overhead. In contrast, integrated GPUs are tightly coupled to the CPU,
even sharing regions of physical memory known as unified memory. This means that
the latency overhead accumulated over PCI bus transfers is avoided, and communication
between CPU and GPU is faster than the discrete GPU (Renney et al., 2020). However,
integrated GPUs are limited by the physical space and power they can consume and
therefore typically provide an inferior data throughput than discrete GPUs. This makes
integrated GPUs more suitable for processing minor data-parallel problems, while discrete
GPUs are for processing tasks requiring higher data throughput.

2.4 Programming Languages

Programming languages are notations for describing computation for humans and ma-
chines. There are many different fundamental types of programming languages, and
researchers have explored this since the 1950s when the first major programming lan-
guage FORTRAN was established (Backus, 1979). Human-readable source code must be
converted into a form that digital systems can execute. Programming languages have
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a defined set of syntax that a programmer uses to describe the instructions to execute;
this ultimately takes a semantic meaning that takes effect when the program executes. A
compiler is a tool that translates a program’s source code into another target language.
A compiler is made up of two distinct parts: the front-end parser and the back-end code
generator. Among the many roles of a compiler, one of the most important is reporting
and describing errors in the source code that prevent compilation.

Based on the description by Aho et al. (2020), the stages of a minimum compiler
are shown in Figure 2.8. First, the input of the front-end parser takes the high-level
source code comprised of a series of human-readable characters called a character stream.
Next, the character stream undergoes lexical analysis, where the code is scanned, and
meaningful sequences of characters are grouped into output tokens. Next, the syntax
analyser uses the output tokens to build an abstract syntax tree (AST), capturing the
meaning and structure of the program. Finally, the back-end code generation component
uses the AST to generate the equivalent target code. This is can be low-level machine
code for execution on particular hardware or another high-level, human-readable source
code that can then be compiled by another compiler for execution.

Figure 2.8: The stages involved in a minimal compiler.
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2.4.1 Functional Programming

Functional programming is one of the two major programming paradigms available to
programmers, the other being imperative programming. Imperative programming lan-
guages achieve results by executing statements that explicitly change the system’s state;
in effect, the programmer is telling the computer ’how’ to do something. In contrast,
functional programming is considered a declarative paradigm. Declarative programming
is considered a more abstract way of programming where the computation is described
without explicitly describing the program’s flow (Fahland et al., 2009) such that the pro-
grammer is describing ’what’ needs to happen. This approach lets the compiler avoid
translating explicit statements into binary code and provides the freedom to apply a
broader range of optimisations (Ullrich and de Moura, 2019). Functional programming
treats computation as mathematical functions (Hutton, 2016), as demonstrated in Figure
2.9, this code describes a recursive function for summing all elements in a list that avoids
the need for state variables. A possible imperative equivalent in the C programming
language is proposed in Figure 2.10 and requires state variables ‘i’ and ‘sum’.

1 sumAll :: Num a => [a] -> a

2 sumAll (x:xs) = x + sumAll xs

3 sumAll [] = 0

Figure 2.9: Concise and recursive Haskell function for summing all elements in list.

1 int sum_array(int a[], int num_elements)

2 {

3 int i, sum=0;

4 for (i=0; i < num_elements; i++)

5 {

6 sum = sum + a[i];

7 }

8 return(sum);

9 }

Figure 2.10: Possible equivalent imperative C code to the functional Haskell code in Figure 2.9

As described by Olsen (2018), the two core concepts of functional programming are:
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• Pure functions, as taken from abstract mathematics, are functions that take an
input that always maps to the same output and causes no side effects. In other
words, there is no external state that influences or is influenced by this mapping.

• Immutable Data Structures enforces that all data is constant, and therefore when
writing new data to memory, it must be copied to a new data structure. To avoid
costly copying, data trees are used to allow only small sections of data structures
to be copied between huge data sets.

A powerful emerging feature of immutable data and pure functions is the intrinsic
suitability for parallel processing. Recall that the processing of data in parallel is optimal
when data is independent of one another. Therefore, the guarantee of pure functions and
immutable data to prevent side effects and data inter-dependence leads to an optimal
parallel program (Lisper, 1996). Although these concepts can be limiting, data-parallel
processes such as SIMD often operate comfortably in these requirements. The suitability
of pure functional languages for parallel processing has been demonstrated in implemen-
tations like Walinsky and Banerjee (1990) and Jones et al. (1996) where the authors pro-
pose a functional programming language called “Concurrent Haskell”. The Haskell-level
threads are easily mapped onto OS-level threads, usually one per available processing
core.

One of the most compelling arguments for the use of functional programming is un-
derstandability (Fahland et al., 2009) and expressiveness (Felleisen, 1991). Although still
widely debated, expressiveness is usually considered the amount of information repre-
sented in a programming language with the least number of characters 9; the functional
language’s deep rooting in lambda calculus allows familiar programmers to be expressive.
This thesis will use a purely functional programming paradigm to define the HyperModels
DSL for two reasons. Firstly, it provides a powerful agnostic representation of the design
that can be understood and implemented in various forms through open interpretation.
Secondly, the suitability of functional languages for parallel processing includes the op-
portunity for the design to be optimised further beyond the scope of this work. Next, the
methods for defining a language will be described.

9At the time of writing, the literature investigating the superior language paradigm for understandability and
expressiveness is inconclusive.
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2.4.2 Defining a language

Formally describing a language is achieved by defining the language’s grammar. In com-
puter science, context-free grammar is frequently used for designing and building DSLs
(Sakakibara, 1992). The core components of a grammar are a set of rules built on defining
expressions. Expressions are a syntactic entity used to evaluate and then determine the
value of a side-effect (Mitchell and Apt, 2003). An expression can be defined as one or
more constants, variables, functions, operators and many other forms. Each rule is made
up of two parts, a name and an expression of the name. Using the English language, it
is possible to define a rule as:

expression may expand into expression + expression

Grammars are typically defined as mathematical objects, so instead of writing out
"may expand into", a mathematical like notation is used. In this thesis, a variation
on the Backus-Naur Form (BNF) (McCracken and Reilly, 2003) notation that includes
regular-expression-like operators and omits <. . .> around expressions. To define new
expressions, the ::= operator is used:

name ::= expansion

Therefore, the original statement can be more concisely expressed as:

expression ::= expression + expression

Every name begins describing a new pattern defined in the expansion. An expansion is
one or more expressions containing terminal symbols and other defined name expressions.
A terminal symbol is a literal, like "+" or "function" or a whole domain of literals, like
digits. Placing expressions after one another indicates sequencing of expressions, meaning
they are expected to appear in that order in the language. A vertical bar "|" indicates
a choice, so when used between two sequences of expressions, the grammar is looking to
match a pattern on one or the other side of "|". The classic expression grammar in BNF
is (Backus et al., 1963):

expr ::= term "+" expr | term

Curly braces "{ }" indicate that the expression may be repeated zero or more times.
So provided arg has been defined, a conventional comma separated list can be:
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args ::= arg { "," arg }

To indicate precedence, BNF grammars can use brackets to explicitly define the order
of an expansion:

expr ::= term ("+" | "-") expr

Along with these, the following BNF notation will be relevant in this thesis:

• postfix * means "repeated 0 or more times"

• postfix + means "repeated 1 or more times"

• expressions inside [ ] are optional.

The basic BNF form covered here can be used to define context-free grammars (Nelson,
2019), providing a powerful and expressive way for describing languages. The BNF gram-
mar can be used to implement the compiler AST parser to begin forming the translation
from source to equivalent target code.

2.4.3 Front-End Parser

Once the language has been formally defined, a parser that uses several stages to parse
source code into the equivalent AST can be implemented. The first stage is referred to
as lexical analysis (Aho et al., 2020), this is where the input character stream is used to
create a set of meaningful tokens. A token takes the following form:

〈C>:4=−=0<4, 0CCA81DC4−=0<4〉

This captures the meaning of each element in the source code and labels it with a
unique ID. These tokens are then used in the subsequent syntax analysis stage for gen-
erating the AST. For example, suppose a language grammar was defined that supported
variables, binary operators and assignment. The following statement can be written in
the language:

?>B8C8>= = 8=8C80; + A0C4 ∗60

from which the following tokens would be generated:

〈83,1〉〈=〉〈83,2〉〈+〉〈83,3〉〈∗〉〈60〉
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The syntax analysis stage uses this more meaningful set of tokens to generate the
statement’s abstract syntax tree representation. The tree is formed by finding operators
like "+" as inner nodes with children nodes attached to it representing the arguments for
that operator. Taking the example statement considered thus far, the abstract syntax
tree in Figure 2.11 is generated. Note that the tokens identify variables with numbered
ids because the parser can track these easily, unlike a human who prefers a human-
readable variable. The AST captures the precedence of operators and variables as IDs in
a navigable form and is prepared for code generation by the compiler back-end.

Figure 2.11: The AST of the example statement from Section 2.4.3

2.4.4 Back-End Compiler

The compiler’s back-end includes all of the processes involved in taking the prepared AST
from the parser and generating the target output code. For the context of this thesis, only
the target code generation stage, as shown in Figure 2.8 will be described; more advanced
compilers include additional stages such as an intermediate language representation and
optimisation. The details of the code generation stage depend on the target language
being generated. A compiler that generates machine code will typically use three-address
instructions for mapping a low-level language such as assembly. In contrast, a source-
to-source compiler (Schordan and Quinlan, 2003; Loveman, 1977) will use the AST to
generate another high-level or source language. Examples of source-to-source compilers
include the Closure Compiler (Bolin, 2010), Emscripten (Zakai, 2011) and features of the
Mephisto transpiler (Demir, 2015).

Source-to-source compilers operate on the source and target languages, usually at the
same level of abstraction, while a traditional compiler translates from high-level to low-
level code. The primary aim of source-to-source compilers is to translate the programming
source from a language used by one group of people to another. An additional benefit is
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the optimisation of code that might seem unintuitive or make the code less readable. A
frequent technique used for source-to-source compilers is to build templates of boiler plate
code that include necessary code from the target language, then using the AST to build
up the target program by assembling pieces of the different templates and generating
snippets of target code that can be injected into significant positions in the template
code. Continuing to use the same example, the compiler can generate an equivalent c
program function declaration from the AST by first forming the template code for a
function:

$return-type$ $function-name$($variables$);

Here, there are three symbols inside the template called "$return-type$", "$function-
name$" and "$variables$"; these are symbols that will be replaced with generated code
snippets. Therefore, using the AST, the code generator can navigate the tree and collect
the necessary information required to insert the correct return type, function name and
variables involved in the statement. An example output of this generated C function
declaration would be:

float getPosition(float idTwo, float idThree);

Using this technique, a whole c program can be formed by inserting all function
declarations and their respective definitions into a template calling them from the main
entry point to the C program. Provided the c program generated is correct, it can then
be compiled for execution using one of the well established c compilers.

2.4.5 Domain Specific Language

A Domain-Specific Language (DSL) is a computer language that has been carefully con-
structed to support a particular field/domain. One of the core purposes of a DSL over
a general-purpose language is to provide an accessible and expressive language to users
familiar with a domain (Liu et al., 2005). For example, in Kramer et al. (2010), a DSL
for developing mobile apps is presented with some evidence that the DSL enhances devel-
opment for two particular case studies. Another study in (Kieburtz et al., 1996) involved
users tasked with developing and maintaining software using general language template
techniques and then a DSL language. Their analysis concluded that the DSL language
proved better across all the chosen metrics: flexibility, productivity, reliability, and usabil-
ity. Various other sources continue to suggest the improved productivity and usability of
DSLs in particular scenarios (Kieburtz et al., 1996; Kos et al., 2010; Visser, 2007). The
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Faust 10 functional programming language for sound synthesis and audio processing is
a relevant example that supports the successful adoption of DSL by audio developers
(Smith III, 2010). With a strong focus on the design of synthesizers, musical instruments
and audio effects, Faust demonstrates the DSL form is effective within the audio domain
(Smith, 2007).

DSLs have also been extensively used to enable high-performance computing (HPC)
for non-programmers. Python frameworks such as OpenSBLI11 have enabled developers
to build finite-difference models using a set of Python functions that are mapped to
multiple threading environments on the CPU and GPU (Jacobs et al., 2017). OpenSBLI
might abstract developers from the low-level processing architectures, however, they still
require the developer to be familiar with a general purpose programming language. DSLs
like Saiph (Macià et al., 2018) have been designed to ease the task of simulating complex
fluid dynamics systems without the use of general purpose programming languages. Saiph
is written at the level of continuous PDEs and does the transformation from continuous
to discrete versions in the compiler. This is a useful abstraction but comes at the cost of
losing control of how the PDEs are represented in the discrete domain. Saiph has shown
promising results for modelling real physical systems when comparing the performance
on a particular High-Performance Computer called BSC-MareNostrum IV12. In their
performance evaluation sections, Macià et al. (2022) demonstrated that for certain tasks
Saiph was shown to outperform two other computational fluid dynamics software tools
CREAMS (Ferrer et al., 2014) by 1.2x and OpenSBLI by 1.4x. The Saiph DSL supports
the descriptions of the mesh geometry within the DSL, this approach suits programmers
well but can be considered as less accessible for mathematicians. Therefore, visual tools
that provide Direct Manipulation (Shneiderman, 1997) such as in Kusama and Saito
(2021) are viewed favorably and promotes an ease of use alternative to non-programmers
(Newton and Browne, 1992). Considering the existing literature, in this thesis a format
using SVGs is proposed to support descriptions of the geometry using visual interfaces
rather than describing them within the DSL like Saiph.

Another notable DSL for mesh based PDE simulations is Liszt13. Liszt is a Scala-
based DSL for solving PDEs on meshes that can be mapped to scalar, cluster and GPU
architectures for processing; all shown to have favourable performance when compared to
the results reported in the literature (DeVito et al., 2011). Whilst both Saiph and Liszt

10https://faust.grame.fr/
11https://opensbli.github.io
12https://www.bsc.es/marenostrum/marenostrum
13https://graphics.stanford.edu/hackliszt/
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include the definition of the mesh geometry in the DSL, Saiph simulation code is written
as continuous PDEs while Liszt is written for the discretised mesh layer. Considering
mathematicians are the target audience, most are expected to be competent and would
want the opportunity to make manually make this mapping. Therefore in this thesis, the
proposed DSL will operate at the level of discrete representations of the PDEs.

Considering the feasibility of DSLs and the evidence of their effectiveness in the HPC
and audio domain already, this thesis suggests combining ideas from these fields to propose
a new DSL for creating audio physical models that can be mapped to parallel processors,
as seen in HPC.
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Part 1 of the thesis explores and establishes the GPU’s practicalities for processing
digital audio for offline and real-time requirements. Quantitative performance profiling
methods gather execution times across various tests to expose the limitations and high-
light the strengths of the GPU. Chapter 3 describes and presents the results of a GPU
audio benchmarking suite. This suite consists of micro tests starting with simple CPU to
GPU data transfers up to macro tests involving complete audio synthesisers. These tests
are profiled across several systems, and the results are used to evaluate the fundamental
viability of the GPU for digital audio processing. With a foundational understanding of
the GPU, two GPU accelerated designs are proposed and evaluated for an offline and
a real-time application. Chapter 4 presents the design of an offline GPU accelerated
evolutionary sound matching application, while Chapter 5 comprehensively covers the
real-time support of a physical model synthesiser. Analysing the results highlights the
contextual advantages between the CPU and GPU for suitable tasks. The evaluation of
the GPU from Part 1 provides valuable insight for the development of HyperModels in
Part 2.
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Chapter 3

GPU for Digital Audio Evaluation

As covered in the literature, GPUs have been used for various general computation tasks,
including digital audio applications. However, a comprehensive study benchmarking vari-
ous core and fundamental digital audio processing on the GPU, particularly with real-time
constraints, is missing. These include identifying a range of usable audio buffer sizes that
meet real-time audio requirements, how different GPU interfacing software effects perfor-
mance and how the GPU compares to the CPU for physical modelling audio synthesis.
Therefore, to advance this thesis and justify the motivation for the contributions later,
this chapter presents a benchmarking suite for evaluating the viability and practicality
of using the GPU for processing digital audio by answering these fundamental questions.
The evaluation is led by collecting performance profiles across distinct systems using a
specifically designed benchmarking suite. The suite contains various tests for general
digital audio and real-time requirements. One of the benchmarking suite’s key features
is the automated testing of an enumeration of sample buffer lengths dispatched to the
GPU. This gives insight into the importance of the buffer length and how it affects the
audio-sound latency and the performance to support real-time sonic interaction require-
ments.

The results of this chapter have been peer-reviewed and published in Paper [A] at
the conference of New Instruments for Musical Expression (NIME) 2020 under the title
"There and Back Again: The Practicality of GPU Accelerated Digital Audio" (Renney
et al., 2020).
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3.1 Benchmark Methodology

The benchmarking suite is used to manage the execution and profiling of a collection of
various tests. The suite has been implemented in C++ to support the low-level GPU
interfacing APIs OpenCL and CUDA. All tests are functionally equivalent but imple-
mented separately to target OpenCL and CUDA. The tests are categorised into two
types, general tests and real-time tests. The general tests include various types ranging
from isolated micro-benchmarks to more extensive full-featured programs. The real-time
tests are designed to measure the performance at a set sample rate, demonstrating direct
performance within real-time constraints. The benchmarking tests take inspiration from
the heterogeneous benchmarking suite Hetero-mark, proposed by Sun et al. (2016). In
Hetero-mark, benchmark tests are defined as being unidirectional or bidirectional. Uni-
directional tests involve a single direction of data transfers between the CPU and GPU,
while Bidirectional tests involve data transfers in both directions. The tests are all ex-
ecuted and profiled for an enumeration of different buffer lengths. Buffer length is an
essential controllable parameter that significantly affects the real-time audio-sound la-
tency and sonic interaction requirements. Therefore, profiling the range of buffer lengths
will expose the ranges of acceptable buffer lengths for real-time requirements. The buffer
sizes tested are an enumeration starting from 1 and increasing by powers of 2 up to 32768.
This series of buffer sizes were chosen as powers of 2 are flexible for further processing in
DSP, such as when FFT is calculated (Bailey, 1988). The benchmarking suite follows a
conservative approach; for example, explicit synchronisation between the CPU and GPU
is confirmed after every GPU interfacing event. This approach gives more confidence
in the results as they do not rely on any case-specific advantages. This means that the
explicit synchronisation can be turned off in practice, and the implicit synchronisation
managed by the GPU driver will only improve performance further.

All the systems used to collect benchmarking results in this chapter are outlined in
Table 3.3. For reference, the relevant specification for the CPUs including cores and
clock speeds can be found in Table 3.1 and for the GPUs in Table 3.2. These systems
range from a modest mid-range laptop that contains GPUs with hundreds of cores to
professional high-end desktops with powerful NVIDIA and AMD GPUs. The mid-range
laptop has an optional integrated GPU, as described in Section 2.3.5, these share their
memory space with the CPU over a ring bus memory interface, providing fast memory
transfers between CPU and GPU, unlike the other discrete GPUs that have the added
overhead of transferring data across a PCIe interface.
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Device Intel Core i7-8550U Intel Core i7-9800X
Cores 4 8
Threads 8 16
Clock Speed (MHz) 1800 3800
Peak FP32 performance (GFLOPS) 230 972
Cache L1 (KB) 64 64
Cache L2 (KB) 256 1000

Table 3.1: Specification of all CPUs used in systems in the thesis.

When collecting benchmarking results from the hardware systems, the software has
been consistently selected to directly compare hardware results. In this chapter, all
systems run on the sameWindows 10 Version 19091 operating system and use the OpenCL
standard 1.22, whilst all CUDA programs use SDK version 10.23. Each hardware vendor
provides it’s own implementation of OpenCL 1.2 and the versions used in this chapter
are:

• Intel = Intel CPU SDK for OpenCL Applications 2019

• AMD = AMD APP SDK v2.9.1

• NVIDIA = NVIDIA’s OpenCL implementation is from the CUDA SDK version
10.2

It might be noted that the OpenCL version used is released 4 years before the CUDA
version used despite there being a later version of OpenCL. This is because, at the time
of writing, the NVIDIA GPUs do not support versions of OpenCL higher than 1.2. This
puts OpenCL at a disadvantage when comparing with CUDA and for a fair comparison
of these technologies, only equally supporting hardware would be used. However, in the
context of this thesis, the computation of hardware from multiple vendors is considered
and compared and therefore the most widely supported version of OpenCL must be used.

3.1.1 Performance Profiling

CPU timers are a reliable and consistent method for measuring the execution time be-
tween isolated program sections. Using the C++ standard library, timestamps can be

1https://learn.microsoft.com/en-us/windows/release-health/status-windows-10-1909
2https://registry.khronos.org/OpenCL/specs/opencl-1.2.pdf
3https://developer.nvidia.com/cuda-10.2-download-archive
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Device Intel UHD Graphics 620 AMD Radeon 530 Radeon Pro WX 7100 Nvidia GeForce RTX 2080 Ti Nvidia Titan RTX
SM 24 6 36 68 72
Cores 192 384 2304 4352 4608
Clock Speed (MHz) 300 730 1188 1350 1350
Peak FP32 performance (GFLOPS) 384 786 5728 13450 16310
Private Memory (KB) N/A 16 16 64 64
Local Memory (KB) N/A 128 2000 5500 6000
Global Memory N/A 4GB 8GB 11GB 24GB
Memory Bus Bandwidth (GB/s) N/A 14.40 224.0 616.0 672.0
Memory Bus Interface Ring Bus PCIe 3.0 x8 PCIe 3.0 x16 PCIe 3.0 x16 PCIe 3.0 x16

Table 3.2: Specification of all GPUs used in systems in the thesis.

Specification Mid-range Laptop High-end AMD High-end NVIDIA GeForce High-End NVIDIA Titan
CPU Intel Core i7-8550U Intel Core it-9800X Intel Core it-9800X Intel Core it-9800X
Integrated GPU Intel UHD Graphics 620 None None None
Discrete GPU AMD Radeon 530 Radeon Pro WX 7100 GeForce RTX 2080 Ti Titan RTX
RAM 8GB 32GB 32GB 32GB

Table 3.3: System hardware specification used for benchmarking

taken on either side of a program section and the difference calculated between the times-
tamps is the execution time of that section. In this thesis, CPU timers have been used
over alternative GPU profiling tools for several reasons. Firstly, CPU timers provide a
realistic representation of the time between initiation and completion of a process on
the GPU, including any of the communication overhead between the CPU and the GPU.
Secondly, using GPU profiling tools leads to complications with inconsistent profiling
tools, as each GPU vendor has different tools that measure execution times differently.
Instead, CPU timestamps will be used to provide a standard and consistent method for
fair comparison when analysing the results.

The benchmarking suite measures each test’s execution time by timestamping points
before and after the test completes. The two timestamps are then used to calculate the
elapsed time to execute the test. The elapsed time is recorded in an array for each iteration
of the test executed and collected together. Once all test iterations are completed, all
the timestamp measurements can be used to calculate the average execution time, max
execution time and execution time variance. This collection of profiling metrics will
provide the necessary information for evaluating the real-time capability of the GPU.

A theoretical estimate for the number of FLOPs a profiled program requires will be
calculated as:

�!$%( = #G ∗#H ∗ AB ∗#> (3.1)

where #G and #H are the resolutions of the physical model in the x and y directions
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and AB continues to be the sample rate. #> is the typical number of operations executed
per grid point and in this thesis a naive approach will be used and every floating point
operation will just be considered as 1 FLOP. In practice, this theoretical FLOP count
will be inaccurate as each hardware device will have a different FLOP count for their
operations. However, this is the most accessible way to generalise the flop count across
various hardware and gives an indication of how intense a program is expected to be.
This gives further insights when compared with the actual observed results.

3.1.2 Real-Time Requirements

The real-time requirements discussed in Section 2.1.5 will be used for evaluating the
real-time performance in the benchmarking suite. The results measure and present the
Average Execution Time, Max Execution Time and Execution Variability. For evaluating
the core real-time audio-sound latency, the Average Execution Time will be compared
with the maximum acceptable audio buffer period from Table 2.1; if it exceeds the cor-
responding maximum audio buffer period, it is coloured red4, otherwise it is coloured
green. For evaluating the real-time sonic interaction, the Max Execution Time will be
compared to the Action-Sound Latency limits and the Execution Variability will be com-
pared to the Action-Sound Latency Variability from Table 3.4. Therefore, if either of
these measurements are less than the Recommended range, they are coloured green. If
they are outside of the Recommended but inside the Acceptable range, they are coloured
orange. However, if they are outside of these ranges, they are considered to fail to meet
real-time sonic interaction and coloured red. If the results demonstrate that a specific
configuration can support these real-time requirements in the Recommended range, this
shows good evidence that they can be supported in real-time. If they are only within the
Acceptable range, this is evidence it might work in real-time but is particularly sensitive
to any additional overhead and additional sources of latency such as those considered in
detail by McPherson (2017).

3.1.3 General Tests

In this Chapter, the general tests are executed 10,000 times for each enumeration of
the buffer lengths where performance measurements are recorded. These include the
average and maximum execution times for processing buffers along with the execution
time variation observed. The general tests in the benchmarking suite are:

4The colour palette used follows a colourblind appropriate palette proposed by Wong (2011).
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Requirement Recommended Acceptable Fail

Sample Rate 96000 44100 <44100
Action-Sound Latency 10ms 20ms >20ms
Action-Sound Latency Variability ±1ms ±3ms >±3ms

Table 3.4: Real-time audio requirement ranges for evaluating real-time performance as derived from
Table 3.6

• null kernel - A minimal test to measure the threshold overhead to execute an empty
program on the GPU with no data transfers.

• cpu to gpu - A unidirectional test measuring the data transfer from CPU to GPU.

• gpu to cpu - A unidirectional test measuring the data transfer from GPU to CPU.

• cpu to gpu to cpu - A bidirectional test measuring the round-trip transfer time
between CPU and GPU.

• simple buffer processing - Simple buffer processing is a bidirectional test which
applies a constant attenuation rate to the input samples.

• complex buffer processing - Applies a triangular smoothing operation (O’Haver,
1997, p. 34) to the input signal and returns smoothed buffers to CPU. Involves
bidirectional transfers and multiple memory accesses in the kernel.

• simple buffer synthesis - Generation of a sinusoidal signal at a given frequency, gen-
erating sine values that fill the buffer length in parallel. This operation involves only
unidirectional memory transfers from the GPU to the CPU, returning synthesised
sample buffers.

• complex buffer synthesis - The complex buffer synthesis is an application that has a
challenging amount of computation, bidirectional CPU-GPU transfers and involves
memory management. An application meeting these high requirements is a finite-
difference time-domain physical model synthesizer, such as Willemsen et al. (2020).
The full design and implementation is covered in Chapter 6.

• Interrupted buffer synthesis - This test extends the "simple buffer processing" pro-
gram by adding a 50% chance that the current buffer must discarded. This in-
terrupting mechanic demonstrates how the GPU manages frequent unpredictable
events that invalidate the results being processed.
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The execution of the above general tests are inserted into the following template for
extensive profiling:

1 void generalTest() {
2 prepareTest(hostVariables, deviceVariables);
3
4 if(isWarmup) {
5 executeTest();
6 }
7 for(int i = 0; i != numRepeats; ++i) {
8 startTimer();
9 executeTest();

10 endTimer();
11 }
12 elapsedTimer();
13 checkTestResults(testResults);
14 cleanup(hostVariables, deviceVariables);
15 }

Here, each test makes all preparations by initializing CPU and GPU memory used
in the test inside prepareTest(). Further, kernel code is prepared and loaded onto the
GPU if necessary. Both CUDA and OpenCL take considerably longer executing pro-
grams and transferring data the first time. This is expected as GPU preparations and
optimizations are established to increase the performance of subsequent execution. For
this reason, a warmup variable has been added to execute the test once prior to profiling.
The timestamping can be seen either side of executeTest and concludes with calculating
performance metrics when elapsedTimer is used. After the test has been completed, the
integrity of the results is checked. Finally, the CPU and GPU memory allocations are
deallocated in the cleanup function, ready for the next test.

3.1.4 Real-Time Tests

The real-time tests are designed to measure the performance by processing a number
of samples equal to a specific sample rate. The performance measurements will then
provide insight into acceptable performance as the enumeration of buffer sizes are tested.
Four real-time tests have been designed to test simple and complex unidirectional and
bidirectional scenarios:

• unidirectional baseline - Transfers data from the GPU to the CPU without any
processing at the specific sample rate.

• unidirectional processing - Generates samples using the simple buffer synthesis test
and then transfers them from the GPU to the CPU.
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• bidirectional baseline - Transfers data from the CPU to the GPU and back without
processing at a specific sample rate.

• bidirectional processing - Data transfers to and from the GPU for the complex buffer
synthesis test at the set sample rate.

The real-time tests process a full second’s worth of samples at a given sample rate.
Therefore, smaller buffer lengths will require more iterations and data transfers to the
GPU, improving the action-sound latency and the action-sound latency variance at the
expense of overall performance to maintain the audio-sound latency requirement. This is
achieved using the following real-time template:

1 void realtimeTest() {
2 if (isWarmup) {
3 executeTest();
4 }
5 while (numSamplesComputed < sampleRate) {
6 startTimer();
7 executeTest();
8 endTimer();
9

10 numSamplesComputed += bufferLength;
11 checkTestResults(testResults);
12 }
13 elapsedTimer();
14 cleanup(hostVariables, deviceVariables);
15 }

Here, instead of executing for a set number of times like in the general tests, the test
is executed for a second’s worth of samples at the sample rate. Therefore, the number of
times the test must execute is dependant on the bufferLength and sampleRate variables.
For example, if the test sets a sampleRate of 44.1KHz and a bufferLength of 128, the
test is executed d44100/128e = 345 times. In these tests, the profile timer started using
startTimer() and ended with endTimer() recordes the execution time of each buffer to
calculate the Average Execution Time. These results can then be checked against the
core audio-sound latency requirements from Table 2.1 and if the Average Execution Time
is below the corresponding buffer length’s Maximum Audio Buffer Period, then it meets
the audio-sound latency requirement. Taking the same bufferLength of 128 as above, if
a Average Execution Time of 1.521ms was recorded, this would satisfy the audio-sound
latency requirement as the corresponding Maximum Audio Buffer Period for an audio
buffer length of 128 is 2.902ms.

The timer profiles two further measurements, Max Execution Time and Execution
Variability. These are compared to the ranges of real-time sonic interaction requirements
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from Table 3.4. For example, in a real-time test regardless of bufferLength, if a Max
Execution Time of 15.450ms was recorded and 0.789ms for the Execution Variability, then
the real-time sonic capability would be evaluated as acceptable. This is because although
the Execution Variability was within the recommended action-sound latency variability
range, the Max Execution Time exceeded the recommended action-sound latency but
satisfied the acceptable range.

3.2 Results

The results presented in this section build up from the most fundamental operations
between a CPU and GPU to complete applications. The results are then reviewed to
demonstrate how the GPU takes advantage of its massively parallel architecture.

3.2.1 Minimum GPU Overhead

The absolute bare minimum GPU overhead can be seen in the measurements recorded
from the null kernel test. This test transfers no data and only executes an empty program
on the GPU. If the absolute bare minimum overhead exceeds or is even close to any of
the real-time requirements, this would suggest that the GPU is fundamentally unsuitable
for real-time applications. The bare minimum GPU overhead recorded in OpenCL for
the null kernel test are: 0.002051<B on the Radeon 530, 0.000455<B on the Intel UHD
Graphics 620, 0.009392<B on the GeForce RTX 2080 Ti, 0.011468<B on Titan RTX.
These are significantly short execution times that fit the real-time requirements and leave
plenty of room for important data transfers and processing.

The bidirectional baseline real-time test measures the time to transfer buffers of data
to the GPU, execute a null kernel and then return the buffer of samples to the CPU.
This demonstrates the performance of purely back and forth data transfers before any
processing is included. Table 3.5, presents the results for the bidirectional baseline test
using OpenCL and CUDA at a sample rate of 44.1KHz on the GeForce RTX 2080 Ti.
The results show the Average Execution Time that is compared with the core maximum
acceptable buffer period from Table 2.1 and coloured Green if within this limit and red if
outside this range. It can be seen that for buffer lengths 1, 2 and 4, the maximum audio
buffer period is exceeded and these buffer lengths will not be supported in real-time even
before any processing is applied to the samples. The results for the other discrete GPUs
have similar results and suggest that smaller buffer lengths below 8 will not meet the
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sample rate for discrete GPUs. However, the integrated GPUs seem to be an exception
and the Intel UHD Graphics 620 can operate of buffer lengths as short as 1 because it
does not rely on transferring data over a PCI bus and instead uses the low overhead
unified memory between the CPU and GPU. This makes the integrated GPU a good
choice when designing applications requiring smaller buffer lengths.

GPUs are designed for transferring large amounts of data from the CPU to the GPU as
they are typically handle large texture graphical assets that can involve gigabytes of data.
This is reflected in the specification seen in Table 3.2, the Nvidia GeForce RTX 2080 Ti
used in the High-end NVIDIA GeForce system uses PCIe 3.0 x16 to transfer data between
the CPU and GPUmemory and has a peak theoretical transfer rate of 224GB/s. Consider-
ing audio processing only requires a single channel of audio at 44100Hz, if single-precision
floating point values of 4 bytes are used per sample and considering that these samples
must go both directions, this only requires a transfer rate of 44100∗4∗2 = 0.0003528��/B.
Comparing this with the peak theoretical transfer limit of 224GB/s, theoretically these
audio processes only utilise 0.000001575% of the possible transfer capabilities; a negligible
fraction of the potential transfer rate available. However, despite being smaller buffers,
the minimum latency involved with each independent transfer exceeds the acceptable
maximum buffer period and prevents this peak performance being reached. The evidence
for this is shown in Table 3.5, where the time to transfer small buffer lengths between 1
to 4 exceeds their respective maximum audio buffer periods and can not be supported in
real-time. By taking the smallest buffer length of 1 and observing its average execution
time is 0.139ms, it could be considered as the minimum latency involved in any data
transfers across the PCI 3.0 x16 bus. This leads to the hypothesis that the accumulation
of the minimum latency for data transfers adds up and prevents the real-time sample
rate being sustained. This observation emphasises the limitation increasing the number
of individual transfers per second has on the data throughput. Even before any process-
ing begins, this transfer latency forces the program to be bandwidth bound when smaller
buffers are used in real-time audio processing.

The action-sound latency and variation requirements seem to comfortably fit into the
recommended limits for almost all buffer lengths (with the exception of buffer length 1 on
CUDA having satisfactory variation). This suggests the sonic interaction requirements
can be supported when transferring data between the CPU and the GPU. However, now
the results from tests that involve additional sample processing will be considered.
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GeForce2080_cl GeForce2080_cuda
Buffer Length Average Execution Time Max Execution Time Execution Variability Average Execution Time Max Execution Time Execution Variability
1 0.139 0.902 0.763 0.128 1.157 1.029
2 0.138 0.967 0.829 0.128 0.869 0.741
4 0.137 0.549 0.412 0.128 0.792 0.664
8 0.136 0.307 0.171 0.128 0.755 0.627
16 0.137 0.302 0.165 0.137 0.872 0.735
32 0.137 0.373 0.236 0.133 0.749 0.616
64 0.139 0.318 0.179 0.138 0.796 0.658
128 0.141 0.341 0.200 0.149 0.751 0.602
256 0.142 0.411 0.269 0.156 0.398 0.242
512 0.145 0.334 0.189 0.336 0.782 0.446
1024 0.144 0.177 0.033 0.375 0.823 0.448
2048 0.141 0.155 0.014 0.357 0.636 0.279
4096 0.146 0.166 0.020 0.346 0.763 0.417
8192 0.151 0.159 0.008 0.229 0.251 0.022
16384 0.166 0.181 0.015 0.235 0.264 0.029
32768 0.184 0.186 0.002 0.254 0.256 0.002

Table 3.5: Comparison of OpenCL and CUDA versions of the baseline bidirectional real-time test at
44.1KHz using the High-end NVIDIA GeForce system in milliseconds.

3.2.2 Unidirectional Transfers Compared

The two unidirectional tests cpu to gpu and gpu to cpu isolate the data transfers between
the CPU and GPU in one direction. Being reversed tests, one might presume that these
would perform equally. However, reports from Sandgren (2013) and Ketchum et al. (2012)
investigated data transfers between the CPU and GPU using OpenGL and found that
transferring data to the GPU is faster than from it. However, OpenGL is primarily
designed as a graphics rendering API, which does not benefit from optimising GPU to
CPU transfers. On the other hand, OpenCL and CUDA are designed for general compute
with bidirectional data transfers; therefore, the results are worth investigating. Figure
3.1 presents results for the two tests using the OpenCL and CUDA. The cpu to gpu
tests are plotted as solid lines and gpu to cpu by dashed lines - OpenCL versions of
the tests at preceded by cl_ in the legend and coloured as blue. CUDA versions of the
tests are preceded by cu_ and are green. It can be seen that in both APIs, the data
transfers from CPU to GPU execute quicker than GPU to CPU. Looking specifically at
buffer length 128, the difference between transfer directions is around 0.007 and 0.008ms
for CUDA and OpenCL. To put this into perspective, this increases the transfer times
by only 0.0015%. Therefore, bidirectional synthesis applications should not experience
issues with the additional performance implications of data transfers back to the CPU.
These results support the continued design and development of the GPU synthesis tools
presented in this work.
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Figure 3.1: Execution time for cpu to gpu and gpu to cpu tests when scaling the buffer length. OpenCL
and CUDA versions indicated by preceding cl_ and cu_ respectively.

System = High-end NVIDIA GeForce
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Figure 3.2: Execution time for cpu to gpu and gpu to cpu tests when scaling the buffer length. OpenCL
and CUDA versions indicated by preceding cl_ and cu_ respectively.

System = High-end NVIDIA GeForce
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3.2.3 Warmup

The "warmup" refers to a test run executed once prior to timestamping and measur-
ing performance. The GPU interfacing APIs prepare optimisations the first time the
instructions are executed to improve performance in subsequent execution of the same
instructions. The benchmarking suite exposes a variable controlling the inclusion of the
warmup test run or to exclude it. A substantial performance difference can be observed
across all the tests in OpenCL and CUDA when enabling and disabling the warmup
phase. Figure 3.3 presents the results for the simple buffer synthesis test including and
excluding the warmup run for OpenCL and CUDA where the buffers are executed 100
times and averaged over this period. The results for OpenCL and CUDA including the
warmup phase in the performance profiling measurements are indicated by dashed lines
of blue and green, respectively; the corresponding results excluding the warmup phase in
measurements are shown as a solid lines. Both OpenCL and CUDA appear to perform
significantly faster on average when excluding the warmup phase (excluding one mea-
surement for CUDA with buffer length 64). OpenCL has a more significant difference
across the buffer lengths around 0.6 - 1.1ms, while CUDA is between 0.04 - 0.29ms. This
suggests that OpenCL may take longer on its first execution, while CUDA initially starts
faster and optimises to a similar level. Once optimised after the warmup run, OpenCL
and CUDA operate at a similar performance for this test. These results highlight that the
GPU performance is affected by regularly changing the program executing on it. There-
fore, it is recommended to set up the program to run on it once and reuse it. This is in
line with the GPU recommended use and therefore supports an existing guideline (Cheng
et al., 2014).
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Figure 3.3: Execution time for simple buffer synthesis test using a warmup run against no warmup run.
System = High-end NVIDIA GeForce

3.2.4 Intensive GPU Overhead

This section analyses the results of the most computationally intensive test in the bench-
marking suite. The bidirectional processing test involves round-trip data transfers for a
computationally intensive physical model synthesiser with 2D model dimensions of 64x64.
This test involves high computation relative to the previous bidirectional baseline test yet
still only requires the same data transfer of 0.0003528��/B. This is because although the
physical model synthesiser processes considerably more data to generate audio samples,
the majority of the data remains on the GPU memory and is optimised to only transfer
the necessary audio sample data between the CPU and GPU. The theoretical process-
ing throughput for this synthesiser when taking some liberties to ignore the boundary
condition, works out to be 44100 ∗ 64 ∗ 64 ∗ 12 = 2.167GFLOPS. Considering the peak
floating point performance of the Nvidia GeForce RTX 2080 Ti is 13450GFLOPS and
5728GFLOPS for the Radeon Pro WX 7100, the GPUs should be able to process the
physical model synthesiser as they have considerably more processing throughput than
required by the synthesiser. However, as with the data throughput seen in Section 3.2.1,
because of the limitations imposed by buffering and real-time audio synthesis, the buffer
length determines how much of this theoretical peak throughput can be used. Further-
more, the utilisation of the peak processing throughput is reduced further by the physical
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model synthesiser as it includes synchronisation stages in between the calculation of every
sample.

Table 3.6 presents the average and maximum execution times of buffers along with the
variation observed between the recorded buffers for the Nvidia GeForce RTX 2080 Ti and
the Radeon Pro WX 7100 using OpenCL. The same colour coding used in Table 3.5 is used
again here. Here it can be seen that smaller buffer sizes that have shorter maximum audio
buffer periods are not supported in real-time with the Radeon Pro WX 7100 supporting
buffer lengths 8 and up while the Nvidia GeForce RTX 2080 Ti is less capable and
can only support buffer lengths 32 and above5. Therefore, considering only the core
real-time requirement, buffer lengths greater than 32 can be supported in real-time for
this physical model synthesiser for both GPUs considered here. However, considering
the real-time sonic interaction requirements some further limitations are applied to the
buffer length. Looking at the Max Execution Time for both GPUs, buffer lengths of 4096
and above fail to meet the acceptable action-sound latency and would therefore not be
suitable for any applications that require real-time interactions. However, buffer lengths
as high as 2048 can be used for both GPUs and meet the acceptable action-sound latency
requirement of >20<B but must go down to 512 and below to meet the recommended
requirement of >10<B. The action-sound latency variation requirement measured in the
Execution Variability column provides an unclear separation between buffer lengths that
are supported as some buffer lengths above 512 work and others are not. However, it
still seems clear that all buffer lengths below 512 meet the recommended action-sound
latency variation requirement while some above 512 do not.

