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Abstract 

The finishing stage of mould manufacturing is generally completed via mechanical 

polishing, manual conducted. Not only is this the most expensive phase of the process 

but also is currently struggling with a deficit of skilled workers. To address these issues, 

and support the wider needs of Industry 4.0, the manufacturing community has 

investigated robotic technologies to support the polishing process. The work reported 

here, investigating the polishing process planning and optimisation for mould 

manufacture is part of a larger project aiming to automate 80% of the current manual 

process. Presented in this article is an optimization strategy for robotic polishing 

process sequencing aiming at satisfying polishing sequence rules and shortest 

polishing time simultaneously. A hybrid approach combining both genetic algorithm 

(GA) and analytical hierarchical process (AHP) is proposed based on the specific 

characterises of polishing process sequencing. A multi-objective fitness function is 

defined using AHP including the calculation of polishing time and evaluation of 

polishing process rules. The proposed GA-based process sequencing has been 

successfully demonstrated on test piece examples. 

Keywords: Computer-aided process planning; polishing rules; genetic algorithm; 

robotic; AHP 
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1. Introduction 

 

In the manufacture of production tooling such as moulds and dies, surface finishing 

operations, buffing, and polishing are currently manual processes. Normally involving 

a skilled operative equipped with polishing tools. To remove a layer of material 

eradicating pre-machining marks and abrasions in the mould or die cavity and inserts, 

to achieve a required surface finish (Lee et al., 2006 and Altan, et al. 2001;). An 

example is shown with the die insert in Figure 1, where ‘A’ shows the part post milling 

machined and part ‘B’ shows the component finished via polishing. The features of 

milled part, have different starting roughness.’ Feature ‘a,’ starts at 1.6µm; edge 

features ‘b’ and ‘d’ start at 0.8µm, top faces ‘c’ and ‘e’ start at 1.92µm. The required 

surface finish for the injection moulding process, is for features ‘b’ and ‘d’ to have 

0.1µm, for features ‘a’, ‘c’ and ‘e’ to has a final roughness of at least 0.8µm. To achieve 

this the six tools shown for Figure 1C needed to be employed.  

 

 

Figure 1 Die insert – ‘A’ initial state, ‘B’ post polishing 

 

In the last two decades, the mould and die manufacturing industry currently faces two 

challenges. One of finances, in comparison to global low-cost production areas. It has 

been shown that up to twenty percent of the production costs and approximately fifty 

percent of the production time are assigned to finishing operations. Also, the industry 

is facing the pressure of the of skilled workers specializing in finishing operations 

(Ragaert et al., 2014; Winther, 2003). With these factors in mind, robotics is seen as 

one potential solution. (Wang et al., 2019; Kalt et al 2016). However, to extend its 

applications in the polishing process so as to finally substitute most of manual 

polishing work in industry, a fast and automatic generation of polishing process plan 

is necessary. Although Computer-aided process planning (CAPP) has already 

commonly been applied to manufacturing processes, few systems involve the detailed 

information of polishing process, such as types of polishing tools (cf. Figure 1C), 

abrasive papers, process variable settings, and even optimizing sequence of polishing 

operations, which robotic polishing requires. Meantime, as polishing process is 

generally carried out after finishing a series of cutting manufacturing operations, the 
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constraints for polishing process sequencing are not as same as cutting manufacturing 

process sequencing.  

 

Presented in this article is a strategy of optimization for polishing process sequencing 

using Genetic Algorithm (GA) and analytical hierarchical process (AHP). Section 2 

presents a review of recent research, Section 3 addresses the main characteristics of 

polishing process sequencing, which are different from cutting manufacturing process 

sequencing. Section 4 proposes a new GA-AHP optimization strategy for polishing 

process sequencing based on specific constraints and rules for polishing processes. To 

meet the requirements of multiple objective optimizations, AHP is applied to define 

the multi-objective fitness function on both the satisfaction of polishing process 

sequence requirements and minimum polishing time concurrently. The GA method for 

polishing process sequence, is then discussed, including a new proposed initialization 

algorithm and specific genetic operators particularly for the requirements on polishing 

process sequencing. The next Section provides the implementation of the proposed 

method and test example. The closing section draws conclusions and presents future 

work.  