In conclusion, the results observed here suggest for core real-time using the audio-
sound requirement, buffer lengths 32 and higher are supported. For real-time sonic in-
teraction, the recommended requirements can be satisfied using buffer lengths 512 and
lower. For this particular synthesiser, this gives the GPU a reliable buffer length range
of 32-512 to use. These observed results fit well into the audio processing paradigm as
typically digital audio workstations recommend using buffer lengths 32, 64, 128, 256, 512,
and 1024 (Sweetcare, 2022).

3.2.5 Integrated vs Discrete

As covered in Section 2.3.5, there are two types of GPU, integrated and discrete GPUs.
These GPU types have different memory arrangments and are expected to significantly

5Although the Nvidia GeForce RTX 2080 Ti is a more powerful GPU, it is possible that the vendor does not
support OpenCL as well as the Radeon Pro WX 7100
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GeForce2080 Radeon7100
Buffer Length Average Execution Time Max Execution Time Execution Variability Average Execution Time Max Execution Time Execution Variability
1 0.154 1.127 0.973 0.099 0.469 0.370
2 0.171 0.459 0.2887 0.106 0.476 0.370
4 0.198 0.564 0.3665 0.132 0.455 0.323
8 0.256 0.577 0.321 0.175 0.546 0.371
16 0.380 0.664 0.284 0.244 0.617 0.373
32 0.478 0.940 0.462 0.401 0.950 0.549
64 0.693 1.103 0.410 0.737 1.198 0.461
128 1.191 1.667 0.476 1.350 1.667 0.317
256 2.253 2.787 0.534 2.269 2.591 0.322
512 4.295 6.064 1.769 4.261 4.670 0.409
1024 8.572 12.736 4.164 7.704 8.022 0.318
2048 16.516 16.854 0.338 14.083 14.946 0.863
4096 32.900 33.704 0.804 27.492 28.727 1.235
8192 65.643 66.226 0.583 53.704 54.844 1.14
16384 138.268 142.148 3.88 106.810 107.738 0.928
32768 285.371 286.467 1.096 213.848 215.347 1.499

Table 3.6: Comparison of High-end NVIDIA GeForce and the High-end AMD systems for an intensive
physical model synthesiser bidirectional real-time test at 44.1KHz measured in milliseconds.

affect performance. Results have been collected from multiple discrete GPUs and an
integrated GPU. In Figure 3.4, results for the bidirectional processing test using OpenCL
at 44.1KHz is presented. The discrete GPUs are represented as solid coloured lines; the
integrated GPU is a dashed blue line. The total time to compute the 44.1KHz of samples
has been presented on a logarithmic scale to emphasize the subtle differences at the lower
measurements. For small buffer lengths, the communication overhead experienced by
most of the discrete GPUs heavily outweighs the benefits of using it. The integrated GPU
avoids communication overhead and performs better. However, as larger buffer lengths
are used, and the transfer overhead is reduced, the discrete GPUs performance surpasses
the integrated GPU from buffer length 8 onwards. This is the expected behaviour as
although the discrete GPUs take longer to communicate and transfer smaller buffers,
they have high processor clock speeds. Therefore, the communication cost is increasingly
negated when larger buffers are used. Note that all the discrete GPUs settle beneath the
1000ms threshold by buffer length 16, whilst the integrated GPU is not powerful enough
to compute any buffer lengths in real-time for this intensive test.

The results here indicate that the faster data transfers of the integrated GPU are
more suitable for applications that depend on smaller buffer lengths. On the other hand,
the discrete GPU is preferred for tasks requiring substantial processing, and the commu-
nication overhead can be reduced using larger buffer lengths.
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Figure 3.4: Total execution time for cpu to gpu to cpu test when scaling the buffer length.
System = Various

3.2.6 Standard vs Pinned

Figure 3.5 presents the cpu to gpu to cpu general test for the OpenCL implementation.
This test measures the round-trip data transfer from the CPU to the GPU and back for
various buffer lengths; no processing is executed on the GPU. The graph displays the
standard buffer allocations as solid coloured lines for the different GPUs and dashed lines
for the pinned memory buffer versions. There is a consistent improvement in using the
pinned memory for most GPUs, excluding the integrated GPU. The smallest improvement
seen is around ±0.04ms for the GeForce2080, and the largest for the Radeon530 is ±0.12ms.
The choice of standard or pinned memory on the integrated Intel GPU appears to have
little to no impact on the performance. This is because the integrated GPU shares
unified memory space with the CPU, as described in 2.3.5. Therefore, OpenCL and
CUDA likely default to using the unified memory for both types of memory specified
in the program. However, for the discrete GPUs, the consistent improvement of pinned
memory is beneficial. Therefore, using pinned memory is a key optimisation that should
be incorporated into the design of GPU audio to improve overall performance.
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Figure 3.5: Execution time for bidirectional processing test when scaling the buffer length for various
systems.

3.2.7 GPU Evaluation

The results collected and analysed in this chapter have provided valuable insight into
the strengths and limitations of the GPU, particularly surrounding the real-time require-
ments. The results suggest that the GPU can operate in real-time provided certain
conditions are met. The baseline results showed that fundamentally, before any process-
ing begins, the GPU operates within all the real-time requirements. The implications
of the GPU overhead involved with data communications back and forth from the GPU
were analysed and shown to operate within the real-time limits for buffer lengths 8 and
above. This is because the minimum data transfer latency even for a single byte is
roughly 0.139ms which exceeds the maximum buffer period for buffer lengths below 8
transfers. This explains why despite needing to use a negligible fraction of the PCI 3.0
x16 peak transfer rate, sectioning the 44100 bytes per second to numerous independent
transfers accumulates and makes the program bandwith bound. On the other end of the
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spectrum, intensive processing tests were executed and highlighted the acceptable buffer
lengths for meeting the core real-time audio-sound latency requirements by comparing
the average execution time to the maximum audio buffer period. For the most intensive
benchmarking task, it was found that for GPUs tested, buffer lengths 32 and above are
supported in real-time. Applying further limitations for assessing real-time sonic inter-
action using the action-sound latency and action-sound latency variation requirements,
the results provide evidence that buffer lengths 512 and lower mostly support the recom-
mended requirements for reliably supporting real-time sonic interaction. Combining all
the real-time requirements, the buffer range supported by the GPU 32-512 appears to be
well supported by the GPU and this fits into the typical buffer length range for digital
audio workstations that ranges between 32-1024 (Ramm, 2021). Therefore, only buffer
lengths in the range of 32-512 will be used for the real-time applications presented in the
rest of this thesis.

The warmup results demonstrate that the first execution of a GPU program involves
considerable overhead compared to subsequent executions of the same unaltered program.
Therefore, running the same program repeatedly with updated parameters avoids any
overhead of changing the GPU program. As a result, physical modelling synthesisers can
be designed to repeatedly execute the same program and maintain peak performance.

The relationship between CPU and GPU memory depends on the type of GPU. For
most tests, integrated GPUs were shown to perform better than the discrete GPUs for
smaller buffer sizes, usually 8 and under. The discrete GPUs were more suited for
processing-intensive tests where the negatives of the communication overhead are sur-
passed by the benefits of a more powerful GPU, from roughly buffer length 16 and above.
Pinned memory was slightly beneficial when used appropriately for memory regularly ac-
cessed by the CPU. The direction of memory transfers was consistently faster from CPU
to GPU than GPU to CPU. However, the difference was 0.0015% and, therefore, unlikely
to affect most applications.
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Chapter 4

GPU Offline Evaluation - Evolutionary
Sound Matching

Processing digital audio to meet the real-time requirements (outlined in Section 2.1.5)
is challenging and imposes strict limitations. However, numerous useful digital audio
applications do not require real-time requirements, including sample pack generation
(Histibe, 2016) and synthesiser sound matching (Mitchell and Creasey, 2007). Further,
as explored in output from the NESS project, GPUs have been used to accelerate offline
processing of room acoustics (Hamilton and Webb, 2013) and sophisticated non-linear
physical models (Bilbao and Webb, 2012).

This chapter continues the investigation of applying GPU acceleration to offline audio
applications by proposing a synthesiser parameter matcher. The summary of contribu-
tions of this chapter has been published in Paper B in the Journal of Concurrency and
Computation: Practice and Experience with the title "Survival of the Synthesis - GPU
Accelerating Evolutionary Sound Matching" (Renney, Gaster and Mitchell, 2022). An
evolutionary strategy (Rechenberg, 1965) is an optimisation algorithm used for efficiently
searching a problem space. In parameter sound matching, the problem space is the map-
ping between the synthesiser parameters and the output sound. In this chapter, a design
for a GPU accelerated FM synthesis parameter matcher is proposed. The performance
is evaluated by comparing the GPU against a functionality identical CPU version using
a comprehensive benchmarking suite. The application of evolutionary computation for
FM synthesis parameter matching is a well-explored area and has proven to be an effec-
tive and accurate technique for simple and more advanced synthesisers (Mitchell, 2020)
(Horner, 1998a) (Yee-King and Roth, 2011). However, a limitation of this method is that
it uses considerable computational resources; thus, researchers have been motivated to
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optimise this approach (Das and Suganthan, 2010). Furthermore, there has been consider-
able research demonstrating that the massively parallel GPU architecture is appropriate
for processing evolutionary strategies (Pospichal and Jaros, 2009). The design presented
in this chapter extends the existing idea of GPU accelerated evolutionary strategies to
capture the processing of FM synthesis for sound matching.

4.1 Advanced FM synthesisers

Simple FM synthesis, as covered in Section 2.1.3, is used as a fundamental building
block in more complex and musically interesting synthesisers. This thesis considers two
further synthesisers that build upon Chowning’s simple FM synthesis technique. The
first has been established as a "real-world" problem by Das et al. and is used to evaluate
evolutionary algorithm performance (Das and Suganthan, 2010). This will be referred to
as nested modulator FM synthesis (Horner, 1998b):

H(C) = �B8=(2C + �1B8=(<1C + �2B8=(<2C))) (4.1)

Where H is the output of the nested modulator oscillator, t is the input variable time,
A is the peak amplitude, c is the carrier frequency (rad/s), m is a vector of modulator
frequencies (rad/s), and I is a vector of modulation indices. This equation adds a second
nested modulation oscillator that modulates the original modulation oscillator of the
simple FM structure seen in Equation (2.2). This arrangement requires a total of 6
parameters to control the output sound. The third FM synthesis method considered in
the scope of this chapter uses the idea of combining separate FM synthesis components
in parallel. For the context of this work, the parallel FM (Mitchell, 2012) will be used:

H(C) =
3∑
8=1

�8 sin(28C + �8 sin(<8C)) (4.2)

Where y is the output of the parallel FM, t is the input time, A, c, m and I are
vectors of the peak amplitude, carrier frequencies (rad/s), modulation frequencies (rad/s)
and modulation indices for each FM oscillator. This equation is the summation of three
separate simple FM structures, each having four parameters and therefore requires a total
of 12 parameters to control the output. Each of these FM synthesiser arrangements will
be considered when evaluating the GPU accelerated design, starting with the single FM

Page 73 of 260



Harri Renney The University of the West of England

component.

Figure 4.1: Flow diagram for the overall evolutionary parameter matching design flow.

4.2 Evolutionary Strategies

Evolution strategies (ES) (Rechenberg, 1965) are a type of evolutionary algorithm (Beyer
and Schwefel, 2002) that are used for optimisation problems, where a suitable solution
needs to be found within a search space of numerous possible solutions. Evolution strate-
gies follow ideas inspired by Darwinian evolution and natural selection to create progres-
sively fitter solutions to a problem by iteratively applying mutation and recombination
operations on a set or population. Evolutionary strategies can be used for optimisation
problems, including sound matching, where the algorithm searches the parameter space
of an FM synthesiser to find the parameters that closely replicate a given target sound
(Mitchell, 2010).

A population of solutions is made up of individuals. Each individual contains a
complete set of synthesis parameters that can be used to generate a candidate sound
or solution to the sound matching problem. For example, the simple FM synthesiser
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corresponds to four parameters and an additional four step-size parameters are used by
a self-adaptive mutation operator. Recombination blends two or more parent individuals’
genetic material (or parameters) to form new offspring. Figure 4.2, shows how the uniform
discrete recombination (Beyer and Schwefel, 2002) operator works, which is one of the
standard ES recombination operators used in this work. The value at each position is
taken from a random parent in the current population and combined to create a new
individual, used in the next generation offspring population.

Figure 4.2: Recombine operator working on three example individuals

Figure 4.3, shows how the mutation operator operates. First, the random values
shown in red are generated for each element using a pseudorandom number generator
and Gaussian Distribution (Patel and Read, 1996), scaled in proportion to the step size.
These values are then added to the individual parameters to introduce novelty into the
population. Gaussian distribution increases the likelihood of smaller mutations occurring
more frequently than larger values. This results in smaller steps in values but occasionally
larger steps that improve exploration of the search space by escaping local optima.

Figure 4.3: Mutation operator working on three example individuals.
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4.3 Fitness

The fitness stage of evolutionary strategies is context-dependent and varies depending on
the optimisation problem. Here, it requires values to be taken from each individual in
the population and used to generate a sample of audio using the chosen FM synthesiser.
The generated audio samples are then compared to the target audio, and the similarity
between them is used to determine how "fit" each individual is.

Each individual in the evolutionary strategy population has four values when used
for simple FM synthesis parameter matching. These 4 values vary between individuals
and are mapped to the 4 parameters of the simple FM synthesis algorithm in Equation
(2.2): 0, 2, < and �. A snippet of audio is then generated from the FM synthesiser and
stored contiguously in memory, ready for further processing to determine similarity with
the target audio.

The similarity between the generated and target audio is determined by first mapping
the audio signal to the frequency domain using a Fourier transform. The fast Fourier
Transform (FFT) (Frigo and Johnson, 1998) is the de facto algorithm for calculating the
Fourier transform of a signal efficiently. However, the FFT algorithm requires the input
data to be cyclic, spanning from one end and back to the beginning. Therefore, before the
FFT algorithm can process an audio signal, it must first undergo a form of pre-processing;
this is known as FFT windowing. FFT windowing aims to taper the edges of the audio
samples to enable the FFT to calculate the correct spectrum, ignoring any discontinuity
arising from the cyclic interpretation of the audio. The Hann windowing algorithm can
be applied to each audio data set associated with individuals 0 ∈ % in preparation for
the FFT. Therefore, to reduce the occurrence of artefacts as a result of frame boundary
discontinuities, a Hann window (Harris, 1978) is used:

l(=) = 0.5×
(
1− 2>B

(
2c=
# −1

))
(4.3)

Where l(=) is the processed Hann value, = is the value of the current input sample, and
# is the total number of samples processed. Once the audio signal is prepared using the
Hann windowing, it can be processed by the FFT algorithm (Schloss, 2019). The audio
signal represented in the time domain is input into the FFT algorithm and processed
to produce a series of complex numbers representing the same signal in the frequency
domain. FFT is a well understood and supported algorithm that is available in software
libraries such as FFTW (Frigo and Johnson, 1998), and these handle the intricacies
of the implementation. With each respective individual’s audio signal mapped to the
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frequency domain, the similarity of the signal to the target audio can be calculated. A
primary method for comparing the error/difference between two frequency spectra can be
achieved using relative spectral error (Beauchamp and Horner, 2003). Studies performed
by Beauchamp and Horner (2003) have shown that the relative spectral error delivers the
best correspondence to average discrimination data extracted from human listeners when
compared with alternative spectral error metrics. The equation for relative spectral error
is defined as:

AB4 =

√√√√√√√#18=∑
1=0
()1 − (1)∑#18=
1=0 )

2
1

(4.4)

Where AB4 is the output relative spectral error, ) is a vector of the target audio
frequency spectrum, ( is a vector of the synthesised audio frequency spectrum, and #18=
is the number of frequency bins produced by spectrum analysis. Here, the relative spectral
error AB4 between two audio signal frequency domains ) and ( can be calculated. The
number of frequency bins #18= is essentially the resolution of the frequencies represented
in the audio frequency spectrum; this must be the same for both ) and (. Using the
AB4, each individual’s fitness as a candidate for matching with the target signal can
be determined. As the AB4 is the error between two frequency spectra, the fitness is
the inverse of the AB4. Therefore, an AB4 = 0.0 is a perfect match and an increasing
AB4 measures differences between the signals. Evolutionary strategies typically involve a
stopping criteria, such as when a sufficiently "fit" individual is found, the evolutionary
strategy iterations stop, and the individual is used as the solution. In the context of this
work, the stopping criteria is a set number of iterations/generations as the performance
is being assessed, not the accuracy.

The selection stage involves taking a set number of individuals from the offspring and
using them in the next generation’s parent population. A basic approach is to sort the
individuals by fitness and select a number of individuals from the top for the next parent
population. A parallel merge sort is an effective sorting algorithm that maps efficiently
to the GPU architecture (Davidson et al., 2012).

4.3.1 Data Structure

All data that is processed on the GPU starts with the ES population. Figure 4.4, pro-
vides a visual aid to help describe the data structure that is used in the GPU design.
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Figure 4.4: The data structure format for the GPU design.

The first buffer indicated by Population contains all the individuals’ parameters. Al-
though naturally, it seems coherent to place each individual’s parameters contiguously in
memory, this structure is sub-optimal within the GPU. Therefore, when designing data
structures for the GPU, it is more efficient to store all of the first parameters contiguously,
then the second parameters, as a structure of arrays. Various researchers have demon-
strated this to be the most efficient GPU data layout for comprehensive processing (Mei
and Tian, 2016) (Micikevicius, 2012). The parameters of an individual are fetched by
indexing into each array of parameters using the individual’s ID. Each individual must
store an audio block generated from the parameters during the synthesis stage. Each
audio block is held contiguously in memory against the generated audio of the following
individual’s parameters. With this format, two buffers must be allocated to the GPU
memory; the population buffer % and the audio samples buffer �. These are calculated as
% = 2 · ?>?D;0C8>=_B8I4 · =D<_?0A0<B and � = ?>?D;0C8>=_B8I4 · =D<_B0<?;4B where
?>?D;0C8>=_B8I4 is the number of individuals in the population, =D<_?0A0<B is the
number of parameters for each individual and =D<_B0<?;4B is the length of the audio
sample blocks. As the GPU is optimised for allocating fewer buffers, the two buffers %
and � are both allocated as a single large buffer each that use indices to access individual
data sets. Further, buffer % is allocated twice the size of the population in order to store a
temporary copy of the sorted population when evaluating population fitness. A rotation
index can identify an offset to the beginning of the sorted population. This improves
performance and memory usage by avoiding unnecessarily copying memory.

Page 78 of 260



Harri Renney The University of the West of England

Memory coalescing techniques have been applied to optimise GPU memory accesses.
An example of correctly programming the GPU to achieve memory coalescing can be
found in the following FFT Hann windowing kernel:

1 void applyWindowPopulation(float* audioDate, uint32_t audioLength) {

2 int idxWorkitem = get_global_id();

3 float mu = ( FFT_ONE_OVER_SIZE - 1) * 2.0f * M_PI;

4

5 int strideFactor = audioLength;

6 for(int i = 0; i < POPULATION_COUNT; i++) {

7 int idxCoalesced = strideFactor * i + idxWorkitem;

8 float fftWindowSample = 1.0 - cos(index * mu);

9 audioDate[idxCoalesced] = fftWindowSample

10 * audioDate[idxCoalesced];

11 }

12 }

Here, Equation (4.3) is implemented on the GPU with an optimized memory access
pattern. The index is multiplied with a stride_factor equal to the audio wave size. This
forces the indices of each workitem to access memory adjacent to one another when
processing the windowing. All the indices in the respective workitems then stride to the
next audio wave to process when i increments. This means that each workitem can share
the memory fetched by its neighbouring workitems without requesting a memory fetch
somewhere else in memory itself.

4.3.2 Processing Format

The population size determines the number of workitems the GPU allocates for processing
in parallel. These workitems are dispatched to execute each individual’s recombination,
mutation, audio synthesis, fitness, and selection. Each individual is entirely independent
of all other individuals and can execute efficiently without stalling to synchronise data.
The FFT processing on the GPU is implemented using the well established, open-source
clFFT library (Natarajan, 2013).

During the audio synthesis stage, the chosen FM synthesis arrangement will typically
make calls to the trigonometric functions like sine. These functions involve a relatively
high number of computation cycles. Alternative optimised implementations might use
Taylor series expansion or the CORDIC algorithm (Bertrand, 1992). In this design, a look-
up table of previously calculated sine values can is used (Raghunath and Rambaud, 1999).
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As covered in Section 4.3, each individual is tasked with generating an audio block of
samples using simple FM synthesis. A pre-calculated table of values approximating sine is
uploaded to the GPU and indexed instead of the computationally expensive trigonometric
function. A finite number of values can be stored in the look-up table, resulting in
quantisation. Therefore, sufficient resolution must be used in the look-up table. The
wavetable optimised synthesis stage (without interpolation for simplicity) is demonstrated
in the GPU kernel code snippet below:

1 int idxWorkitem = get_global_id();

2

3 modIdxMulModFreq = I * f_m;

4

5 float posOne = 0.0f;

6 float posTwo = 0.0f;

7 for(int i = 0; i < WAVE_FORM_SIZE; i++)

8 {

9 curSample = wavetable[posOne] * modIdxMulModFreq + carrierFreq;

10 outAudioWaves[idxWorkitem * WAVE_FORM_SIZE + i] = wavetable[posTwo]

11 * carrierAmp;

12

13 posOne += wavetableIncrementOne;

14 posTwo += (WAVETABLE_SIZE / 44100.0) * curSample;

15

16 if (posOne >= WAVETABLE_SIZE)

17 posOne -= WAVETABLE_SIZE;

18 if (posOne < 0.0f)

19 posOne += WAVETABLE_SIZE;

20 if (posTwo >= WAVETABLE_SIZE)

21 posTwo -= WAVETABLE_SIZE;

22 if (posTwo < 0.0f)

23 posTwo += WAVETABLE_SIZE;

24 }

Here, the section of the code that generates the FM synthesis waveform is shown.
This essentially implements Equation (2.2) in a suitable way for the GPU. The variable
modIdxMulModFreq is � ·<, carrierFreq is 2, carrierAmp is 0. Instead of making calls
to sin(. . .), the wavetable is accessed using posOne and posTwo that are incremented in
such a way as to access approximate pre-computed values of sin()1. Variable idxWorkitem

1This approach is shown to improve performance in the results shown in Section 4.5.6
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multiplied with WAVE_FORM_SIZE is used to stride through the memory written to
in a GPU optimized way.

In an offline application, there are no real-time audio-sound latency requirements.
Therefore, processing larger buffers or batches of processing has fewer restrictions. How-
ever, GPUs have limited memory, meaning there is an upper limit on the buffer length of
the population buffer % and audio samples buffer �. This can quickly become the case
in this evolutionary sound matching application, as the population size is a controllable
parameter that can exceed GPU memory limits. The amount of GPU memory resources
depends on the system’s hardware. Taking the systems in Table 3.3 as examples, the
Nvidia GeForce RTX 2080 Ti has 11GB of memory whilst the Radeon 530 has only 4GB.
In the Mid-range Laptop system, the Intel UHD Graphics 620 shares 8GB of RAM with
the CPU. In order to avoid misusing the GPU memory, the GPU design breaks up data
into manageable, equally sized blocks, loads them onto the GPU and processes them
one after another. Further, batching processes to the GPU follows the same technique
as buffer sampling, increasing performance. The pseudo-code for the batching is given
below:

1 void parameterMatchAudio(float* aTargetAudio, uint32_t aTargetAudioLength)

2 {

3 blockSize = objective.audioLength;

4 blocks = aTargetAudioLength / blockSize;

5

6 for (uint32_t i = 0; i < blocks; i++)

7 {

8 setTargetAudio(&aTargetAudio[i*blockSize], blockSize);

9 initPopulationCL();

10 executeAllGenerations();

11 }

12 }

An additional advantage to using the batching technique is that the system can easily
be extended in the future to involve analysing dynamically changing sounds. This means
if the characteristics of a sound are changing over time, analysing each block can identify
the parameters necessary to match the changing sound in each block. If this advancement
was explored, there would be a set of parameters for each audio block analysed.
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4.4 Benchmarking Targets

The benchmarking suite involves the autonomous execution and performance profiling of
a collection of planned tests. This chapter targets the same systems from Table 3.3 and
uses the same from Chapter 3 except the windows 10 version is 20H22 and the CUDA
SDK version used is 11.1.0. Configurations of parameters are exhausted, and the results
are collected and written to files for analysis. The GPU implementation will synchronize
between each OpenCL call to confirm the action is finished to measure the execution time
accurately. The benchmarking suite is open-source and publicly available online3. Three
different implementations have been developed for comparison:

CPU Serial - To establish the minimal baseline performance, a serial single-core im-
plementation targeting the CPU.

CPU OpenCL - A parallel implementation targeting the CPU using OpenCL.
GPU OpenCL - OpenCL implementation that targets the parallel processing on the

GPU.

The benchmarking suite is designed to measure the overall execution for default pa-
rameters and is used to measure execution time when scaling controllable parameters.
The controllable parameters affect the performance and accuracy of the algorithm and
therefore play a crucial role. Unless stated, the default parameters will have the values
shown in Table 4.1. The default parameters have been chosen as they provide solutions
with acceptable fitness and give sufficient benchmarking processing to profile and consider.
Instead of using a fitness threshold as the stopping criteria, the benchmarking suite will
execute a fixed number of generations. This ensures parity between results by guaran-
teeing that all implementations processed an equal amount of computation, mitigating
any stochastic variations. Using the default parameters, the best solution found by the
application converges on the exact solution with fitness 0.0 for almost all test runs.

Overall Execution - The overall execution time for the program to complete is the
primary concern. The overall execution time includes all stages shown in Figure 4.1.

Program Stage Execution - In order to highlight the computational implications at
each stage of the processing, the stages in Figure 4.1 are independently timed. This target
exposes potential bottlenecks and the most intensive stages.

2https://learn.microsoft.com/en-us/windows/whats-new/whats-new-windows-10-version-
20h2

3https://github.com/Harri-Renney/Survival_of_the_Synthesis-GPU_Accelerated_
Frequency_Modulation_Parameter_Matcher
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Parameter Value Notation

Number Generations 1000 G
Number Parameters 4 D
Parent Population Size 1024 P
Offspring Population Size 7168 O
Target Audio Length 2048 T
Audio Block Size 2048 N
GPU Workgroup Size 32 W

Table 4.1: Default benchmarking parameters

Audio Analysis Block Size - The size of each block of audio analysed at a time by
the application. The block size controls the number of data transfers between CPU and
GPU. Therefore, this target focuses on evaluating the impact of scaling the audio block
size.

Population scaling - It has been shown in Tsoy (2003) that increasing the population
size in evolutionary algorithms can produce fitter solutions in a more complicated problem
space. Therefore, measuring the performance as population size is increased will expose
the ability to scale.

Optimisations On/Off - The GPU specific optimisations outlined in the design will
be analysed by comparing the performance with the optimisations turned on and off.

Discrete vs Integrated - The discrete and integrated GPUs have unique relationships
with the CPU and memory. Therefore, comparing the results of these two GPU types
will expose critical differences in performance.

4.5 Results

In this section, the results collected across the benchmarking suite are presented, along
with a discussion of the results. This thesis considers the salient results collected from
the same set of systems outlined in Table 3.3 4. Particular focus on the results is given
to the High-End NVIDIA GeForce desktop that better reflects the expected audience
of synthesis parameter matching. The mid-range laptop is used to collect results from
integrated and discrete GPUs and can also be compared to the high-end desktops.

4The full collection of results, including another High-End NIVIDA Titan setup, can be found at: https:
//muses-dmi.github.io/benchmarking/benchmarking_database_survival_of_the_synthesis
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Implementation Total Execution Time (s)

CPU Serial 409.98
CPU OpenCL 28.33
GPU OpenCL 3.19

Table 4.2: Total execution time of the application for the CPU and GPU implementations.
Parameters = Default System = High-end NVIDIA GeForce

4.5.1 CPU vs GPU

The results displayed in Table 4.2 include the total time across all three implementations
using the default parameters for the High-End NVIDIA system. The CPU serial version
takes the longest at 409.98s, whilst the OpenCL CPU and GPU recorded 28.33s and 3.19s,
respectively. Using the CPU’s SIMD parallel vector processors in OpenCL CPU, there is a
clear 14× improvement over the serial version. GPUs advance this data-parallel processing
further, achieving a speedup of 128× over the serial CPU version. This demonstrates that
not only are ES and FM synthesis suitable for data-parallel processing, but they are also
suitable in combination using the design proposed in this paper. A more direct comparison
between the CPU and GPU is demonstrated when the CPU is used to its full potential
in parallel using OpenCL. The Intel Core i7-9800X CPU profiled with only 8 cores has
a peak floating point performance of 972GFLOPS compared to the Nvidia GeForce RTX
2090 Ti GPU with 4352 cores and 13450GFLOPS. Therefore, provided the application
is suitable for parallel processing, theoretically the GPU should be faster and could be
as high as 13.8× faster than the CPU version. Refering back to the results from Table
4.2, the GPU was observed to have a speedup of 8.88× over the CPU for this particular
setup. This is expected as the GPU architecture is designed to maximise the data-parallel
throughput for this kind of suitable application across thousands of available GPU cores
that a CPU does not have.

4.5.2 Implementation Stages Compared

The execution time for each stage in the application on the High-end NVIDIA system
has been recorded and displayed in Figure 4.5. The execution time is marked in ms on
a logarithmic scale using the default parameters. When comparing each implementation,
the stages follow a similar pattern of the CPU serial taking the most time, followed by
CPU OpenCL and finally GPU OpenCL. Particularly, there is a significant improvement
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Figure 4.5: Execution time of each stage across the CPU and GPU implementations.
Parameters = Default System = High-end NVIDIA GeForce

on the GPU for the following synthesis, Window and FFT stages. Therefore, the results
highlight the significance of optimising these domain-specific stages. The data-parallel
version improves over the CPU versions in all stages, except for the Rotate stage. The
measurement recorded for the CPU Serial was 0.3544ms, A negligible as it only involves
updating a variable in CPU memory. In contrast, the OpenCL versions involve more
measurable overhead in the Rotate stage. For example, the GPU version requires updat-
ing the rotation index in GPU; this involves a data transfer over the PCI interface to
update the variable in GPU memory. This is a stage the CPU will naturally surpass the
OpenCL versions. However, relative to all the other stages, this additional overhead is
small and exceeded by the improvement in all other stages.

4.5.3 Hardware Systems Compared

This section compares the GPU OpenCL Version results when scaling the population for
both hardware systems. The High-End NVIDIA desktop is expected to execute faster
for all population sizes as it utilizes the more powerful NVIDIA GeForce RTX 2080 Ti,
whilst the Mid-range Laptop contains a modest AMD Radeon 530. It can be seen in
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Figure 4.6: Execution time when scaling the population size for the High-End and Mid-range systems.
Parameters: G = 1000, P+O = Scaled System = High-end NVIDIA GeForce & Mid-range Laptop

Figure 4.6 that the NVIDIA 2080 GPU is far more capable of handling the application
and scaling the population size up to 32768. Whilst the AMD 530 GPU has a roughly
directly proportional increase in execution time with population size, the NVIDIA 2080’s
numerous streaming processors with higher clock speeds can accommodate the extra
individuals in parallel and has a far more gradual increase. This demonstrates that
increasing the number of faster streaming processors improves the performance of these
data-parallel tasks that depend on higher throughput.

4.5.4 Kernel Execution Time Ratio

Figure 4.7 shows the relative execution times for every stage of the GPU OpenCL imple-
mentation running with default parameters. This highlights where the majority of the
processing takes place. The stages processing the ES population: Recombine, Mutate and
Sort together only account for less than 13% of the time. These stages execute quickly
as they only process the population (%+$) ·�, which is (1024+7168) ·4 = 32,768 floating-
point values for the default parameters. The stages processing audio for the population:
Synthesis, Window, CLFFT and Fitness take considerably longer at 87.43% of the time.
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Figure 4.7: Ratio of execution time across stages in the GPU OpenCL implementation.
Parameters = Default System = High-end NVIDIA GeForce

The audio stages require processing (%+$) ·# which is (1024+7168) ·2048 = 16,777,216
floating-point values. The majority of the execution time is taken up by the synthesis
and CLFFT stages, taking around 30% of the time each. This highlights the importance
of the design as it efficiently processes the evolutionary algorithm stages and incorporates
the domain-specific processes that take up the majority of the execution time.

4.5.5 Integrated vs Discrete

Figure 4.8 shows the results comparing the integrated Intel and AMD discrete GPU in
the mid-range laptop. It can be seen that initially when the population size is small, the
integrated GPU performs better than the discrete GPU. This is because the PCI-e system
bus involves communication overhead when transferring between the discrete GPU and
the CPU. As a result, the communication overhead exceeds the benefits of using a discrete
GPU at the lower population sizes. The integrated GPU shares unified memory space
with the CPU, avoiding this overhead. However, at around population size 2048 and
beyond, the benefit of the powerful discrete GPU begins to exceed the communication
overhead and scales better than the integrated GPU.
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Figure 4.9: The total and synthesis stage execution time when the FM wavetable lookup optimization is
on and off.

Parameters = Default System = High-end NVIDIA GeForce

4.5.6 Optimized vs non-optimized

Figure 4.9 presents a comparison between the results of the GPU design with and without
optimisations. For example, one of the key optimisations used is a pre-processed lookup
table for FM synthesis. This optimisation significantly improves the performance of
the synthesis stage. Considering in Figure 4.7, it can be seen that the synthesis stage
was one of the most time consuming stages. Therefore, the lookup table optimisation
offers a considerable 4× speedup in the synthesis stage for the default parameters. This
demonstrates the importance of context-specific optimisations that are usually introduced
in the fitness stage.

4.5.7 Population Scaling

Figure 4.10, provides a comparison between the implementations on the High-End NVIDIA
system when scaling the population size. The execution time is plotted on a logarithmic
scale in seconds. The CPU Serial version initially starts at a higher execution time at
1.87s compared to the GPU OpenCL version taking 0.89s. As the population size scales,
the execution time for the CPU versions is significantly higher, especially considering
that this is a logarithmic graph. The GPU version’s execution time increases gradually
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Figure 4.10: Execution time when scaling the population size for all implementations.
Parameters: G = 1000, P+O = Scaled System = High-end NVIDIA GeForce

as it can process far more individuals in parallel. At a population size of 16,384, the
GPU version runs at approximately 10s, while the CPU OpenCL version records 55s,
roughly 5× slower and the CPU Serial at 870s, 87× slower. The GPU continues to show
it provides a speedup even at higher population sizes, beyond the 8192 size used in the
default configuration. The improved GPU performance brings the application closer to
a practical, real-time tool. However, complex synthesizers that may require substantial
population sizes will still see considerable execution times that may exceed the practical
limits of a real-time tool. This is subject to future investigations outside of the scope of
this thesis, which will begin to focus on real-time physical modelling synthesis.

4.5.8 Audio Analysis Block Size Scaling

Figure 4.11 shows the total time of the GPU OpenCL application when scaling the audio
block size on the NVIDIA 2080 discrete GPU. The audio blocks size determines the
number of audio samples processed and analysed on the GPU at a time. Decreasing
the audio block size splits the target audio into further separate blocks for analysis.
There are two reasons a smaller block size might be considered. First, the GPU memory

Page 90 of 260



Harri Renney The University of the West of England

0128 1,024 2,048
0

20

40

60

80

Audio Analysis Block Size

Ex
ec
ut
io
n
Ti
m
e
(s
)

Audio Block Size Scaled

Figure 4.11: Execution time when scaling audio block size for the GPU OpenCL implementation.
Parameters: Default, N = Scaled System = High-end NVIDIA GeForce

would not be able to accommodate the larger blocks of audio. Second, this approach is
advantageous if the audio being analysed is dynamic, such that the synthesiser parameters
change with time. However, decreasing the audio block size increases the number of
dispatches to the GPU, which increases the communication overhead over the PCI bus
and also decreases the possible resolution of the FFT calculation and therefore effects the
accuracy of the similarity calculation that the fitness function depends on. The overhead
adds up considerably, resulting in severely reduced performance when the audio block
size is below 128. Beyond the block size of 128, the performance reaches a significantly
improved state and the FFT resolution begins to increase and only up to audio block size
512 and 1024 does it begin to reliably calculate the audio similarity to accurately match
the target sound. Continuing to increase the audio block size to the target audio size has
a less significant performance growth. These results show that although a smaller block
size can be used, a size below 128 has a significant impact on performance and below
1024 the accuracy is not sufficient to reliably match the target sounds. Therefore, future
developments of dynamic audio samples that involve frequent changes in timbre will be a
challenging additional feature to support as the reduced FFT resolution and performance
implications must be resolved.
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4.5.9 Advance FM Synthesisers

To demonstrate the effectiveness of the GPU optimised framework, two further advanced
FM synthesisers have been used in place of the simple FM synthesis. The first is double
series FM, and the second is triple parallel FM synthesis. Figure 4.12 presents the results
of the simple, double series and triple parallel FM synthesisers on all three implementa-
tions. Again, a large population size of 32768 has been used, and the time in seconds is
again plotted on a logarithmic scale. For the CPU Serial implementation, both the double
series and triple parallel synthesisers take considerably longer with an additional 10699s
and 11024s, respectively. In contrast, the GPU OpenCL implementation only requires an
additional ≈ 4s for the double series and ≈ 6s for triple parallel FM. This demonstrates
that the GPU accelerated framework for handling the evolutionary computation for pa-
rameter matching supports more advanced forms of FM synthesis. Although this cannot
be extrapolated to all possible arrangements of FM synthesis, for these two examples, it
continues to improve performance over a naive serial implementation.

4.6 Offline Evaluation

This chapter has presented the design for a GPU optimised algorithm for parameter
matching with several FM based synthesisers. The results suggest that the GPU can
be used as a hardware accelerator for offline processing without any concern for meeting
real-time requirements for suitable processes. Therefore, parameters can be configured
on the GPU to maximise throughput without any concern to meet particular sample
rate or latency requirements. For the default parameter configuration on a high-end
desktop, the GPU had a speedup of 128× over the serial CPU version and 8.88× over the
parallel CPU version. This highlights the significant improvement potential when using
parallel processing in general, but also the massively parallel architecture of the GPU in
comparison to the CPU. The population size of the ES has a significant impact on the
execution time of all implementations. However, the GPU version was impacted to a
lesser extent than the other implementations, suggesting that the proposed GPU design
can process larger population sizes more rapidly, making it more suitable for practical
use by music creators. The results show that the performance benefits apply to simple
FM synthesis and extend to support more advanced arrangements such as double series
and triple parallel FM synthesisers. Another controllable GPU parameter is the data
block size; this was scaled and shown to harm the GPU processing time when block sizes
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below 128 are used. This is a weakness of the GPU design caused by the data transfer
overhead between GPU and CPU. An optimised design needs to be adapted to better
support this use case. The exclusive use of the GPU for offline audio processing ends in
this chapter; the rest of this thesis is primarily concerned with contributing to real-time
physical modelling audio synthesis.
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Chapter 5

GPU Accelerated Physical Modelling

In Chapter 3, Section 3.1.3, the complex buffer synthesis test involved a physical mod-
elling sound synthesis method. This chapter aims to describe the design of this physical
model in more detail and then evaluate the performance of processing it on the CPU
and the GPU. Two CPU versions are presented, a naive serial version to consider as the
baseline and a parallel SSE vector processor version; these will be compared against three
GPU versions. The contributions of this chapter draw from the publication (Paper [C])
"OpenCL vs: Accelerated Finite-Difference Digital Synthesis" published at the conference
of the International Workshop on OpenCL and SYCL (Renney et al., 2019).

5.1 Physical Model Definition

This finite-difference physical model system will operate in a two-dimensional Cartisian
grid. Considering a rectangular system with side lengths !G and !H (in m), the state
is described by u(t,x,y). The system operates in C ≥ 0 and (G, H) ∈� where the domain
� ∈ [0, !G]×[0, !H] is two-dimensional. As covered in Section 2.2.3, the state variable can
be discretised to a two-dimensional function as D(C, G, H) u D=

;,<
and independent variables

discretised as x = lh, y = mh and t = nk where h is the size of the spatial step (For
simplicity, in both x and y directions) and k is the size of the time step. Therefore, the
temporal index = ∈ N0 and spatial indices ; ∈ {0, . . . , #G} and < ∈ {0, . . . , #H} are used to
index into the state function in time C and space G and H. #G is the number of grid points
in G dimension, #H the number in the H dimension. The model is excited with a signal
defined as X(G8 − G, H8 − H)4 where G8, H8 ∈ [0,1] identifies a position for an impulse signal
to excite the physical model. Samples are then recorded from the model and loaded into
the output audio buffer at a single mic position G>, H> where G>, H> ∈ [0,1].
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With the system variables established, the physical equation for simulating the audio
acoustics in two dimensions can be defined. Taking the two-dimensional wave Equation
(2.12), a simple form of damping can be added by including a first-derivative term (the
same way friction enters a vibrating mechanical system (Langtangen, 2016a, p. 44)).
Using these terms, the state variable D=

;,<
can be defined as:

DCC + 1DC = 22ΔD− X(G8 − G, H8 − H)4 (5.1)

Where 1 is the friction coefficient that introduces damping (0 < 1 < 1), 2 is the speed
of sound propagation. The state function can then be discritised using a second-order
central difference for DCC , a first-order central difference for DC and after expanding ΔD,
a second-order central difference for DGG and DHH. This leads to the formation of the
following finite-difference equation:

XCCD
=
8, 9 + 1X·CD=8, 9 = 22(XGGD=8, 9 + XHHD=8, 9 ) − 9;,0(G8, H8)� (C) (5.2)

Where 9;,0(G8)� (C) is the discrete zeroth-order spreading function for exciting the
model with the impulse signal � . This can then be rearranged to develop a recursively
solvable explicit finite-difference form, similar to Equation (2.19), but including the central
finite-difference for the damping term:

D=+1G,H =
2D=G,H − (`−1)D=−1

G,H +_2(D=
G+1,H +D

=
G−1,H +D

=
G,H+1 +D

=
G,H−1−4D=G,H) − 9;,0(G8, H8)� (C)

1+ ` (5.3)

Where two parameters ` = 1:
2 and _ = 2:

ℎ
are exposed. The stability condition (_ ≤ 0.5)

must be satisfied to maintain a stable system.
A Dirichlet-Neumann hybrid boundary condition is used at the grid points identified

as boundary points. This is employed in the context of this physical model as:

DD,3,;,A =


D=W, 8 5 1>D=30AH

D=
D,3,;,A

4;B4
(5.4)

Where W is used to transition between a fully clamped Dirichlet condition (W = 0) to
a free edge Nuemann condition (W = 1)
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1 for i = 1 to gridHeight
2 for j = 1 to gridWidth
3 ixy = i * gridWidth + j
4 ixMy = i * gridWidth + j - 1;
5 ixPy = i * gridWidth + j + 1;
6 ixyM = (i-1) * gridWidth + j;
7 ixyP = (i+1) * gridWidth + j;
8

9 //Calculate based on boundary.
10 leftNeighbour = modelGrid[ixMy] * (1-boundaryGrid[ixMy])
11 + modelGrid[ixy] * boundaryGrid[ixMy];
12 //For all neighbours
13 ...
14

15 nPOne[idx] = timestep(n[idx], nMOne[idx], leftNeighbour,
16 rightNeighbour, upNeighbour,
17 downNeighbour)
18 end for
19 end for
20 rotateGrids(nMOne, n, nPOne)

Figure 5.1: Serial processing of two-dimensional finite-difference simulation.

5.1.1 Serial CPU Version

The serial CPU version works by visiting each finite-difference point in the grid, iterating
over ; ∈ {0, . . . , #G} and < ∈ {0, . . . , #H}, applying the explicit scheme update Equation
(5.3). This is done in sequence, one point after another, each calculation independent of
one another, making this suitable for SIMD type processing. Therefore, even though it
is naively processed in serial, it is suitable for parallel processing.

Figure 5.1 presents the pseudocode for the recursive application of Equation (5.3) to
all grid points one after another in serial. Two for loops are used to iterate over each
grid point where all the necessary indices are calculated, and the neighbouring values are
collected from the grid. The effect of the conditional statement checking the boundary
modifies the neighbouring values that have the effect of the boundary condition from
Equation (5.4) on the calculation of the grid point. The function timestep computes the
explicit scheme Equation (5.3) using the grid data and coefficients not included in the
code snippet. After the new state of the system is calculated, grids are rotated to consider
the grids correctly for the next timestep.

Although this version does not take advantage of any parallel processing, all other

Page 97 of 260



Harri Renney The University of the West of England

possible optimisations are considered and applied in the serial case. This includes pointer
switching, data cache alignment and avoiding redundant calculations by simplifying the
parameters into coefficients. These optimisations are covered in detail within the context
of GPUs later in Section 6.

5.1.2 Parallel CPU Version

The parallel CPU version uses available vector processors to process the finite-difference
calculations in parallel. Intel’s default AVX vector processing instruction set supports
128 bits1 of register memory, enabling the same instructions to be applied in parallel to 4
different floats. Using the AVX instruction set requires the data to be handled differently
and loaded into the vector processor registers. Figure 5.2 demonstrates the additional
steps involved to process using AVX Intel intrinsic. Again, the grid is iterated over using
2 for loops for each dimension. Notice how the for loops stride over 4 grid points at a
time, this is because the AVX vector registers can process 4 floats at a time. The Intel
intrinsic function _mm_load_ps is used to load 4 floats from main memory into the AVX
register __m128. Within timestepVector, the AVX Intel intrinsic functions for doing all
mathematical operations must be used to operate on the vector register memory, such as
_mm_add_ps and _mm_mul_ps.

It can be seen that the program source code becomes considerably more complicated
to adhere to the CPU vector processors. Data must be loaded to registers in segments,
compiler-specific intrinsic functions must be applied for calculations, and results must be
written back from register to main memory to increment the timestep. Further, compli-
cations now arise at the boundaries, as the boundary now affects 4 grid points instead of
1 as a detected boundary applies the boundary effect to the whole vector register instead
of a single grid point. This will become an issue as the environment being modelled
becomes more complex, with multiple models with interacting boundaries. Supporting
more advanced models would appear to break down using vector extensions.

In contrast, the GPU is a SIMT device, meaning there are threads running sets of
identical instructions, but the instructions do not need to be the same across all the data
as the threads of instructions can be assigned to process appropriate regions of the data
in parallel with particular instructions. Furthermore, the GPU hardware and interfaces
are designed to handle the thread instruction automatically and optimally. This means

1The original AVX instruction set has been used so that the benchmarking suite can support the widest range
of hardware. However, a comprehensive suite would support and report on the more recent AVX2 and the latest
AVX-512 SIMD instruction sets.
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1 __m128 nVector;
2 __m128 nMOneVector;
3 __m128 nPOneVector;
4 __m128 leftNeighboursVector, rightNeighboursVector, upNeighboursVector,
5 downNeighboursVector;
6 for i = 1 to gridHeight-4 when i += 4
7 for j = 1 to gridWidth-4 when j += 4
8 nVector = _mm_load_ps(n[i][j]);
9 nMOneVector = _mm_load_ps(nMOne[i][j]);

10

11 //Calculate based on boundary.
12 leftNeighboursVector = calculateBoundaryVector(n[i][j],
13 n[i-1][j]);
14

15 //For all neighbours
16 ...
17

18 nPOneVector = timestepVector(nVector, nMOneVector,
19 leftNeighboursVector,
20 rightNeighboursVector,
21 upNeighboursVector,
22 downNeighboursVector)
23 _mm_store_ps(nPOne+i, nPOneVector);
24 end for
25 end for
26 rotateGrids(nMOne, n, nPOne)

Figure 5.2: AVX vector processing of two-dimensional finite-difference simulation.

the GPU avoids the complications involved with purely SIMD processing units, like the
vector processors on the CPU. The next version looks at the GPU design and how it can
be used for processing physical models.

5.1.3 OpenCL Version

The OpenCL version conforms to the OpenCL standard kernel language. This language
takes a general-compute format for describing processes. This is achieved by dispatching
many workitems to the GPU that are then processed in a parallel way such that the
workitem IDs are used for indexing into the grid memory. Figure 5.3 presents the pseu-
docode for the OpenCL GPU program. Here, no nested for loops are needed as each
workitem the code describes obtains the indices from the two-dimensional workitem IDs.
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1 int ixy = (get_global_id(1)) * get_global_size(0) + get_global_id(0);
2 int ixMy = (get_global_id(1)-1) * get_global_size(0) + get_global_id(0);
3 int ixPy = (get_global_id(1)+1) * get_global_size(0) + get_global_id(0);
4 int ixyM = (get_global_id(1)) * get_global_size(0) + get_global_id(0)-1;
5 int ixyP = (get_global_id(1)) * get_global_size(0) + get_global_id(0)+1;
6

7 //Calculate based on boundary.
8 leftNeighbour = modelGrid[ixMy] * (1-boundaryGrid[ixMy])
9 + modelGrid[ixy] * boundaryGrid[ixMy]

10

11 //For all neighbours
12 ...
13

14

15 nPOne[ixy] = timestep(n[ixy], nMOne[ixy], leftNeighbour, rightNeighbour,
16 upNeighbour, downNeighbour)
17

18 rotateGrids(nMOne, n, nPOne)

Figure 5.3: OpenCL finite-difference simulation calculating indices from OpenCL workitem ID.

Besides this alternative approach, the GPU general-compute code follows in a similar
vein as the CPU code but can be processed by the GPU in parallel across the compute
units. The rotateGrids step is not included in the GPU code as it is updated and pushed
to the GPU from the CPU.

An additional OpenCL version is developed that utilises GPU local memory. With
this approach, the idea is to load grid data from global memory to local memory once,
then access the local memory grid within the workgroup for calculations. This aims to
exploit the relatively faster GPU local memory over direct access to the global memory
for calculations. Figure 5.4 demonstrates how a local memory grid gridLocal is created
and used to hold intermediate calculations in faster access memory within workgroups.

5.1.4 OpenGL Version

The OpenGL version uses the design proposed by Zappi et al. (2017) where the physical
modelling is processed using the graphics pipeline (Figure 2.5). This requires mapping the
physical model and audio data structures into the graphics domain exposed by OpenGL.
For instance, OpenGL expects pixel data in a framebuffer ready for rendering to a display.
However, in this design, a custom texture framebuffer is created that remains on the GPU.

Page 100 of 260



Harri Renney The University of the West of England

1 int ixyLocal = get_local_id(1) * get_local_size(0)
2 + get_local_id(0);
3 int ixMyLocal = get_local_id(1) * get_local_size(0)
4 + get_local_id(0)-1;
5 int ixPyLocal = get_local_id(1) * get_local_size(0)
6 + get_local_id(0)+1;
7 int ixyMLocal = (get_local_id(1)-1) * get_local_size(0)
8 + get_local_id(0);
9 int ixyPLocal = (get_local_id(1)+1) * get_local_size(0)

10 + get_local_id(0);
11

12 gridLocal[ixyLocal] = grid[ixy];
13 ...

Figure 5.4: OpenCL calculating and loading global memory into local memory using local ID.

The physical model state is loaded into graphics textures, where the value of each grid
point is contained within the texture’s pixel data. The GPU multi-streaming processors
execute in parallel, calculating each pixel value by applying Equation (5.3). Figure 5.5
illustrates the entire texture layout and the sections it consists of to support the physical
modelling environment. Here, Tex0 and Tex1 pixels are #Gx#H and hold the state of the
system at = and =−1. For each timestep, Tex0 and Tex1 alternate between which of the
timesteps they represent. As the values for the next timestep =+1 are calculated, they
overwrite the =−1 pixels as they are not needed in future calculations. Tex2 pixels is a
single row that contains the audio sample buffer. From an output position in the physical
model, samples are copied to the Tex2 audio buffer region, and this region can then be
transferred back to the CPU for audio playback. Tex3 pixels is an empty and unused
region of the texture that separates the model grids Tex0 or Tex1 from the audio buffer to
prevent audio samples leaking back into the system when accessing neighbouring values
DD,3,;,A .

The OpenGL GPU program is coded using GLSL, where most of the processing takes
place in the GPU fragment shader. Figure 5.6 provides the key content of the fragment
shader used for the OpenGL version. Here, the textures must be loaded into vec4 types
using the texture function. This takes the texture object and the coordinates of the
fragments to retrieve from the texture. The vec4 type is used as it can contain the 4
floats associated with textures in the RGBA format. This means physical model values
are mapped to specific RGBA channels for further calculations. The neighbouring values
DD,3,;,A are concisely identified and calculated in the assignment of pLRUD. With all of
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Figure 5.5: OpenGL full texture layout for audio physical model representation. (Zappi et al., 2017)

the relevant values collected into floats and vec4 types, the calculation can be made and
= + 1 written back to the texture by returning a correctly formed graphics fragment in
vec4.

5.2 Results

In this chapter, the High-end NVIDIA GeForce from Table 3.3 is used to gather perfor-
mance results. The operating system installed is windows 10 version 20H22, the OpenCL
version used is from the CUDA SDK version used is 11.1.0 and all OpenGL programs use
version 4.63. When profiling the various versions of the physical model, the number of grid
points #G and #H will be scaled at a doubling rate equal in both resolutions starting from
8 up to 512; therefore, (#G , #H) = {8,16,32,64,128,256,512}. Each version of the physical
model will have the average execution time recorded for a buffer length of 256 over 172
buffers. The buffer length of 256 was selected as the results from Section 3.2.7 concluded
that this buffer length displayed a good balance between overall performance and the

2https://learn.microsoft.com/en-us/windows/whats-new/whats-new-windows-10-version-
20h2

3https://developer.nvidia.com/opengl-driver
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1 vec4 frag_color = texture(inOutTexture, tex_c); //Loads pressure from texture.
2 vec4 p = frag_color.rrrr; //Current centre point.
3 float p_prev = frag_color.g; //Previous centre point.
4

5 // Contains neighbour pressure and boundaries.
6 vec4 p_neigh;
7 vec4 b_neigh;
8

9 // Loads left neighbour from texture.
10 vec4 frag_l = texture(inOutTexture, tex_l);
11 p_neigh.r = frag_l.r;
12 b_neigh.r = frag_l.b;
13

14 //For all neighbours.
15 ...
16

17 //Parallel computation of neighbours//
18 vec4 pLRUD = p_neigh*(1-b_neigh) + p*(b_neigh)*frag_color.b;
19

20 // Explicit update scheme calculation.
21 float p_next = 2*frag_color.r + (dampFactor-1) * p_prev;
22 p_next += (pLRUD.x+pLRUD.y+pLRUD.z+pLRUD.w - 4*frag_color.r) * propFactor;
23 p_next /= dampFactor+1;
24

25 // Return simulation data as graphics fragment.
26 return vec4(p_next, p.r, frag_color.b, frag_color.a);

Figure 5.6: OpenGL fragment shader for finite-difference simulation adapted from Zappi et al. (2017)
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selected real-time requirements. Further, the buffer length 256 is more widely supported
by audio devices than the smaller buffer lengths tested (Liang et al., 2021). The chosen
buffer length of 256 at 44.1KHz has a maximum audio buffer period of 5.805ms to satisfy
the audio-sound latency requirement as seen in Table 2.1. The results in Table 5.1 record
the average buffer execution time across 172 buffers across the enumeration of physical
model resolutions. An additional column for each version measures the relative speedup
of each measurement with relation to the naive serial CPU version. This highlights the
differences between the default serial approach developers might use compared to the
parallel versions (Bocchino et al., 2009). The first thing to notice is that the AVX CPU
version that employs parallel vector processors on the CPU clearly improves performance
over the serial version, with a consistent speedup between 2.4× and 3.4×. Therefore,
basic finite-difference based physical modelling synthesis benefits from the SIMD parallel
processing, even on the CPU.

Figure 5.7 plots the execution times recorded in Table 5.1. The results highlight
a clear difference between the CPU and GPU versions as the resolutions scale from
(#G , #H) = 8 up to (#G , #H) = 1024. For lower resolutions, between (#G , #H) = 8 to around
(#G , #H) = 32, both of the CPU versions process the buffers considerably faster than
the GPU counterparts. At (#G , #H) = 8, the CPU Serial version is at least 7× faster
than the OpenCL Global and approximately 3× faster than OpenGL. This behaviour
is expected, as the initial communication overhead of using the discrete GPU exceeds
the execution time of the entire computation at these resolutions. This advantage will
only favour the CPU further when buffer lengths less than 256 are used, as the GPU
communication overhead increases further. However, as the resolutions scale, the ability
for the GPU to fully utilise all parallel processors becomes clear and as shown in Figure
5.7, the GPU versions surpass the CPU serial at (#G , #H) = 32 and both CPU versions
by (#G , #H) = 64 (indicated with a vertical dotted line). For (#G , #H) > 32, the GPU
versions continue to handle the higher resolutions better than the CPU versions. By
(#G , #H) = 128, even the parallel AVX CPU versions can not sustain the audio-sound
latency maximum audio buffer period of 5.805ms, whilst the GPU versions can support
this up to at least (#G , #H) = 512. To put the difference into perspective, (#G , #H) = 128
requires computing 16384 finite-difference points, while (#G , #H) = 512 requires 262144,
16× more computation. By (#G , #H) = 1024, OpenCL achieves a speedup of 125× and
OpenGL 73× over the serial CPU version.

The difference between the OpenCL global and local versions is hard to detect on
the graph in Figure 5.7, but the slight difference can be seen by analysing Table 5.1.

Page 104 of 260



Harri Renney The University of the West of England

Serial CPU AVX CPU OpenCL Global OpenCL Local OpenGL
Resolution time (<B) speedup time (<B) speedup time (<B) speedup time (<B) speedup time (<B) speedup
8x8 0.262 1.0 0.099 2.6 1.900 0.1 1.947 0.1 0.872 0.3
16x16 0.448 1.0 0.186 2.4 1.884 0.2 1.936 0.2 1.000 0.4
32x32 1.604 1.0 0.471 3.4 1.884 0.9 1.924 0.8 0.988 1.6
64x64 5.883 1.0 2.081 2.8 1.953 3.0 1.988 3.0 1.122 5.2
128x128 20.436 1.0 8.384 2.4 1.895 10.8 2.186 9.3 1.215 16.4
256x256 78.791 1.0 33.209 2.4 2.215 35.6 3.075 25.6 1.732 45.5
512x512 317.732 1.0 134.389 2.4 3.151 100.8 3.232 98.3 4.994 62.2
1024x1024 1324.116 1.0 539.459 2.5 10.535 125.7 10.790 122.7 17.924 73.9

Table 5.1: Mean buffer compute time calculated over 172 buffers of length 256. System = High-end
NVIDIA Desktop

The OpenCL version that utilises local memory appears to be slightly slower than the
global version. It suggests that the overhead of moving data from the global memory
to local memory is greater than the improvement local memory accesses provide. This
is likely because, in this basic physical model, grid points are not accessed often in the
computation. Moving the grid to local memory may be beneficial for more sophisticated
physical models that require accessing grid values numerous times in the calculation.
However, this hypothesis would require further experimentation to confirm. Therefore,
for the remainder of this thesis the designs will default to using direct global grid memory
accesses.

Considering the GPU versions, the execution time of OpenCL is consistent between
(#G , #H) = 8 to (#G , #H) = 128, suggesting the majority of the time is made up of the
GPU communication overhead, and the GPU processing is not fully utilised until larger
amounts of data are processed past (#G , #H) > 128. In contrast, OpenGL involves similar
GPU transfer overhead, but executes in about half the time of the openCL versions from
(#G , #H) = 8 to (#G , #H) = 128. However, where the GPU begins to become useful past
(#G , #H) > 128, OpenCL surpasses the performance of OpenGL.

5.3 Evaluation

Many programmers are most familiar with programming CPUs within a procedural lan-
guage with a serial SISD execution pattern. Therefore, the serial CPU version is often the
intuitive starting place for programming a finite-difference based physical model. Never-
theless, a clear and consistent speedup between 2.4× and 3.4× is observed when processing
this linear finite-difference physical model using the outdated AVX SIMD instruction set.
This suggests that simple linear models can be processed in parallel without any clear
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disadvantage whilst improving performance considerably. However, this does not neces-
sarily extend to sophisticated physical models such as ones that must solve non-linear
systems, as the limitations of parallel processing may affect these.

The results highlight the context when a linear finite-difference based physical model
is more suited for the CPU or GPU. It appears, when scaling the resolution uniformly, the
CPU is more suitable for handling resolutions (#G , #H) < 64, and then the GPU begins
to outperform the CPU when (#G , #H) > 64. For this basic physical model, the CPU
can support resolutions (#G , #H) < 64 at a sample rate of 44100Hz. For the same sample
rate, the GPU can support a considerably larger range of resolutions up to (#G , #H) < 512.
This suggests that the GPU can support higher resolution numerical physical models than
the CPU can. Increasing the resolution of the simulated space has several advantages,
including improved accuracy, more stable simulations and the space to create more so-
phisticated instruments. However, increasing the resolution proportionally increases the
computation required to run the simulation. Designing a framework for GPU accelerated
physical models will make the development of larger physical models more accessible.

Two GPU interfacing methods were compared to implement physical model synthe-
sis on the GPU. A GPGPU approach using OpenCL and a graphics domain approach
in OpenGL. The OpenCL approach is far more accessible as it provides a general com-
pute framework that is designed to be quickly adopted, whilst the OpenGL approach
requires a fundamental understanding of graphics rendering. This has been extensively
demonstrated in the designs by Zappi et al. (2017) where the primary drawback of the
OpenGL graphics pipeline is the sophisticated methods for adding interactions to models
that requires using global shader variables called uniforms for updating parameters and
input and output locations. In contrast, the general computation environment provided
by OpenCL is more appropriate for the DMI developers, whilst the OpenGL design from
Section 5.1.4 involves a more specialist approach that has difficulties supporting more
advanced physical models. Furthermore, as covered in the results of Section 5.2, OpenCL
was observed to perform better when scaling to larger grids. For these reasons, moving
forward into Part 2 of this thesis, OpenCL will be used as the primary implementation
method of the proposed designs.

The last key takeaway from this chapter is that using GPU local memory is not a
guaranteed optimisation and appears to depend on the complexity of the physical model.
Therefore, designs moving forward will default to using global memory and local memory
optimisations considered as a possible future extension.

Part 1 of this thesis has demonstrated that the GPU is a powerful processing device for
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supporting processes that require high data throughput, such as parameter matching and
physical modelling synthesis. With the correct configuration, the GPU can operate within
real-time requirements whilst improving the range of resolutions supported for physical
modelling synthesis. Part 2 of this thesis uses the fundamental knowledge established in
this chapter and applies it to the design of a framework for facilitating the development
of linear finite-difference based physical models for real-time audio synthesis.
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Manually programming the various components of the physical modelling techniques
covered in Part 1 takes a considerable amount of time and effort to successfully imple-
ment, as described in Chapter 5. To give some rough perspective, the isolated code
for a minimal OpenCL physical model (without any audio callback or interaction code)
created for this thesis involved approximately 1163 lines of code, and this only grows
larger as the functionality and features of the physical model expands. Furthermore, a
constant difficulty is that the more advanced components added to the physical model
design, the more computation and resources are required, making it increasingly difficult
to achieve real-time performance. Therefore, Part 2 of this thesis presents HyperModels,
a framework for describing high-resolution, linear physical models that utilise the GPU
hardware acceleration for real-time synthesis. This framework aims to improve the accessi-
bility of real-time physical modelling to developers for interaction and performance. This
could lead to unforeseen musical expression that artists can explore beyond the technical
achievements that non-linear physical models can achieve offline (Cook, 1993) (Zappi,
2017). HyperModels aims to provide this environment by exposing a high-level interface
for describing physics equations and an instrument’s shape, e.g. the strings or membrane,
that are automatically translated into optimised low-level code that utilises the real-time
capabilities of modern GPUs. This approach enables the instrument designer to focus on
the sound design aspect of a new instrument without necessarily requiring the advanced
low-level architecture and programming knowledge often required to access parallel GPU
programming. Building an instrument is demonstrated in Section 9.1, where the Hyper-
Models framework is used to build a physically modelled drumhead. The instrument
application from Figure 9.1a is built using the SVG description from Figure 9.1b and the
finite-difference scheme for the two-dimensional wave equation. Part 2 begins by explain-
ing all the GPU specific design components used for optimising the GPU design. This
leads to the comprehensive definition of HyperModels and all the design details. A quan-
titative evaluation of the HyperModels framework is then presented using performance
profiling and comparing the auto-generated HyperModel programs to manually written
equivalents. Finally, the use of HyperModels to build actual instruments is demonstrated
with two case study instruments that provide video demonstrations and source code.
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Chapter 6

GPU Design Components

This chapter covers the GPU specific design components necessary for building the pro-
posed physical modelling environment. This chapter draws from the foundational un-
derstanding gathered from Part 1 of this thesis to form the optimal design components
here.

6.1 Memory Structure

The ideal memory arrangement on the GPU is to use a single flat-array memory buffer and
offset into it to locate specific data. For two-dimensional physical modelling synthesis, a
series of two-dimensional grids are used to store the state of the modelled system through
space and time. Figure 6.1 provides a theoretical view of the state of the two-dimensional
grid through time. Here, it can be seen that the value at each finite-difference grid point
reflects the chosen function D. Grid 0 contains the whole state of the system for all points
G = [0, #G] to H = [0, #H] for timestep C = 0. These grids are progressively calculated using
the explicit finite-difference scheme, using the initial values from Grid 0 to calculate Grid
1 and so on, to the latest timestep at C = #C . Depending on the finite-difference equation
formed, only a certain number of the grids need to be retained in memory for calculating
the next timestep. For example, the two-dimensional wave scheme in Equation (2.13)
requires = − 1, = and = + 1; this abstract two-dimensional view of the system can be
dispatched to the GPU using OpenCL’s abstract model. However, ultimately the GPU
must suitably prepare memory as a one-dimensional flattened array representing the two-
dimensional form. Therefore, space for three grids are needed in memory and must be
mapped and accessed as a GPU suitable data structure. To do this, the GPU allocates
#G ∗#H of contiguous memory for the number of grids needed. For Equation (2.13), three
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grids of contiguous floating point memory must be allocated. Figure 6.2 visualises how
the grid is represented as a one-dimensional flattened array and accessed using an index
offset for D=−1

G,H , D=G,H and D=+1G,H as the grid rotates.

6.1.1 Rotation Index

Explicit finite difference schemes that are solved recursively must keep track of the state of
the system for a series of appropriate timesteps. Therefore, at the end of each iteration,
the state of the system’s timesteps must be updated. This can be achieved with the
following mathematical form:

D=−1 := D= and D= := D=+1 (6.1)

Considering D as the entire N-dimensional state of the system at time =, for each
iteration the state considered for D=−1 becomes D= and D= becomes D=+1 for the next
timestep. Programmatically, this might be done by using another temporary grid region
of memory to copy the grids between them to the effect of timestepping. However, this
needlessly copies data between memory when instead a pointer switching or rotation
index method can be used. Pointer switching works by creating address pointers to the
regions of memory containing the states of the system. Then, instead of copying the
contents of the memory between the states to simulate timestepping, the pointers that
indicate the memory regions are switched to point to the next state’s region of memory.
Referring back to 6.2, it can be seen that the timesteps =−1, = and =+1 can be switched
around to point to the next region of memory when the whole state of D=+1G,H has been
calculated. To the same effect, an index into the 1-dimensional flattened array can be
used called A.

The rotation index A is used to offset into the correct grid. The rotation index is
multiplied by the grid size to offset the relevant grid for the current timestep. Therefore,
the centre index into the flat array can be calculated as �> = A∗#G∗#H, where �> is the centre
grid index offset, A is the rotation index pointing at the timestep being considered (like
=), #G and #H are still the number grid points in the x-axis and y-axis respectively. Using
�> to offset into the correct grid, the indices for the grid points required for calculating
D=G,H must be collected. The GPGPU kernels provide methods for dispatching programs
to the GPU that are considered in a two-dimensional workspace. Therefore, the G and H
positions of each grid point being calculated inside the GPU program can be requested.
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Figure 6.1: Theoretical view of the physical model state.

These can then be mapped into the 1-dimensional flat buffer using �2 = H ∗#G + G, where
�2 is the index of the centre point, G is the index on the x-axis and H for the y axis.
Combining the grid offset and the grid point index provides �< = �>+ �2. Within the GPU
program, the indices for accessing these points can be programmed using Algorithm 2.

Algorithm 2 Calculate Indices
1: ⊲ Calculate grid offset of current timestep.
2: int offsetRotation = gridSize * idxRotate;

3:
int centreIdx = offsetRotation + (getWorkitemID(1)

* getWorkitemSize(0) + getWorkitemID(0));

4:
int leftIdx = offsetRotation + (getWorkitemID(1)

* getWorkitemSize(0) + getWorkitemID(0) - 1);
5: ⊲ Definitions for all other neighbours right, up and down...

Here, offsetRotation implements A∗#G∗#H as gridSize represents #G∗#H and idxRotate
is A. The functions getWorkitemID and getWorkitemSize are then used to calculate the
indices such as the centreIdx �2 = H ∗#G + G. When the GPU program is dispatched with
the number of workitems equal to the number of grid points for the simulation, the indices
for correctly accessing the flat buffer in Figure 6.2 is maintained.

The boundary grid is used to represent the boundary grid. The boundary grid identi-
fies all points in the model space that are to be considered boundaries and then modify
the standard state finite-difference function D to be replaced with the boundary condition
function D = Ψ. The centre point offset �2 is used to access the boundary grid and identify
if function D should be replaced with the boundary function D = Ψ.

The GPU memory allocations are positioned in different types of physical GPU mem-
ory. In order to maximise the access speed by the relevant device, the memory allocations
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Figure 6.2: Physical GPU representation of physical model states shown in Figure 6.1.

Memory Type Memory Names OpenCL Flags
GPU Local Memory System State Grids, ID grid, Boundary Grid CL_MEM_HOST_NO_ACCESS & CL_MEM_READ_WRITE
CPU Mapped Memory Input Buffer, Output Buffer CL_MEM_HOST_WRITE_ONLY & CL_MEM_READ_ONLY &

CL_MEM_HOST_READ_ONLY & CL_MEM_WRITE_ONLY
Push Constants Rotation Index, Buffer Index, Physical Model Parameters N/A

Table 6.1: Memory Allocation Types

should be in the appropriate locations. The system state, id grid and boundary grid are
initialised once by the CPU and are therefore appropriately allocated to GPU local mem-
ory. The input sample buffer is written to by the CPU and read from the GPU. In
contrast, the output buffer is written to by the GPU and read back to the CPU. These
buffers should be optimised for the appropriate read and write accesses on the GPU and
also need to be optimised for CPU accesses. The final memory types are not buffers
but single data types that contain rotation, buffer indices and physical model param-
eter values. These are relatively small memory allocations that are updated from the
CPU regularly, making them push constants and should therefore be optimised as such.
The summary of all memory allocations and their types is given in Table 6.1 with a
column using OpenCL specific memory allocations flags to demonstrate how these are
implemented.

6.2 If-Conversion

Although the GPU architecture supports conditional branching, it has been documented
as often being suboptimal to add branching (Rotem and Ben Asher, 2014). This is
because of the SIMT structure of the GPU; groups of streaming processors execute in
lock-step, meaning that all streaming processors on a compute unit execute the same
set of instructions simultaneously. Therefore, when a program branches and separate
sets of functions must be executed, the streaming processors that execute one branch
must wait on the completion of the other branch. Under certain conditions, the GPU
compiler can use optimisations such as predictive branching to avoid negative effects on
performance (He and Zhang, 2010). For example, if the branch condition operates on a
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constant buffer the compiler can reliably predict the branch path. However, if the data
is dynamic and either branch can execute, the compiler has to execute both sides and
pick the best result or use proper branching. Modern GPU developments have seen some
improvements supporting branching beyond predictive branching even with dynamic data
and can be seen for example with fragment branching (Harris, 2005). Despite this, a
conservative approach will be taken in this thesis that does not depend on these modern
improvements that may not be supported by all GPUs. Therefore, control dependencies
using dynamic data based on branching will be converted to data dependencies using
arithmetic (Elkhouly et al., 2016).

As covered so far, linear finite-difference based physical modelling synthesis is highly
suited for the GPU as each grid point can be calculated independent of one another,
without synchronisation. However, alterations to the calculations need to be made when
boundary points are identified. A common approach would be to use a conditional state-
ment to check if a neighbouring cell is a boundary, calculate it using the boundary condi-
tion equation. This would lead to an inferior program based on branching on the GPU.
Instead, branching can be avoided altogether using if-conversion. The pseudocode in Al-
gorithm 4 illustrates this difference for a clamped Dirichlet boundary condition. The first
function boundaryConditional uses a control dependency. It takes three arguments, gridP
is the grid of the system state values, gridB is the grid identifying boundary points, and
idxB is the index of the boundary point being considered. Using an if statement, gridB
can be accessed at idxB to check if it is a boundary. If it is, then the boundaryPressure is
set to the clamped value hardcoded here as 0. Otherwise, it is a normal grid point and set
to the grid point value in gridP. Alternatively, the use of any control dependencies like an
if statement can be avoided by if-conversion to use only data dependencies demonstrated
in boundaryArithmetic. Here, the grid collected from gridP using idxB is multiplied by
1-gridB[idxB]. The effect of this is the same as boundaryConditional, when gridB[idxB]
is 1, it is a boundary point and therefore clamped to 0; otherwise, it does not affect the
grid point value.

The proposed GPU optimised design will use if-conversion when generating the GPU
programs. Although supporting if-conversions for more advanced boundary conditions,
this will be the approach used in the current design that supports Dirichlet and Neumann
boundary conditions.
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Algorithm 3 Boundary Approaches Compared
1: function boundaryConditional(gridP, gridB, idxB)
2: if gridB[idxB] then
3: boundaryPressure = 0
4: else
5: boundaryPressure = gridP[idxB]
6: return boundaryPressure
7:
8: function boundaryArithmetic(gridP, gridB, idxB)
9: boundaryPressure = gridP[idxB] ∗ (1-gridB[idxB])
10: return boundaryPressure

6.3 Buffering Input and Output

The buffering technique for transferring audio samples to and from the GPU will be a
core configuration parameter of the HyperModels framework. The buffer length will be a
controllable parameter of the synthesis design in order to be directly supported by audio
playback devices and interfaces that externally determine audio buffer length. Input or
excitation samples can then be written from the CPU into the GPU accessible memory
and put into the physical model at the input position point. Samples generated from the
physical model are then written to the output buffer on the GPU and read by the CPU
for further processing or directly transferred to the audio playback device. The location
where the input buffer is written and the output buffer is read from is controlled by two
global variables. The following pseudocode achieves the input-output behaviour:

Algorithm 4 Boundary Approaches Compared
1: if idxCentre == outputPosition then
2: outputBuffer[idxSample]= u[idxCentre]
3: if idxCentre == inputPosition then
4: uPlusOne[idxCentre] += inputBuffer[idxSample];

Here, if the idxCentre being the current point being considered is equal to the output-
Position, the sample on the grid state u is written to the output buffer at the idxSample,
the position of the buffer which is incremented every timestep. If the idxCentre equal
to inputPosition, then the sample is read from the input buffer and added to the model
state for the next timestep uPlusOne.
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6.4 Halo Cells

Following the memory structure and processing format laid out in Section 6.1, an issue
arises when applying calculations to the edge of the memory grid. The finite-difference
equations involve accessing neighbouring values in the memory grid; this involves cal-
culating the indices of the neighbouring points and then using them to access the GPU
memory buffer. However, when at the edge of the grid, the generated indices will attempt
to access memory outside of the GPU memory buffer, causing undefined behaviour (Li
et al., 2019). A sub-optimal solution is shown in Algorithm 5, where grid points on edge
are identified using if-statements and ignored.

Algorithm 5 Sub-optimal Edge Detection
1: if workitemID[0] == 0 || workitemID[1] == 0 || workitemID[0] == workitemSize[0] ||

workitemID[1] == workitemSize[1] then
2: return

Here, a two-dimensional system where workitemID is an array containing each di-
mensions ID for the current work item and workitemSize is the number of workitems in
each dimension. If there are workitems equal to every grid point in the two-dimensional
system, this will ignore one cell around the entire grid and avoid accessing neighbours
outside the GPU memory space. However, involving control dependencies on the GPU
can reduce performance. An alternative solution is to use a halo of grid points around
the simulation grid space (Kjolstad and Snir, 2010) (Millán et al., 2015). Figure 6.3 il-
lustrates how a grid can be arranged to operate on the inner green cells, and an outer
halo of cells are designated as part of the GPU memory buffer but are not involved in
the simulation calculations. Using this method, the number of workitems dispatched for
execution on the GPU equals the number of internal cells highlighted in green. The in-
dices for accessing cells must then be offset in order to operate on the internal green cells,
which can be programmed as shown in Algorithm 6.

1 int centreIdx = ((getWorkitemID(1) + haloOffset) * getWorkitemSize(0) +
2 getWorkitemID(0)+ haloOffset);
3 int leftIdx = ((getWorkitemID(1)) + haloOffset) * getWorkitemSize(0) +
4 getWorkitemID(0) - 1 + haloOffset);
5 //Definitions for all other neighbours...

Here, haloOffset is the size of the halo grid in grey surrounding the simulated space
in green. By adding this onto the x and y axes, the workitems IDs can be used to access
only the inner simulated grid points. This avoids the undefined behaviour that would be
caused by accessing unallocated memory outside of the grid.
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Algorithm 6 Optimised Halo Grid Edge Detection
1: ⊲ Calculate grid offset of current timestep using halo offset.
2: int offsetRotation = gridSize * idxRotate;

3:
int centreIdx = (getWorkitemID(1) + haloOffset)

* getWorkitemSize(0) + getWorkitemID(0) + haloOffset;

4:
int leftIdx = (getWorkitemID(1) + haloOffset)

* getWorkitemSize(0) + getWorkitemID(0) + haloOffset - 1;
5: ⊲ Definitions for all other neighbours right, up and down...

Figure 6.3: Two-dimensional grid space where the cells highlighted in green are part of the simulation
space and grey cells are halo cells not operated on.
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6.5 Constant Folding

Constant folding is the process of identifying and optimising constant expressions at
compile time rather than repeatedly calculating them at runtime (Muchnick et al., 1997,
p. 329). Terms in constant expressions are typically simple literals or constant variables
in a calculation that can be reduced to a single number. For example, 8 = 320 ∗200 ∗32
can be folded down to simply 8 = 2048000. When forming explicit schemes with finite-
difference equations, there are often parts to the equation that will contain redundant
components if implemented directly in a program calculation. Consider Equation (2.13),
there is a single controllable parameter _. This is mathematically interesting because _
represents the wave speed propagation through the simulated material. However, if the
GPU program includes the whole equation in the calculation, it redundantly processes
_2 at every point. Instead, the calculation of 2_ = _2 can be done once on the CPU when
the parameters are set, and then the coefficient 2_ can be loaded onto the GPU and
replace _2. Including this optimisation requires the GPU interface to expose the original
meaningful parameters like _ and then do the constant folding as an intermediate step
to form 2_, load it onto the GPU and include it in the calculation.

6.6 Summary

In this Chapter, a number of key GPU design techniques and optimisations have been
covered. To summarise, the following will play a key role in the design of the GPU
accelerated physical modelling design being presented:

• A grid that maps the model geometry to the GPU cores.

• Boundary grid for describing model’s boundary points.

• System state grids for containing the state of the spatial systems for relevant
timesteps.

• GPU optimised flattened memory Buffers.

• Rotation indices for efficient timestepping.

• Appropriate GPU Memory Types.

• Buffering CPU to GPU data transfers.
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• Array containing instrument interconnection points.

• Constant folding to optimised runtime calculcations.

• Multiple input & output positions.

These techniques are used in the following chapter to present the design of the GPU
optimised HyperModels framework.
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Chapter 7

HyperModels Framework

There are many examples of frameworks that use DSLs for facilitating the development of
applications that depend on PDEs. However, these DSLs are developed to target specific
domains outside of digital audio processing. Saiph and Liszt are primarily designed for
using defined PDEs in a DSL for solving fluid dynamics and many other similar DSLs
exist for countless other domains (Macià et al., 2018) (DeVito et al., 2011). These DSLs
have been demonstrated as being effective (Kieburtz et al., 1996), but they are limited
to their targeted domain, meaning they are not easily adapted for creating digital audio
synthesisers. There is one well-established digital audio processing DSL called Faust that
supports the development of finite-difference based physical modelling synthesis (Russo
et al., 2021). However, despite all these features in Faust, its original intention was not to
specifically target the development of finite-difference based physical model synthesisers;
This means Faust is missing more advanced features such as GPU acceleration (which
finite-difference models are well known to benefit from (Moler, 1986)) and a visual ap-
proach for describing the geometry of the models. Instead, Faust is currently CPU bound
and the physical model geometry must be defined within the written DSL.

Considering that there appears to be no DSL framework specifically designed for de-
veloping physical models for audio synthesis, this thesis aims to present a novel design
explicitly addressing this. The HyperModels framework will have two key features that
are missing from any existing DSL in this field, complete GPU acceleration of the finite-
difference based physical model programs and a visual method for describing the physical
model geometry. With these additional features that improve performance and acces-
sibility, HyperModels may be in an ideal position to facilitate the development of new
DMIs.

This chapter presents the HyperModels framework, a framework for automating the
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mapping of finite-difference based physical modelling synthesis into a GPU optimised
parallel format for real-time processing. Initially, the framework aims to support mod-
elling linear systems of recursively solvable explicit finite-difference schemes within a
two-dimensional environment. The summary of the HyperModels framework has been
accepted for publication in Paper [D] at the conference of New Instruments for Musical
Expression (NIME) 2022 under the title "HyperModels - A Framework for GPU Accel-
erated Physical Modelling Sound Synthesis" (Renney, Willemsen, Gaster and Mitchell,
2022).

7.1 HyperModels Overview

The entire HyperModels framework is made up of the components arranged in Figure
7.1. This framework uses a component-based software design approach (Heineman and
Councill, 2001). Each component functions independently of one another, such that
provided the appropriate input and output, various implementations of each component
can be developed and connected. This is a common and successful design approach as
supported in the literature (Mahmood et al., 2005). There are four distinct software com-
ponents: physical-model-generator, svg-generator, svg-parser and then the gpu-interface.
The physical-model-generator generates the GPU program by mapping finite-difference
equations defined in a DSL into a parallel format suitable for generating the appropriate
GPU program. The svg-generator is used for creating the geometry of the physical model
system inside an SVG. The SVG format (covered in Appendix B.1) must then be parsed
into a bitmap style description of the same model for the finite-difference GPU program.
This is where the svg-parser converts this into the suitable form captured inside of the
JSON format (for JSON see Appendix B.2). With the GPU program and geometry con-
tained inside the JSON object, the gpu-interface is used for loading the GPU program
and geometry onto the GPU and interfacing with it. The interface can then be used
to integrate the physical model into an application. Each of the components will first
be covered in a platform-agnostic form before describing an implementation used in the
subsequent chapter to validate the design.

7.2 Physical Model Generator

The physical-model-generator maps the definition of explicit finite-difference schemes into
a parallel form appropriate for the GPU to process. The abstract design of the mapping is
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Figure 7.1: Relationship diagram of the GPU physical modelling tools.

described from which the details of the HyperModels DSL will be defined. The front-end
of the DSL parses valid equations to form an AST that is used to generate the equivalent
GPU program for a target GPU standard (such as OpenCL). An implementation of this
design will be demonstrated using the Python programming language at the end of this
section.