2. Background 

Process sequencing is a complex issue and involves a large number of constraints and 

factors, such as various component details (e.g., geometrical tolerances, feature 

relationships, etc.), manufacturing rules, precedence requirements, time, and cost. A 

Genetic Algorithm is a classical evolutionary algorithm based on biological operators 

such as selection, crossover, and mutation. The genetic algorithm technique has 

advantages to generate good solutions to complex problems, and therefore attracts 

number of researchers on its application for process sequencing optimization. such as 

the work of Li et al., (2005); Bo, Hua, and Yu (2006); and Fan and Wang (2012). Qi et 

al (2017) designed an enhanced hierarchical GA for typical manufacturing process 

optimization for metal structure production systems. A hierarchical structure aimed to 

solve simultaneously, three issues, process sequencing, layout selection, and machine 

selection. Knust et al., (2017) presented a GA optimization method for hot forging 

processes with multiple objectives, based on shape geometry requirements. Su et al. 

(2018) developed a strategy-based GA for operational sequencing posed on edge 

selection, aiming to satisfy defined precedence constraints. Their edge selection 

strategy proports to improve the GA’s converging efficiency. Dou et al., (2018) 

presents an enhanced GA for sequencing aiming to minimize the overall cost. Their 

new elitist-based crossover strategy and an improved mutation method are adopted to 

keep the feasibility of the GA chromosomes.  

 

For use in a CAM system, Čuboňová et al., (2019) developed a GA-based optimization 

strategy for machining processes. The length of tool paths was considerably reduced 
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by using genetic algorithm to reduce machine times and optimize cutting parameters. 

A hybrid constrained ‘permutation algorithm’ and GA approach for process planning 

was presented by Falih and Shammari (2020). The constrained permutation algorithm 

is employed to produce an initial solution, to minimize the number of setup and tool 

changes. The authors employed a GA to search for best fit process plans. An 

optimisation algorithm amalgamating variable neighborhood search and a GA for 

process sequencing of large-size problem was presented by Luo et al (2020). Their 

version of variable neighborhood search was used to decompose a complex and sizable 

solution space into simple multi-neighborhood areas. An approach combining Tabu 

search, and GA was proposed by Shi and Xiong (2021). The goal of their hybrid 

approach was to minimize the tool changeover times in CNC milling. Tabu search was 

combined with the GA to improve the performance.  

 

The polishing process is mainly performed by human workers more recently robotic 

polishing has gained more and more attention because of the reason mentioned earlier. 

Thus, the work to support polishing process sequencing is limited. Mohsin et al. (2019) 

proposed an approach based on tool path planning to improve the contact area per cut 

path and surface quality. The polishing parameters optimization were evaluated using 

design of experiments (DOE).  Liu et al. (2022) presented a novel robotic polishing 

planning method that considered, the deformation problems when polishing the thin 

sheet metal parts. Their approach is based on Hertz theory, differential geometry and 

derived a polynomial equation. It combines a developed constant speed robot path 

planning method with the contact-area information to guarantee improved surface 

quality. 

 

In summary, GAs have advantages for process planning, such as it is easy to represent 

and implement the operations’ sequence in the coding environment using 

chromosomes; It is more likely to generate global optimization and avoid local optimal 

points by genetic operators like crossover and mutation; It is able to support multiple 

objectives optimization through definition of a multi-objective fitness function; etc. 

The previous research has shown GAs are good solutions for optimization and search 

problems, and therefore GAs is suitable technique for the applications on process 

optimization. However, the elements of a GA, including fitness function, crossover 

and mutation operators, initial selection strategies, determine the effectiveness of the 

GA’s application. Meanwhile, GAs combined with other artificial intelligence 

techniques, such as different optimization algorithms, can improve performance of GA 

optimization and therefore provides a promising solution for more complex 

optimization problems. Additionally, there is few efforts on the polishing process 

sequencing. However, with the introduction of robots to polishing process, the 

requirements for automated polishing operation sequencing are increasing.  
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3. The characteristics of polishing process sequencing 

 

Moulds and dies include a series of machined features and inserts that form the 

component during the production process. The surface finish of the final component 

directly relates to the machined finished of the mould or die or its inserts (Matthews 

and Ding, 2009). The higher the quality of surface finish required the more time and 

expense is exhausted in the manufacturing process. Therefore, the manufacturer will 

aim to obtain the minimum polishing time on each feature to satisfy customer 

requirements. E.g., hidden features may only need to be polished to a level that allows 

easy extraction from the mould. Most of previous CAPP research focus on cutting 

manufacturing process, including various machining (e.g., drilling, milling, turning, 

etc.) covering from blank, rough machining, semi-finishing to finishing machining. 