7.2.1 Model to GPU Mapping

Mapping finite-difference equations into a parallel processing environment requires defin-
ing an appropriate representation and program structure. Here, we define the GPU as
system 0 with a grid of �G ×�H PEs1. A single processing element is denoted by 02G ,2H
where 2G ∈ {1, . . . ,�G} and 2H ∈ {1, . . . ,�H} are the PE indices in the horizontal and vertical
direction of the GPU grid respectively. The update equation of one grid point can then
be assigned to a single PE, such that these can be executed in parallel. Considering the
2D system presented in Equation (2.13), mapping a grid point of a scheme with spatial
index (;,<) to a PE with index (2G , 2H) is denoted by 02G ,2H⇐ E;,<.

1Refer back to Section 2.3.3 for the OpenCL terminology used for abstractly discussing GPU processes and
cores.
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The PEs of the GPU 0 must then be processed by recursively traversing the two-
dimensional system 0 and calculating the values of 0=+1 at each position depending on
what models are assigned at each position. This process is repeated recursively and once
all of 0=+1 is calculated, time index = can be incremented. A serial representation of this
process is formed using two nested for loops as shown in Algorithm 7.

Algorithm 7 Serial Representation
1: n = 0
2: while isSimulation do
3: for x = 1 to gridX do
4: for y = 1 to gridY do
5: if id[x][y] == v then

6:

a[n+1][x][y] = 2 * a[n][x][y] - a[n-1][x][y]

+ _2*(a[n][x+1][y] + a[n][x-1][y] + a[n][x][y+1]

+ a[n][x][y-1] - 4 * a[n][x][y])

7: n = n + 1

Here, every position in the grid is visited by iterating over all possible values for x
and y. These are first used to check if the position in the two-dimensional grid is inside
the model E. If it is, then Equation (2.13) is used to calculate the value at 0=+12G ,2H

. In
the equation, components such as 0=

2G+1,2H require accessing neighbouring values of the
currently considered position at 2G and 2H by adding 1 to x, leading to a[n][x+1][cy]. This
is done for all neighbouring values. This serial approach can be rewritten as Algorithm
8, so that it is suitable for parallel processing.

Algorithm 8 Parallel Representation
1: n = 0
2: while isSimulation do
3: cx = getGridX()
4: cy = getGridY()
5: if id[cx][cy] == v then

6:

a[n+1][cx][cy]= 2 * a[n][cx][cy] - a[n-1][cx][cy]

+ _2*(a[n][cx+1][cy] + a[n][cx-1][cy] + a[n][cx][cy+1]

+ a[n][cx][cy-1] - 4 * a[n][cx][cy])

7: n = n + 1
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Here the nested for loops are replaced by the implicit dispatching of gridX by gridY
workitems. The loop’s indices are represented through the identifiers getGridX() and
getGridY(), respectively, where �G ×�H process streams are dispatched to the processor.
Thus, instead of iterating over two nested for loops, the ID of each process stream is used
to check which model’s equation to use, such as E for accessing 0 to calculate the next
timestep 0=+1. The state of the system 0 is contained in global GPU memory as it is only
directly accessed once by each PE.

This mapping supports multiple equations inside of system 0 depending on the po-
sition of 2G and 2H coordinates. For example, as shown in Algorithm 9, one can add
the 1D wave equation described in Equation (2.19) as a second model to the GPU. This
one-dimensional equation can be mapped into the system 0 according to 02G ,2H⇐ D; . The
code then includes an additional conditional statement checking if the coordinate (2G , 2H)
identifies D or E. This mapping is used by the HyperModels DSL to map equations defined
in the DSL into the GPU parallel program code.

Algorithm 9 Parallel Representation Two Equations
1: n = 0
2: while isSimulation do
3: cx = getGridX()
4: cy = getGridY()
5: if id[cx][cy] == v then

6:

a[n+1][cx][cy]= 2 * a[n][cx][cy] - a[n-1][cx][cy]

+ _2*(a[n][cx+1][cy] + a[n][cx-1][cy] + a[n][cx][cy+1]

+ a[n][cx][cy-1] - 4 * a[n][cx][cy])

7: if id[cx][cy] == u then

8:
a[n+1][cx][cy]= 2 * a[n][cx][cy] - a[n-1][cx][cy]

+_2* (a[n][cx+1][cy] - 2 * a[n][cx][cy]+ a[n][cx-1][cy] )

9: n = n + 1

7.2.2 Front-End - DSL Definition

The grammar of the HyperModels DSL will be formally defined using BNF (Section 2.4.2).
First, the basic fundamental numerical data types including whole and decimal numbers
must be defined:

1 int ::= digit { digit }*
2 float ::= pointfloat | exponentfloat
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3 pointfloat ::= [intpart] fraction | intpart "."
4 exponentfloat ::= (intpart | pointfloat) exponent
5 fraction ::= "." digit { digit }*
6 exponent ::= ("e" | "E") ["+" | "-"] digit { digit }*

The int type is used for matching all whole numbers N as a sequence of one or more
digits. The float type is used for matching real numbers R and can take one of two forms,
it can be either pointfloat, á la 1.2, or exponentfloat that supports scientific notation such
as 5.9736e24. Next, all the letters supported for naming variables must be defined:

1 letter ::= [a-z A-Z]

This set for letters includes all capital and lower case letters from the english alphabet.
Using the letter type, variables for coefficients and constants in the variable can be defined:

1 coeff ::= letter { letter | digit }*
2 const ::= "const " coeff

Here, a coeff is at least one letter, followed by one or more letters or digits, like
lambda1. A const is the literal sequence "const ", followed by a coeff. The last expression
for representing values is for expressing finite-difference points u in the unique form:

1 u ::= D8=C
8=C,∗

u is used to indicate a finite-difference point from the simulation grid. The int in
the superscript of u is a single int for indicating the timestep relative to the current
finite-difference point. The subscript is one or more comma separated ints indicating
the spatial step from the current finite difference point. This pattern enables referencing
a point on the finite-difference grid through space and time. With these types defined,
operators for forming calculations with them are defined as:

1 unop ::= + | -
2 binop ::= ^ | * | / | + | -

unop is used to reference unary operators, these will be operators that take a single
argument preceding it, like -0.5 or -lambda. binop is for binary operators, these are
operators that take two arguments for a calculation, including 9+10, 54 and 2∗;0<130. All
of these value types and operators are collated together to form the recursive expression:

1 expr ::= u | num | float | coeff | const | ( expr ) | unop expr
2 | expr binop expr

The equation expression expr ranges over the possible valid set of expressions defined
in the grammar. expr recursively matches binop operators with further expressions either
side which can be terminating expressions, like u, or further binary operators to continue
the recursive behaviour, building up the finite-difference equation.
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7.2.3 Back-End - GPU Program Generation

The Haskell programming language will be used to present a generalised mapping from
the DSL equations to the GPU parallel representation. Although the Meta-Language
(ML) (Pierce, 2002) can be used to formally present this design with proofs, Haskell is
used as it provides a closer representation of the final implementation (Jones, 1999).

The HyperModels BNF grammar formalised in the previous section provides the de-
sign of the front-end parser for converting the finite-difference equations defined in the
DSL into a form ready for the GPU program generation. The Haskell programming
language can match the expr with the following code:

1 data Op = Plus | Mult | Div | Pow
2 deriving (Show)
3
4 data Expr = EU Int [Int] | EInt Int | EVar String | BinaryOp Op Expr Expr
5 deriving (Show, Eq)

This captures the HyperModels BNF grammar in Haskell as Expr. Any sequences
separated by a “ | ” can be matched to identify a valid expression that can be parsed
to build an AST that can be used to generate GPU code. A significant programmatic
difference from the BNF grammar is that the super and subscript notation used for
defining relative finite-difference points used in the explicit schemes D8=C

8=C,∗ is matched
instead with the following EU Int [Int]. Here, an integer for the timestep is followed by
a list of integers for relative spatial steps in the finite-difference scheme. This format has
been chosen over more sophisticated types to conform to the universal ASCII standard
that all text editors support. The Op type is used for matching binary operators that
are optimised using constant folding in the eval function that is defined as:

1 eval :: Expr -> Int
2 eval (EInt i) = i
3 eval (EVar var) = var
4 eval (UnaryOp Pos x) = eval +x
5 eval (UnaryOp Neg x) = eval -x
6 eval (BinaryOp Plus x y) = eval x + eval y
7 eval (BinaryOp Minus x y) = eval x - eval y
8 eval (BinaryOp Mult x y) = eval x * eval y
9 eval (BinaryOp Div x y) = eval x * eval y

10 eval (BinaryOp Pow x 0) = 1
11 eval (BinaryOp Pow x y) = eval x * Pow x (y-1)

The eval function can be recursively called on the AST formed from Expr to fold all
constants and remove redundant calculations. Once eval has no more effect, the recursive
constant folding halts.

Page 127 of 260



Harri Renney The University of the West of England

The AST representation of the equation is formed by matching Expr. Once the AST
has been optimised using eval, the AST can be used by the HyperModels compiler to
generate GPU program code. The compiler will target a high-level, human-readable GPU
programming standard; available target GPU standards include GLSL shaders, OpenCL
and CUDA kernels. The GPU programs will be generated using template code for the
target standard and the code injection technique (Section 2.4.4). A key part of generating
code involves searching for data types contained in the AST. The following Haskell code
is used for searching for a particular data type:

1 findX :: [Expr -> Bool] -> Expr -> [Expr]
2 findX fs (BinaryOp _ e e') = findX fs e ++ findX fs e'
3 findX fs e = concatMap (\f -> if f e then [e] else []) fs

Here, the function findX is used for searching the AST for a particular type and
collecting them into a list. This is important for collecting all the relevant information
about the equations stored in the AST to inject the generated code snippets into the
template code. For example, using findX(AST, EU) will collect all finite-difference ex-
pressions into a list. The list can then be filtered to find all neighbouring values that
need to be accessed to generate code for accessing all relevant indices in the GPU grid
memory. This code can then be injected into the template, making the relevant indices
available for accessing memory throughout the GPU program. Using this approach, a
set of functions for generating all the necessary code snippets must be defined. These
functions are implementation-specific and depend on the GPU standard being targeted.
Therefore, the details of these functions will be covered in the implementation section
and here will just be presented as declarations:

1 generateHeader :: AST -> String
2 generateHeader()
3 generateIndices :: AST -> String
4 generateIndices()
5 generateVariables :: AST -> String
6 generateVariables()
7 generateBoundary :: AST -> String
8 generateBoundary()
9 generateEquation :: AST -> String

10 generateEquation()

The String outputs of these functions can then be injected into the template code using
regular expressions (Karttunen et al., 1996). The following code provides an example for
the GPU code header:

1 import Text.Regex (mkRegex, subRegex)
2
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3 -- Generate code for header and insert into template.
4 headerSnippet = generateheader(AST)
5 strProgram = subRegex (mkRegex "$insertHeader$") template headerSnippet
6 -- ... For all code snippets.

Here, the code snippet for the header is generated from the AST using generateheader.
This is then injected into the template code in place of $insertHeader$. This process is
repeated for all sections of the template that have code injected into them in place of the
tokens.

7.2.4 Implementation Python

This section presents an implementation of the HyperModels DSL using the Python
programming language. This implementation will support OpenCL as the target GPU
standard, although the implementation can be extended to support other targets by
adding additional template code and code generation functions for each target.

Figure 7.2: Visualisation of an abstract syntax tree of Equation (2.19)
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PyParsing2 is used for implementing the HyperModels DSL grammar from Section
7.2.2. The parsing functionality is contained in the independent front-end python file
PhysicalModelParser.py. Leaving the GPU code generation in a separate back-end python
file, PhysicalModelGenerator.py. The defineGrammar() function below is used to python-
icaly define and prepare a grammar object that can be used to parse the DSL:

1 def defineGrammar():
2 # Numbers - 0.75, 5, 1000.0
3 number = pyparsing_common.fnumber
4 number.setParseAction(Constant)
5
6 # Coefficients - mu, lambda
7 coefficient = Word(alphas)
8 coefficient.setParseAction(Variable)
9

10 # Timesteps - u(0)(0,0), u(-1)(0,0), u(0)(2,-1)
11 u = Group(Literal("u") + Suppress('(') + number + Suppress(')') +
12 Suppress('(') + delimitedList(number) + Suppress(')'))
13 u.setParseAction(Timestep)
14
15 # Arithmetic - 5 * 5, mu * mu, lambda * (u(0)(0,0) - u(-1)(0,0))
16 signop = oneOf("+ -")
17 multop = oneOf("* /")
18 plusop = oneOf("+ -")
19 expop = Literal("^")
20 arithmetic = infixNotation(
21 u | coefficient | number,
22 [
23 (signop, 1, opAssoc.RIGHT, SignOp),
24 (expop, 2, opAssoc.LEFT, BinOp),
25 (multop, 2, opAssoc.LEFT, BinOp),
26 (plusop, 2, opAssoc.LEFT, BinOp),
27 ],
28 )
29 arithmetic.setParseAction(PhysicalModelAST)
30
31 # Collect all rules in grammar.
32 grammar = Forward()
33 grammar << arithmetic
34 grammar.ignore('#' + restOfLine)
35
36 return grammar

Example Description
u(0)(1,0) Value of point in current timestep and x+1, y in spatial dimensions
u(-1)(0,0) Value of point in previous timestep and centre position x, y
u(0)(-1,1) Value of point in current timestep and x-1, y+1 spatial dimensions

u(0)(-1,1,-1) Value of point in current timestep and x-1, y+1, z-1 spatial dimensions

Table 7.1: Example of representing discrete steps in a physical model using the DSL.

2https://github.com/pyparsing/pyparsing
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This implements the HyperModels grammar, where finite-difference points represented
in the BNF as u, take the form given in examples shown in Table 7.1. The grammar
returned from the function defineGrammar can then be used to parse a string of input
using the PyParsing function parseStr(input, grammar). A string object containing the
finite-difference equation can be given to the function, along with the defined grammar
object to parse the equation and produce the appropriate abstract syntax tree. This
generates an AST as output that can be used for generating the GPU program code.
The following example is given to describe the process of forming the AST using the
python parser on a valid definition of the one-dimensional wave equations explicit scheme
(2.19):

1 grammar = defineGrammar():
2 strEquation = "u(1)(0) = 2 * u(0)(0) + lambda^2 * ( u(0)(1) - u(0)(0)"
3 "+ u(0)(-1) ) - u(-1)(0))"
4 AST = parseStr(strEquation, grammar)

This will create an AST as visualised in Figure 7.2 (removing multiplications with 2
for conciseness), where the equation is structured in a way that prepares it for convenient
and optimized traversal during the back-end code generation stage. For example, all
leaf nodes can be searched to provide a list of all finite-difference points and coefficients
required for the program. Further, operations here such as "*" and "-" are arranged in the
tree to naturally give correct precedence to mathematical operations in the calculation.
This is demonstrated when starting at the lowest level of the abstract syntax tree, "u0x0"
should be taken away from "u0x1" first, before adding it to "u0xM1" which is a level
higher up the tree.

The GPU programs are then generated by searching the AST for information, generat-
ing appropriate code snippets and injecting them into the target GPU standard template.
In the python implementation, all data types are given a definition for __str__ that
returns a string representing the datatype. An implementation for a generic class that
can handle one-dimensional models as in the example given above but also supports
two-dimensional definitions is provided below:

1 class U():
2 ...
3 def __str__(self):
4 ret = "t"
5 t = self.__timestep.get()
6 ret += (("M" + str(abs(t))) if t < 0 else str(t))
7 x = self.__x.get()
8 y = self.__y.get()
9 ret += "x"

10 ret += (("M" + str(abs(x))) if x < 0 else str(x))
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11 ret += "y"
12 ret += (("M" + str(abs(y))) if y < 0 else str(y))
13 return ret

So when the AST is searched for all unique finite-difference points in the equations,
they can be used to generate a list of the required indices by getting the string represen-
tation of all unique points and appending the index code onto it. The example of this
implementation in Python targeting OpenCL is:

1 def generateIndicesCL(AST):
2 strIndices = ""
3 # Form code snippet template for generating OpenCL indices.
4 strIndex = "int $indexName$ = $insertRotationIndex$
5 + ((get_global_id(1)+$xAxis$)
6 * get_global_size(0) + get_global_id(0)
7 +$yAxis$);"
8
9 # Search AST

10 for eq in AST:
11 #Get unique timesteps.
12 timesteps = eq.value.find(U) # The Class U represents timesteps.
13 for t in timesteps:
14 # Build index code snippet.
15 strTempIndex = re.sub("\$indexName\$", t.getIndex() + "Idx", strIndex)
16 strTempIndex = re.sub("\$insertRotationIndex\$", t.getRotationIndex(),
17 strTempIndex)
18 strTempIndex = re.sub("\$xAxis\$", str(t.getX()), strTempIndex)
19 strTempIndex = re.sub("\$yAxis\$", str(t.getY()), strTempIndex)
20
21 # Append index code snippet to indices.
22 strIndices += strTempIndex
23 return strIndices

This function uses a code snippet template strIndex and goes through all unique
timesteps, generates a unique and relevant index and then appends it to the list of indices.
The entire code snippet returned from this function includes all the indices needed in the
GPU program for processing the finite-difference equation. Continuing to use the one-
dimensional wave scheme as an example, the AST generated from the scheme in Figure
7.2 given to the function generateIndicesCL would return:

1 int t0x0y0Idx = rotation0 + ((get_global_id(1)+0) * get_global_size(0)
2 + get_global_id(0));
3 int t0x1y0Idx = rotation0 + ((get_global_id(1)+1) * get_global_size(0)
4 + get_global_id(0));
5 int t0xM1y0Idx = rotation0 + ((get_global_id(1)-1) * get_global_size(0)
6 + get_global_id(0));
7 int tM1x0y0Idx = rotationM1 + ((get_global_id(1)+0) * get_global_size(0)
8 + get_global_id(0));

This code snippet would then be inserted into the OpenCL GPU code template in
place of the $insertIndices$ token. For this implementation, the following OpenCL code
template is used:
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1 int rem(int x, int y)
2 {
3 return (x % y + y) % y;
4 }
5
6 __kernel
7 void $insertHeader$ //Header informtion.
8 {
9 //Rotation Index into model grid.

10 int gridSize = get_global_size(0) * get_global_size(1);
11 $insertRotationIndices$
12
13 //Get relevant indices.
14 $insertIndices$
15 int t1x0y0Idx = rotation1 +
16 (get_global_id(1)) * get_global_size(0) +
17 get_global_id(0);
18
19 float t1x0y0;
20 $insertBC$
21
22 //Calculate the next pressure value.
23 t1x0y0 = $insertEq$;
24
25 //Read sample at outputPosition.
26 if(centreIdx == outputPosition)
27 {
28 output[samplesIndex]= t0x0y0;
29 }
30
31 //Input excitation at inputPosition.
32 if(centreIdx == inputPosition)
33 {
34 t1x0y0 += input[samplesIndex];
35 }
36
37 modelGrid[t1x0y0Idx] = t1x0y0;
38 }

The token $insertIndices$ would then be replaced with the result of generateIndicesCL.
This process is repeated for replacing all tokens in the template with generated code snip-
pets. The final GPU code is built using the generated code snippets inserted into the
template code; the target GPU standard can then compile this to create the HyperModels
physical modelling program3.

7.3 Vector Based Representation

The HyperModels framework proposes using vector graphics based representation for
describing the shape of models in the simulation. The shape and dimensions of a physical
model have a considerable influence of the generated acoustics. This is demonstrated in

3The full implementation of the standalone Python parser and code generator can be found in the open-source
repository at: https://github.com/Harri-Renney/HyperModels-physical-model-generator
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studies modelling speech using physical models of glottal passage, where the shape of each
glottal section determines the output sound (Scherer et al., 2010; Cummings et al., 1995).
HyperModels uses an annotated form of the SVG protocol for describing models using
vector graphics. The standard SVG format is extended to include additional information
needed for mapping the shapes into the physical model GPU memory 0. Best explained
with an example, two rectangles and a circle inside a 12x12 environment as visualised
in the SVG in Figure 7.3 would be described with the following HyperModels annotated
SVG:

1 <svg viewbox='0 0 12 12' height='12' width='12' connections='4 3 10 10'
2 physics_program='...' interface_device='custom'>
3 <rect id='1' interface_osc_address='' interface_type='pad'
4 interface_osc_args=' 'width='3' height='10' x='3' y='2'
5 style='fill:rgb(88,111,124);'/>
6 <circle id='2' interface_osc_address='' interface_type='pad'
7 interface_osc_args=' 'r='2' cx='8' cy='2'
8 />
9 <rect id='3' interface_osc_address='' interface_type='pad'

10 interface_osc_args=' 'width='4' height='4' x='9' y='8'
11 style='fill:rgb(88,111,124);'/>
12 </svg>

Inside the SVG svg tags, the viewbox, width and height are all important components
as they describe the resolution of the entire physical modelled environment. Defining these
as viewbox=’0 0 12 12’ height=’12’ width=’12’, describes the environment as a 12x12
grid environment. This controls the resolution of the entire simulated environment 0,
dictating the possible space to draw detailed shapes inside. The connections field contains
a list of tuples containing coordinates that are connected together between models. The
list of coordinates are iterated through in the GPU program to apply connection forces
between the two points. In the example above, the position x=4, y=3 on rect ID 1 will
have a connection to position x=10, y=10 on the rect with ID 3. The physics_program
contains the generated GPU program from the physical-model-representation stage. The
SVG format enables convenient changes to these values to tune the resolution of the
application. A final attribute used in the svg tags is the interface_device. This attribute
is used for conveniently setting a default interface resolution size. The example above
uses a custom interface such that a 12x12 resolution grid can be defined. However, the
convenience of this tag can be explained in the case where a Sensel Morph touch pad is
used for interacting with the model, the model dimensions will be conveniently set to use
the Sensel Morphs resolution of 185x105.

The support of the standard SVG shape tags is maintained so that the SVGs can be
rendered as coloured shapes, along with additional attributes for describing the physical
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Figure 7.3: Rendering of the SVG description above.

model in each shape. The most important being id and physics_program. The id is the
unique identifier for each shape; this is used to fill in the id of the shape when generat-
ing the two-dimensional grid in the svg-parser. Another attribute is interface_osc_args,
which contains a list of any optional arguments that can be used to set constants in
the gpu-interface API stage. The intended use of these is open-ended, but they enable
the physical model developer to include useful information about the shape in the final
developed application. For example, the ranges of acceptable parameter values can be
defined in here (like _ ≤ 1√

2
for the two-dimensional wave equation) which an applica-

tion developer can reference using gpu-interface to ensure they are creating an unstable
simulation.

7.3.1 Implementation Javascript Web Application

The svg-generator design has been implemented as a javascript web application4; a screen-
shot is given in Figure 7.4. The Javascript web application supports drawing shapes on

4Code available from here: https://github.com/Harri-Renney/HyperModels-svg-generator
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a two-dimensional canvas. From the placement of shapes, the application can generate
and store it as SVG data in a file that populates the HyperModels attributes. The
physical model equations are entered into a text box and sent to a local Flask5 server
containing the Python implementation of the physical-model-generator. This generates
the target GPU program, sends it back to the svg-generator and is added to the SVG
physics_program attribute. The tool also supports drawing connections between shapes
that populates the connections attribute with tuples of connected coordinates.

Figure 7.4: The modelling tool demonstrating various shapes inside an enclosed envrionment.

7.4 svg-parser

The svg-parser is used for parsing the extended SVG format covered in the svg-generator.
Simulating the physical models using finite-difference based methods requires a Cartisian
grid of points. Therefore, the SVG vector image format must be mapped to a two-
dimensional array using rendering techniques. The design presented here is based on the
SVG parser work by Gaster et al. (2019), with modifications making it appropriate for the
physical modelling framework6. The process of parsing the SVG follows a similar method
of rendering graphics (Figure 2.5). The SVG description must first be tessellated; this
is the process of producing a set of vertices from triangles that, when considered holis-
tically, forms the original shape defined in the SVG. The set of vertices then undergoes
rasterisation, where a grid of points is generated containing the ID of the current shape
inside the vertices.

5https://flask.palletsprojects.com/en/2.1.x/
6Source-code of the svg-parser implementation available at: https://github.com/Harri-Renney/

HyperModels-svg-parser
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Referring back to the 12x12 example in Figure 7.3, a 3x10 rectangle, 4x4 square and a
circle with a radius of 2 are described. These are placed inside the environment that is a
12x12 grid as described in the first SVG tag. The SVG parser will first need to generate
a grid reflecting the size of the environment, in this case, a 12x12 grid. Then, each shape
will need to be processed to determine the cells to set to the shape’s ID. The attributes
belonging to each shape will also need to be stored with the shape ID, including the
physical model GPU program. Finally, the shapes must be tessellated and rasterised to
map the shapes into a grid space. The tessellation of each shape requires interpreting the
shape type and the attributes included in it that describe the shape. This requires slightly
different approaches depending on the shape parsed, but all draw from well-established
tessellation techniques (Sellers et al., 2013).

Processing the rectangle SVG tags requires basic tessellation. Figure 7.5 presents
the basic tessellation and rasterisation pipeline using the rectangle as an example. The
rectangle position x and y are used to locate the first vertex, using the width and height,
the other 5 vertices are generated to form two triangles. Each triangle can then undergo
basic rasterisation (Hersch, 1989) to fill the triangle with values, in this case, the shape
ID. Each triangle’s vertices are taken and used to form a bounding box; this bounding
box can be used to set the value of all grid points falling inside it to the current shape’s
ID.

Forming a circle can be done using a tessellation technique known as a triangle fan
(Shreiner et al., 2009, Chapter 11). First, the SVG circle attributes cx and cy are used to
find the centre point of the circle, then using the radius contained in r, 4 equally spaced
vertices located on the top, bottom, left and right of the circle. Then, using the same
process, 4 new vertices evenly spaced along the circle circumference between these 4 orig-
inal vertices can be generated. This is repeated up to the required resolution of the circle
that can be calculated based on the circumference length. Figure 7.6 demonstrates how
increasing the number of triangles for the circle creates a smoother circumference. This
repeated doubling of the vertices along the circumference makes this a process suitable
for recursion.
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Figure 7.5: Interface tessellation and rasterization of single rectangle.

Figure 7.6: Effect of increasing vertices for a circle to improve smoothness of circle circumference.
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7.4.1 JSON Representation

With these shapes, the SVG structure can be used to generate the model environment
and shapes inside of it. The parser can then be used to capture this information inside of
a JSON object for universal accessibility. Using the SVG example from Section 7.3, the
following JSON representation can be formed:

1 {
2 "shapes" : [
3 {
4 "id": 1,
5 "rgb": "rgb(217,137,188)",
6 "args": [
7 0.39
8 ]
9 },

10 . . .
11 ],
12 "environment": [
13 [
14 H, H, H, H, H, H, H, H, H, H, H, H, H, H,
15 H, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H,
16 H, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, H,
17 H, 0, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 0, H,
18 H, 0, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 0, H,
19 H, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, H,
20 H, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, H,
21 H, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, H,
22 H, 0, 0, 1, 1, 1, 0, 0, 3, 3, 3, 3, 0, H,
23 H, 0, 0, 1, 1, 1, 0, 0, 3, 3, 3, 3, 0, H,
24 H, 0, 0, 1, 1, 1, 0, 0, 3, 3, 3, 3, 0, H,
25 H, 0, 0, 1, 1, 1, 0, 0, 3, 3, 3, 3, 0, H,
26 H, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, H,
27 H, H, H, H, H, H, H, H, H, H, H, H, H, H,
28 ]
29 ] ,
30 "physics_program": "...",
31 "connections": [4, 3, 10, 10],
32 "interface" : "custom"
33 }

Here, there are a list of shapes that contain an id, this maps the rest of the attributes
inside the shape with the grid points inside the environment buffer. Inside the environ-
ment buffer the grid of id cells are surrounded by the boundary halo cells indicated by
the symbol H 7. Each shape also contains any constant coefficients, RGB colour and the
physical model GPU program in physics_program. The connections take the same form
as the SVG, listing numbers representing the connected coordinates.

It is in this stage that the halo cells are generated to surround the grid such that
shapes can be supported close to the edge of the model and the calculations will not
attempt to access memory outside of the grid in undefined memory. The thickness of the

7The symbol H is used here for illustration purposes. In the implementation H is replaced with a reserved
number for representing halo cells, in this case it is the maximum 8-bit value 255.
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halo cell boundary is equal to the size of the largest finite-difference equation’s stencil.
The stencil of a finite-difference equation is the distance of neighbouring cells that are
accessed by the equation to calculate the next timestep.

All the necessary physical model equations and geometry and defined inside this JSON
schema. A C++ framework presented in the next section can now be used to unpack
and load the physical model programs and data structures representing the grids onto
the GPU.

7.5 gpu-interface API

The gpu-interface API component needs to support the following interfacing functional-
ity:

• Compilation of the GPU program.

• Loading the GPU program onto the GPU.

• Requesting the executing the GPU program.

• Sending excitation as input to the GPU.

• Receiving generated samples as output from the GPU.

• Updating physical model parameters.

To meet these requirements, the necessary GPU standard and API needs to be sup-
ported. The gpu-interface API is designed as an abstract class so that various implemen-
tations can be made supporting different targets, such as OpenCL, Vulkan, CUDA, etc.
Provided the virtual functions defined here are implemented, the details of the interfacing
API are dependant on the target GPU standard.

7.5.1 Implementation C++ GPU Interfacing API

In this implementation, the gpu-interface-api component has been written in C++ using
an abstract class GPU_Accelerated_PM which currently supports the OpenCL standard
in the GPU_Accelerated_PM_OpenCL class. The support of further standards can be
introduced by inheriting the abstract class GPU_Accelerated_PM. The function declara-
tions that meet these capabilities are shown here:
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1 void createModel(const std::string aPath);
2
3 void step();
4 void fillBuffer(float* input, float* output, int numSteps);
5 void updateCoefficient(std::string aCoeff, int aIndex, float aValue);
6
7 void setInputPosition(int numInputs, int aInputs[]);
8 void setOutputPosition(int numOutputs, int aOutputs[]);

createModel() takes a file path to the JSON file on the system. This JSON file must
conform to the form described in the SVG-Parser in Section 7.4. The GPU program for
the target GPU interfacing API can then be loaded onto the GPU. step() is a private
function that is used for advancing the physical model one timestep. This is used by
fillBuffer to recursively advance the physical model and at each time step extract sampels
from the output position to fill the output buffer. updateCoefficient() is used to change
the value contained in a named coefficient, defined originally in the DSL. The input and
output positions for excitation and sample generation respectively can be moved using
setInputPosition() & setoutputPosition(). Both of these functions take an argument for
the number of inputs or outputs and then an array containing the coordinates for each of
the inputs or outputs. When these functions are used, they alter the state of the physical
model to determine where input and output audio signals are directed when processing
the model using fillBuffer. When the GPU program is executed, the input signal is added
to all the input positions set by setInputPosition and samples are recorded onto the output
audio buffer from the physical model for all the output positions set by setoutputPosition.
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Chapter 8

Evaluation

This chapter evaluates the performance of the GPU programs generated by the Hyper-
Models framework using the same benchmarking strategy from Section 3. The High-end
NVIDIA Desktop from Table 3.3 is used with windows 10 version 21H21 and the OpenCL
version used is from the CUDA SDK version used is 11.4.2.

Using this system, the performance results between the automatically generated phys-
ical model GPU programs will be compared to functionally identical manually developed
physical models 2. The purpose of this comparison is to highlight any performance dif-
ferences from automatically generated programs to manually written ones. To create a
controlled benchmarking environment for the purpose of this thesis, only the GPU pro-
gram of the physical model will be altered between the auto-generated and manually
developed programs. The C++ framework (Section 7.5) and FDTD grid representations
(Section 7.2.1) will remain consistent between versions. The performance of the autogen-
erated and manual GPU programs will also be compared to parallel CPU versions.

8.1 Comparative Tests

The benchmarking tests follow the same real-time profiling technique from Section 3.1.
A sample rate is set, and all the physical models require bidirectional memory transfers.
Each test is executed and profiled through an enumeration of sample buffer lengths and
physical model dimensions. The buffer length again begins at 1 and increases in powers

1https://learn.microsoft.com/en-us/windows/whats-new/whats-new-windows-10-version-
21h2

2Benchmarking suite available to build from source-code at: https://github.com/Harri-Renney/
HyperModels-benchmarking-suite
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of 2 up to 1024. The physical model dimensions begin with 64x64 and increases uniformly
for both axes in powers of 2 up to 1024. Four tests have been defined that have been
designed first to test the basic functionality of the physical models and reveal fundamental
differences in performance between the automatic and manually written GPU physical
model programs. The tests that involve more complex equations and multiple models
aim to expose further limitations of the automated process over the manual approach.
The four tests are defined as follows:

• Simple Single Model - A single two-dimensional wave equation square physical
model. (Geometry shown in Figure 8.1)

• Simple Multiple Models - Ten 1-dimensional wave equations on separate strings.
(Geometry shown in Figure 8.3)

• Complex Single Model - A single two-dimensional circle model that uses a complex
linear plate equation including general and frequency dependant damping. (Geom-
etry shown in Figure 8.5)

• Complex Multiple Models - Two two-dimensional square physical models connected
by a single string. (Geometry shown in Figure 8.7)

The manually written GPU programs provide opportunities for a competent developer
to exploit specific types of optimisations and take advantage of contextual elements that
automated tools either have difficulty identifying or impossible to accurately or safely
implement. There are a couple of common optimisations used in the manually written
shaders that are currently absent from the autogenerated versions. The first is constant
folding and the second is grouping all similar equations into a single identifiable ID. Both
of these optimisations are supported in the HyperModels design, and can be added to
the implementation of the physical-model-generator with further work.

The theoretical estimated FLOPs for each test will be calculated and compared in
the results to the actual execution time to demonstrate the effectiveness expected from
optimisations. In this chapter, the estimated FLOPs is extended slightly from Equation
3.1 to:

�!$%( = #G ∗#H ∗ AB ∗#> ∗#D (8.1)

Where a new variable #D is define as the utilisation space of the simulation which
is the percentage of the simulation space occupied by calculations. #G, #H, AB and #>
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continue to be the simulation resolution, the sample rate and the estimate number of
operations executed per utilised grid point.

8.1.1 Simple Single Model

The simple single model test is designed to profile the performance for a single basic
physical model equation, simple clamped boundary condition and square geometry. The
finite-difference equation used is based on the simple two-dimensional wave equation
with the general damping component, used previously and defined in Equation (5.3)3.
The Dirichlet boundary condition evaluates points at the edge of the shape and is defined
as:

D81G ,1H = 0 ∀ 1G&1H, (8.2)

Where 1 indicates a boundary grid that indicates x and y coordinates of boundary
points with 1G and 1H respectively. Therefore, whenever an identified boundary point is
identified at the border of the square physical model, the value at D8

1G ,1H
will be clamped

to 0. This physical equation will operate within a simple rectangle taking up the majority
of the simulated environment space as shown in Figure 8.1. This test involves most of
the simulated space being involved in calculations at approximately 88% utilisation.

Figure 8.1: SVG representation of Simple Single Model geometry.

This simple test does not involve many opportunities to optimise the manual version
over the auto-generated one. The most significant difference in the manual version is the

3See Figure A.1 in the appendix for the HyperModels DSL definition of Equation 5.3
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comprehensive constant folding such that all redundant calculations are pre-calculated
once on the CPU and passed to the GPU as coefficients. For example, the redundant
calculations _2, `−1 and `+1 in Equation (5.3) are removed as demonstrated in the code
comparison below:

1 // Auto-generated version with redundant calculations.
2 t1x0y0 = ((2*t0x0y0)+((mu-1.0)*tM1x0y0)+
3 (lambda*lambda*(t0x0y1+t0x0yM1+t0x1y0+t0xM1y0-(4*t0x0y0))))/(mu+1.0)
4
5 // Manual optimised version.
6 t1x0y0 = (((2*t0x0y0)+((muOne)*tM1x0y0)+
7 (lambdaOne*(t0x0y1+t0x0yM1+t0x1y0+t0xM1y0-(4*t0x0y0))))*(muTwo));

Here it can be seen that the manual version pre-calculates _2, `−1 and `+1 on the
CPU and whilst these remain constant, they are sent to the GPU as coefficients labelled
lambdaOne, muOne and muTwo respectively.

8.1.1.1 Results

Figure 8.6 presents the performance results between the auto-generated and manually
developed GPU programs. The Simple Single Model only involves a single, simple finite-
difference equation and therefore there is not much room for manually optimising it.
Therefore, this test only includes one optimisation, constant folding. This means the
difference in performance between the manual and auto-generated version primarily de-
pends on the inclusion of constant folding. The graph plots the total execution time to
accumulate 44100 samples for a second of audio at the minimum accepted sample rate.
For grid resolutions between (#G , #H) = [64,256], there is comparatively insignificant dif-
ferences between the performance. From (#G , #H) > 256, the disparity begins to emerge,
the manually written program begins to perform increasingly better. This enables the
manually written version to operate at higher resolutions up to around (#G , #H) = 700,
while the auto-generated version is limited to (#G , #H) = 512.

The only clear optimisation used in the manual version is the removal of redundant
calculations using constant folding. The calculations are involved across 88% of the
simulated space. To demonstrate the difference in theoretical performance using FLOP
estimates, the auto-generated version at (#G , #H) = 512 is estimated to require 512∗512∗
44100 ∗ 14 ∗ 0.88 = 142.425GFLOPS whilst the manual version has a reduced estimated
requirement of 512 ∗ 512 ∗ 44100 ∗ 11 ∗ 0.88 = 111.906GFLOPS because of the constant
folding. In the results, the difference is observed to be 957.0859ms for the GPU auto-
generated version down to the 474.387ms of the manual equivalent giving the manual
version a considerable 101% speedup over the auto-generated version. This demonstrates
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Figure 8.2: Execution time for a second’s worth of sample at 44.1KHz with the simple single model test.
Spec: GPU = NVIDIA RTX 2080

that the reducation of operations from constant folding is highly effective, especially for
simulated spaces that have a high utilisation such as 88%.

8.1.2 Simple Multiple Model

The simple multiple model test is designed to continue testing simple equations involving
a limited number of physical components but scales up the number of separate models.
This is achieved by creating an environment of ten strings with identical equations and
sharing the same set of parameters. This is a common arrangement for some string
instruments with the same type and thickness but varying lengths. This test will arrange
ten horizontal strings as shown in Figure 8.3. These strings take up considerably less
space than two-dimensional shapes at a significantly smaller 1.8% grid utilisation.

The system of multiple string equations uses the notation introduced in Section 2.2.8.1
and is expressed as:
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Figure 8.3: SVG representation of Simple Multiple Model geometry.

D
@
CC + `D

@
C = W

2D
@
GG for @ = 1, . . . ,10 (8.3)

Where W and ` are universal (meaning they apply to all 10 equations) string parame-
ters for wave propagation and general damping, respectively. Using centered second-order
finite-differences for DCC and DGG and a backward finite-difference for DC , the following re-
cursively solvable explicit scheme can be formed4:

D
@,=+1
8

=
2D@,=

8
+_2(D@,=

8−1 +D
@,=

8+1−2D@,=
8
)

1+ ` (8.4)

Here, each string through @ = 1, . . . , " can be solved with the same universal param-
eters _ and `. Therefore, the manual version can take advantage of this, and all strings
can be captured as a group to apply the same equation and parameters as if they are
the same shape ID. The auto-generated program creates the following lines of code for
applying physics equations to the environment:

4See Figure A.2 in the appendix for the HyperModels DSL definition of Equation 8.4
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1 if(idGrid[centreIdx] == 0) {
2 t1x0y0 = 0.0;
3 } else if(idGrid[centreIdx] == 1) {
4 t1x0y0 = (((2*t0x0y0)+((lambda*lambda)*(t0x1y0-(2*t0x0y0)
5 +t0xM1y0))-tM1x0y0) * (1.0/(mu+1.0)));
6 }
7 //...Repeated up to idGrid[centreIdx] == 10

Here, although the same equation with the same parameters are applied to all 10
strings, ten separate branching conditional statements are used for the same calculation.
This is unnecessary and as covered in Section 6.2, branching is detrimental for GPU
performance. Therefore, when manually writing the program, the branching can be
avoided by grouping the conditional statement into:

1 if(idGrid[centreIdx] > 0) {
2 t1x0y0 = (((2*t0x0y0)+(stringLambda*((modelGrid[t0x1y0Idx] *
3 (1-boundaryGrid[rightIdx]))-(2*t0x0y0)+(modelGrid[t0xM1y0Idx] *
4 (1-boundaryGrid[leftIdx]))))-tM1x0y0)*stringMu);
5 }

Here, the same equation and parameters stringLambda and stringMu are used, there-
fore, if any of the IDs between 1-10 are read from idGrid, then they can use this same
calculation without branching unnecessarily. This example is only concerned with mea-
suring performance and therefore uses the same parameters stringLambda and stringMu
across all strings. However, this is not often desirable in practical applications but having
a list of separately controllable stringLambda and stringMu for each string can be readily
supported.

8.1.2.1 Results

The results for the simple multiple model test are provided in Figure 8.4. The results
follow the same trend as the simple single model test, the GPU versions can support
much higher resolutions of around (#G , #H) < 800, whilst the CPU versions can only
reach (#G , #H) = 128 at most. Although this test includes 10 different physical models,
this test is far less intensive with only 1.8% of the simulation space being utilised, meaning
it can support the higher resolution range of (#G , #H) < 800 whilst the simple single model
test can support up to (#G , #H) < 700. This is a significant difference that highlights the
simulation space utilisation is an important component effecting performance.

The FLOPS estimated between the GPU auto-generated version at (#G , #H) = 512 is
estimated to require 512∗512∗44100∗11∗0.018 = 2.288GFLOPS and the manual version
is reduced to an estimated 512∗512∗44100∗8∗0.018 = 1.664GFLOPS. In the results at
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Figure 8.4: Execution time for a second’s worth of sample at 44.1KHz with the simple multiple model
test.

Spec: GPU = NVIDIA RTX 2080

(#G , #H) = 512, the difference is observed as 365.655ms for the GPU auto-generated and
295.0761ms for the manual version giving it roughly 23% speedup.

Here, the performance difference between the auto-generated and manual version ex-
ists but is less significant than in the 101% speedup seen in simple single model test. This
is likely because the optimal calculation optimisation applies only to 1.8% of the points.
However, it is not clear if the optimisation grouping models into a single if-statement has
a significant effect on the performance over the auto-generated version, which does not
have the foresight to do this. Note that this optimisation has limits and can not always
be used in simulations with multiple models.

8.1.3 Complex Single Model

Willemsem et al. extend the Kirchoff thin plate model from Equation (2.24) with a
general damping component as (Willemsen et al., 2017, p. 5):
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DCC = −^2ΔΔD−fDC (8.5)

Here, D = D(G, H, C) is the transverse plate deflection and is defined for G ∈ [0, !G],
H ∈ [0, !H] are horizontal and vertical plate dimensions respectively. ^2 is the referred to
as the plate stiffness parameter:

^2 =
��2

12d(1− E2)
(8.6)

Where d is a material density, � is the plate thickness, and the constant � and
E are Young’s modulus and Poisson’s ratio. By using a discrete bi-harmonic operator
for approximating ΔΔD, a second-order central difference for DCC and first-order central
difference for DC , the following finite-differences are arranged:

XCCD = −XΔ�,Δ�D−fX· (8.7)

By expanding the finite-differences to their constituent components, the following
recursively solvable explicit scheme can be formed (Willemsen et al., 2017, p. 13)5:

(1+f))D=+1;,< = 2D=;,< − (1−f))D
=−1
;,< − `

2(D=;+2,< +D
=
;−2,< +D

=
;,<+2 +D

=
;,<−2)

−2`2(D=;+1,<+1 +D
=
;+1,<−1 +D

=
;−1,<+1 +D

=
;−1,<−1)

+8`2(D=;+1,< +D
=
;−1,< +D

=
;,<+1 +D

=
;,<−1) −20`2D=;,<

(8.8)

This explicit scheme will be used for a circular shape inside the environment illustrated
in Figure 8.5. Here, the circle has moderate grid utilisation at 61%, which is less than
the 88% of simple single model but involves a more advanced physics scheme.

8.1.3.1 Results

The results for the complex single model test are presented in Figure 8.6. In the graph, the
auto-generated and manual versions execute at similar speeds, but the manual version is
slightly faster than the auto-generated version. For example, at (#G , #H) = 512, the auto-
generated measures in at 747ms and manual at 730ms, giving an insignificant speedup
of approximately 2% to the manual version. In the broad scope, this is a negligible
difference that does not enable the manual version to support any higher resolutions at
any point, unlike in the single simple model and multiple simple model tests. As this test
only involves a single model, removing redundant calculations is the primary optimisation,

5See Figure A.3 in the appendix for the HyperModels DSL definition of Equation 8.8
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Figure 8.5: SVG representation of Complex Multiple Model geometry.

and there is no opportunity for grouping equations like in simple multiple model. The
FLOPS estimated between the GPU auto-generated version at (#G , #H) = 512 is estimated
to require 512∗512∗44100∗29∗0.61 = 204.506GFLOPS and the manual version is reduced
to an estimated 512∗512∗44100∗23∗0.61 = 162.194GFLOPS. Oddly, these results have
a negligible 2% difference despite having a greater difference in the number of estimated
FLOPs than the Simple Single Model test. This could be because the theoretical floating
point estimation is considerably inaccurate meaning the constant folding optimisation
will have unexpected results or there are some other nuanced differences between manual
and auto-generated versions not accounted for.

In similar work, the same differential equation with an additional frequency dependant
component was used in Bilbao and van Walstijn (2005) to simulate a linear plate for audio
synthesis. Although executing a grid of 26x32 points in their implementation, it was
reported to take 22.6 seconds to output 1 second of sound at a sample rate of 44100Hz.
Although the exact details of the implementation are not known, it was CPU based and
possibly executed serially. Their conclusion discusses how the finite-difference scheme is
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Figure 8.6: Execution time for a second’s worth of sample at 44.1KHz with the complex single model test.
Spec: GPU = NVIDIA RTX 2080

not computationally cheap, comparing it to having calculation costs of the same order of
magnitude as modal synthesis. However, the auto-generated GPU accelerated physical
modelling program enables far greater resolutions up to at least 512x512 that can operate
in real-time, significantly improving over a 26x32 grid in 22.6 seconds.

8.1.4 Complex Multiple Model

The complex multiple model test uses a combination of all the equations used previously
in the other tests. The system is made up of three separate models as shown in Figure
8.7, a rectangle with state function D, a 1-dimensional string E and circle F, resulting in a
grid utilisation of approximately 51%. This test adds the inclusion of connection points
between all three models. The rectangle D uses the two-dimensional wave equation from
Equation (5.1) and has a one-way connection to the string. The string E uses Equation
(8.3) and has a one-way connection to the circle F which uses Equation (8.5). Following
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the previous recursively solvable explicit schemes lead to the following definitions for D,
E and F6:

D=+1G,H =
2D=G,H − (`−1)D=−1

G,H +_2(D=
G+1,H +D

=
G−1,H +D

=
G,H+1 +D

=
G,H−1−4D=G,H)

1+ ` (8.9)

E=+18 =
2D=

8
+_2(E=

8−1 + E
=
8+1−2E=

8
)

1+ ` (8.10)

(1+f))F=+1;,< = 2F=;,< − (1−f))F
=−1
;,< − `

2(F=;+2,< +F
=
;−2,< +F

=
;,<+2 +F

=
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−2`2(F=;+1,<+1 +F
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;+1,<−1 +F

=
;−1,<+1 +F
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;−1,<−1)
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=
;,<+1 +F

=
;,<−1) −20`2F=;,<

(8.11)

Figure 8.7: SVG representation of Complex Multiple Model geometry.

6See Figure A.4 in the appendix for the HyperModels DSL definition of Equation 8.9

Page 153 of 260



Harri Renney The University of the West of England

8.1.4.1 Results

The results of the Complex Multiple Model test shown in Figure 8.8 are similar to the
Complex Single Model test. Both support up to (#G , #H) ≺ 512, even though Complex
Multiple Model utilises less of the grid at 51% and Complex Single Model at 61%. Despite
10% lower grid utilisation, the test involves handling two connection points between the
models. The manual versions are slightly faster but appear to be a mostly negligible
improvement. With lower grid utilisation, the optimised calculations provide less benefit
than those seen to accumulate in simple single model test. In the results at (#G , #H) = 512,
the difference is observed as 649.684ms for the GPU auto-generated and 614.943ms for
the manual version giving it roughly 5.6% speedup. The results suggest that involving a
couple of connection points (and therefore conditional components) does not significantly
impact performance. This is promising as, in theory, adding conditional components risks
reducing performance, and the inclusion of connection points is a powerful fundamental
feature of the framework. A deeper investigation would need to be made in order to
determine how connection points effect performance. For example, how would this scale
to hundreds of connection points?

8.1.5 Discussion

The results presented in this chapter expose important performance information about
the auto-generated physical model programs related to manually developed versions. The
difference between auto-generated and manual performance was contextual and depended
on the arrangement in each test. This can be seen in the inconsistency between the
speedup observed between the auto-generated and manual versions that ranges from as
low as 2% in test Complex Single Model to as high as 101% in test Simple Single Model.
The Simple Single Model isolated and highlighted the most effective manual version’s
optimisation was the use of constant folding that removed redundant calculations in the
equations. Whilst the HyperModels design supports constant folding, the implementation
does not currently include this feature. Therefore, with further development of the code
generation, this optimisation can be added to the auto-generated programs. Considering
that the results gathered only highlighted constant folding as a significant optimisation,
this suggests that adding constant folding to this implementation of HyperModels would
achieve similar performance to the manual version.

Aside from constant folding, the primary benefit reflected on by the author is that
the manually developed versions is that the source code is more readable, making it more
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Figure 8.8: Execution time for a second’s worth of sample at 44.1KHz with the complex multiple model
test.

Spec: GPU = NVIDIA RTX 2080
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manageable if the user makes modifications. The auto-generated programs were typically
harder to read and understand, which could present issues if a user intends to extend their
programs generated by HyperModels with their own modifications. The readability of
HyperModel’s auto-generated programs is related to the overall usability of HyperModels
and must be rigorously evaluated in the future with organised user studies. One of the
focuses of the user study would be to determine if the auto-generated programs can be
comfortably modified to meet the user’s needs.

Further performance differences were observed between the parallel CPU and GPU
versions of the physical modelling. Whilst the CPU versions struggled to support tests
for (#G , #H) = 64, the GPU auto-generated versions could support up to (#G , #H) = 512,
a simulation space 64× bigger. This reinforces the output from Part 1 that the GPU
is more suitable than the CPU for simulating high-resolution finite-difference schemes
based on linear equations. This provides further evidence for answering research question
5 showing that the GPU is more suitable for higher resolution simulations.

Analysing the results revealed another key component other than the model resolution
affecting simulation performance, simulation space utilisation. The amount of simulation
space being involved in the calculations affects performance significantly. For example,
a simulation utilisation of 1.8% can be 1.28× times faster than a simulation with the
same resolution but with 81% utilisation. The performance impact of connection points
was evaluated and shown to have no considerable effect when 3 connections were used.
Further experiments scaling the number of connections up to hundreds will be required
to understand how this scales.

The theoretical floating point estimations of each program showed that the expected
improvements from the number of operations in the calculations reduced using constant
folding could not be reliably predicted. This is likely because either the number of FLOPs
being estimated is considerably inaccurate or that there are other nuanced differences
between the auto-generate and manually written versions that disrupt the performance
more than the number of operations in the calculations.

Ultimately, this leads to the conclusion that there is room to improve the Hyper-
Model’s framework with further performance analysis with a different set of goals. These
goals would be targeted at evaluating if the programs are compute or bandwidth bound
and then using Roofline analysis (Yang et al., 2020) to determine how close to peak per-
formance. The new knowledge generated from such an investigation could be used to
subsequently improve the HyperModels framework to reach maximum potential.
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Chapter 9

Case Studies

This chapter demonstrates the expressiveness of HyperModels in practice by developing
two real-time instruments using the framework. The first is the Hyper Drumhead 1, previ-
ously presented by Zappi et al. in hand optimised GPU code (Zappi et al., 2017; Zappi,
2017). The second is a variant of Willemsen et al. hammered dulcimer (Willemsen, An-
dersson, Serafin and Bilbao, 2019a), that originally operated with a plate model of 17x6
points running on the CPU, that has been ported to the GPU using HyperModels to
support resolutions up to 256x256. Both instruments will operate within the system 0

defined in the HyperModels mapping with a resolution of (�G ,�H) where models can be
defined to operate at specific positions determined by the vector-based description of the
model shapes.

9.1 Instrument 1: Twin Drumhead Membrane

Instrument 1 implements the Hyper Drumhead using the HyperModels Framework. The
original design involves a two-dimensional simulation of the wave equation accelerated
on the GPU using the graphics pipeline. On the tested systems, the Hyper Drumhead
was reported to support resolutions up to 320x320. In their implementation, Zappi et
al. mapped the audio domain of the physical model directly into the graphical domain
using the OpenGL graphics rendering API. By conforming to the graphical domain, this
design requires an additional field of knowledge and imposes some limitations. For In-
strument 1, the Hyper Drumhead will be ported to the HyperModels framework with an
extended resolution of �G =�H = 512. The source code and recordings demonstrating this

1The name of this instrument inspired the naming of the HyperModels framework
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instrument are publicly available online 2.
The PDE used in the Hyper Drumhead is based on the two-dimensional wave equations

with a frequency independent damping component (Renardy and Rogers, 2006). Equation
(2.13) can be extended to include damping, and the recursively solvable explicit scheme
used for the @th model E@ where @ = 1,2 will be defined as3:

(1+f@)E=+1@,;,< = 2E=@,;,< − (1−f@)E
=−1
@,;,<

+ (_@)2(E=@,;+1,< + E
=
@,;−1,< + E

=
@,;,<+1 + E

=
@,;,<−1−4E=@,;,<)

(9.1)

where the Courant number _@ is defined as in Equation (2.13), and f@ is the frequency
independent damping coefficient (in s−1). To maintain stability inside the model, the
conditions _ ≤ 1√

2
and 0 < f < 1 must be maintained. Continuing to use the grid of PEs

0 from the HyperModels description in Section 7.2.1, E@ is mapped into 0 following the
geometry illustrated as an SVG in Figure 9.1b.

The details of the physical model described so far are contained in the instrument
component visualised in Figure 9.2. Here, the CPU application program is written in the
JUCE4 audio framework interfaces with the GPU instrument program requesting 44100
samples per second. However, the input/output samples between CPU and GPU uses a
buffering technique with data transfers at a rate of

⌈
AB
1B

⌉
where AB is the sample rate and 1B

is the buffer length. So for a buffer length 1B = 256 at AB = 44100, there are
⌈44100

256
⌉
= 173Hz

data transfers per second. The state of the system 0 remains in the GPU global memory
and is not transferred back to the CPU. Instead, for the on-screen visualisation of the
model, an OpenGL graphics program is called at a rate of 15Hz. This efficiently maps
the state of the instrument into coloured pixels that are then sent directly to a display
device. Interactions with the instrument are controlled using two Sensel Morphs 5. The
Sensel Morph is a high-resolution pressure sensor that detects the position and amount
of pressure of contacts. The two Sensel morph’s have been connected to the application,
one mapping to model E1 and the other to E2 by adding excitation to the system 02G ,2H at
a position 2G and 2H that is detected by the Sensels. The Sensels are polled for contacts
at a rate of 150Hz as this provides a maximum detection latency of 6.6ms (Willemsen,
Andersson, Serafin and Bilbao, 2019a). A screenshot of Instrument 1’s application GUI
is shown in Figure 9.1a.

2https://github.com/Harri-Renney/-NIME2022---InstrumentOne
3See Figure A.5 in the appendix for the HyperModels DSL definition of Equation 9.1
4https://juce.com
5https://github.com/sensel/sensel-api
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(a) Screenshot of Hyper Drumhead application.

(b) Vector graphics and physical model description for D
and E in system 0.

Figure 9.1: Instrument 1 Hyper Drumhead

9.2 Instrument 2: String connected plates

Instrument 2 demonstrates how the GPU accelerated framework can represent more
advanced, interconnected linear models. In Willemsen, Andersson, Serafin and Bilbao
(2019a) the instrument designs use strings and plate models that are connected to form
instruments such as the sitar, hammered dulcimer and Hurdy Gurdy. In their implemen-
tation, the instruments were executed on the CPU and operated for small resolutions,
with strings involving a maximum of 50 points and plates of 20x10. The GPU acceler-
ated implementation developed using HyperModels will support higher resolution models
with multiple strings of 280 points and a plate of 236x121 inside an environment 0 with
�G =�H = 256. A plate model E and multiple strings D@ will be defined where the subscript
@ is used to identify each string between @ = 1, . . . ,13.

The 13 strings are defined using the stiff string equation from Equation (2.21) along
with frequency independent and frequency dependant components (Bensa et al., 2003)
leading to the recursively solvable explicit scheme6:

6See Figure A.6 in the appendix for the HyperModels DSL definition of Equation 9.2
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Figure 9.2: Application overview for Instrument 1: Hyper Drumhead.

(1+f@,0))D=+1@,; =

(
2−2(_@)2−6(`@)2

4f@,1)
-2

)
D=@,;(

(_@)2 +4(`@)2 +
2f@,1)
-2

)
(D=@,;+1 +D

=
@,;−1)

− (`@)2(D=@,;+2 +D
=
@,;−2)

+
(
−1+f@,0) +

4f@,1)
-2

)
D=−1
@,;

−
2f@,1)
-2

(
D=−1
@,;+1 +D

=−1
@,;−1

)
(9.2)

with `@ =
^@)

-2 , stiffness coefficient ^@, frequency independent damping f@,0 and frequency
dependant damping f@,1.

The linear plate equation (Morse and Ingard, 1986) uses a similar description of
physics as the stiff string, including frequency independent and dependant components,
but is extended to operate across two-dimensions. Using the explicit form from Equa-
tion (2.25) with damping components, the following recursively solvable explicit scheme
is formed7:

7See Figure A.7 in the appendix for the HyperModels DSL definition of Equation 9.3
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=
;,<−1)
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=
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=
;−1,<−1)

− `2(E=;+2,< + E
=
;−2,< + E

=
;,<+2 + E

=
;,<−2)

+ (f0) −1+4()E=−1
;,<

− ((E=−1
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=−1
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(9.3)

Where parameters are the same as in Equation (9.2) but with the additional coefficient
( =

2f1)
-2 .

The geometry for instrument 2 is displayed as an SVG in Figure 9.3b. Again, a JUCE
application running on the CPU interfaces with the instrument on the GPU at a sample
rate of 44100Hz as shown in the instrument overview in Figure 9.4. The Sensel Morphs
are used as input, one being mapped to pluck across the strings D@ using a triangle
signal and the other to strike the plate E using an impulse. A key difference between
Instrument 2 and 1 is that Instrument 2 generates the visualisation of the instrument on
the CPU using the JUCE framework and needs to load it back to the GPU, accruing
some additional overhead. Therefore, the state of the grid must be transferred from the
GPU to the CPU to update the JUCE graphical components to then load onto the GPU
at a frame rate of 15Hz. A screenshot of the Instrument 2 application is shown in Figure
9.3a; the demonstration recordings and source code for Instrument 2 are openly available
online 8.

9.3 Case Studies Summary

This chapter presented two real-time finite-difference based physical modelled instru-
ments developed using the thesis’ proposed HyperModels framework. The first instru-
ment adapts the design of the Hyper Drumhead to avoid the low-level graphics interface
and instead use the abstracted, high-level framework of HyperModels. The HyperModels
DSL is used to describe the finite-difference schemes and generates the optimised GPU
simulation program. The C++ interface supports the integration of the GPU simulation
into the JUCE audio playback and integrated interactions using an input device like the
Sensel Morph. The second instrument based on the Hammered Dulcimer demonstrates
that HyperModels can support more sophisticated models involving more advanced equa-

8https://github.com/Harri-Renney/NIME2022---InstrumentTwo
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(a) Screenshot of Plate-String Connections application.
(b) Vector graphics and physical model description for D@
and E in system 0.

Figure 9.3: Instrument 2 Plate-String Connections

tions (particularly stiff string and plate equations) and interconnected models. These two
instruments are just examples of what can be developed using the standardised and au-
tomated approach proposed by HyperModels. Future developments of instruments using
HyperModels will be needed to demonstrate the full utility of the framework.
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Figure 9.4: Application overview for Instrument 2: String-Plate Connections application.
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Chapter 10

Conclusion

This chapter concludes this work by providing a summary of the thesis, along with some
perspective on future contributions and avenues of research.

10.1 Summary

This thesis has presented the evaluation of the GPU as a hardware accelerator for digital
audio and presented tools for facilitating the development of GPU accelerated physically
modelled musical instruments. Part 1 built a series of performance benchmarking suites
targeting offline and real-time digital audio requirements. For an offline evolutionary
sound matching application, the GPU was shown to significantly improve offline perfor-
mance by 5× over the equivalent parallel CPU version. However, offline physical modelling
synthesis has a vast body of literature supporting it. Therefore, the thesis focuses on meet-
ing real-time digital audio requirements. The results from the real-time benchmarking
suite suggest that the buffer length of samples dispatched to the GPU was essential for
meeting real-time requirements, being within the range of 32 to 512 samples to meet
appropriate real-time audio-sound latency and sonic interaction requirements. The most
significant improvement of the GPU observed was for real-time physical modelling syn-
thesis. The GPU was capable of supporting 4× higher resolution two-dimensional models
in real-time than the equivalent parallel CPU version. Part 2 presents the design of the
HyperModels framework, a high-level framework for describing GPU accelerated, high-
resolution physical model synthesisers. Beginning with detailed descriptions of all the
physical model specific GPU optimised design components, these are then used to define
the platform-agnostic design of HyperModels. An implementation of each component of
HyperModels is given such that the performance of the framework can be evaluated with

Page 164 of 260



Harri Renney The University of the West of England

comparison to manually written equivalents. Finally, two complete instruments built us-
ing the HyperModels framework have been given to demonstrate the capability of the
tools.

The HyperModels framework aims to bring support for real-time physical models to
digital luthiers 1. Whether realistic and traditional or novel and extraordinary, numerous
new instruments can be developed using HyperModels, but the effectiveness will need to
be refined and improved with future adoption.

10.2 Contributions

Chapter 3 summarised paper [A] where the practicality of the GPU within the domain
of digital audio was tested and evaluated. This chapter provides the reader with quan-
tifiable evidence presented in a way to give an understanding of the GPU when used for
audio processing and synthesis. The primary contribution of this chapter is the evidence
demonstrating that the GPU can reliably meet a set of real-time requirements, provided
a particular range of buffer lengths is used. The buffer range of 32-512 reliably meets
the core audio-sound latency and sonic interaction real-time requirements for discrete
GPUs. Buffer lengths 8 and lower were shown to force the program to be bandwidth
bound as the minimum latency of data transfers accumulate. Then when intensive audio
processing is added, the synchronisation stages between each frame of execution needed
for physical models means only a fraction of the GPUs theoretical peak performance is
utilised. Some secondary findings where also highlighted as contributions including the
suitability for integrated GPUs to be used for shorter buffer lengths below 32 and the
considerable execution overhead for the first execution of a GPU program.

Chapter 4 involved the content of paper [B] and built off from the fundamental tests
from [A] to develop a GPU accelerated offline evolutionary sound matching application.
The primary contribution of this chapter is the proposed design for a GPU accelerated
sound matching program that is shown to reliably outperform parallel CPU equivalents
by approximately 8.88× for the configurations tested. The results provide evidence that
the GPU is suitable for processing evolutionary algorithms when applied to advanced FM
synthesis algorithms. This chapter also provides evidence that using lookup tables for
trigonometric values instead of calling trigonometric functions improves performance by
approximately 4×.

1Digital lutherie, a term coined by Jorda Jordà (2004), refers to the specialised domain Hirschfeld and Gelman
(1994) and diverse community that is concerned with the creation of technology for music.
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Chapter 5 uses the results from paper [C] to evaluate the effectiveness of the GPU for
real-time physical modelling synthesis. This chapter’s primary contribution is the exten-
sive evidence supporting the GPU for large scale physical model processing. The results
show that the CPU was more efficient at processing physical models with resolutions up
to (#G , #H) < 64 but beyond this resolution the GPU outperformed the CPU and could
support real-time requirements up to resolutions (#G , #H) < 512.

Paper [D] provides a brief overview of Part 2 of this thesis, where the HyperModels
framework is described, tested and used to build example instruments. The primary con-
tribution of Part 2 is the proposed design of the Hypermodels framework that provides
a novel solution that facilitates the development of finite-difference based physical mod-
elling for audio synthesis and DMI development. By specifically targeting this domain,
HyperModels provides GPU acceleration and a visual method for describing physical
model geometry which are both key features that are missing from the closest existing
DSL called Faust. HyperModels was shown produce GPU programs with performance
similar to manually written equivalent versions and was then shown to work in practice
when building two DMIs from existing designs published by other researchers.

10.3 Perspectives and Future Work

Naturally, the content of this thesis opens up multiple avenues to explore in future work.
The first part of this work highlights the strengths and weaknesses of the GPU in the
field of digital audio processing. This provides a basis where researchers and designers
can further explore the integration of the GPU as an audio processor. For example, after
reading the test results, a designer may consider a real-time additive synthesiser that
scales the number of oscillators further by using a GPU in their design. However, whilst
the benchmarking suites have provided detailed insight into the comparison of software
implementations and how the CPU and GPU compare for similar audio processes, a
rigorous performance analysis is needed across the various available GPUs. Some targeted
analysis between discrete and integrated GPUs has already been given, but these are
broad categories and there are still a number of GPU specifications that need to be
analysed, such as core count, core speed and memory bandwidth (McIntosh-Smith and
Curran, 2014). It is already well understood in the existing literature (Sosnick and
Hsu, 2010) (Skare and Abel, 2019) that these components of the GPU are important for
audio synthesis, but quantifiable results are needed to produce an informed discussion
on this topic. A thorough investigation can be made in a new study by assembling a
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collection of GPUs covering the range of existing modern GPU architectures and profiling
their performance using the benchmarking suites available in this thesis. Analysing the
results should lead to answering what GPU specifications influence the real-time audio
performance the most? And ultimately, are the same components that impact graphics
processing performance the same that determine audio processing performance? A study
gathering evidence to answer these questions would assist readers in their choices when
selecting the right GPU hardware for their audio applications.

The HyperModels design has only been through a short phase of development and
no evidence for its usability has been gathered yet. Therefore, the next logical step
is to understand the current usability of HyperModels with user studies that focus on
evaluating the effectiveness of HyperModels to provide a GPU accelerated environment
for building DMIs. The user studies could be framed to compare a user’s own approach
to developing GPU accelerated DMIs to the guided approach provided by HyperModels.
This could provide qualitative feedback from users to understand some of the following:

1. Is HyperModels an effective approach for building DMIs?

2. Does the additional accessibility of the GPU provided by HyperModels improve the
user’s experience developing DMIs.

3. What stages of HyperModels blocks or negatively impacts the user’s progress?

By analysing the feedback, contributions surrounding the field of DMI development
and the accessibility of GPUs can be answered. Further, the usability of HyperModels
can be improved by reflecting and revising the design based on the user feedback and
experiences using it.

Once the usability of HyperModels has been evaluated and improved to an acceptable
standard, improvements can be made to some of the technical details of HyperMod-
els. HyperModels involves an amalgamation of concepts, ranging from DSLs, GPUs and
finite-difference equations; therefore, the design and implementation would benefit from
multiple experts in each respective field evaluating and suggesting technical improvements.
The design for HyperModels is still relatively restricted to support linear systems that can
be simulated using recursively solvable explicit schemes. These linear systems although
highly suited for parallel processing and meeting real-time requirements, are fundamen-
tally limited. However, the framework could be extended to support certain non-linear
systems using iterative methods such as Newton Rhapson method (Bilbao et al., 2019).
Further, other advance features can be added; for example, coupled first-order systems
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that use leap-frogging techniques to calculate single timesteps with multiple equations,
such as those used in the state-of-the-art brass models in Bilbao and Harrison (2016) and
Harrison-Harsley (2018). The boundary conditions were restricted to two basic forms;
however, extending the DSL to enable users to define their own intricate boundary condi-
tions would greatly improve the potential of the DSL. Furthermore, whilst HyperModels
has been designed with the application of digital audio in mind, it could be revised to
support physical models in general. For example, to simulate heat diffusion (Richter et al.,
2013) or electro-magnetic waves through various materials (Wei et al., 2014). Whilst the
development of DSLs in these fields have been extensively explored, the audio domain
influence when using HyperModels could provide artistic value. With this in mind, it
could provide novel experimental contributions by facilitating the exploration of different
domains in ways not seen before within the context of digital audio.

With enough collective interest in HyperModels, further developments on the design
will be explored and documented with the potential to continue expanding the audio
landscape through the advancement of physical modelling audio synthesis.
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HyperModels DSL Representations

All of the recursively solvable explicit finite-difference schemes used for building instru-
ments in HyperModels have their respective HyperModels DSL definitions documented
here.

1 1 = (2 * u(0)(0)(0) - (mu -1) * u(-1)(0)(0)
2 + lambda^2 * (u(0)(1)(0) + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1)
3 - 4 * u(0)(0)(0))) / (1 + mu)

Figure A.1: HyperModels DSL representation of Equation 5.3.

1 1 = (2 * u(0)(0) + lambda^2 * ( u(0)(-1) + u(0)(1) - 2 * u(0)(0)))
2 / (1 + mu)
3
4 ...
5
6 10 = (2 * u(0)(0) + lambda^2 * ( u(0)(-1) + u(0)(1) - 2 * u(0)(0)))
7 / (1 + mu)

Figure A.2: HyperModels DSL representation of Equation 8.4.

1 1 = (2 * u(0)(0)(0) - (1 - \sigma * T) * u(-1)(0)(0)
2 - mu^2 * (u(0)(2)(0) + u(0)(-2)(0) + u(0)(0)(2) + u(0)(0)(-2))
3 - 2 * mu^2 * (u(0)(1)(1) + u(0)(-1)(1) + u(0)(1)(-1) + u(0)(-1)(-1))
4 + 8 * mu^2 * (u(0)(1)(0) + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1))
5 - 20 * mu^2 * u(0)(0)(0))
6 / (1 + \sigma * T)

Figure A.3: HyperModels DSL representation of Equation 8.8.
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1 1 = (2 * u(0)(0)(0) - (mu-1) * u(-1)(0)(0)
2 + lambda^2 * (u(0)(1)(0) + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1)
3 - 4 * u(0)(0)(0)))
4 / (1 + mu)
5
6 2 = (2 * u(0)(0) + lambda*lambda * (u(0)(-1) + u(0)(1) - 2 * u(0)(0)))
7 / (1 + mu)
8
9 3 = (2 * u(0)(0)(0) - (1 - sigma * T) * u(-1)(0)(0)

10 - mu^2 * (u(0)(2)(0) + u(0)(-2)(0) + u(0)(0)(2) + u(0)(0)(-2))
11 - 2 * mu^2 * (u(0)(1)(1) + u(0)(1)(-1) + u(0)(-1)(1)
12 + u(0)(-1)(-1))
13 + 8 * mu^2 * (u(0)(1)(0)
14 + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1))
15 - (20 * mu^2 * u(0)(0)(0)))
16 / (1 + sigma * T)

Figure A.4: HyperModels DSL representation of Equation 8.9.

1 1 = (2 * u(0)(0)(0) - (muOne -1) * u(-1)(0)(0)
2 + lambdaOne^2 * (u(0)(1)(0) + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1)
3 - 4 * u(0)(0)(0))) / (1 + muOne)
4
5 2 = (2 * u(0)(0)(0) - (muTwo -1) * u(-1)(0)(0)
6 + lambdaTwo^2 * (u(0)(1)(0) + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1)
7 - 4 * u(0)(0)(0))) / (1 + muTwo)

Figure A.5: HyperModels DSL representation of Equation 9.1.

1 1 = ((2 - 2 * lambdaOne^2 - 6 * muOne^2 * ((4 * sigmaOneOne * T) / X^2))
2 * u(0)(0)
3 + (lambdaOne^2 + 4 * muOne^2 + ((2 * sigmaOneOne * T) / X^2))
4 * (u(0)(1) + u(0)(-1))
5 - mu^2 * (u(0)(2) + u(0)(-2))
6 + (-1 + sigmaOneZero * T + ((4 * sigmaOneOne * T) / X^2)) * u(-1)(0)
7 - ((2 * sigmaOneOne * T) / X^2) * (u(-1)(1) + u(-1)(-1)))
8 / (1 + sigmaOneZero * T)
9

10 ...
11
12 13 = ((2 - 2 * lambdaThirteen^2 - 6 * muThirteen^2 * ((4 * sigmaThirteenOne * T)
13 / X^2)) * u(0)(0)
14 + (lambdaThirteen^2 + 4 * muThirteen^2 + ((2 * sigmaThirteenOne * T) / X^2))
15 * (u(0)(1) + u(0)(-1))
16 - mu^2 * (u(0)(2) + u(0)(-2))
17 + (-1 + sigmaThirteenZero * T + ((4 * sigmaThirteenOne * T) / X^2))
18 * u(-1)(0)
19 - ((2 * sigmaThirteenOne * T) / X^2) * (u(-1)(1) + u(-1)(-1)))
20 / (1 + sigmaThirteenZero * T)

Figure A.6: HyperModels DSL representation of Equation 9.2.
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1 1 = ((2 - 20 * mu^2 - 4 * S) * u(0)(0)(0)
2 + (8 * mu^2 + S) * (u(0)(1)(0) + u(0)(-1)(0) + u(0)(0)(1) + u(0)(0)(-1))
3 - 2 * mu^2 * (u(0)(1)(1) + u(0)(1)(-1) + u(0)(-1)(1) + u(0)(-1)(-1))
4 - mu^2 * (u(0)(2)(0) + u(0)(-2)(0) + u(0)(0)(2) + u(0)(0)(-2))
5 + (sigmaZero * T - 1 + 4 * S) * u(-1)(0)(0)
6 - S * (u(-1)(1)(0) + u(-1)(-1)(0) + u(-1)(0)(1) + u(-1)(0)(-1)))
7 / (1 + sigmaZero * T)

Figure A.7: HyperModels DSL representation of Equation 9.3.
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Appendix B

Data Formats

Two particular data structures and formats are used in this thesis to capture the descrip-
tions of the physical models. The SVG format is used for describing the geometry in a
readily accessible and supported format, whilst JSON is used to capture the comprehen-
sive physical model descriptions, from the physical model program to the finite-difference
grid.

B.1 SVG

Scalable Vector Graphics (SVG) is an XML based two-dimensional graphic file format
Eisenberg and Bellamy-Royds (2014). SVG allows for three types of graphic objects:
vector graphic shapes (e.g., paths consisting of straight lines and curves), images and
text. There are two ways of representing graphics: raster graphics, as already covered in
Section 2.3.4 and vector graphics. In vector graphics, an image is described as a series of
geometric shapes with appropriate attributes for describing them. Rather than containing
a two-dimensional set of coloured pixels (a la raster format), an SVG contains commands
for drawing the specified shape. The commands are instructions for drawing lines and
curves to make the shapes, capturing the entire object this way is powerful for modifying
and adapting graphics when displaying them in different environments. Because SVGs
are not stored as pixels yet, they are scalable, meaning when changing the resolution, the
quality of the image rendered is not impacted. SVG is an XML application and therefore
brings the advantages of openness, transportability and interoperability Ferraiolo et al.
(2000). This makes it a powerful format for gaining widespread support and conforming
to a robust standard.

SVGs follow XML syntax and therefore opens with the standard XML processing
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instructions and DOCTYPE declaration. This is defined inside <svg> tags and contains
the width and height of the finished graphic in pixels. Further attributes include the
SVG namespace in xmlns and <title> tags to give the SVG a meaningful title. Shapes
are then added within the SVG using shape tags, such as <circle>. <circle> requires
attributes for the centre of the circle’s x and y coordinates with cx and cy, along with
the circle’s radius r about this point. General presentation of shapes are set inside the
style attribute, such as "fill:rgb(255,0,0);" to set the colour of the shape to red. A basic
example of an SVG using the ideas covered is given in Code B.1 and rendered in Figure
B.1.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
3 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
4
5 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
6 width="120" height="120">
7 <circle cx="60" cy="60" r="40" style="fill: red; stroke: black;"/>
8 </svg>

Figure B.1: SVG rendered in browser using Code B.1.

SVGs are a powerful way of describing two-dimensional graphics as they provide
meaningful identities to shapes and relationships between them, unlike bitmaps storing
pixels where the groups of pixels don’t have a standard awareness of being a shape.
This means SVG shapes can be assigned special attributes that can affect the whole
shape directly. For example, an SVG can be rendered in the browser and then when
clicked on, the SVG colour attribute could be modified to change blue and move to the
other side of the screen. All this requires is modifying three attributes in the <circle>
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shape, as opposed to working out a way to clear the pixels, and draw them to the
other position without complications like aliasing. A further benefit gained form being
a markup language is that meta data such as descriptions can be assigned to shapes,
capturing further identities for the shapes Good (2005).

B.2 JSON

Javascript Object Notation (JSON) is an open standard file and data interchange format
that uses human-readable text to store data Bray (2017). Data is stored in plain-text
arrays and attribute-value pairs. JSON is considered a fast, resource efficient format that
provides a language-independent medium for data to move through between incompatible
software Nurseitov et al. (2009). For these reasons, JSON is commonly used to store data
as it provides a standard format that applications can readily support.

Attribute-value pairs is a concept where a named attribute, such as "animal" is as-
signed an appropriate value, like "cat". The attribute must be a name defined as a string,
values can take many different forms of data type such as values, arrays and objects. This
enables JSON to store complex nested objects and arrays that can be handled conven-
tionally. An example of a JSON file containing data about animals is shown in Code
B.2. The JSON object here contains the name "animals" that has a value of an array of
objects that include attribute-value pairs that hold data on animals.

1 {
2 "animals": [
3 {
4 "name": "cat",
5 "arms": 0,
6 "legs": 4
7 },
8 {
9 "name": "monkey",

10 "arms": 2,
11 "legs": 2
12 }
13 ]
14 }

Much like the SVG format, JSON conforms to a widely adopted standard, mean-
ing it can be easily adopted into other software tools and exchanged between unrelated
platforms.
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Glossary

benchmarking Benchmarking is the comprehensive evaluation of software and hardware.
Involves measuring the run-time performance and resources used in a series of bench-
marking micro & macro tests. See Section 3.1. Pages. 35

CPU The Central Processing Unit is a processor typically used as the primary proccessing
unit by computer systems. See Section 2.3.1.1. Pages. 33–35, 41

DSL Domain-specific languages are languages specialized to operate within a particular
domain. DSLs like Faust contrast General-purpose languages like C++. See section
2.4.5. Pages. 48

DSP Digital Signal Processing is the application of digital computer systems for singal
processing. Where signals are a continuous sequence of values representing some
quantifiable phenomena or entity. See Section 2.1.1. Pages. 14, 15, 54

ES Evolution strategies (ES) are a type of evolutionary algorithm that is used for optimi-
sation problems, where a suitable solution needs to be found within a search space
of numerous possible solutions. Pages. 74

GPGPU General-purpose GPU computing is the idea of using GPUs for general compu-
tation of other problems, outside of the original graphics domain. See Section 2.3.
Pages. 9

GPU A Graphics Processing Unit is a special device originally designed for massively
parallel processing of computer graphics for display devices. Modern GPUs also
fully support the use of the GPU for general-purpose computing. See Section 2.3.3.
Pages. 8, 9, 34, 35, 41
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Haskell Haskell is a functional programming language based on lambda calculus. Haskell
has the following properties: polymorphically statically typed, lazy, purely func-
tional. Pages. 43

HyperModels HyperModels is a novel framework for facilitating the development of GPU
accelerated physical model synthesisers presented in this thesis. See Section 7.
Pages. 1, 4, 11, 12, 44, 52, 110, 116, 120–123, 125, 127–131, 133, 134, 136, 142, 143,
154, 157–159, 161, 162, 164–168

OpenCL The Open Computing Language is an open-source, cross-platform, heteroge-
neous programming framework. Pages. 9, 34

SIMD Single-Instruction Multiple-Data (SIMD) processing paradigm applies same sets
of instructions across multiple data elements in parallel. Pages. 97

SIMT Single-Instruction Multiple-Threading, extends the SIMD paradigm by enabling
different sets of instructions to be processed simultaneously across threads. Pages.
98
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ABSTRACT
General-Purpose GPU computing is becoming an increas-
ingly viable option for acceleration, including in the audio
domain. Although it can improve performance, the intrin-
sic nature of a device like the GPU involves data transfers
and execution commands which requires time to complete.
Therefore, there is an understandable caution concerning
the overhead involved with using the GPU for audio com-
putation. This paper aims to clarify the limitations by
presenting a performance benchmarking suite. The bench-
marks utilize OpenCL and CUDA across various tests to
highlight the considerations and limitations of processing
audio in the GPU environment. The benchmarking suite
has been used to gather a collection of results across vari-
ous hardware. Salient results have been reviewed in order to
highlight the benefits and limitations of the GPU for digital
audio. The results in this work show that the minimal GPU
overhead fits into the real-time audio requirements provided
the buffer size is selected carefully. The baseline overhead
is shown to be roughly 0.1ms, depending on the GPU. This
means buffer sizes 8 and above are completed within the
allocated time frame. Results from more demanding tests,
involving physical modelling synthesis, demonstrated a bal-
ance was needed between meeting the sample rate and keep-
ing within limits for latency and jitter. Buffer sizes from 1
to 16 failed to sustain the sample rate whilst buffer sizes 512
to 32768 exceeded either latency or jitter limits. Buffer sizes
in between these ranges, such as 256, satisfied the sample
rate, latency and jitter requirements chosen for this paper.

Author Keywords
NIME, DMI, GPGPU, HPC

CCS Concepts
•Computing methodologies→Graphics processors;

1. INTRODUCTION
General-purpose GPU (GPGPU) computing provides the
capacity for massively parallel processing using a widely
available hardware accelerator: the graphics processing unit
(GPU). There are many digital audio processes that are
suitable for the GPGPU environment and can result in a
substantial performance increase, relative to a CPU bound
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program. Examples of academic work exploring the use
of GPUs in digital audio with notable results can be seen
in [17] and [1]. However, the communication overhead im-
posed when using a hardware accelerator, like the GPU,
can outweigh the benefits. This is especially relevant for
applications with real-time requirements, such as digital
audio processing. There seems to be an understandable
caution within the digital audio developer community sur-
rounding GPGPU, and consequently GPGPU optimisation
is sparsely used. But what are the practical limitations
of audio processing on the GPU? This paper aims to in-
vestigate the performance overhead of GPGPU within the
audio domain, by measuring the communication overhead
between the CPU and GPU in both unidirectional and bidi-
rectional cases. In particular, the contributions are:
• An open-source benchmarking suite for evaluating GPU
computation within a digital audio domain;
• Results from the benchmarking suite across various
hardware systems; and
• A summary of the salient findings.

1.1 Digital Audio
Digital audio is the representation of acoustic sound in a
discretized and quantized form in order for it to be com-
putable [2]. An originally continuous audio signal must be
broken up into a finite set of samples representing the signal
(quantization), where each sample is represented with finite
precision (discretization). When signals are represented in
this form, computer systems can process existing or synthe-
sise new signals.
The most convenient, and abundant way to process dig-

ital audio is to program tools and software that runs on
the central processing unit (CPU) in a language such as
C++. The CPU has limitations as a powerful, but coarse-
grained parallel processor, as shown when compared with
other processors by Mistry et al. [9]. Highly regarded ex-
perts predict future computational growth will come from
utilizing parallel architectures and heterogeneous comput-
ing [16]. As a result, processor design is undergoing signif-
icant changes. As the state of the art hardware develops,
software must map appropriately. There is a variety of fun-
damentally different processor types that can be used in
digital audio processing. These include digital signal pro-
cessors (DSP), field-programmable gate arrays (FPGA) and
graphics processing units (GPU). In this work, we explore
the practicalities of using the GPU as a device for offloading
suitable tasks in digital audio.