However, polishing process sequencing is different from general cutting 

manufacturing process sequencing: 

 

Figure 2. Illustration of polishing operation-parts 

 

Table 1 Polishing operation-parts of the open pocket feature 

operation 

part 

Starting 

Roughness 

Required 

Roughness 

Polishing tool Operation-parts 

Part1 1.6µm 0.15µm Polishing disc Operation 1(#400) 

Operation 2(#800) 

Operation 3(#1000) 

Part2  1.6µm 0.2µm Cylinder polishing 

tool 

Operation 1(#400) 

Operation 2(#800) 

 

• For cutting manufacturing process, the manufacturing feature is treated as a 

whole (Ding and Yue, 2004). For example, all faces of the open pocket (shown 

in Figure 2) are generated by certain machining operation (e.g., milling) at 

same time. Differently, as shown Table 1, the open pocket must be broken 

down two geometrical parts for polishing, which the part1 will choose 

polishing disc with three operations using different abrasive papers, while the 
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part2 will use cylindrical polishing tool with two operations to finish. Thus, 

polishing features need to be further broken down to one or more geometrical 

groups, each of which could use different tools, abrasive papers, and setups. 

Such geometrical group in this research is called as polishing operation-part. 

Meanwhile, from the polishing view, in most situations, polishing operation-

parts could be treated independently during process sequence. Also, different 

accuracy or surface finish could put polishing operation-parts, even within 

same feature, in different process precedence. For example, there are two 

features in the component shown in Figure 3. These two features can be further 

broken down to four polishing operation-parts. Although the polishing 

operation-parts A and B belong to a same feature (i.e., F1), and C and D belong 

feature F2, the operations for polishing operation-part A are arranged together 

with operations of operation-part C, not operation-part B, due to the same 

polishing tools and abrasive papers.  

 

Figure 3. The arrangement of operation-parts in distinctive features 

 

In addition, polishing operation-parts, which have same type, dimensions, and 

surface finish requirements, such as p011, p021, p031, and p041 shown in 

Figure 3, will use same polishing process and be polished together in industrial 

practice. Therefore, the concept of polishing operation-group, including the 

polishing operation-parts with same type, dimension, and surface finish 

requirement, is introduced here. For example, there are two polishing operation 

groups in Figure 4: p011, p021, p031, and p041; and p012, p022, p032, and 

p042. The polishing operation-group will be treated as a single polishing 

operation-part during the polishing process planning. 



7 

 

 

Figure 4. Examples of polishing operation-group 

 

• Polishing process sequencing is different from general cutting manufacturing 

process sequencing. Polishing process is usually carried out after finishing a 

series of cutting manufacturing operations. Therefore, the rules for polishing 

process sequence cannot be the same as cutting manufacturing process 

sequences. For example, as shown in Figure 5, for cutting manufacturing 

process planning, which focuses on planning material removal processes (e.g., 

milling) from a blank, the parent feature (i.e., ft2) should be processed before 

its child feature (i.e., ft1) by considering their tool access directions and 

machining efficiency. However, at polishing stage, as these two features have 

already been rough/semi-finished machined, such precedence constraint are 

not need anymore. On contrary, if parent feature ft2 has higher surface finished 

requirements than child feature ft1, then the feature ft1 should have its fine-

polishing operation before feature ft2. When one considers general subtractive 

machining manufacturing processes. They are typically conducted based on the 

order from rough machining, semi-finishing to finishing machining, and 

therefore, the features with highest indicative surface roughness are usually 

machined before the features with lowest indicative surface roughness. E.g., in 

producing a high precision hole. The part would be rough machined with a drill, 

giving high material removal rate, but leaving a surface finish range of 6.3µm-

1.6µm. Then it would be reamed, leaving a surface finish range of 3.2µm-

0.8µm. The final operation would be honing providing a surface finish range 

of 0.8µm-0.1µm. However, as the polishing process is one of the finishing 

machining, such precedence requirements are not needed except some special 

situations. Using the example in Figure 5, although in this instance, feature ft3 

has lower finished surface roughness requirement than the feature ft2, it does 

not matter which feature needs to be polished first as the two polishing features 

are not connected or adjacent. Differently, as feature ft1 and feature ft2 are 
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connected, the fine-polishing operation for the feature ft1 (with lower finished 

surface roughness requirement) should be arranged prior to the fine-polishing 

operation for feature ft2 (with higher finished surface roughness requirement). 