1.2 General-Purpose GPU Computing
GPGPU computing is the use of the GPU, originally in-
tended for rendering graphics, for general computation [8].
For a long time, GPU architectures combined with the avail-
able software APIs, required general compute problems to



Requirement Recommended Limit
Sample Rate 96000 44100

Latency 10ms 20ms
Jitter ±1ms ±3ms

Table 1: Real-time audio requirements.

be mapped into the graphics domain. This non-trivial map-
ping was often not practical and was mostly only pursued
by academics. Over time, GPGPU software standards and
APIs were proposed and have been developed with great
success. Owens et al. [12] cover the development of GPGPU
from its origins where Mark Harris first coined the term
GPGPU, to the mature development environments avail-
able today that are under continuous development in both
industry and academia.

1.3 Real-time Processing
Real-time processing is the requirement for a program to
meet a set of performance requirements consistently for a
particular application. Requirements vary between applica-
tions, where variable amounts of data need to be processed
within a fixed and inflexible time frame. In the case of real-
time audio, a consistent number of audio samples needs to
be produced every second. The real-time requirement in
audio is very strict, as even a few missed samples or delays
results in instantly noticeable ‘glitches’. Latency is a term
used in various fields to describe the delay between the ini-
tiation of an event to its conclusion. Within the context of
this work, we focus on the time taken for a buffer of audio
samples to be dispatched and returned from the CPU to the
GPU. Although this avoids necessary stages in digital audio,
like the operating system and sound devices, restricting this
measurement isolates the GPU overhead specifically. If the
latency is too high in a real-time, interactive application,
it will often detriment performance. The other impacting
factor for real-time audio is known as jitter. In this work,
jitter will refer to the variation in latency between consec-
utive buffers dispatched to the GPU.
The standard requirements surrounding real-time audio

has long been debated. In this paper, the real-time require-
ments discussed in [7] and [6] are used. These are shown in
Table 1.

2. TECHNIQUES
In this section, the general techniques used in the design of
GPGPU applications are briefly covered. These are impor-
tant concepts or optimizations which help to maximize the
benefits of using the GPU.

2.1 Buffering
Buffering is an important technique used to reduce the com-
munication overhead considerably between the CPU and
GPU. It works by requesting the GPU to execute and gener-
ate a variable sized buffer of audio samples each time, rather
than a single sample. Figure 1 visualizes buffer transfers to
and from the GPU for computation.
The ideal buffer size for GPU dispatch is an extremely

important factor in the performance within real-time appli-
cations. This paper aims to explore the limits for the range
of buffer sizes that work within the constraints of real-time
audio.

2.2 Unified Memory
Discrete GPUs are independent devices typically included in
a system as an extra peripheral. Therefore, discrete GPUs

Figure 1: Buffers of N samples are dispatched to
GPU and returned to CPU.

have their own local memory and communicate with the
CPU over system buses, shown in Figure 2. System buses
take time to transfer data and introduce unavoidable la-
tency, irrespective of the data size.

Figure 2: CPU to GPU memory accesses across
system bus into respective device’s memory.

Unified memory is a single addressable memory space ac-
cessible by separate processors, shown in Figure 3. This
means the overhead of transferring over the system bus is
avoided. Integrated GPUs take advantage of this technol-
ogy and share a memory space with the CPU. This allows
fast memory transfers between CPU and integrated GPU
by default, which is an important perspective to consider
for this paper.

Figure 3: CPU and GPU memory accesses using
shared, unified memory.

2.3 Pinned Memory
Pinned memory, or page-locked memory is a special type
of memory that is located within the CPU host memory
and GPU memory at the same time. Changes in the host
memory can take effect in the GPU memory which can be
accessed by the GPU for computation. In essence, pinning
memory removes any extra step in copying data between
CPU and GPU. Although this memory is typically faster
to use, it is a limited resources. ([10] - 3.2.4) Therefore, it
is advised to use for small amounts of data that need to be
frequently transferred between CPU and GPU.

3. IMPLEMENTATIONS
This paper explores the different methods of utilizing the
GPU within application software. Performance is heavily
dependant on the software API used. OpenCL and CUDA
are two of the most widely used methods for GPGPU. All
performance tests in this paper will be implemented using
both methods for comparison.

3.1 OpenCL
The Open Computing Language (OpenCL) [4] is an open-
standard, cross-platform, heterogeneous programming frame-
work. It provides a single abstract programming model
that developers adhere to. Hardware vendors that sup-
port OpenCL translate the abstract model to match the



particular architecture of their devices. OpenCL currently
has support ranging from FPGA, DSP and, of interest to
this study, GPUs. OpenCL version 1.2 was used across the
benchmarking results collected here, as the lowest denomi-
nator supported by NVIDIA, AMD and Intel.

3.2 CUDA
CUDA [14] is NVIDIA’s propriety, parallel computing plat-
form for supporting their own GPUs for general compute.
CUDA is widely used, including in research and academic
studies. In research applications, it can be acceptable to
constrain to specific hardware, as is the case with CUDA.
However, in industry and commercial environments, this be-
comes more problematic, as applications implemented using
CUDA would not be compatible with machines that have
AMD GPUs.

4. BENCHMARK METHODOLOGY
In this section, the benchmarking methodology and tests are
described. The system specifications are outlined briefly.
The general performance benchmarks are listed, which ex-
pose results for GPGPU tests in general. After these, the
real-time digital audio tests are defined. These tests aim
to identify the limits on the buffer size for example cases,
that are representative of typical real-time audio processing
scenarios. Harris in [5] explains how to accurately bench-
mark CUDA applications, OpenCL specific profiling is cov-
ered in [15]. The methodology followed here uses CPU
timers for measuring overall times and vendor specific pro-
filing tools for measuring isolated parts of the process. The
benchmarking suite is open source and available at https:
//github.com/Harri-Renney/ThereAndBackAgain-NIME

4.1 System Specifications
The specifications for the system on which the benchmark-
ing has been performed for this study is shown in Table
2. Various systems, with hardware from different vendors
have been chosen in order to observe the performance in
general. The systems include discrete GPUs from AMD
and NVIDIA, along with an integrated Intel GPU. Inte-
grated GPUs are closely coupled to the CPU and usually
have very fast data transfers between them, using faster
memory buses and unified memory space. Discrete GPUs
typically communicate over slower memory buses across the
motherboard and therefore have a larger initial overhead.
However, the trade off is that discrete GPUs are usually
much more powerful than integrated GPUs.

4.2 Test Format
The general format of the benchmark tests follows the pseudo
code below.

1 void test() {
2 prepareTest(hostVariables, deviceVariables);
3
4 if(isWarmup) {
5 runTest();
6 }
7 for(int i = 0; i != numRepeats; ++i) {
8 startTime = timestamp();
9 runTest();

10 endTime = timestamp();
11 }
12 checkTestResults(testResults);
13 cleanup(hostVariables, deviceVariables);
14 }

To begin each test, all preparations and initializing of
host and device variables are made. Further, kernel code
is prepared if necessary. Both CUDA and OpenCL take
considerably longer running kernels and data transfers for

the first time. This is as preparations and optimizations
are made to increase performance of subsequent execution.
For this reason, a warm-up variable has been added to the
benchmarks controlling whether a warm-up run executes
before profiling starts. The test runs begin by timestamp-
ing either side of the test. When the tests are complete, the
results are checked to ensure the processing done by the
GPU is correct. Using the GPU requires memory alloca-
tions which the programmer must manually manage. So to
finish the test, all associated memory is deallocated.

4.3 Microbenchmarks
This section lists the microbenchmarking tests covered in
this paper. The suite includes further tests that are not
described here; we intend to explore these in future work.

• null kernel - A minimal test to measure the threshold
overhead to execute an empty program on the GPU.
• cpu to gpu to cpu - A bidirectional test measuring the
round-trip transfer time between CPU and GPU.
• complex buffer processing - Applies a triangular smooth-
ing operation ([11] - P.g 34. Smoothing) to the in-
put signal and returns ’smoothed’ buffers to CPU.
Involves bidirectional transfers and multiple memory
accesses in the kernel.
• simple buffer synthesis - Generation of a sinusoidal sig-
nal at a given frequency, generating sine values that fill
the buffer length in parallel. This operation involves
only unidirectional memory transfers from the GPU
to the CPU, returning synthesised sample buffers.
• complex buffer synthesis - The complex buffer synthe-
sis is an application that has a challenging amount of
computation, bidirectional CPU-GPU transfers and
involves memory management. An application which
meets these requirements is a finite-difference time-
domain physical model synthesizer [18]. For the full
details of the design and implementation, see [13].

Each of the tests are implemented in OpenCL and CUDA.
Furthermore, each test is implemented using standard mem-
ory buffers and pinned memory. All tests have their to-
tal times and specific details measured over 10,000 repeti-
tions. From these repeated results, the average, minimum
and maximum buffer times are calculated, along with the
maximum and average jitter. The results of the warm-up
runs have been recorded and are available in the results
database.

4.4 Real-time Digital Audio Tests
The audio buffer size is an extremely important factor for
achieving real-time performance with GPU acceleration. This
section outlines the real-time tests that aim to identify the
limits for the buffer size in the unidirectional and bidirec-
tional cases.
To measure real-time performance, the following limits

(Described in Section 1.3) must be satisfied:

1. The maximum acceptable latency for each buffer will
be 20ms, though the recommended 10ms is preferred.

2. The target sample rate of 44.1KHz should be satis-
fied within the other limits, though the recommended
96KHz is preferred.

3. The deviation, or jitter, between each buffer gener-
ated should not be greater than ±3ms, though the
recommended range ±1ms is preferred.

An enumeration of buffer sizes will be applied in each test
to find an approximate range of values the buffer size can
comfortably operate in. These tests will be conducted for



Specification Mid-range Laptop High-end AMD High-end NVIDIA GeForce High-End NVIDIA Titan
CPU Intel Core i7-8550U Intel Core it-9800X Intel Core it-9800X Intel Core it-9800X
Integrated GPU Intel UHD Graphics 620 None None None
Discrete GPU AMD Radeon 530 Radeon Pro WX 7100 GeForce RTX 2080 Ti Titan RTX
CPU RAM 8GB 32GB 32GB 32GB

Table 2: Hardware specification used for benchmarking

unidirectional and bidirectional cases. The tables 3 and 4
in the results Section 5 highlights values in green if in the
recommended limit, orange if in the maximum limits and
red if outside of the limits.

4.4.1 Total Time
Here is proposed an equation for total execution time in a
GPGPU environment to formalise the overhead and limita-
tions:

ttotal(x) = ttran(x) + c(x) + g(x) (1)

Where:

• t_total(x) = The total execution time of x samples
for a GPGPU application.
• t_tran(x) = The transfer time for x samples between
CPU & GPU.
• c(x) = The function of processing executed on the
CPU.
• g(x) = The function of processing executed on the
GPU.
• x = The number of samples in the buffer/vector to be
processed.

4.4.2 Baseline Limits
The baseline limits will be the time for the minimum trans-
fer and null kernel execution for different buffer sizes. From
here, a limit involving variable computation can be derived.
Taking Equation 1 and assuming c() or g() are negligible,
the baseline overhead is defined as:

ttotal(x) = ttrans(x) (2)

4.4.3 Kernel Computation Limits
Once the baseline limit has been measured, the kernel com-
putation time can be calculated. By subtracting the base-
line ttrans(x) from the full Equation 1, the total compu-
tation time tcomp(x) remains, see Equation 3. If the CPU
compute time c(x) is not considered, just the GPU com-
pute time g(x) remains. By considering this Equation 3
and the baseline overhead Equation 2, an understanding of
GPGPU becomes more clear. The baseline overhead serves
as an initial cost to be considered. From here, the compu-
tation cost involved can be increased within the limits of
the application.

tcomp(x) = c(x) + g(x) = ttotal(x)− ttrans(x) (3)

5. RESULTS
As is to be expected, due to all the permutations of configu-
rations, a lot of results have been collected. In this section,
we analyse particular highlights of the results, in areas con-
sidered most relevant within the audio domain. A collection
of all results for those interested can be found at:
https://muses-dmi.github.io/benchmarking/benchmarking_
database_there_and_back_again.
The results considered here have been collected following

a conservative approach. This means after every API call
to the GPU, an explicit synchronization is made between
the CPU and GPU. Further, pinned memory in OpenCL is
mapped and unmapped to ensure it is defined even though
on many systems this is not necessary. This is important to

GeForce2080_cl GeForce2080_cuda
Buffer Length Total Time Average Latency Max Jitter Total Time Average Latency Max Jitter
1 6133.319 0.139 0.741 5676.300 0.128 1.032
2 3053.499 0.138 0.796 2838.170 0.128 0.725
4 1518.143 0.137 0.336 1412.804 0.128 0.669
8 751.078 0.136 0.166 708.566 0.128 0.632
16 378.847 0.137 0.156 378.930 0.137 0.743
32 190.267 0.1375 0.199 183.560 0.133 0.622
64 96.077 0.139 0.170 95.619 0.138 0.646
128 48.746 0.141 0.183 51.526 0.149 0.612
256 24.731 0.142 0.217 27.137 0.156 0.337
512 12.663 0.145 0.192 29.270 0.336 0.474
1024 6.348 0.144 0.164 16.507 0.375 0.490
2048 3.110 0.141 0.152 7.866 0.357 0.340
4096 1.606 0.146 0.166 3.816 0.346 0.496
8192 0.907 0.151 0.158 1.375 0.229 0.251
16384 0.498 0.166 0.160 0.706 0.235 0.264
32768 0.368 0.184 0.186 0.508 0.254 0.252

Table 3: Baseline bidirectional real-time test.

keep in mind and trivial modifications to the tests would im-
prove performance further. By taking this approach, more
confidence can be given to the results knowing that they
can be improved.

5.1 Minimum GPU Overhead
The minimumGPU overhead involved for the different buffer
sizes is a key factor for many applications. If the over-
head alone exceeds the requirements, then the GPU will
not be appropriate for the task. This means the minimum
overhead is a good foundational position to start. The re-
sults for executing the null kernel test were 0.002051ms
on the Radeon 530, 0.000455ms on the UHD, 0.009392ms
on Geforce 2080, 0.011468ms on Titan. These are impres-
sively small times, but only execute empty kernels, avoiding
critical stages transferring data and processing or synthe-
sis. With the bare minimum results established, the bidi-
rectional baseline test which involves round-trip memory
transfers and execution of the null kernel is shown in Table
3. The tests operates at a sample rate of 44.1KHz 1 with
measurements taken to calculate the total time to process
44100 samples and the latency and jitter per buffer. These
results show that even for a round-trip data transfer with
no processing, certain smaller buffer ranges are not prac-
tical. Buffer sizes 1, 2 and 4 all have total times above a
second for 44100 samples. Therefore, for applications that
require single or very smaller buffer sizes, discrete GPUs
will not perform sufficiently and the CPU would be the
better option. Using Equation 2, the transfer time can be
used to demonstrate the minimum GPU overhead at each
buffer size. For example, a buffer of 128 is ttotal(128) =
ttrans(128) = 0.141295ms

5.2 Standard vs Pinned
Figure 4 plots the round-trip data transfer from CPU to
GPU and back to the CPU for various buffer lengths in
OpenCL, with no kernel executed on the GPU. The solid
coloured lines indicate the standard buffer allocation and
transfer approach, while the dashed coloured lines repre-
sent the pinned buffer memory approach. For all the dis-
crete GPUs, it seems that the pinned memory approach per-
forms better in this test. The smallest difference seen for the
GeForce2080 is still ±0.04 and largest for the Radeon530 is
1Results for higher sample rates of 48KHz and 96KHz can
be found in the results database.



Figure 4: Standard vs pinned bidirectional memory
transfers.

Figure 5: Integrated vs Discrete in bidirectional
synthesis.

±0.12. These are significant differences, though it is impor-
tant to consider no processing is involved in this test and
therefore the performance implications during computation
as a result of memory choice is avoided. For the integrated
Intel GPU, using the standard or pinned approach does
not impact performance. This is because the integrated
GPU shares its unified memory space with the CPU any-
way. OpenCL and CUDA possibly default either approach
to the same unified memory approach instead.

GeForce2080 Radeon7100
Buffer Length Total Time Average Latency Max Jitter Total Time Average Latency Max Jitter
1 6802.339 0.154 0.958 4372.550 0.099 0.469
2 3790.166 0.171 0.285 2339.507 0.106 0.476
4 2186.325 0.198 0.319 1459.335 0.132 0.387
8 1416.375 0.256 0.321 966.981 0.175 0.546
16 1049.813 0.380 0.395 674.703 0.244 0.617
32 659.516 0.478 0.757 553.152 0.401 0.858
64 478.657 0.693 0.899 508.541 0.737 1.114
128 410.979 1.191 1.178 465.922 1.350 1.544
256 389.878 2.253 2.410 392.696 2.269 2.572
512 373.748 4.295 6.064 370.717 4.261 4.526
1024 377.182 8.572 12.736 338.996 7.704 7.995
2048 363.365 16.516 16.854 309.835 14.083 14.946
4096 361.906 32.900 33.704 302.421 27.492 28.727
8192 393.858 65.643 66.226 322.224 53.704 54.844
16384 414.806 138.268 141.349 320.432 106.810 107.738
32768 570.743 285.371 286.467 427.697 213.848 215.347

Table 4: Physical model synthesizer bidirectional
real-time test.

5.3 Integrated vs Discrete
One of the biggest influences on the GPU overhead involved
is the type of hardware used. Here, the performance of
integrated and discrete GPUs are examined, highlighting
where each type of device performs better.
In Figure 5, the bidirectional physical model synthesis

is plotted. All the discrete graphics cards have been dis-
played as solid coloured lines, the integrated graphics card
tested is a dashed coloured line. The total time to compute
the 44.1KHz of samples has been shown on a logarithmic
scale to emphasize the subtle differences. For small buffer

Figure 6: OpenCL vs CUDA for triangular smooth-
ing on various buffer lengths measured in ms.

lengths, the overhead experienced by most of the discrete
GPUs heavily outweighs the benefits and the integrated
GPU performs better. However, once larger buffer lengths
are used and the transfer overhead reduced considerably,
the discrete GPUs take the lead by a large measure. This
is expected as physical model synthesis is computationally
expensive, and the discrete GPUs have higher computa-
tional performance than the integrated GPU. Note that the
discrete GPUs settle beneath the 1000ms threshold around
buffer length 16. Whilst the integrated GPU is not powerful
enough at any of the buffer lengths to successfully compute
in real-time.

5.4 OpenCL vs CUDA
The benchmarking paper [3] compares OpenCL and CUDA
in general. The paper concludes that for ’trivial’ tests they
have similar results and in more complicated ’non-trivial’
tasks, CUDA appeared to perform better. This section dis-
cusses the latest results in 2020 in the audio domain.
Figure 6 plots the results for the complex buffer process-

ing test for different buffer lengths. This test applies a trian-
gular smoothing operation across the signal in the buffers.
OpenCL implementations are in solid coloured lines while
CUDA is shown in dashed coloured lines. It can be seen
that on the NVIDIA GPUs, the CUDA implementations
performed better for this kind of task. OpenCL is a defined
standard implemented by supporting vendors. Considering
NVIDIA develop CUDA themselves, it is possible that they
have put more effort into the development of CUDA in com-
parison to OpenCL. The difference is small, being around
±0.03ms, though this can make a significant difference un-
der certain circumstances.

5.5 Real-time Performance
The real time performance tests highlight the bidirectional
memory transfers for a physical model synthesizer on the
GPU. This test involves bidirectional memory transfers,
complex and heavy computation and multiple memory ac-
cesses from within the kernel. Demonstrating if the GPUs
can process a synthesizer like this within the real-time lim-
its will set a high boundary for the GPU environment to
prove itself. Table 4 shows the overall time to compute
44.1KHz of samples, the average latency of each buffer and
the maximum jitter observed in the test for the NVIDIA
GeForce 2080 and the Radeon 7100 in OpenCL. Both im-
plementations seem to have a peak performance around the
buffer lengths 2048 & 4096. However, at these sizes, the
latency exceeds the recommended 10ms. The best total
performance within the 10ms latency is 512 & 1024. Again
however, these buffers have a jitter above ±1ms. To avoid
this, a smaller buffer length of 32 or 64 could be used, which
still results in a comfortable half second total time for the



whole process to complete.
This test involves the minimal transfer overhead, and the

GPU processing. Referring to Equation 1, with buffer size
of 128, ttotal(128) = ttran(128) + c(128) + g(128). By con-
sidering the CPU function c() negligible and taking the pre-
viously calculated baseline, the equation values consists of
1.191245 = 0.141295 + 0 + g(128) and therefore approxi-
mately g(128) = 1.04995ms. This demonstrates that for a
modest buffer size, the minimal overhead is small in com-
parison to the complex processing that can take place on
the GPU. This leaves a lot of room for processing on the
GPU to take place, which supports the viability of the GPU
in a real-time environment.

6. CONCLUSION
This paper has presented a microbenchmarking suite aimed
at profiling GPU performance within digital audio. The
benchmarking suite has been used to gather a collection of
results across various hardware systems, using both OpenCL
and CUDA. From the results gathered, selected sections
were highlighted to explore the limitations involved when
working within the GPU environment. Buffer sizes dis-
patched to the GPU for processing is one of the key variables
impacting the performance. The general trend observed in
the results showed that smaller buffer sizes from 1 to 16
could not meet the sample rate requirement, while larger
buffer sizes as high as 32768 down to 512 exceeded limi-
tations for latency and jitter. When comparing different
GPU devices, the results showed that integrated GPUs have
a significantly smaller transfer overhead between CPU and
GPU, this is expected as they share unified memory. The
discrete GPUs had a larger initial overhead to transfer data,
but performed faster for more complex processing. This re-
inforces the idea that the integrated GPU is better suited for
lighter tasks with less overhead, while the discrete GPUs in-
clude a higher initial transfer overhead, but are significantly
more powerful. Therefore, assigning them more computa-
tionally expensive tasks is recommended. The microbench-
marks test results were also used to compare OpenCL and
CUDA on NVIDIA GPUs. On both of the GPUs tested,
CUDA appeared to consistently perform better, at least
3ms for the triangular smoothing test. It can be speculated
that OpenCL support by NIVIDIA is not as well devel-
oped as it could be, given that CUDA is their proprietary
GPGPU API. The performance benefit from using pinned
memory was highlighted, showing a clear advantage for its
use when compared with the standard approach. However,
performance on pinned memory is dependant on how it is
used and has a limited memory size.
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Abstract

Manually configuring synthesiser parameters to reproduce a particular sound is a complex

and challenging task. Researchers have previously used different optimisation algorithms,

including evolutionary algorithms to find optimal sound matching solutions. However, a

major drawback to these algorithms is that they typically require large amounts of compu-

tational resources, making them slow to execute. This paper proposes an optimised design

for matching sounds generated by frequency modulation (FM) audio synthesis using the

graphics processing unit (GPU). A benchmarking suite is presented for profiling the perfor-

mance of three implementations: serial CPU, data-parallel CPU, and data-parallel GPU.

Results have been collected and discussed from a high-end NVIDIA desktop and a mid-

range AMD Laptop. Using the default configuration for simple FM, the GPU accelerated

design had a speedup of 128X over the naive serial implementation and 8.88X over the par-

allel CPU version on a desktop with an Intel i7 9800X CPU and NVIDIA RTX GeForce

2080Ti GPU. Furthermore, the relative speedup over the naive serial implementation con-

tinues to increase beyond simple FM to more advanced structures. Further observations

include comparisons between integrated and discrete GPUs, toggling optimisations, and

scaling evolutionary strategy population size.

KEYWORDS:

GPU, Evolutionary Computing, Synthesis, Benchmark, Parallel

1 INTRODUCTION

Modern technology has had a profound effect on the structure, form and performance of music. Powerful and inexpensive general-purpose sys-
tems have made musical apparatus universally available to amateur and professional composers alike. The audio synthesiser is a core component
in the development of music, enabling composers to recreate acoustic instrument sounds or explore entirely new sounds electronically. Numer-
ous synthesis techniques have been discovered and enabled the creation of a considerable range of timbres. Synthesisers expose controllable
parameters, which shape the sound character of the particular synthesis architecture. Consequently, there is often a complex mapping between
the control space of synthesis parameters and the timbre space of the sound’s perceived character. Therefore, effective control and navigation
of a synthesiser’s sound space requires expert knowledge of the underlying technique, often drawing from deep theoretical and/or experiential
knowledge. Steps towards achieving an automated process for mapping sound qualities to sound synthesis parameters could make synthesisers a
more transparent compositional tool. Achieving this will require techniques that can efficiently search the synthesis parameter space to identify
parameter configurations to match specific timbral characteristics.

Abbreviations: ES, evolutionary strategy; GA, genetic algorithm; GPGPU, general-purpose GPU; FM, Frequency Modulation;
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In the field of Evolutionary Computation, there are powerful optimisation techniques designed to search complex design spaces and find opti-
mal solutions. Evolutionary algorithms have previously been applied to synthesis parameter matching with promising results 1. However, a major
disadvantage of optimisation algorithms, including evolutionary ones, is that they typically require substantial computation time to converge on
optimal solutions. Processing units with data-parallel architectures open up opportunities for increasing computational throughput for appropriate
cases of the algorithm. The Graphics Processing Unit (GPU) has matured from its origins in the graphics domain into a general-purpose hardware
accelerator known as a general-purpose GPU (GPGPU) 2. GPGPU computing aims to exploit the full potential of massively parallel processing
architectures for general processes 3 and evolutionary sound matching are a suitable class of problems for fine-grained parallel processing, with
the potential to map efficiently to the GPU environment. Therefore, using the GPU may provide an opportunity to improve the performance of
synthesis parameter matching.

This work investigates the potential performance benefits of GPU processors for synthesiser parameter matching using evolutionary computing.
A design is proposed that uses the evolution strategy 4 for searching the parameter space of an FM synthesiser. The performance between CPU
and GPU implementations is evaluated using a comprehensive benchmarking suite. The application of evolutionary computation for FM synthe-
sis parameter matching is a well-explored area and has proven to be an effective and accurate technique for both simple and more advanced FM
synthesis structures 5 6 7. However, a major disadvantage is that they require considerable computational time, and researchers have highlighted a
desire for ways to optimise this approach 8. Therefore, this work does not advance the state-of-the-art in evolutionary computation for audio syn-
thesis matching, rather, it proposes algorithms that accelerate existing methods by providing a data-parallel GPU design that overcomes challenges
faced by the distinct architecture. The contributions of this work can be summarised as:

• A design for a GPU accelerated sound matching framework.
• The implementation of the design in the OpenCL GPGPU environment.
• A benchmarking suite for collecting performance profiles across hardware systems for serial CPU, data-parallel CPU and data-parallel GPU

implementations.
• Benchmark results from different systems demonstrate the performance acceleration of the proposed design.

2 PREVIOUS WORK

There has been extensive prior research surrounding the application of Evolutionary Computation for matching sounds using audio synthesisers.
This is typically realised by optimising the parameters of a particular synthesis type using Genetic Algorithms (GA) 9 or Evolution Strategies (ES) 10.
FM has become a common application domain for soundmatching, and the GA is by far themost prevalent approach adopted in the literature 9 11 12.
For example, in 13, a GA is used for matching sounds using FM synthesis, which uses an advanced timbral extraction technique for assessing the
fitness of potential solutions. The authors demonstrate how the advanced technique increases the efficiency of the evolutionary sound matching
application.

More recently, Smith 14 demonstrated the accurate matches for an electronic keyboard and piano synthesiser using a modified GA; this approach
was considered promising formusic producers. However, Smith stressed that the time to find solutionswas an essential componentwhen evaluating
the practicality of the method. Therefore, optimising the speed of the matching process would be a beneficial next step in future work. Yee-King et
al. made a comparative study between several automatic synthesiser parameter matching algorithms 15, particular focus given to neural networks
and genetic algorithms. Neural networks proved to find accurate solutions in "near real-time". However, this approach first required a training phase
that took a day to complete. In contrast, the genetic algorithm required no pre-training but required 2 hours to find a solution. The advantage of the
genetic algorithm is that no training is required when adapting the algorithm for a new synthesiser. However, it still requires significant computation
and would therefore benefit from optimisation.

The concept of using the graphics hardware for general-purpose processing was introduced in the 1990s with works like Lengyel et al., who
used graphics devices for robot motion planning 16. GPUs have advanced significantly and are now accessible for general-purpose programming
outside of graphics. In 2006, NVIDIA 17 introduced the Tesla GPU, introducing the beginning of a new unified architecture. Contemporaneously,
AMD made similar developments with the TeraScale GPU. NVIDIA and AMD have continued to develop comprehensive GPGPU support in all
subsequent GPU architectures 18. GPGPU has been successfully applied for processing a range of numerical and scientific computation techniques
like molecular dynamics 19 and audio synthesis 20. A well-known and successful example of this is the folding@home project 21, which reported a
speedup of 20 - 30X when accelerated on the GPU. These examples motivate the exploration and establishment of GPU designs for appropriate
methods and applications. Recently, Turian et al. 22 have leveraged the GPU to generate a billion sample dataset for synthesisers, including FM
synth timbre and subtractive synth pitch. With the use of the GPU, this dataset is 100x larger than any other recorded datasets in the literature.
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The success and nonlinear mapping of FM synthesis has generated interest in designing parameter and sound matching methods. Consequently,
this paper’s proposed application is designed for targeting FM synthesis in particular. The results in Section 6 starts with benchmarking the GPU
accelerated design for the simple FM synthesis algorithm originally proposed by Chowning 23. This limits the complexity of the synthesis stage and
allows the benchmarking results to also emphasise the performance of the audio analysis and evolutionary computing stages. After a complete
discussion of the simple FM synthesis results, two more advanced synthesisers are presented, and the evaluation of the GPU accelerated perfor-
mance beyond simple FM synthesis is explored to determine the scalability of the design’s capability to support other FM structures. The design
proposed in this work is limited to analysing static sounds and does not support dynamic sounds that change with time. Although, steps towards
supporting dynamic sounds by analysing audio in blocks is partially supported at the moment and discussed in the results.

There are other well-studied methods for synthesiser sound matching, such as the hill-climber algorithm. Although contextually applicable, the
hill-climber algorithm has been considered insufficient for successful exploitation of FM synthesis parameter space by Horner in 24, whilst the evo-
lutionary algorithm proved superior. Neural networks are another powerful method with superior real-time performance when matching sounds.
However, they require extensive pre-training periods that can make them unable to handle dynamic problems. The appeal of the evolutionary
approach is that it requires no pre-training and can be easily applied to match sounds using different synthesis techniques. However, the trade-off
is that evolutionary algorithms typically take considerable time to then find the solutions. Improving the performance will enable larger popula-
tion sizes to be used in practical time scales, improving the accuracy and the usability of the approach. The population size is a parameter of the
evolutionary algorithm, enabling greater exploration of the search space at the cost of further computation. Therefore, optimising the scaling of
the population will improve the evolutionary algorithm’s exploration of the problem space more effectively 25. A natural consequence of increasing
the population size is that the computation increases. If the performance can be improved, the range of applications that synthesiser parameter
matching can be used for will increase. Although many of the papers referenced here use the genetic algorithm, we adopt a different, albeit nearly
identical, evolutionary algorithm called the evolution strategy. Both algorithms model the process of evolution to some degree, but we have cho-
sen to work within the framework of an evolution strategy as its canonical form represents real numbers directly as floating-point numbers and
so lends itself neatly to the FM matching domain. However, with the appropriate adjustment of terminology, this work equally applies to genetic
algorithms. The literature on evolutionary algorithms for sound matching is well explored and has shown to be an effective method over the alter-
natives. Using ideally large populations in evolutionary algorithms requires significant computation and researchers suggest that finding ways to
optimise this in the context of sound matching will be a beneficial advancement.

2.1 FM Synthesis

One of the first commercially available and successful digital audio synthesis methods was FM synthesis 23. Invented by John Chowning, FM
synthesis was discovered and initially developed in the 1970s 26. It is regarded as a highly efficient method for generating complex and rich audio
timbres with simple graphs of interconnected sinusoidal oscillators. The original equation proposed by Chowning, with some symbols modified
for this paper, is given as:

y(t) = A sin(ct+ I sin(mt)) (1)
Where four parameters are exposed: peak amplitude A, carrier frequency c (rad/s), modulation frequency m (rad/s) and modulation index I.

Therefore, y generates an instantaneous FM output for a given time t. The modulation frequencym sets the frequency of the modulating oscillator,
the output of which is multiplied by the modulation index I to control the intensity of the frequency modulation applied to the carrier oscillator.
This is then added to the input for the carrier oscillator’s frequency c. Finally, the variable A is used to control the peak amplitude output. When
the modulation index I = 0, the modulation oscillator has no effect. When I > 0, the modulation oscillator begins to affect the carrier oscillator,
and symmetrically spaced intervals of frequencies occur above and below the carrier frequency. The number of side frequencies relates to the
modulation index; therefore, as I increases, energy is taken from the carrier frequency and distributed further across the sideband frequencies.
Bessel functions determine the amplitudes of the carrier and side frequencies and the interested reader is referred to Chowning’s original work 23
for further details . FM synthesis has a nonlinear mapping between parameters and the resulting sound 27, this means that there is a non-trivial
correlation between a synthesiser’s parameter space and the resulting timbre space, i.e., minor changes to the input parameters can generate vastly
different changes in the resulting sound. This makes it a difficult synthesiser to control and parameter match.

Simple FM synthesis is used as a fundamental building block in more complex andmusically interesting synthesisers. The technique was adopted
by Yamaha in the DX and TX synthesisers that were commercially produced throughout the 1980’s 28 and is still a prevalent technique used in
many plugins and synthesisers that are currently available 29. In this paper, two further synthesisers are considered for GPU optimisation that build
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upon Chowning’s simple FM synthesis technique. The first has been established as a "real-world" by Das et al. and is used to evaluate evolutionary
algorithm performance 8. In this paper, this will be referred to as nested modulator FM synthesis 30:

y(t) = Asin(ct+ I1sin(m1t+ I2sin(m2t))) (2)
Where y is the output of the nested modulator FM, t is the input variable time, A is the peak amplitude, c is the carrier frequency,m is a vector of

modulator frequencies and I is a vector of modulation indices. This equation adds a second nested modulation oscillator that modulates the original
modulation oscillator of the simple FM structure seen in Equation 1. This arrangement requires a total of 6 parameters to control the output sound.
The third FM synthesis method considered in the scope of this paper uses the idea of combining separate FM synthesis components in parallel.
For the context of this work, the parallel FM 1 will be used:

y(t) =
3∑

i=1

Ai sin(cit+ Ii sin(mit)) (3)
Where y is the output of the parallel FM, t is the input time, A, c, m and I are vectors of the peak amplitude, carrier frequencies (rad/s), modu-

lation frequencies (rad/s) and modulation indices for each FM structure. This equation is the summation of three separate simple FM structures,
each having four parameters and therefore requires a total of 12 parameters to control the output. This paper begins by considering the GPU
optimisations concerning simple FM synthesis and then scales up to assess the nested modulator and parallel FM synthesis methods.

3 DESIGN

This section covers the abstract overview of the FM synthesis parameter matcher process. Figure 1 are used to aid the reader in understanding
the entire flow of the program, considering there are many stages involved. Each of the stages are explained with sufficient detail in the following
subsections.

3.1 Evolution Strategies

Evolution strategies 4 are a class of evolutionary algorithm 31 that is used to find optimal solutions within a search space. Evolution strategies follow
ideas inspired by Darwinian evolution and natural selection to create progressively fitter solutions to a problem by iteratively applying mutation
and recombination operations on a set or population. Evolution strategies can be used for any optimisation problem, including sound matching. In
this paper, the algorithm is used to search the parameter space of an FM synthesiser to find the parameters that closely replicate a given target
sound 10.

A population of solutions comprises a set of individuals where each individual contains a complete set of synthesis parameters that can be used
to generate a candidate sound or solution to the sound matching problem. For the simple FM synthesiser, this corresponds to the four parameters
described in Equation 1, along with an additional set of four step-size parameters used by a self-adaptive mutation operator.

Recombination blends the genetic material (or parameters) from two or more parent individuals’ to generate new offspring. Figure 2, shows
how the uniform discrete recombination 31 operator works, which is one of the standard ES recombination operators used in this work. The value
at each position is taken from a random parent in the current population and combined to create a new individual, used in the next generation
offspring population.

Figure 3, shows how the mutation operator typically works. The random values shown in red are generated for each element using a pseudoran-
dom number generator and Gaussian Distribution 32, scaled in proportion to the step size. These values are then added to the individual parameters
to introduce novelty to the population. Gaussian distribution is used to increase the likelihood of smaller mutations occurring more frequently than
larger values. This results in smaller steps in values but occasionally larger steps which can be useful to explore the search space and to escape
local optima. The self-adaptive mutation operator uses the step size parameter to enable distant values (exploration) as well as precise local values
(exploitation) to be generated at different stages of evolution.

3.2 Fitness

The evolutionary strategy’s fitness function (or objective function) is context dependant and defined by the optimisation problem. For synthesiser
parameter matching, this function requires two stages. First, a clip of audio is generated by the chosen FM synthesiser using the parameters of
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FIGURE 1 Flow diagram for the overall evolutionary parameter matching design flow.

FIGURE 2 Recombine operator working on three example individuals

each population individual. Second, the generated audio is compared to the target audio, and the similarity between them is used to determine the
"fitness" of each individual.

Each individual in the evolutionary strategy population has four parameters when used for simple FM synthesis parameter matching. The values
of these 4 parameters vary between individuals and are mapped to the 4 parameters of the simple FM synthesis algorithm in Equation 1. A frame
of audio is then generated from the FM synthesiser and stored contiguously in memory, ready for further processing to determine similarity with
the target audio.

The similarity between the generated and target audio is determined by first mapping the audio signal to the frequency domain using a Fourier
transform. The fast Fourier Transform (FFT) 33 is the de facto algorithm for calculating the Fourier transform of a signal efficiently. However, the
FFT algorithm requires the input data to be cyclic, spanning from one end and back to the beginning. Therefore, before the FFT algorithm can
process an audio signal, it must first undergo a form of pre-processing; this is known as FFT windowing. To reduce the occurrence of artefacts in
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FIGURE 3Mutation operator working on three example individuals.

the spectrum occurring as a result of frame boundary discontinuities, a windowing function is used. In this paper, a Hann window 34 is applied to
each audio frame as follows:

ω(n) = 0.5×
(
1− cos

(
2πn

N − 1

))
(4)

Where ω is the processed Hann value, n is the value of the current sample and N is the total number of samples in the window. Once the
time-domain audio signal is prepared using Hann windowing, it can be processed by the FFT algorithm 35 to produce a series of complex numbers
representing the same signal in the frequency domain. FFT is a highly optimised and supported algorithm that is available in software libraries such
as FFTW 33, which handles the intricacies of the implementation. With each respective individual’s audio signal mapped to the frequency domain,
the similarity of the signal to the target audio can be calculated. A primary method for comparing the error/difference between two frequency
spectra can be achieved using relative spectral error. Studies performed by Beauchamp et al. 36 have shown that the relative spectral error delivers
the best correspondence to average discrimination data extracted from human listeners when compared with alternative spectral error metrics.
The equation for relative spectral error is defined as:

rse =

√√√√√√

Nbin∑
b=0

(Tb − Sb)

∑Nbin

b=0 T
2
b

(5)
Where rse is the calculated relative spectral error, T and S are vectors of the target and synthesised audio frequency spectra respectively, and

Nbin is the number of frequency bins that control the resolution of the analysed spectra. The relative spectral error (RSE) between two audio
signal frequency domains T and S can be calculated. The number of frequency bins Nbin is the resolution of the frequencies represented in the
audio frequency spectrum, this must be the same for both T and S. Using the RSE, the fitness for each individual as a candidate for matching
with the target signal can be determined. As the RSE is the error between two frequency spectra, the fitness is the inverse of the RSE. Therefore,
an RSE = 0.0 is a perfect match, whilst increasing rse identifies differences between the signals. Evolution strategies typically involve a stopping
criteria, such as when a sufficiently "fit" individual is found, the evolutionary strategy iterations stop and the individual used as the solution. In
the context of this work, the stopping criteria is a set number of iterations/generations to avoid an undefined number of iterations and so the
computation time can be fairly measured.

The selection stage involves taking a set number of individuals from the offspring and using them in the next generation’s parent population.
The approach used in this paper is to sort the individuals by fitness and select the top individuals for the next parent generation. A parallel merge
sort is used and has been shown to map efficiently into the GPU architecture 37.

4 GPGPU DESIGN

The GPGPU literature contains a range of different approaches and associated terminology. In this work, the OpenCL standard language will be
used 38 39 40. The GPU architecture is comprised of streaming multiprocessors that load and execute program instructions in a parallel Single-
Instruction Multiple-Data (SIMD) format. The control flow of GPU programs comprises of workitems; these are streams of execution running on
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FIGURE 4 The data structure format for the GPU design.

the multiprocessors. The multiprocessors require access to regions of memory arranged in a memory hierarchy similar to a CPU, where memory
types vary in size and access speed 41. The largest region accessible by all workitems is known as global memory. It is typically the slowest region of
memory to access. Local memory is a faster region only accessible in a small group of workitems, this group is called a workgroup. Finally, private
memory is the smallest but fastest memory, accessible only by the workitem itself. In this section, the techniques and design choices relevant to
the GPU implementation are considered.

4.1 Data Structure

All GPU processed data starts with the ES population. Figure 4, provides a visual aid to help describe the data structure that is used in this GPU
design. The first buffer indicated by "Population" contains all the individuals’ parameters. Although naturally it seems coherent to place each
individual’s parameters contiguously in memory, this structure is sub-optimal within the GPU. Therefore, when designing data structures for the
GPU, it is advantageous to store all of the first parameters contiguously, then the second parameters, and so forth. This design is commonly
referred to as a structure of arrays instead of an array of structures. Various research demonstrates that this is the most efficient GPU data
layout for comprehensive processing 42 43. The parameters of an individual are fetched by indexing each array of parameters using the individual’s
ID. During the synthesis stage, each individual has an audio block of a set length of samples generated from the parameters. Each audio block
is held contiguously in memory, against the generated audio of the next individual’s parameters. With this format, the size of the buffers are:
population = P, audioSamplesBlocks = P ∗ N where P is the population size and N is the audio block length.

The population buffer containing each individual’s values is stored in one large GPU buffer as the GPU is optimised for fewer, larger memory
allocations with offsets to access them than multiple smaller ones. Furthermore, the population buffer is twice the size of the population in order to
store a copy of the sorted population when evaluating population fitness. Using a rotation index, an offset to the beginning of the sorted population
can be used. This greatly improves performance and memory usage as it avoid copying memory between three separate population buffers.

In the context of the GPU, memory coalescing is achieved when threads on the same streaming multiprocessor access memory simultaneously.
To achieve this, consecutive threads should be programmed to access consecutive memory addresses. The GPGPU programming model exposed
by OpenCL involves reconsidering the way loops iterate when processing data. The application proposed in this paper aims to optimize memory
accesses where possible. This is typically achieved by using the workitem index idxWorkitem and loop index i in such a way as to access adja-
cent memory at once between workitems, instead of accessing memory in completely different locations in memory. An example of correctly
programming the GPU to achieve memory coalescing can be found in the following FFT Hann windowing kernel:
void applyWindowPopulation(float* audioDate, uint32_t audioLength)

{

int idxWorkitem = get_global_id();
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float mu = ( FFT_ONE_OVER_SIZE - 1) * 2.0f * M_PI;

int stride_factor = audioLength;

for(int i = 0; i < POPULATION_COUNT; i++)

{

int coalesced_index = stride_factor * i + global_index;

float fftWindowSample = 1.0 - cos(index * mu);

audio_waves[coalesced_index] = fft_window_sample * audio_waves[coalesced_index];

}

}

Here, Equation 4 is implemented on the GPU with an optimized memory access pattern. The index is multiplied with a ‘stride’ factor equal to
the audio wave size. This forces the indices of each workitem to access memory adjacent to one another when processing the windowing. All the
indices in the respective workitems then stride to the next audio wave to process when i increments. This means that each workitem can share
the memory fetched by its neighbouring workitems without requesting a memory fetch somewhere else in memory itself. A more comprehensive
description of memory coalescing on GPUs with visual aids can be found in 44.

4.2 Processing Format

The population size determines the number of workitems the GPU allocates for processing in parallel. These workitems are dispatched to execute
each individual’s recombination, mutation, audio synthesis, fitness, and selection. Each individual is entirely independent from all other individuals
and therefore can execute efficiently without stalling to synchronize data. The FFT processing is handled separately using the clFFT library 45, a
well-established and optimized open-source implementation of FFT on the GPU.

During the audio synthesis stage, the chosen FMsynthesis arrangementwill typicallymake calls to the trigonometric functions like sin(). These are
computationally expensive compared to other basic math operations. Optimized implementationsmight use Taylor series expansion or the CORDIC
algorithm 46. Instead of calculating these values, a lookup table of previously calculated sine values can be used 47. As covered in Section 3.2, each
individual is tasked with generating an audio block of samples using simple FM synthesis. A pre-calculated wavetable of values approximating sin
is uploaded to the GPU and indexed instead of using the computationally expensive sin operator. A finite number of values can be stored in the
lookup table, resulting in quantization. Therefore, sufficient resolution must be used in the lookup table. The wavetable optimized synthesis stage
(without interpolation for simplicity) is demonstrated in the GPU kernel code snippet below:
int idxWorkitem = get_global_id();

float cur_sample = 0.0;

float pos_1 = 0.0;

float pos_2 = 0.0;

const float wavetableIncrementOne = (WAVETABLE_SIZE / 44100.0) * modulationFrequency;

for(int i = 0; i < WAVE_FORM_SIZE; i++)

{

cur_sample = wavetable[pos_1] * modulationIndex + carrierFrequency;

out_audio_waves[idxWorkitem * WAVE_FORM_SIZE + i] = wavetable[pos_2] * amplitude;

pos_1 += wavetableIncrementOne;

pos_2 += (WAVETABLE_SIZE / 44100.0) * cur_sample;

if (pos_1 >= WAVETABLE_SIZE)

pos_1 -= WAVETABLE_SIZE;

if (pos_1 < 0.0)

pos_1 += WAVETABLE_SIZE;

if (pos_2 >= WAVETABLE_SIZE)

pos_2 -= WAVETABLE_SIZE;
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if (pos_2 < 0.0)

pos_2 += WAVETABLE_SIZE;

}

Here, the section of the code that generates the simple FM synthesis waveform is shown. This implements the equivalent of Equation 1 on the
GPU using a wavetable optimisation. In this code,m is contained in variable "modulationFrequency", I in "modulationIndex", c in "carrierFrequency"
and A in "amplitude". Instead of making calls to sin(. . . ), the wavetable is accessed using pos1 and pos2 that are incremented in such a way as to
access approximate pre-computed values of sin(). Variable idxWorkitemmultiplied withWAVE_FORM_SIZE is used to stride through the memory
written to in a GPU optimized way.

Batching processes to the GPU is a fundamental technique involved in GPU programming. It is often used to avoid consuming GPU memory
resources if an individual task is too big. This can quickly become the case here, as the population size is a controllable parameter, which can exceed
GPU memory limits. The amount of GPU memory resources depends on the system’s hardware. Taking the systems in Table 1 as examples, the
GeForce 2080 has 8GB of memory whilst the Radeon 530 has only 2GB. The intel UHD GPU shares its 8GB of RAM with the CPU. In order to
avoid misusing the GPU memory, the GPU design proposed breaks up data into manageable, equally sized blocks, loads them onto the GPU and
processes them one at a time. The pseudocode for the batching is given below:
void parameterMatchAudio(float* aTargetAudio, uint32_t aTargetAudioLength)

{

blockSize = objective.audioLength;

blocks = aTargetAudioLength / blockSize;

for (uint32_t i = 0; i < blocks; i++)

{

setTargetAudio(&aTargetAudio[i*blockSize], blockSize);

initPopulationCL();

executeAllGenerations();

}

}

An additional advantage to using the batching technique is that the system is easily extended in the future to involve analysing dynamically
changing sounds. This means if the characteristics of a sound changes over time, analysing each block can identify the parameters necessary to
match the changing sound in each block. If this advancement was explored, there would be a set of parameters for each audio block analysed.

5 BENCHMARKING

The benchmarking suite involves the autonomous execution and performance profiling of a collection of planned tests. Configurations of param-
eters are exhausted and the results collected and written to files for analysis. The benchmarking suite is deployed on different devices to collect
profiles on a range of hardware systems. The GPU implementation will synchronize between each OpenCL call to confirm the action is finished
to accurately measure the execution time. The benchmarking suite is open-source and publically available online a. The implementations here use
OpenCL v1.2 in order to support the widest range of hardware possible. Three different implementations were developed from previously defined
designs.

CPUSerial - In order to establish theminimal baseline performance, a serial single-core implementation targeting the CPU.Modern CPUs include
multiple cores and vector processors which are not used here. The purpose is to demonstrate the impact of restricting a program to a purely serial
format.

CPU OpenCL - A parallel implementation targeting the CPU using OpenCL. Following the OpenCL programming model utilizes all parallel
processing components of the target hardware. In the case of the CPU, multiple cores and vector processors are utilized. This implementation will
be compared to the serial CPU version, but more importantly, the massively parallel GPU version.

GPU OpenCL - Implementation using OpenCL to target parallel processing on the GPU.

ahttps://github.com/Harri-Renney/Survival_of_the_Synthesis-GPU_Accelerated_Frequency_Modulation_Parameter_Matcher
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Specification Mid-range Laptop High-end NVIDIA GeForce
CPU Intel Core i7-8550U Intel Core it-9800X

(16 SM)
Integrated GPU Intel UHD Graphics 620 None
Discrete GPU AMD Radeon 530 GeForce RTX 2080 Ti

(32 SM)
CPU RAM 8GB 32GB

TABLE 1 Hardware specification used for benchmarking. Streaming Multiprocessor (SM)

Parameter Value Notation
Number Generations 1000 G
Number Parameters 4 D
Parent Population Size 1024 P
Offspring Population Size 7168 O
Target Audio Length 2048 T
Audio Block Size 2048 N
GPUWorkgroup Size 32 W

TABLE 2 Default benchmarking parameters

5.1 Hardware Systems

The benchmarking suite was run on a collection of different systems containing GPU devices from different hardware vendors, including integrated
and discrete GPUs. GPUs are often classed as being one of two types, discrete or integrated GPUs. Discrete GPUs are separate from the CPU and
connected across system buses known as PCI. However, communicating over the PCI buses involves data transfer overhead. In contrast, integrated
GPUs are tightly coupled to the CPU, even sharing memory spaces. This means that the latency overhead is avoided and communication between
CPU and GPU is faster than the discrete GPU 48. However, integrated GPUs have constraints imposed by limited physical space and therefore
typically have fewer and slower multistreaming processors. The hardware systems considered in this paper are detailed in Table 1. In addition,
results have been collected for another system titled "High-End NVIDIA Titan". This system’s results have not been included in the paper but are
similar to the "High-End NVIDIA Geforce" system. The results for this system can be found in the full database of results found at the link provided
in Section 6.

5.2 Benchmarking Targets

The benchmarking suite is designed to measure the overall execution for default parameters and used to measure execution time when scaling
controllable parameters. The controllable parameters affect the performance and accuracy of the algorithm and therefore play a crucial role. Unless
stated, the default parameters will have the values shown in Table 2. The default parameters have been chosen as they provide solutions with
acceptable fitness and give the benchmarking sufficient processing to profile and consider. Instead of using a fitness threshold as the stopping
criteria, the benchmarking suite will execute a fixed number of generations. This ensures parity between results by guaranteeing that all imple-
mentations processed an equal amount of computation, mitigating any stochastic variations. The focus of this benchmarking suite is to compare
the performance differences between implementations for the basic ES and FM synthesiser sound matching application. It is not to evaluate the
accuracy of the solutions generated by the ES, the literature covered in Section 2 has already established ES as an effective method for accurately
finding solutions. However, the reader can be reassured that the default parameters’ fitness converge to an error of 0.0 and, therefore, an exact
match is found using the default parameters. The benchmarking suite covers performance profiling the following aspects listed:
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Implementation Total Execution Time (s)
CPU Serial 409.98

CPU OpenCL 28.33

GPU OpenCL 3.19

TABLE 3 Total execution time of the application for the CPU and GPU implementations.
Parameters = Default System = High-end NVIDIA GeForce

Overall Execution - The overall execution time for the program to complete is the primary concern. The overall execution time includes all stages
in Section 3, including GPU specific initialization of: The starting population, wavetable (Section 4.2), random number lookup table.

Program Stage Execution - In order to highlight the computational implications at each stage of the processing, the stages in Section 3 are
independently timed. This is useful to expose potential bottlenecks and the most intensive stages.

Audio Analysis Block Size - The size of each block of audio analysed at a time by the application. The block size controls the amount of data
transfers between CPU and GPU. Therefore, the impact of scaling the audio block size will be evaluated in these results.

Population scaling - It has been shown that increasing the population size in evolutionary algorithms can produce fitter solutions in a more
complicated problem space. Measuring how the performance and accuracy are affected when changing population size is an important aspect.

optimisations On/Off - In order to demonstrate any performance benefits from using the GPU optimisation in Section 4, implementations
employing the optimisations will be profiled against implementations that do not use them.

Discrete vs Integrated - The benchmarks are executed on an integrated and discrete GPU in the same system. This maintains a common
environment excluding the target GPU, provides insight into the performance of integrated and discrete GPUs for fair comparison.

6 RESULTS

In this section, the results collected across the benchmarking suite are presented, along with a discussion of the results. This paper considers the
salient results collected for the two systems outlined in Table 1. The full collection of results including another High-End NIVIDA Titan setup have
been made available online b. Particular focus on the results are given to the High-End NVIDIA GeForce desktop that better reflects the expected
audience of synthesis parameter matching. The laptop is used to highlight integrated vs discrete GPUs and the difference between a high-end
desktop and mid-range laptop. Readers can use the open-source benchmarking suite provided in Section 5 to collect results for additional systems.

6.1 CPU vs GPU

Comparing the execution speed between the CPU and GPU designs is of primary interest. The results shown in Table 3 include the three imple-
mentation’s total time with the default parameters for the High-End NVIDIA system. The CPU serial version takes considerably longer at 409.98s,
whilst the OpenCL CPU and GPU are 28.33s and 3.19s. The CPU has parallel vector processors available and it can be seen that a clear improve-
ment of 14X speedup is achieved when using them by the CPU OpenCL version. GPUs advance this data-parallel processing further, achieving a
speedup of 128X over the serial CPU version. This demonstrates that not only are ES and FM synthesis suitable for data-parallel processing, but
that they are also suitable in combination using the design proposed in this paper. Comparing the CPU OpenCL version to the GPU OpenCL ver-
sion, it can be seen that the GPU has a speedup of 8.88X over the CPU. This is expected as the GPU architecture is designed to maximize the
data-parallel processing whilst the CPU is not.

6.2 Implementation Stages Compared

The execution time for each stage in the application on the High-end NVIDIA system has been recorded and displayed in Figure 5. The execution
time is marked in ms on a logarithmic scale using the default parameters. When comparing each implementation, the stages follow a similar pattern
of the CPU serial taking the most time, followed by CPU OpenCL and finally GPU OpenCL. There is a particularly high improvement on the GPU
for the "synthesis", "Window" and "FFT" stages. All these stages are included in the design and highlight the importance of this novel approach

bhttps://muses-dmi.github.io/benchmarking/benchmarking_database_survival_of_the_synthesis
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Parameters = Default System = High-end NVIDIA GeForce

considering the domain-specific stages and the evolutionary algorithm. The data-parallel version improves over the CPU versions in all stages,
except for the "Rotate" stage, where the CPU serial had a comparatively negligible 0.3544ms. This is a negligible amount as it only involves updating
a variable in CPU memory. In contrast to the OpenCL versions that require an OpenCL function with added overhead. For example, the GPU
version requires updating the rotation index in GPU memory, this involves a data transfer over the PCI interface to update the variable in GPU
memory. This is a stage the CPU will naturally surpass the OpenCL versions. However, it is a small difference to the vast improvements observed
in the rest of the stages.

6.3 Hardware Systems Compared

The High-End NVIDIA desktop is expected to execute faster for all population sizes as it utilizes the more powerful NVIDIA GeForce RTX 2080 Ti,
whilst the mid-range Laptop contains a less capable AMDRadeon 530. It can be seen in Figure 6 that the NVIDIA 2080 GPU shows little increase in
computation time when the population is scaled up to 32768. Whilst the AMD 530 GPU has a roughly directly proportional increase in execution
time with population size, the NVIDIA 2080 architecture contains more multistreaming-processors and therefore can process more individuals in
parallel. This demonstrates, as is the case with most processes in computing, that the speed and throughput of processing units is still an important
factor for data-parallel processors.

6.4 Kernel Execution Time Ratio

Figure 7 shows the relative execution times for every stage of the GPU OpenCL implementation running with default parameters. This highlights
where the majority of the processing takes place. The stages processing the ES population: "Recombine", "Mutate" and "Sort" together only account
for less than 13% of the time. These stages execute quickly as they only process the population (P+O) ∗D, which is (1024+ 7168) ∗ 4 = 32, 768
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floating point values for the default parameters. The stages processing audio for the population: "Synthesis", "Window", "CLFFT" and "Fitness" take
considerably longer accumulating 87.43% of the time. The audio stages require processing (P+O)∗Nwhich is (1024+7168)∗2048 = 16, 777, 216

floating point values. The majority of the execution time is taken up by the synthesis and CLFFT stages, taking around 30% of the time each. This
highlights the importance of the design this paper describes as it not only efficiently processes the evolutionary algorithm stages, but incorporates
the domain-specific processes that take up the majority of the execution time.

6.5 Integrated vs Discrete

Figure 8 shows the results comparing the integrated Intel and AMD discrete GPU in the mid-range laptop. It can be seen that initially, when the
population size is small, the integrated GPU performs better than the discrete GPU. This is expected as using the PCI-e system bus to communicate
between the discrete GPU and the CPU takes considerably longer than sharing a memory space. The communication overhead surpasses any
benefits of using the discrete GPU for smaller population sizes, whilst the integrated GPU avoids the communication overhead using unified
memory. However, at around population size 2048, the performance of the discrete GPU exceeds the integrated GPU. The more powerful discrete
GPU scales more efficiently for larger population sizes and the benefit exceeds the communication overhead involved.

6.6 Optimized vs non-optimized

The results when comparing the use of the FM synthesis lookup table optimisation described in Section 4.2 are compared against the use of the
original trigonometric functions in Figure 9. This optimisation has a huge effect on the performance of the synthesis stage, for simple FM synthesis,
this involves replacing two calls to the sin() function per sample with direct accesses into a wavetable. Back in Figure 7 it can be seen that the
synthesis stage was one of the most consuming stages, therefore, this optimisation offers a 4X speedup in the synthesis stage for the default
parameters. This significant improvement results in an overall 2X speedup for an optimisation affecting just the synthesis stage. This demonstrates
the potential improvements context specific optimisations can make for intensive processing involved in the fitness stage.



14 RENNEY et al

1.96%2.24%

Synthesise
30.58%

Window12.04%

CLFFT29.70%

Fitness15.11%

Sort5.79%

2.56%

Recombination
Mutation
Synthesise
Window
CLFFT
Fitness
Sort
Rotate

FIGURE 7 Ratio of execution time across stages in the GPU OpenCL implementation.
Parameters = Default System = High-end NVIDIA GeForce

0

2
,0
4
8

1
6
,3
8
4

3
2
,7
6
8

104

105

106

Population Size

Exe
cut

ion
Tim

e(m
s)

Integrated vs Discrete GPU
Integrated Intel Discrete AMD

FIGURE 8 Execution time when scaling the population size for the GPU OpenCL implementation targeting the integrated and discrete GPU.
Parameters: Default, G = 1000, P+O = Scaled System = Mid-range Laptop



RENNEY et al 15

Synthesise Total

2,000

4,000

6,000

986

3,159

4,167

6,313

Stage

Tim
e(m

s)

optimisation On optimisation Off
FIGURE 9 The total and synthesis stage execution time when the FM wavetable lookup optimisation is on and off.

Parameters = Default System = High-end NVIDIA GeForce

6.7 Population Scaling

Figure 10, provides a comparison between the implementations on the High-End NVIDIA system when scaling the population size. The execution
time is plotted on a logarithmic scale in seconds. The CPU Serial version initially starts at a higher execution time at 1.87s compared to the GPU
OpenCL version taking 0.89s. It is clear that as the population size scales, the execution time for the CPU versions is significantly higher. The GPU
version’s execution time increases gradually as its ability to process far more individuals in parallel is realised. At population size 16,384, the GPU
version runs at approximately 10s, while the CPU OpenCL version records 55s, roughly 5X slower and the CPU Serial at 870s, 87X slower. The
GPU continues to show it provides a speedup even at higher population sizes, beyond the 8192 size used in the default configuration. The GPU
performance achieved brings the application considerably closer to a practical, real-time tool. Complex synthesisers that require considerably large
population sizes to find accurate solutions will benefit further by using GPUs over CPUs.

6.8 Audio Analysis Block Size Scaling

Figure 11 shows the total time of the GPU OpenCL application when scaling audio block size on the NVIDIA 2080 discrete GPU. The audio blocks
size determines the number of audio samples processed and analysed on the GPU at a time. Decreasing the audio block size splits the target
audio into further separate blocks for analysis. There are two reasons a smaller block size might be considered. First, the GPU memory would
not be able to accommodate the larger blocks of audio. Second, this approach is advantageous if the audio being analysed is dynamic. However,
decreasing the audio block size increases the number of dispatches to the GPU, which increases the communication overhead over the PCI bus.
The overhead adds up considerably, resulting in severely reduced performance when the audio block size is below 128. Beyond block size of 128,
the performance reaches a significantly improved state. Continuing to increase the audio block size to the target audio size has a less significant
performance growth. These results show that although a smaller block size can be used, a size below 128 begins to have a significant impact on
performance. Therefore, dynamic audio samples that involve frequent changes in timbre will be challenging to process with the current design and
will need to be improved to support it.
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6.9 Advanced FM Synthesisers

To demonstrate the scalability of the GPU optimised framework, two further FM synthesisers have been used in place of the simple FM. The first
is nested modulator FM and the second is parallel FM synthesis. Both of these multi-operator FM synthesisers have been described in Section 2.1.
Figure 12 presents the results of the simple, nested modulator and parallel FM synthesisers on all three implementations. Again, a large population
size of 32768 has been used and the time in seconds is again plotted on a logarithmic scale. It can be seen for the CPU Serial implementation,
both the nested modulator and parallel synthesisers take considerably longer with an additional 10699s and 11024s respectively. By contrast, the
GPU OpenCL implementation only requires an additional ≈ 4s for the nested modulator and ≈ 6s for parallel FM. The results suggest that the
GPU accelerated framework for handling the evolutionary computation for parameter matching supports more advanced forms of FM synthesis.
Although this cannot be extrapolated to all possible arrangements of FM synthesis, for these two examples, it continues to improve performance
over a naive serial implementation.

7 CONCLUSION

This paper has presented the design for a GPU optimised algorithm for parameter matching for FM synthesis. The designs have been implemented
as serial CPU, parallel CPU and parallel GPU versions in a benchmarking suite. The benchmarking suite is open-source and can be used to evaluate
the performance of the implementations on different hardware systems. Benchmarking results were collected on various systems and the salient
results were discussed. For the default parameter configuration on a high-end desktop, the GPU had a speedup of 128X over the serial CPU version
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and 8.88X over the parallel CPU version. This highlights the significant improvement potential when using parallel processing in general, but also the
massively parallel architecture of the GPU in comparison to the CPU. The population size of the ES has a significant impact on the execution time
of all implementations. However, the impact of the GPU version was significantly lower than the other implementations, suggesting that the GPU
design proposed can be used to process larger population sizes more rapidly, increasing the usability of parameter matching as a suitable tool for
music creators. The results show that the performance benefits apply to simple FM synthesis and extend to support more advanced arrangements
such as nested modulator and parallel FM synthesisers. Another controllable GPU parameter is the data block size, this was scaled and was shown
to harm the GPU processing time when block sizes below 128 are used. This is a weakness of the GPU design caused by the data transfer overhead
between CPU and GPU. An optimised design needs to be adapted to better support this use-case.
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ABSTRACT
Digital audio synthesis has become an important component
of modern music production with techniques that can produce
realistic simulations of real instruments. Physical modelling
sound synthesis is a category of audio synthesis that uses
mathematical models to emulate the physical phenomena of
acoustic musical instruments including drum membranes, air
columns and strings. The synthesis of physical phenomena
can be expressed as discrete variants of Newton’s laws of mo-
tion, using, for example, the Finite-Difference Time-Domain
method or FDTD.

FDTD is notoriously computationally expensive and the
real time demands of sound synthesis in a live setting has led
implementers to consider offloading to GPUs. In this paper
we present multiple OpenCL implementations of FDTD for
real time simulation of a drum membrane. Additionally, we
compare against an AVX optimized CPU implementation
and an OpenGL version that utilizes a careful mapping to
the GPU texture cache. We find using a discrete, laptop
class, AMD GPU that for all but the smallest mesh sizes, the
OpenCL implementation out performs the others. Although,
to our surprise we found that optimizing for workgroup local
memory provided only a small performance benefit.
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Figure 1: Audio Unit (AU) plugin

1 INTRODUCTION
The physical synthesis of sound is the general process of
using mathematical models to simulate a physical source of
sound. The technique of simulating sound using mathematical
models, although not the earliest example, was first made
popular by Karplus and Strong, using a method of physical
modelling synthesis that circulates a short waveform through
a filtered delay line to simulate the sound of a hammered
or plucked string [12]. The algorithm was later extended by
David and Smith [13] and remains in use today, due in part
to its low computational footprint.

While the Karplus-Strong algorithm remains popular in
the domain of real time synthesis, it does not accurately
represent the way in which vibrations propagate through
a medium, e.g. a drum membrane, and alternative models
have been proposed that address these shortcomings1. For
example, finite difference approximation is a common method
to simulate the movement of waves through physical mediums,
presented very early on in the area of acoustics and synthesis,
e.g. Hiller and Ruiz studied using finite difference methods
for sound synthesis in the early 1970s [10].

To simulate vibrations moving through a material, we can
utilize Newton’s laws of motion, describing the movement
using Ordinary Differential Equations (ODEs). For these to
be implemented as a discreet algorithm, ODEs are expressed
as Finite Discreet Time-Domain (FDTD) equations. FDTDs
are used as the basis of numerous physical modelling efforts
that seek to digitally synthesize the sounds of, for example,
drum membranes [16], wind instruments [3] and strings [8].

1It is worth noting that in the end, most sound synthesis is performed
in the context of music composition and as such the need to sound
like a "real" drum or some other form of instrument is subjective.
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Of course, it is well known that the real-time simulation
of FDTD is hard, it requires a large amount of floating point
computation. Consider, for example, the case of simulating a
drum membrane with a mesh of 32x32 at an audio sample
rate of 48kHz. Each point in the domain requires 40 floating
point instructions per sample and thus approximately 2 Giga
FLOPS of compute for real time synthesis. Of course, in
a real audio application, any particular sound engine must
compete for resources with, synthesis, effects, mixing, and
so on. To this end, acceleration of FDTDs on GPUs has
been proposed as a method to offload the simulation of drum
membranes and other physical models of musical phenomena.
For example, Sosnick and Hsu describe a straightforward
implementation using NVIDIA’s Cuda [16], while Zappi et
al use OpenGL [20]. In this paper we again step into the
breach to use GPUs to accelerate FDTD, for real time audio
synthesis, initially utilizing OpenCL2 [9], but we then go
further presenting a comparison of implementations ranging
from a serial CPU implementation, an SOA AVX variant,
a recreation of Zappi et al’s OpenGL implementation, and
two OpenCL versions, one using only global memory, and
one using workgroup local memory. We find that on AMD
hardware, in all but the smallest grids, OpenCL outperforms
the other implementations, and the use of workgroup local
memory provides little to zero benefit.

We have implemented two variants of our drum simulation.
The first implementation uses our OpenCL and CPU imple-
mentations and is provided as a Apple Audio Unit (AU) [1]
plugin, that can be loaded into a Digital Audio Workstation
(DAW) (e.g. Ableton Live, Logic Pro, and so fourth). A screen
shot of the plugin is given in Figure 1 and includes controls
that change properties of the drum membrane, such as the
speed at which sound travels through the material. While
not directly relevant to how the FDTD was optimized, the
focus of this paper, it played an important role within the
context of the work as a whole, enabling practicing musicians
to utilize the drum within their standard work-flow and to
provide feedback on the sound quality—it is of little use to
provide real time synthesis for a drum that sounds terrible!

The second implementation is focused on providing a sim-
ple test framework in which the OpenCL, OpenGL, and CPU
variants can be compared. The simulations are controlled
from (JSON) configuration files and are fully automated. For
the most part the framework for each implementation is the
same, however, for the OpenGL version we also support a
simple visualization of the drum membrane.

The OpenGL version’s ability to generate visual feedback
is shown in Figure 2. This figure simply takes the pressure
points of the current implementation and uses it to calculate
a colour gradient, using an additional drawcall. The red dot
is the positioning of the microphone and is the point that
is sampled for the audio output. The yellow square is the
excitation point, i.e. the point where an excitation function
is fed to the membrane—in general, it would not be placed in

2Throughout this paper we use OpenCL as shorthand for OpenCL 1.2
and do not consider OpenCL 2.x.

Figure 2: OpenGL Visual rendering of 2D membrane

the centre of the mesh, but for simplicity it is located there
for demonstration.

We conclude this introduction by outlining the remainder
of the paper:

(1) Section 2 provides a short overview of related and
existing work;

(2) Section 3 introduces the FDTD equations, describing
implementation as pseudo code, and then details the
CPU, OpenCL, and OpenGL implementations;

(3) The benchmark results for the different implementa-
tions are presented in Section 4; and

(4) Finally, Section 5 concludes and provides pointers to
future work.

2 RELATED WORK
To our knowledge there are no OpenCL implementations of
FDTD that have been specifically developed for digital audio
synthesis. As we would expect, there have been a selection of
implementations of 3D FDTDs. For example, in the context
of electromagnetic wave interaction, Cannon and Honary
present an implementation in OpenCL [7]. They demonstrate
good speedup, including multiple GPUs, however, unlike our
work they fail to consider alternatives, such as OpenGL or
AVX and focus on HPC style platforms and highend GPUs
(Nvidia Tesla M2075), utilizing a large number of SIMD
units and DDR4 memory. It is worth noting that due to the
problem they are tackling, the size of meshes they consider are
much larger than those we present, which has the potential
to provide an easier context for acceleration, when comparing
to single threaded CPU performance.

Although FPGAs are a good way of processing FDTD
grids [18], the focus of this work has been towards commodity
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hardware, in particular, live digital musician will tend towards
using a medium to highend laptop, with an external audio
device to handle input and output to the analog domain. To
date easy to access FPGAs is not accessible on a commodity
scale within this domain.

Returning the focus to 2D FDTDs for digital audio synthe-
sis for GPUs a number of researchers have studied this area,
for example [4, 6, 16, 20]. In particular, Sosnick and Hsu [16]
implement a simple 2D membrane simulation using a FDTD
written in CUDA. However, there results are limited, testing
only on small meshes and single buffer size. They also to
not consider other optimized implementations, such as AVX
CPU or other GPU programming models such as OpenGL
or OpenCL.

Zappi et al [20] implement an FDTD simulation of a drum
head model very similar to ours. They use a novel approach to
packing the previous, current, and next step simulation data
within a single RGBA texture. The OpenGL implementation
used in the benchmarks presented in Section 4 uses a variant
of their design. While it performs well it fails, by a small
amount, to out perform our OpenCL implementation. This
leaves us to hypothesize that while single texture encoding
is interesting, it might in fact lead to a less cache friendly
algorithm.

3 IMPLEMENTATION
In this section we describe the FDTD algorithm, firstly as
equations, then as pseudo code. This is then followed by
details of each implementation. The example used to demon-
strate the implementation is the OpenCL global memory
kernel, and, although the other implementations differ in
details regarding the particular target language, they are for
the most part similar. In the case were they differ, e.g. using a
packed texture for the OpenGL implementation a discussion
is included to outline important aspects. The full source code
for each implementation used within the Section 4, outlining
the benchmark results, can be found here [15].

3.1 The FDTD Algorithm
In this subsection, the numerical algorithm used for modelling
the drum membrane is described. It follows the discretization
of the standard 2D wave propagation equation [17].

𝑝𝑛+1
=

2𝑝𝑛 +
(︀
𝜇 − 1

)︀
𝑝𝑛−1 + 𝛼

(︀
𝑝𝑙 + 𝑝𝑟 + 𝑝𝑢 + 𝑝𝑑 − 4𝑝𝑛

)︀

𝜇 + 1
(1)

𝑃𝐿,𝑅,𝑈,𝐷 =

{︃
𝑝𝑛𝛾 if 𝑛 boundary
𝑝𝑛

𝑙,𝑟,𝑢,𝑑 if 𝑛 free
(2)

where:
∙ 𝑝𝑛+1 is the pressure point to be calculated for the next

time step, 𝑛 + 1.
∙ 𝑝𝑛 is the pressure point of current time step, 𝑛.
∙ 𝑝𝑛−1 is the pressure point of the previous time step,

𝑛 − 1.

1 for i = 0 to bufferSize
2 for row = 1 to gridHeight
3 for column = 1 to gridWidth
4 centrePoint = getPoint(row,column)
5 if(centrePoint == boundary)
6 neighbours = calculateBoundary(centrePoint)
7 else
8 neighbours = getNeighbours(centrePoint)
9 compute(centrePoint, neighbours)

10 end for
11 end for
12 rotateGrids()
13 end for

Figure 3: Pseudocode for FDTD membrane simulation.

∙ 𝜇 is the damping/absorption coefficient of the modelled
material. (0.0 < 𝜇 < 1.0), for all values of 𝜇.

∙ 𝛼 is the propagation factor. (𝛼 ≤ 0.5), for all values of
𝛼.

∙ 𝑝𝑙,𝑟,𝑢,𝑑 are the pressure points for the neighbouring
values of the centre point currently under consideration.

∙ 𝛾 is the centre points boundary gain. This is the degree
at which the pressure is reflected back into the grid.
(0.0 < 𝛾 < 1.0), for all values of 𝛾.

This equation is used to simulate wave propagation across
the 2D surface when applied to all grid points. Every time
step, the equation is used to calculate the next pressure
value of the currently considered grid point from the current,
previous and neighbouring pressure values.

The neighbouring values are determined by the centre
points boundary value (See equation 2). If the centre is not a
boundary point, then the actual neighbouring pressure points
are taken for 𝑃𝐿,𝑅,𝑈,𝐷. If it is a boundary point, then the
neighbour pressure values are not used and instead the centre
pressure point multiplied by the boundary gain 𝛾 is used in
place of the neighbour values in the equation.

𝛼, the propagation factor determines the speed at which
sound passes through the medium. It is formed from the
speed of sound, the sample rate and the size of each grid
point. Therefore when modelling some material, the size of
the grid and the sample rate affect the speed at which waves
are simulated to pass through the material if the propagation
factor is not adjusted.

3.2 Pseudo Code
The pseudocode for implementing the previous equations
is given in Figure 3 and outlines the sequential method of
calculating the FDTD grid. This code is a straightforward
way to compute a 2D FDTD grid, of any size. It works
by visiting each point in the grid and calculating the next
pressure value using the compute function. This basically
applies equation 3.1 to generate the next time step pressure
value. The grid of 𝑛 + 1 is updated with the new value.

Once the whole grid has advanced one time step by setting
the centre point to the new computed point, the grids are
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advanced too, by rotating the grids. Aligning them correctly
ready for the next time step.

3.3 OpenCL Kernel
Figure 4 is the source code for the OpenCL global memory
variant of our FDTD implementation. For ease of presentation
the local memory variant is not presented in this paper,
but the interested reader can find the code for the all the
implementations on our Gitlab repository [15].

Note how the rotation index is used to define the FDTD
pointers to each grid. By incrementing the index, the address
to which the pointers are set to shifts along to the next grid,
simulating the advancement of a time-step. It is important
to note that the rotation index is not incremented within the
kernel, but in the host application between kernel calls. As a
consequence, an explicit synchronization barrier is necessary
between each OpenCL "ndrange" dispatches, thus, kernel calls
cannot be batched. An alternative would be to utilize a kernel
to increment the rotation index in between FDTD kernels;
this would allow batching and avoid host side synchronization
and copying of the rotation index. To date we have not felt
this necessary, but it is likely that as we optimize further this
will become necessary.

3.4 Implementations
This section provides an overview of each of the different
implementations. The implementations, which are outlined
in the following subsections, all share an FDTD grid class
that stores the locations of the excitation and listener points,
along with the pressure and boundary grids as a flattened 2D
Structure of Arrays (SOA) data structure. Although the un-
derlying kernels for each of the different implementations vary
in design, with the goal of utilizing the different optimizations
opportunities provided by each programming model.

3.4.1 CPU Serial. The serial implementation works by visit-
ing each grid point and calculating the new pressure value
using the equation 1, then moving onto the next cell sequen-
tially. The whole grid must be calculated before one sample
can be obtained. A few optimizations were used to avoid
needless computation like cache alignment, avoiding copies
and redundant calculations.

Cache alignment is achieved by using flattened 2D arrays
of the grids. This ensures the next item in the array is usually
held in the same cache line, even at the ends of the grid rows.
For each time step, the pressure grids need to increment along
in time. Take a look at Figure 5. After the newly calculated
grid of N+1 pressure values is complete, a pointer which
determines the current pressure grid addresses the N+1 grid.
All the pointers shift forward one to correctly address the
new set of pressure grids. This is done rather than copying all
the data between the grids which would be highly inefficient.

Redundant calculations are removed including only cal-
culating 𝜇 − 1 once for calculating the next pressure point.
𝜇 can change, therefore it should still be calculated once
per buffer fill, but it is not necessary to calculate every cell
visited.

3.4.2 CPU AVX. The AVX optimized CPU implementation
follows after most of what the serial version does. However,
it vectorizes the grids for processing. Using AVX SIMD in-
trinsics, the grid can be vectorized into vectors of four floats.
These vectors are processed and stored, using Structure of
Arrays, in parallel. Intel’s compiler intrinsics [2] were used
to do an explicit vectorization of FDTD computation, rather
than using compiler pragmas or a C++ SIMD library, for
example.

Although the grid calculations are applied universally, the
checks for boundary, excitation and listener points cause each
element in the vectors to be checked, often using shuffles.
This can likely be improved, with further considerations for
packing certain data bits, but we leave this to further work.

Additionally, in future work we intend to extend the SIMD
vectorization to support AVX-256/512. This would effectually
double the vector size and therefore in ideal circumstances,
would result in doubling of performance.

3.5 OpenCL global memory kernel
The OpenCL versions start by initializing the FDTD grid
and the OpenCL configuration on the CPU. Then, when a
buffer of samples is to be computed, an excitation buffer is
loaded onto the GPU. Every iteration, the kernel is called
which calculates the next time step and produces an output
sample. The output samples remain on the GPU in a sample
buffer. Only once the buffer is full is it read back by the
host application on the CPU to minimise transfer overheads
associated with passing data back and forth.

As with the serial implementation described earlier, the
method for rotating pressure grids with pointers is also used
here. At each time step, the GPU uses an index value, incre-
mented by the CPU, to determine which grids the pointers
address. In the OpenCL global version, the grids are held in
the GPUs global memory and no local memory caching is
performed.

3.5.1 OpenCL workgroup local kernel. An OpenCL version
almost identical to the previous one was developed, but using
the workgroup local memory to store the current pressure
grid. In the kernel before any calculations are made the
workitems load the current pressure value into a local grid
accessible by all workitems in the same workgroup. This
means when the neighbouring values of the centre point are
needed, they can be fetched from the local grid which has
shorter access times than the global grid. There are cases
on the edge of workgroups where a work item will need
to access a neighbour outside the workgroup, see figure 6.
Therefore, conditional checks are made and if the neighbour
is outside the workgroup, it will need to be fetched from
global memory. This technique has been used in optimized
convolution kernels, see for example [14]. These conditionals
are suspected to impact any performance gained from using
the local memory.
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1 __kernel
2 void ftdtCompute(__global float* gridOne, __global float* gridTwo, __global float* gridThree,
3 __global float* boundaryGain, int samplesIndex, __global float* samples, __global float* excitation,
4 int listenerPosition, int excitationPosition, float propagationFactor,
5 float dampingFactor, int rotationIndex) {
6 // get index for current and neighbouring nodes
7 int ixy = (get_global_id(1)) * get_global_size(0) + get_global_id(0);
8 int ixMy = (get_global_id(1)-1) * get_global_size(0) + get_global_id(0);
9 int ixPy = (get_global_id(1)+1) * get_global_size(0) + get_global_id(0);

10 int ixyM = (get_global_id(1)) * get_global_size(0) + get_global_id(0)-1;
11 int ixyP = (get_global_id(1)) * get_global_size(0) + get_global_id(0)+1;
12

13 // determine each buffer in relation to time from a rotation index//
14 __global float* nMOne; __global float* n; __global float* nPOne;
15 if(rotationIndex == 0) {
16 nMOne = gridOne;
17 n = gridTwo;
18 nPOne = gridThree;
19 } else if(rotationIndex == 1) {
20 nMOne = gridTwo;
21 n = gridThree;
22 nPOne = gridOne;
23 } else if(rotationIndex == 2) {
24 nMOne = gridThree;
25 n = gridOne;
26 nPOne = gridTwo;
27 }
28 // initialize pressure values//
29 float centrePressureNMO = nMOne[ixy];
30 float centrePressureN = n[ixy];
31 float leftPressure; float rightPressure; float upPressure; float downPressure;
32

33 if(boundaryGain[ixy] > 0.0) {
34 leftPressure = n[ixy] * boundaryGain[ixy];
35 rightPressure = n[ixy] * boundaryGain[ixy];
36 upPressure = n[ixy] * boundaryGain[ixy];
37 downPressure = n[ixy] * boundaryGain[ixy];
38 } else {
39 leftPressure = n[ixMy];
40 rightPressure = n[ixPy];
41 upPressure = n[ixyM];
42 downPressure = n[ixyP];
43 }
44 // calculate next pressure value
45 float newPressure = 2 * centrePressureN;
46 newPressure += (dampingFactor - 1.0) * centrePressureNMO;
47 newPressure += propagationFactor * (leftPressure + rightPressure +
48 upPressure + downPressure - (4 * centrePressureN));
49 newPressure *= 1.0 / (dampingFactor + 1.0);
50

51 // if the cell is the listener position, sets the next sound sample in buffer to value contained here
52 if(ixy == listenerPosition) {
53 samples[samplesIndex] = n[ixy];
54 }
55 if(ixy == excitationPosition) { // if the position is an excitation...
56 // input excitation value into point. Then increment to next excitation in next iteration.
57 newPressure += excitation[samplesIndex];
58 }
59 // update grid plus one
60 nPOne[ixy] = newPressure;
61 }

Figure 4: OpenCL FDTD Kernel
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Figure 5: Pressure grid rotation achieved using pointers

Figure 6: Neighbour access within workgroup and across work-
groups.

3.6 OpenGL
At initialization, the same FDTD grid object as the earlier
methods is created, but then, translated into a graphical con-
text in order to be understood by OpenGL. This translation
involves forming a texture buffer, which is loaded in and out
of the GPU and processed according to the defined GLSL
shaders. This formats the grid data into RGBA channels in
the graphics fragment shader, where the FDTD calculations
takes place.

An advantage of using OpenGL is that a render shader
program can be used for visualizing the FDTD grid in its
current state. Of course, OpenCL/OpenGL interop could
be used, but this has a performance cost, due to different
driver stacks. An alternative approach that we are planning to
investigate is to use Khronos’ Vulkan [19], with a combination
of compute and graphic shaders.