 

Figure 5. A component with three features  

 

Thus, considering the specific requirements of polishing process, six polishing 

process sequencing rules are derived, which can be classified as two aspects: 

polishing precedence constraints and polishing efficiency constraints: 

 

Polishing precedence constraints: 

• Rule 1: To gain the target of surface finish, multiple polishing 

operations are usually required for a polishing operation-part. Rough 

polishing operations should be done before fine polishing operations.  

• Rule 2: For a cutting feature, which geometry is obtained by removing 

a volume material from the initial blank, the polishing operation-parts 

with low required surface finish should be polished prior to the 

polishing operation-parts with high required surface finish, which 

guarantee the best surface finish awarded. 

• Rule 3: If two polishing operation-parts are connected or adjacent, the 

polishing operation-parts with low required surface finish should be 

polished before the polishing operation-parts with high required surface 

finish, so that the best surface finish is achieved. 

 

Polishing efficiency constraints: 

• Rule 4: Polishing operation-parts to be polished using same machine 

setup should be polished successively.  

• Rule 5: Operations, which use the same polishing tool should be 

arranged successively.  

• Rule 6: Operations, which use same polishing tool and abrasive paper, 

should be conducted successively.  
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4. GA-AHP optimisation strategy 

This paper proposes a GA-based polishing process sequencing, aiming to obtain an 

optimal point which satisfies both the polishing sequence rules and quickest polishing 

time. Figure 6 depicts the procedure of the proposed genetic algorithm. The process 

starts by initializing populations with several valid candidates using an initial 

precedence constraints algorithm (details given in Section 4.2). Then performs a 

genetic operation to these candidates (i.e., selection, crossover and mutation discussed 

in Section 4.3). The multiple-objective fitness functions are calculated using AHP 

method (as described in Section 4.1). The output with the best fitness function is 

adopted. This iterative process stops when fitness function cannot be further reduced. 

 

Figure 6 Procedure of the proposed genetic algorithm process 

4.1. Fitness function calculation using AHP 

With the application of GAs to operations like process planning or sequencing, it is 

important to have an appropriate fitness function, as this is considered as a 

performance benchmark. Therefore, it will indicate the degree of objective satisfaction 

of a solution searched (Ding and Matthews, 2009). Because of this, in any use of a 

GA, the fitness calculation is the most important mechanism. In this research, a fitness 

function, which aims at the shortest polishing processing time and satisfaction of the 

key polishing rules simultaneously, is proposed for the polishing process sequencing. 
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However, what has been demonstrated in practice, is that it is practically impossible 

to satisfy all sequence requirements within a polishing process sequence. E.g., a 

polishing process sequence may have shortest time but conflict with the polishing 

process rules. Oppose, a polishing process sequence could satisfy very well with 

sequencing rules but have longer polishing time. Another example, if two polishing 

operations have different machine setups but use same polishing tool and abrasive 

paper. According to the rule of polishing operations using same machine setup should 

be polished successively, the two polishing operations should not be arranged together, 

but it conflicts with the rule of operations, which use same polishing tool and abrasive 

paper, should be conducted successively.  

 

Figure 7. Procedure of AHP 

 

Thus, it becomes importance introduce a grouping of weights which represent the 

relative importance of the requirements inside the polishing process sequencing. The 

weights with most importance are obtained via the application of Analytic Hierarchy 

Process (AHP). AHP has been shown to be an effective technique for multi-attribute 

decision-making (e.g., Ji and Jiang, 2003; Angelis and Lee, 1996). Figure 7 shows the 

AHP model proposed in the research. 

 

Step 1: The evaluation criteria is hierarchal structured into four levels from an 
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overall objective to various sub-criteria (cf. Figure 8).  