4 RESULTS
In this section we outline the results obtained when exe-
cuting the serial CPU, AVX CPU, OpenCL, and OpenGL
implementations of the 2D FDTD simulation of a simple
drum membrane. The results compare a variety of different
mesh sizes, audio buffer sizes, and, for OpenCL, different
workgroup optimizations, including workgroup size and work-
group local memory utilization. All speedup measurements
are calculated in relation to the results of the naive, serial
CPU implementation. Although it might not seem fair to
compare massively parallel processing to a serial one, this
was done to show the instant benefit by considering using a

System Specifications
CPU Intel Core i7-8550U 4 Cores 1.99GHZ
GPU AMD Radeon 530 with 2GB GDDR5
CPU RAM 8GB 2400MHz DDR4
Table 1: Laptop specification used for benchmarking

OpenCL Global OpenCL Local
Workgroup Size time (𝑚𝑠) time (𝑚𝑠)
4x4 136.072666 149.841333
8x8 46.170966 49.19716
16x16 46.5292 45.363366

Table 2: Mean buffer compute time calculated over 100 filled
buffers. Buffer size = 512, Grid Size = 256𝑥256

GPU for processing these kinds of problems. Clearly with a
little more work, the CPU can still be improved. This can
be seen to an extent with the CPU AVX version.

The benchmarks are run on a single test machine, which
is a mid-range PC laptop, with a discrete AMD GPU and
Intel i7. The complete specification of the test setup is given
in Table 1.

Table 2 compares the different workgroup sizes configurable
in OpenCL. The workgroups represent the number of work
items that can be processed concurrently. In this case, work
items are equivalent to computation of each pressure point
in the grid.

Table 2 is using a larger grid size of 256𝑥256. There is little
difference between the results of the smaller grid dimensions
(e.g. 8𝑥8 and 16𝑥16) as the 16𝑥16 workgroup size does not
make use of the increased capacity of concurrent work items.

The maximum workgroup size used for benchmarking the
system’s GPU is 256 (16𝑥16 = 256), corresponding to an equal
axis grid arrangement of 16𝑥16. Our initial tests concluded
that smaller arrangements were less efficient so the largest
workgroup dimensions were used for all the following tests
16𝑥16.

Figure 7 plots the compute time in milliseconds for each
implementation with a buffer size of 512 samples.

Here a collection of different sample buffer sizes were tested.
Taking Figure 11 specifically, it can be seen that although the
AVX implementation starts with a good speedup. It cannot
handle the increasing grid size and plateaus at 1-2 times
speedup. The GPU versions are slower for processing smaller
grids. This is likely due to the transfer overhead between
CPU-GPU communication. Although slower for small grids,
the GPU versions outperform the CPU versions as the grid
scales. The OpenCL versions continue to speedup as it scales.
Interestingly, the OpenGL version does not reliably increase.
To date we have not established why this is the case, but
hypothesize that it might well be down to the constraints and
perhaps redundant steps involved in the graphics pipeline.
More likely the smart single texture encoding proposed by
Zappi et al [20] might actually be causing the slow down, due
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Figure 7: Average compute time measured for buffer size 512

Figure 8: Speedup measured for buffer size 64
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Figure 9: Speedup measured for buffer size 128

Figure 10: Speedup measured for buffer size 256
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CPU Serial CPU SSE OpenCL Global OpenCL Local OpenGL
Dimensions time (𝑚𝑠) speedup time (𝑚𝑠) speedup time (𝑚𝑠) speedup time (𝑚𝑠) speedup time (𝑚𝑠) speedup
8x8 0.3247 1.0 0.105525 3.08 5.30303 0.06 5.96503 0.06 1.899273 0.17
16x16 0.954201 1.0 0.377217 2.53 5.29219 0.18 5.48204 0.18 1.97544 0.48
32x32 3.27136 1.0 2.12098 1.54 5.230725 0.63 5.5009 0.63 2.75727 1.19
64x64 11.7197 1.0 10.1995 1.15 6.62889 1.77 6.7361 1.77 5.337273 2.20
128x128 45.8261 1.0 43.01075 1.07 13.21315 3.47 13.672 3.47 15.256833 3.00
256x256 271.803 1.0 178.2885 1.52 46.5482 5.84 45.4415 5.84 53.18915 5.11
512x512 1327.78 1.0 726.5175 1.83 162.295 8.18 160.995 8.18 257.278 5.16

Table 3: Mean buffer compute time calculated over 100 filled buffers. Buffer size = 512

Figure 11: Speedup measured for buffer size 512

to read/write conflicts to the same buffer for different time
steps. It may well be that, as in the OpenCL implementation,
separating these into their own texture, enabling only the
next time step texture to be write-only, would provide better
memory access performance. However, this is speculation and
we leave this analysis to future work.

It can be seen across the benchmark results that for smaller
grid sizes, e.g. 8𝑥8, 16𝑥16 and 32𝑥32, the CPU versions per-
form well in comparison to the GPU versions. This is likely
caused by the overhead involved with data transfer to and
from the GPU and, in general, keeping the host and GPU
in sync. This outweighs the benefit from the acceleration
provided by the compute kernel itself. To confirm this would
require further micro-benchmarking. However, from dimen-
sions 64𝑥64 on wards, the GPU versions perform increasingly
better than the CPU versions as the benefits from processing

on the GPU exceed the data transfer overhead. By 512𝑥512,
the OpenCL version scales to around 8 times faster than the
original serial implementation. The results suggest this would
continue to increase further with larger grids.

The results in the OpenCL global and local caching ver-
sion were not significantly different. Taking a look at Table 3,
at the higher dimensions the local caching version is a cou-
ple of milliseconds faster. This would not be a noticeable
performance increase. The caching method used in the im-
plementation was basic and could be improved with more
advanced techniques, which may produce faster computation.

5 CONCLUSION AND FUTURE WORK
We have described implementations for a physical model
simulation of a drum membrane in C++, AVX, OpenGL,
and OpenGL, providing an analysis and performance of the
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Figure 12: Speedup measured for buffer size 1024

different algorithms. The results found that as mesh size
increased, the performance of OpenCL, on a particular Intel
(CPU)/AMD (GPU) test system, surpassed the others, at
times by a factor of eight over the serial CPU and two
compared to OpenGL.

At the time of writing, the results are limited to a single
platform and we plan to extend to others, including GPUs
from other manufactures and also different CPUs. It would
be interesting to look at the performance in the context of
mobile devices, e.g. iOS and Android, as these platforms are
becoming increasingly popular with musicians.

Of particular interest for future work, is targeting mod-
ern graphics APIs, such as Apple’s Metal 2 and Khronos’
Vulkan [5, 19]. Both of these APIs provide advanced compute
capabilities that in some cases surpass that of OpenCL 1.2,
e.g. Vulkan 1.1’s subgroups extension, while retaining close
integration with their graphics components.

Finally, our current CPU implementation is limited to only
using 128-bit SIMD, while recent versions of AVX support
512-bit SIMD [11] and scatter/gather memory operations,
which are likely to provide significant benefits on laptop class
Intel i9 processors, as found in the latest Apple MacBook
Pro models, for example. Further, OpenCL can be used to
target CPUs and measurements can be taken to show how
well it utilizes the CPUs parallel capabilities.
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Abstract
Physical modelling sound synthesis methods generate vast and intricate

sound spaces that are navigated using meaningful parameters. Numerical
based physical modelling synthesis methods provide authentic representa-
tions of the physics they model. Unfortunately, the application of these
physical models are often limited because of their considerable compu-
tational requirements. In previous studies, the CPU has been shown to
reliably support two-dimensional physical models in real-time with resolu-
tions up to 64x64. However, the near-ubiquitous parallel processing units
known as GPUs have previously been used to process considerably larger
resolutions, as high as 512x512 in real-time. GPU programming requires a
low-level understanding of the architecture, which often imposes a barrier
for entry for inexperienced practitioners. Therefore, this paper proposes
HyperModels, a framework for automating the mapping of finite-difference
based physical modelling synthesis into an optimised parallel form suitable
for the GPU. An overview of HyperModels is given, with a breakdown of
all components involved. An implementation of the design is then used
to evaluate the objective performance of the framework by comparing the
automated solution to manually developed equivalents. For the majority
of the extensive performance profiling tests, the auto-generated programs
were observed to perform only 6% slower but in the worst-case scenario it
was 50% slower. The initial results suggests that, in most circumstances,
the automation provided by the framework avoids the low-level expertise
required to manually optimise the GPU, with only a small reduction in
performance. However, there is still scope to improve the auto-generated
optimisations. When comparing the performance of CPU to GPU equiv-
alents, the parallel CPU version supports resolutions of up to 128x128
whilst the GPU continues to support higher resolutions up to 512x512. To
conclude the paper, two instruments are developed using HyperModels
based on established physical model designs.

Author Keywords
NIME, GPU, High-Performance, Physical Modelling
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CCS Concepts
Computing methodologies → Computer graphics → Graphics systems
and interfaces → Graphics processors; Applied computing → Arts and
humanities → Sound and music computing; Computing methodologies →
Modeling and simulation;

Introduction
In the 1950s, digital audio synthesis was beginning to gain traction with com-
ponents such as digital oscillators, filters and stored lookup tables [9], these
were used to generate sound, and later, to build synthesis techniques including
AM and FM [11]. These simple techniques are often highly computationally
efficient [35] in order for them to be used in real-time applications at times
when the available computation was very limited by today’s standards [7, p. 3].
Furthermore, these methods are considered ‘abstract’ as they do not directly
associate with a physical interpretation. Physical modelling methods contrast
with abstract synthesis as they are built on direct interpretation of physical
phenomena. Although a broad field of physical modelling methods exists, the
direct numerical physical models are the most authentic forms that directly
simulate the vibrations through a discretised mathematical representation [2].
Direct numerical physical models simulate an environment by approximating
vibration values through N-dimensional space and time. Increasing the resolution
of the simulated space has several advantages, including: improved accuracy,
more stable simulations and the space to create more sophisticated instruments.
However, increasing the resolution proportionally increases the computation
required to run simulation. Considering the strict real-time requirements of audio
synthesis [23] [22], the usefulness of these methods has been heavily restricted.
But with the modern advancements in computer systems, physical modelling
synthesis is seeing a possible resurgence [39]. For example, many academics
involved in the Next Generation Sound synthesis (NESS) collaboration project
believe physical models will play an important part in the future developments of
sound synthesis. In 2015 and 2016, the NESS project published dozens of papers
and demonstrations related to physical modelling [26], including thorough exper-
imentation and discussions of utilising GPU acceleration for physical modelling
sound synthesis [4, 6, 20]. The collective output from the NESS project highlights
the benefit of increasing data throughput using the GPU. For example, in [19],
GPU acceleration was used to approach offline processing of room acoustics
and, for a particular arrangement, was shown to improve performance by X46
over the equivalent serial CPU version. However, they also address the issues of
processing various physical modelling techniques in parallel - particularly the
incompatibility of specific mathematical methods for parallelisation [3]. For
instance, iterative methods like the Newton Raphson [5] for solving implicit
schemes inherently involve serial stages that significantly limits the benefits of
GPU parallel processing.
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Although recent designs and implementations of physical models have been
presented within the context of the CPU, for example, [28, 37, 42, 43, 44, 45],
these are often restricted to one-dimensional or low resolution two-dimensional
models. To support higher resolution , parallel hardware can be used to accelerate
the simulations. The GPU is a nearly-ubiquitous massively parallel processing
unit that can now be accessibly programmed for general computation because of
the modern general-purpose GPU (GPGPU) architecture [8]. GPGPU has been
successfully used for processing a range of numerical and scientific computation
techniques like molecular dynamics [29]. A well-known and successful example of
this is the folding@home project [15], which reported a speedup of 20 - 30X when
accelerated on the GPU. The finite difference based numerical methods used
for physical modelling synthesis are often described as "embarrassingly parallel"
[21], meaning they can be efficiently mapped to the parallel GPU architecture.
Previous investigations in [32] demonstrated that for a particular physical model
on a modern desktop, the CPU could support two-dimensional models up to
64x64 in real-time. The equivalent approach on the GPU was shown to support
resolutions as high as 512x512 in real-time.

In this paper, we present HyperModels, a framework for describing high-resolution
physical models that utilise GPU hardware acceleration for real-time synthesis.
Instruments are described using high-level descriptions of the physics equations
and an instrument’s shape, e.g. the strings or membrane, that are automatically
translated into optimised low-level code that utilises the real time capabilities
of modern GPUs. Our approach enables the instrument designer to focus on
the sound design aspect of a new instrument, without necessarily requiring the
advanced low-level architecture and programming knowledge often required to
access parallel GPU programming. An example covered in Section Instrument
1: Hyper Drumhead is a physically modelled drum instrument. Figure 1a
shows the screenshot of the GPU optimised application that is formed using the
HyperModels framework when provided with the physics equations and vector
graphic description in Figure 1b.

The rest of this paper provides details of the HyperModels framework as a
design and implementation, including an analysis of how it performs compared
to equivalent hand-written GPU simulations. To demonstrate the system in
practice, two existing designs based on physical modelling instruments are
implemented using HyperModels. The first is the Hyper Drumhead, previously
demonstrated by Zappi et al. in hand optimised GPU code [32, 47]. The second
is a variant of Willemsen et al. hammered dulcimer [42], that originally operated
with a plate model of 17x6 points running on the CPU, this has been ported
to the GPU using HyperModels to support resolutions up to 256x256. The
remaining sections of the paper are structured as follows:

• Section Numerical Physical Modelling provides an introduction to numerical
physical modelling;

• Section GPU Acceleration gives a brief description of the GPU Architecture;

3



(a) Screenshot of Hyper Drumhead applica-
tion.

(b) Vector graphics and physical model de-
scription for u and v in system a.

Figure 1: Instrument 1 Hyper Drumhead

• Section HyperModels Framework contains the main contribution of this
paper;

• Section Performance Evaluation evaluates the performance of the proposed
system;

• Section Case Studies presents two instruments using HyperModels;

• Section Conclusion closes with final remarks and pointers to future work.

Numerical Physical Modelling
One of the most foundational numerical methods used for approximating deriva-
tives is the finite-difference method. Although it has some drawbacks compared
to other methods, such as the difficulties handling curved boundaries [30], it
is an effective method for digital audio synthesis and is inherently suited to
parallelisation. These numerical methods date back further than the earliest
examples of digital audio synthesis, with its origins in engineering and general
physics [14]. The adoption and research of numerical methods for sound synthesis
have only recently become practical outside of a theoretical context because
of the abundance of computational power that is available in modern personal
computing devices.
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Simple Harmonic Oscillator
The simple harmonic oscillator is one of the core building blocks of digital audio
synthesis. A simple harmonic oscillator can also be formed as a physical model
using an ordinary differential equation (ODE). An ODE is a differential equation
containing one or more functions of one independent variable and the derivatives
of those functions [10]. The ODE for the simple harmonic oscillator is:

utt = −ω2
0u, (1)

where state variable u = u(t) describes the displacement of the mass from its
equilibrium (in m), utt = ∂2u

∂t2 is its acceleration and ω0 is the angular frequency
of oscillation (in rad/s). To solve this using finite differences, the state of the
mass as well as the derivatives must be approximated, or discretised. Using
t = nT , with time index n = 0, 1, . . . and time step T , the simple harmonic
oscillator in Equation (1) can be discretised to:

un+1 − 2un + un−1

T 2 = −ω2
0un. (2)

Here, un+1 refers to the value of the oscillator at the next timestep n + 1. Using
values of the current timestep un and previous timestep un−1 along with the
size of the timestep T , the value of the oscillator at the next timestep can be
computed by rearranging Equation (2) to the following update equation:

un+1 =
(
2 − ω2

0T 2)
un − un−1. (3)

By stepping through time and recursively calculating Equation (3), the simple
harmonic oscillator is simulated. Figure 2 shows that at each timestep, the
explicit scheme depends on un and un−1 to calculate un+1. As un+2 depends
on the result of un+1, the scheme can only be processed serially by a single
processor, as there is only one stream of values to simulate that depend on each
other.

1D Wave Equation
Partial differential equations (PDE) are an extension to the concept of ODEs, like
the simple harmonic oscillator discussed in Equation (1). Where ODEs involved
a single independent variable, PDEs involve two or more independent variables
[17]. The 1-dimensional wave equation is an example of a partial differential
equation:

utt = c2uxx, (4)
where state variable u = u(x, t) is now dependent on time t as well as spatial
coordinate x. Assuming a system of length L (in m), the spatial domain becomes
x ∈ [0, L]. Furthermore, c is the wave speed (in m/s).

To approximate Equation (4), one can subdivide the spatial domain into N
intervals with equal length X. The spatial coordinate can then be approximated
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Figure 2: Serial processing of ODE finite-difference schemes.

Figure 3: Parallel processing of PDE finite-difference schemes.

according to x = lX with spatial index l = {0, . . . , N}. Using the spatial index
as well as the temporal index n described above, one can define grid function un

l

which is a discrete approximation to u(x, t).

Approximating utt and uxx using finite-differences, the following recursively
solvable explicit scheme can be formed:

un+1
l = 2un

l + λ2(un
l+1 − 2un

l + un
l−1) − un−1

l , (5)

where λ = cT/X is the Courant number and needs to abide the condition for
the scheme to be stable [13]: λ ≤ 1. To solve this scheme, the simulation now
needs to calculate un+1

l not just for one position, but for N + 1 positions in the
model. All of these positions will need to calculate Equation (5) and store the
result in un+1

l for all l positions as shown in Figure 3. These calculations do not
interfere or depend on each other, making each spatial point for the timestep
solvable in parallel. Parallel streams of processing like those found on the GPU
can each handle a single grid point and provided N is big enough to fully utilise
all parallel processors, speed up the calculation of the system for each timestep.
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2D Wave Equation
One can extend the 1-dimensional wave equation in Equation (4) to 2 dimensions.
The 2-dimensional wave equation is defined as

vtt = c2(vxx + vyy), (6)

with wave speed c (in m/s) and where state variable v = v(x, y, t) is defined over
two spatial dimensions x and y.1 For a rectangular system of side lengths Lx

(in m) and Ly (in m), (x, y) ∈ D where D ∈ [0, Lx] × [0, Ly].

Similar to before, Equation (6) this can be discretised using finite differences.
Discretising time as usual (t = nT ), space can be subdivided into Nx intervals
in the x-direction and Ny intervals in the y-direction, yielding x = lX and
y = mX,2 with l ∈ {0, . . . , Nx} and m ∈ {0, . . . , Ny}. Using these definitions,
the state variable v(x, y, t) can then be approximated using grid function vn

l,m.
Discretising Equation (6) and solving for vn+1

l,m , yields the following update
equation:

vn+1
l,m = 2vn

l,m − vn−1
l,m + λ2(vn

l+1,m + vn
l−1,m + vn

l,m+1 + vn
l,m−1 − 4vn

l,m), (7)

where the following stability condition must be satisfied [7]: λ ≤ 1√
2 .

GPU Acceleration
Modern computer systems are built as heterogeneous platforms [36], meaning
systems utilise different processing devices simultaneously for maximum efficiency.
The CPU and its typical 4-14 fast processors [38] are usually reserved for most
general processing, while the hundreds of parallel processors on the GPU can
be used to offload and accelerate suitable tasks such as graphics. Although the
CPU and GPU share many similarities, there are key differences that need to be
understood to efficiently target both devices. An abstract view of the modern
GPGPU architecture is shown in Figure 4 [40]. Here, the CPU interfaces with the
GPU unit across a bridge and a host interface loads instructions and programs
onto the GPU [27]. The device then loads the programs across the compute
devices; these manage the execution of instructions from the program across their
numerous Processing Elements (PE). According to the program instructions, all
the PEs then execute the same instructions simultaneously on different sections of
data in memory by using the ID of the stream of execution to index into memory.
This means that each compute unit supports the single-instruction multiple-data
(SIMD) paradigm. Note that the compute device has multiple compute units
that can each have different sets of program instructions loaded onto them. This
extends the SIMD paradigm to single-instruction Multiple-thread (SIMT) [12]
and this arrangement enables the massively parallel processing environment of

1Notice that we use state variable v here (instead of u) for consistency with later sections.
2We assume the same grid spacing in the x and y-direction.
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Figure 4: The modern GPU architecture [40].

the GPU. In this paper, the term core will be used to refer to streams of execution
on the GPU cores and not the physical cores. This abstraction helps describe
how data is processed fully in parallel, but in reality, all of this processing might
not execute in parallel at once if the number of items to process exceeds the
number of physical cores.

The finite-difference methods used in this paper require solving simple linear
systems of equations that are entirely independent from one another. This means
the entire state of the grid can be contained in GPU global memory meaning
each point on the grid can be accessed and processed concurrently, without any
explicit synchronisation or communication between PEs. Further, scaling up the
number of points does not impact on this advantage. For example, to calculate
a point in space and time requires accessing neighbouring values, but the result
of the calculation only requires writing to a single, mutually exclusive location.
Therefore, when mapping numerical physical models to the GPU, a core can be
allocated to solve each equation at each position in space and write the resulting
value to memory without affecting other neighbouring cores. This mapping is
the case for models based on linear systems, more sophisticated systems, such as
non-linear variants are usually not recursively solvable explicit schemes.

HyperModels Framework
The HyperModels framework is outlined in Figure 5. There are four distinct
software components: physical-model-representation, svg-generator, svg-parser
and then a gpu-interface. The physical-model-representation provides the map-
ping between the finite-difference schemes to parallel processing environment.
The vector graphic representation of the physical model geometry is described
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Figure 5: Relationship diagram of the HyperModels GPU physical modelling
tools.

using an annotated scalable vector graphics (SVG) [16] format in svg-generator.
The SVG is then parsed in svg-parser to produce a two-dimensional grid repre-
sentation of the models that is suitable for the finite-difference schemes. The
physical model is captured inside a JSON object that the gpu-interface can load
into the GPU and integrated into an application to create an instrument.

Model to GPU Mapping
Mapping finite-difference equations into a parallel processing environment re-
quires defining an appropriate representation and program structure. Here, we
define the GPU as system a with a grid of Cx ×Cy cores. A single core is denoted
by acx,cy where cx ∈ {1, . . . , Cx} and cy ∈ {1, . . . , Cy} are the core indices in
the horizontal and vertical direction of the GPU grid respectively. The update
equation of one grid point can then be assigned to a single core, such that these
can be executed in parallel. Considering the 2D system presented in Equation
(7), mapping a grid point of a scheme with spatial index (l, m) to a core with
index (cx, cy) is denoted by acx,cy

⇐ vl,m.

The cores of the GPU a must then be processed by recursively traversing the
two-dimensional system a and calculating the values of an+1 at each position
depending on what models are assigned at each position. This process is repeated
recursively and once all of an+1 is calculated, time index n can be incremented.
A serial representation of this process would be formed using two nested for
loops:
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Algorithm 1 Serial Representation
1: n = 0
2: while isSimulation do
3: for x = 1 to gridX do
4: for y = 1 to gridY do
5: if id[x][y] == v then

6:

a[n+1][x][y] = 2 * a[n][x][y] - a[n-1][x][y]
+ λ2*(a[n][x+1][y] + a[n][x-1][y] + a[n][x][y+1]
+ a[n][x][y-1] - 4 * a[n][x][y])

7: end if
8: end for
9: end for

10: n = n + 1
11: end while

Here, every position in the grid is visited by iterating over all possible values
for x and y. These are first used to check if the position in the two-dimensional
grid is inside the model v. If it is, then Equation (7) is used to calculate the
value at an+1

cx,cy
. In the equation, components such as an

cx+1,cy
require accessing

neighbouring values of the currently considered position at cx and cy by adding
1 to x, leading to a[n][x+1][cy]. This is done for all neighbouring values. This
serial approach can be rewritten to the following, so that it is suitable for parallel
processing:

Algorithm 2 Parallel Representation
1: n = 0
2: while isSimulation do
3: cx = getGridX()
4: cy = getGridY()
5: if id[cx][cy] == v then

6:

a[n+1][cx][cy]= 2 * a[n][cx][cy] - a[n-1][cx][cy]
+ λ2*(a[n][cx+1][cy] + a[n][cx-1][cy] + a[n][cx][cy+1]
+ a[n][cx][cy-1] - 4 * a[n][cx][cy])

7: end if
8: n = n + 1
9: end while

Here the nested for loops are implicit, with the loop’s indices represented through
the identifiers getGridX() and getGridY(), respectively, where Cx × Cy process
streams are dispatched to the processor. Thus, instead of iterating over two
nested for loops, the ID of each process stream is used to check which model’s
equation to use, such as v for accessing a to calculate the next timestep an+1.
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The state of the system a is contained in global GPU memory as it is only
directly accessed once by each PE.

Multiple models can be added to the simulation, where the equation at each
position in the system a depends on the cx and cy coordinates. For example,
one can add the 1D wave equation described in Equation (5) as a second model
to the GPU. This one-dimensional equation can be mapped into the system
a according to acx,cy

⇐ ul. The code then includes an additional conditional
statement checking if the coordinate (cx, cy) identifies u:

Algorithm 3 Parallel Representation
1: n = 0
2: while isSimulation do
3: cx = getGridX()
4: cy = getGridY()
5: if id[cx][cy] == v then

6:

a[n+1][cx][cy]= 2 * a[n][cx][cy] - a[n-1][cx][cy]
+ λ2*(a[n][cx+1][cy] + a[n][cx-1][cy] + a[n][cx][cy+1]
+ a[n][cx][cy-1] - 4 * a[n][cx][cy])

7: end if
8: if id[cx][cy] == u then

9:
a[n+1][cx][cy]= 2 * a[n][cx][cy] - a[n-1][cx][cy]

+λ2* (a[n][cx+1][cy] - 2 * a[n][cx][cy]+ a[n][cx-1][cy] )
10: end if
11: n = n + 1
12: end while

This mapping has been implemented using a domain specific language (DSL)
[34] where finite-difference schemes can be defined. The DSL compiler generates
a GPU program that captures the parallel representation. The details of this
implementation will be covered in future work.

Vector Based Representation
A method for mapping models such as u into the system a is required for
describing the shapes of the models. The SVG format is a compact and extendable
vector graphics protocol that supports descriptions of shapes and their properties
as XML tags and attribute values. To support the physical models, the standard
SVG format is extended to capture important information associated with each
shape. An example of an SVG containing a rectangle that includes physical
modelling attributes is as follows:

1 <svg viewbox='0 0 12 8' width='12' height='8'
2 interface_device='custom' connections=''>
3 <rect id='1' interface_osc_address='' interface_type='pad'
4 interface_osc_args=''
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5 width='2' height='10' x='4' y='2'
6 style='fill:rgb(88,111,124);'
7 physics_program='...'/>
8 </svg>

Inside the SVG svg tags, the viewbox, width and height describe the resolution
of the entire physical modelled environment. Defining these as viewbox=’0 0 12
8’ width=’12’ height=’8’ creates a 12x8 simulation environment. This dictates
the possible space to work in and how detailed shapes will be in the simulation.
The connections field contains a list of coordinates that are connected together
between models. The physics_program contains the generated GPU program
from the physical-model-representation stage. Each shape contains two additional
attributes, id and physics_program. The id is the unique identifier for each
shape, this is used to fill in the id of the shape when generating the 2-dimensional
grid in the svg-parser.

Vector Parser
Simulating the physical models using finite-difference based methods requires a
Cartisian grid of points to apply calculations to. Therefore, the SVG vector image
format must be used to generate a 2-dimensional grid. The design presented here
is based on the SVG parser in [18], with modifications making it appropriate for
the physical modelling framework. Figure 6 covers the stages used by the SVG
parser. First, the SVG description is tessellated, this produces a set of triangles
that when considered holistically, form the original shape. These triangles
prepare the shape for rasterisation, where all points inside the respective shape’s
triangles are populated with the ID of the shape. Here, the rect with a height of
10 and width of 2 is tessellated and points inside the triangles are filled with the
shape ID inside the 12x8 simulation grid. The output of the parser is then used
to populate a JSON object with the following data:

1 {
2 "models" : [
3 {
4 "id": 1,
5 "rgb": "rgb(217,137,188)",
6 "args": [
7 0.39
8 ]
9 },

10 . . .
11 ],
12 "environment": [
13 [
14 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
16 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
17 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
18 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
19 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
20 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
22 ]
23 ] ,
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Figure 6: Interface tessellation and rasterisation of single rectangle. [18]

24 "physics_program": "...",
25 "connections": ...
26 "interface" : "custom"
27 }

Here the Cartisian grid that contains each model’s ID is contained in environ-
ment, while a list of models contains details for each model, particularly the id
that indicates what equation will be executed for each point inside the GPU
physics_program. The connections field contains a list of coordinates that are
linked together between models.

GPU Interface
The whole physical model environment captured inside the JSON object can now
be used by a GPU interfacing API to load the GPU program, prepare the memory
modelling the environment and then execute it to generate audio samples. The
following C++ function declarations are used in this implementation:

1 void createModel(const std::string aPath);
2
3 void step();
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4 void fillBuffer(float* input, float* output, uint32_t numSteps);
5 void updateCoefficient(std::string aCoeff, uint32_t aIndex, float aValue);
6
7 void setInputPosition(int aInputs[]);
8 void setOutputPosition(uint32_t aOutputs);

createModel() takes a file path to the JSON file containing the physical model
description. The GPU program for the target GPU interfacing API can then be
loaded onto the GPU. step() is a private function that is used for advancing the
physical model one timestep. This is used by fillBuffer to recursively advance the
physical model and at each time step extract samples from the output position
to fill the output buffer. updateCoefficient() is used to change the value of
coefficients. The input and output positions for excitation and sample generation
respectively can be moved using setInputPosition() & setoutputPosition().

The performance of this framework is evaluated by profiling an implementation
of the HyperModels framework. This will provide details of the frameworks
strengths and limitations that will lead into the development of two example
instruments.

Performance Evaluation
The convenience provided by automating development is often contrast with
a trade-off with performance. This section provides a brief evaluation of the
performance by comparing the auto-generated GPU programs from HyperModels
with manually developed equivalents. To create a controlled testing environment,
only the GPU programs will be modified. This means the interfacing methods
and physical model representation will be the same between versions. Further,
measurements taken from equivalent parallel CPU versions have been included
for comparison.

Comparative Tests
The benchmarking suite operates by following the real-time profiling technique
used in [33]. This approach runs a collection of tests through the following
template:

1 void realtimeTest() {
2 if (isWarmup) {
3 executeTest();
4 }
5 while (numSamplesComputed < sampleRate) {
6 startTimer();
7 executeTest();
8 endTimer();
9

10 numSamplesComputed += bufferLength;
11 checkTestResults(testResults);
12 }
13 elapsedTimer();
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Figure 7: SVG representation of Simple Single Model model geometry.

14 cleanup(hostVariables, deviceVariables);
15 }

Here, the executeTest function represents the physical modelling synthesis func-
tion that generates bufferLength samples. This function is repeatedly called until
a seconds worth of samples has been computed at a specified sample rate. This
template can then be repeated and the average time to process at the sample rate
can be measured. The isWarmup flag is used to execute the test once without
measuring performance as the first time a GPU program is executed it can be
considerably slower than all subsequent executions as the GPU prepares and
optimises on the first execution.

In this evaluation, the test will be considered when processing at the minimum
acceptable sample rate of 44100Hz [23]. The tests will be repeated for a series of
escalating grid dimension sizes, starting at 64x64 increasing by powers of 2 up to
1024x1024. Four tests have been designed to test the basic functionality of the
physical models and reveal contextual differences in performance between the
automatic and manually written GPU physical model programs. For conciseness
in this paper, only the salient results from two of the tests 3 will be considered
in this analysis and are as follows:

• Simple Single Model - A single 2-dimensional wave equation square physical
model. Utilisation=88% (Figure 7)

• Complex Multiple Models - Two 2-dimensional square physical models
connected by a single string. Utilisation=51% (Figure 8)

Manually writing the GPU program provides opportunities for a competent
developer to exploit contextual elements using foresight that automated tools
either have difficulty identifying or can not safely implement. Some of the
optimisations exclusive to the manual version are full constant folding [25,

3The source-code for the benchmarking suite used along with all recorded results are
available online: https://github.com/Harri-Renney/HyperModels-benchmarking-suite
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Figure 8: SVG representation of Complex Multiple Models model geometry.

p. 329] in equations and grouping models with identical equations into one
control dependency. Each of these tests have a utilisation measurement shown
as a percentage. This is an important feature of each tests as it denotes how
intensive the simulation is to process.

Results
The test results for simple single model are shown in Figure 9. Considering the
GPU auto-generated and manual versions, grid resolutions between Cx = Cy = 64
and Cx = Cy = 256 appear to show comparatively marginal difference. However,
from Cx = Cy > 256, the disparity begins to emerge, where the manually
written program begins to perform increasingly better. With this projection,
the manually written version can operate at higher resolutions up to around
Cx = Cy = 700, while the auto-generated version reaches Cx = Cy = 512. The
limited scope of the simple single model test means the only notable optimisation
added to the manual version is the constant folding of all redundant calculations.
This is where any constant values involved in the equations defined for the model
are calculated once on the CPU and uploaded as one constant coefficient to
the GPU, instead of redundantly calculating it on the GPU. This optimisation
appears effective for this test as it is applied across 88% of the simulated space.
Therefore, as expected, optimisations that reduce computation in the model’s
scheme are effective.

When considering the performance of the GPU against the CPU, the GPU can
support far higher resolution models than the CPU in real-time. For this single
model test, the manually written CPU version can almost support Cx = Cy = 128
which would involve 16384 grid points. The auto-generated GPU version can
support Cx = Cy = 512 that involves a considerably higher 262144 grid points,
16X more than the CPU can support.

Figure 10 displays the results recorded for the Complex Multiple Models test.
The results follow a similar trend as the Simple Single Model test, however,
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Figure 9: Execution time for a second’s worth of sample at 44.1KHz for the
simple single model test.

the differences between the auto-generated and manual versions are negligible.
Both the GPU versions support resolutions up to around Cx = Cy < 700. It
appears for the test that involves advanced models and connections, the manual
optimisations are less effective. This might be partly because the constant folding
optimisation is less effective for the smaller grid utilisation of 51%. This test
involves two connection points between the three models yet the performance
does not appear to be negatively effected by this. This suggests the technique
used for the connections in the design is effective, at least for few connection
points. However, it can not be assumed to extrapolate as more connections are
added, comprehensive experimentation is needed to establish how this scales for
hundreds of connections.

The results presented here support the effectiveness of the HyperModels auto-
generated programs. For the majority of the tests, the performance difference
was a negligible 6% in favour of the GPU manual version over the auto-generated
equivalent. Although, under certain contexts the manual version was significantly
faster. For example, the manual version of simple single model test at Cx =
Cy = 700 was 50% faster than the auto-generated program.
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Figure 10: Execution time for a second’s worth of sample at 44.1KHz for the
complex multiple model test.

Case Studies
Two instruments will be presented here to demonstrate the expressiveness of
the HyperModels framework. Both instruments will operate within the system
a defined in HyperModels that will have a resolution of (Cx, Cy) where models
can be defined to operate at specific positions determined by the vector based
description of the model shapes.

Instrument 1: Hyper Drumhead
Instrument 1 implements the Hyper Drumhead physical model from [47] [46].
In their implementation, the Hyper Drumhead is a two-dimensional drumhead
simulation that has been accelerated on the GPU using the graphics pipeline.
The Hyper Drumhead was reported to support resolutions up to 320x320 for
most of the systems tested on. In their implementation, Zappi et al. mapped the
audio domain of the physical model directly into the graphical domain using the
OpenGL graphics rendering API. By conforming to the graphical domain, this
design requires an additional field of knowledge and imposes some limitations.
For Instrument 1, the Hyper Drumhead will be ported to the HyperModels
framework with an extended resolution of Cx = Cy = 512. The source code and
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recordings of this instrument are publicly available online 4.

The physical model PDE used in the Hyper Drumhead is based on the two-
dimensional wave equations with a frequency independent damping component
[31]. Equation (7) can be extended to include damping, and the recursively
solvable explicit scheme used for the qth model vq where q = 1, 2 will be defined
as:

(1 + σq)vn+1
q,l,m = 2vn

q,l,m − (1 − σq)vn−1
q,l,m

+ (λq)2(vn
q,l+1,m + vn

q,l−1,m + vn
q,l,m+1 + vn

q,l,m−1 − 4vn
q,l,m)

(8)

where the Courant number λq is defined as in Equation (7), and σq is the
frequency independent damping coefficient (in s−1). To maintain stability inside
the model, the conditions λ ≤ 1√

2 and 0 < σ < 1 must be met. The mapping
of vq into the grid of cores in a is illustrated as an SVG in Figure 1b. The
physical model described so far is then contained in the instrument component
in the application visualised in Figure 11. Here, the CPU application program
written in the JUCE5 audio framework interfaces with the GPU instrument
program requesting 44100 samples per second. However, the input/output
samples between CPU and GPU uses a buffering technique. Therefore, data
transfers occur at a rate of

⌈
fs

bs

⌉
. So for a buffer length bs = 256 at fs = 44100,

there are
⌈ 44100

256
⌉

= 173Hz data transfers per second. The state of the system a
stays in the GPU global memory and is not transferred back to the CPU. Instead,
for the on-screen visualisation of the model an OpenGL graphics program is
called at a rate of 15Hz. This efficiently maps the state of the instrument into
coloured pixels that are then sent directly to a display device. Interactions with
the instrument are controlled using two Sensel Morphs 6. The Sensel morph is a
high-resolution pressure sensor that detects the position and amount of pressure
of contacts. The two Sensel morph’s have been connected to the application,
one mapping to model v1 and the other to v2 by adding excitation to the system
acx,cy

at a position cx and cy that is detected by the Sensels. The sensel’s are
polled for contacts at a rate of 150Hz as this provides a maximum detection
latency of 6.6ms [42]. A screenshot of Instrument 1’s application GUI is shown
in Figure 1a.

Instrument 2: String-Plate Connections
Instrument 2 aims to demonstrate that complex, interconnected models can be
represented by the GPU accelerated framework. In [42], Willemsen et al. design
instruments using strings and plate models that are connected together to form
instruments such as the sitar, hammered dulcimer and Hurdy Gurdy. In their
implementation, the instruments were executed on the CPU and operated for
small resolutions, with strings involving a maximum of 50 points and plates

4https://github.com/Harri-Renney/-NIME2022---InstrumentOne
5https://juce.com
6https://github.com/sensel/sensel-api
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Figure 11: Application overview for Instrument 1: Hyper Drumhead.

of 20x10. The GPU accelerated implementation will support higher resolution
models with multiple strings of 280 points and a plate of 236x121 inside an
environment a with Cx = Cy = 256. A plate model v and multiple strings uq

will be defined where the subscript q is used to identify each string between
q = 1, . . . , 13.

The string models are defined as using the stiff string equation [41, p. 75] along
with frequency independent and frequency dependant components [1]. Using
finite-differences, the recursively solvable explicit form un

q,l is formed:

(1 + σq,0T )un+1
q,l =

(
2 − 2(λq)2 − 6(µq)2 4σq,1T

X2

)
un

q,l

(
(λq)2 + 4(µq)2 + 2σq,1T

X2

)
(un

q,l+1 + un
q,l−1)

− (µq)2(un
q,l+2 + un

q,l−2)

+
(

−1 + σq,0T + 4σq,1T

X2

)
un−1

q,l

− 2σq,1T

X2

(
un−1

q,l+1 + un−1
q,l−1

)

(9)

with µq = κqT
X2 , stiffness coefficient κq, frequency independent damping σq,0 and

frequency dependant damping σq,1.

The linear plate equation [24] uses a similar description of physics as the stiff string
including frequency independent and dependant components, but is extended
to operate across two-dimensions. By discretising the equation using finite-
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(a) Screenshot of Plate-String Connections
application. (b) Vector graphics and physical model de-

scription for uq and v in system a.

Figure 12: Instrument 2 Plate-String Connections

differences, the following recursively solvable explicit scheme is formed.

(1 + σ0T )vn+1
l,m = (2 − 20µ2 − 4S)vn

l,m

+ (8µ2 + S)(vn
l+1,m + vn

l−1,m + vn
l,m+1 + vn

l,m−1)
− 2µ2(vn

l+1,m+1 + vn
l+1,m−1 + vn

l−1,m+1 + vn
l−1,m−1)

− µ2(vn
l+2,m + vn

l−2,m + vn
l,m+2 + vn

l,m−2)
+ (σ0T − 1 + 4S)vn−1

l,m

− S(vn−1
l+1,m + vn−1

l−1,m + vn−1
l,m+1 + vn−1

l,m−1)

(10)

Where parameters are the same as in Equation (9) but with the additional
coefficient S = 2σ1T

X2 .

The geometry for instrument 2 is displayed in the SVG in Figure 12b. Again, a
JUCE application running on the CPU interfaces with the instrument on the
GPU at a samplerate of 44100Hz as shown in the instrument overview in Figure
13. The Sensel Morphs are used as input, one being mapped to pluck across
the strings uq and the other to strike the plate v. The key difference in this
arrangement is that the visualisation of the instrument is processed on the CPU
using the JUCE framework. Therefore, the state of the grid must be transferred
from the GPU to the CPU to update the JUCE graphical components to then
load onto the GPU at a frame rate of 15Hz. A screenshot of the Instrument
2 application is shown in Figure 12a and the recordings and source code are
available online 7.

7https://github.com/Harri-Renney/NIME2022---InstrumentTwo
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Figure 13: Application overview for Instrument 2: String-Plate Connections
application.

Conclusion
This paper has presented an overview of the HyperModels framework for as-
sisting the development of GPU accelerated physical model synthesisers. The
performance of HyperModels has been evaluated and shown to outperform CPU
versions for resolutions above 64x64, particularly at 512x512 where the auto-
generated GPU code was approximately 4X faster than the manually written
parallel CPU version. However, the manually written GPU code was consistently
faster than the auto-generated equivalent, being around 6% slower for most tests
and a maximum of 50% for a particular case. Future work involves optimising the
HyperModels implementation further to match the manual program performance
and to present the comprehensive details of the entire framework.
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