 

 

Figure 8. AHP evaluation criteria 

 

Step 2: Based on expert judgement, to determine the relative weights of structured 

criteria, pairwise comparisons (Matrix R) are constructed. R is described by a 

number of rij which presents the relative importance between the ith and jth 

constraint. This is presented as follows: 

 

𝑅 = [

𝑟11 ⋯ 𝑟1𝑚

⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑚

] 

where m is the selected constraints number 

rii = 1 

rij = 1/rji 

In this research, an evaluation criteria table based on a one to nine scale is employed 

in the matrix R, as shown with Table 2. E.g., if Rule i (e.g., Rule 4) is considered to 

have very strong importance than Rule j (e.g., Rule 5) in the evaluation, a weight of 

‘7’ is given to Rij. On the contrary, the value of Rji is set to ‘1/7’. Based on the proposed 

AHP evaluation criteria, four matrices have been defined, that is R1 (2x2), R21 (2x2), 

R31 (3x3), and R32 (3x3).  

 

Within these matrices, the defined value of each element is provided based on expert 

or suitably qualified persons knowledge and experience. 

 

 

Table 2 Matrix evaluation criteria 

Term Importance 

intensity of (rij) 

Importance 

intensity of (rji) 

The ith and the jth constraint have 1 1 
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the same importance 

The ith constraint has moderate 

importance than the jth constraint 

3 1-3 

The ith constraint has strong 

importance than the jth constraint 

5 1- 5 

The ith constraint has very strong 

importance than the jth constraint 

7 1 -7 

The ith constraint has extreme 

importance than the jth constraint 

9 1-9 

The values in-between importance 

adjacent scale values 

2, 4, 6, 8 

 

1- 2, 1-4, 1-6, 1-8 

 

 

Step 3: Use Eigenvalue techniques to calculate the weights. 

a) For each row, all elements are added together to sum Si: 

𝑆𝑖 = ∑ 𝑟𝑖𝑗

𝑚

𝑖,𝑗=1

 

where j represents the column;  

i represents the row.  

m is the number of the columns (= rows) in the matrix R. 

b) Apply the normalized weight vector, iW  

𝑊𝑖𝑗 =
𝑟𝑖𝑗

𝑆𝑖
 

𝑊𝑖
̅̅ ̅ =

1

𝑚
∑ 𝑊𝑖𝑗

𝑛

𝑗=1

 

where j represents the column. j = 1,...m;  

m is the number of the columns (= rows) in the matrix R. 

 

The proposed AHP evaluation criteria in this research only require small size 

of the matrix R and therefore the step of checking the consistency may not be 

necessary.  

 

 

Step 4: Calculate polishing time: Basically, the calculation of the time for a 

polishing process is similar to other machining process, including the time for 

conducting polishing and other supporting activities, such as changing tools. The 

main difference for polishing process is the consideration of the abrasive paper 

change time, including changing the abrasive paper within an operation due to the 

wearing of the abrasive paper; changing abrasive paper with different levels 

according to the required Ra for different operations; and changing abrasive papers 
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when the polishing tools is changed. Thus, the duration for a polishing process is 

defined as followed: 

 

 
=


=
=

+=
n

1
2

1
_tot

i

n

ji
j
i

ijitimeal TCTPT
 

TPCTTMTTCTC ijijijij
++=

 

 

where Ttotal_time is the duration spent for the whole polishing process;  

TPi is the duration for the ith polishing operation (including tool 

path planning time, polishing time, and the time to change the 

abrasive paper within this operation);  

TCij is the change time between operation i and j;  

TTCij is the tool changeover duration for the ith polishing 

operation to the jth polishing operation, including the abrasive 

papers changing time when the polishing tool is changed;  

TTMij is the time for the polishing tool moving from the ith 

operation to the jth operation;  

TPCij is the change time of different types of abrasive papers 

from the ith polishing operation to the jth polishing operation 

while polishing tool is same. 

A relative evaluation value for the polishing time, ft, can be gained as: 

𝑓𝑡 =
𝑇𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒

𝑇𝑚𝑎𝑥
 

where Tmax is the maximum polishing time permitted.  

 

 

Step 5: The polishing process sequence rules are evaluated as the satisfaction 

degree. Apart from the weight system, the precedence value system is built on how 

good the precedence of two polishing operations meets the requirements of the 

rules for polishing process. For example, Vhij refers to the evaluation using rule h 

when operation j is performed behind operation i. If the polishing rule h support 

the two operations precedence, Vhij is assigned a small positive value less than one 

(i.e., 0<Vhij≤1). The less value, the fitter for the rule h.  On the other hand, if the 

polishing rule h is against the two operations precedence, Vhij is set a value larger 

than one (i.e., Vhij>1). The larger value, the more conflict for the rule h..  

 

 

Step 6: Calculate fitness function as below: 
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𝑊𝑘 = 𝑊𝑞 𝑊𝑘𝑞
𝑠  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊𝑡
0𝑓𝑡 + 𝑊𝑝

0 ∑ ∑ ∑ 𝑊𝑘𝑣𝑘𝑖𝑗

𝑛

𝑗=1
 𝑂𝑖>𝑂𝑗

𝑛

𝑖=1

𝑚

𝑘=1

 

where 𝑊𝑡
0is the weight for the polishing time (Level 1); 

 𝑊𝑝
0 is the weight for the polish ability (Level 1); 

𝑊𝑘 is the weight of the kth constraint (Level 3) for the polishing ability 

(Level 1); 

𝑊𝑞 is the weight of the qth constraint in the Level 2 for the polishing 

ability (Level 1); 

𝑊𝑘𝑞
𝑠  is the weight of the kth constraint (Level 3) for the qth constraints 

in the Level 2; 

ft, is the relative evaluating value for polishing time; 

Vkij is the precedence value for the kth constraint (Level 3) if operation 

j is performed behind operation i. 

 

 

4.2. Initialisation 

Initialization produces a number of populations for polishing process planning of a 

component. Good initial populations should cover sufficiently valid search space. It 

means the initial populations need not only to include various viable solutions, but also 

to exclude those invalid solutions. For the polishing sequencing, on the one hand, the 

precedence constraints among features, even if the precedence/successive constraints 

among different polishing operation-parts in a feature, are not as important as in the 

cutting manufacturing process. However, on the other hand, for the multiple operations 

for a polishing operation-part, the rough polishing operation must be strictly conducted 

prior to fine polishing operation, if not, it will be infeasible. Therefore, a new algorithm 

to generate initial populations has been developed. At the first stage, a polishing 

operation-part will be selected randomly from pool of the unselected polishing 

operation-parts. Then, at the second stage, the polishing operations for the selected 

polishing operation-part will be allocated an unoccupied position randomly but strictly 

based on rough, semi-finishing and finishing polishing precedence constraints.  

 

The algorithm can be illustrated by an example, as shown in Figure 9 and Table 3, 

the component has two features with four polishing operation-parts (i.e., P011, P012, 

P021 and P022). Each of these polishing operation-parts further consists of several 

operations.  
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Figure 9 A component with four feature parts 

 

Table 3 Operations for each feature part 

 

P011 

P0111(#400)  

P012 

P0121(#400) 

P0112(#800) P0122(#800) 

P0113(#1000) P0123(#1000) 

P0114(#1200) P0124(#1200) 

    

 

P021 

P0211(#400)  

P022 

P0221(#400) 

P0212(#800) P0222(#800) 

P0213(#1000) P0223(#1000) 

P0214(#1200) P0224(#1200) 

 

First, there are four polishing operation-parts are unselected. A polishing operation-

part is chosen randomly from these polishing operation-parts (e.g., i = 2). There are 

four operations for the selected polishing operation-part (i.e., P012): Strictly based on 

rough to finish polishing precedence, P0121, P0122, P0123 and P0124 allocated an 

unoccupied position in sequence. 

• P0121: As P0121 must be carried out before P0122, P0123 and P0124, there 

must be three unused positions (for P0122, P0123 and P0124) behind P0121. 

That means 16 positions in the chain have not been used, but only 13 positions 

can be chosen for P0121, randomly choose k ∈ [1,13], e.g., k = 3, the 3rd 

unused position, i.e., the 3rd position in the chain. 

• P0122: behind P0121, only thirteen positions have not been used. However, 

P0122 must leave two unused positions for P0123 and P0124. Thus, randomly 

select k ∈ [1, 11], e.g., k = 2, the 2nd unselected position after the position of 

P0121 (i.e., 3rd), i.e., the 5th position in the chain. 

• P0123: different from P0122, P0123 is only required to keep one position for 

P0124. Therefore, post P0122, there are ten positions which are available, so 
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selected k ∈ [1,10], for example, if k = 4, the 4th unselected position after the 

position of P0122 (i.e., 5th), i.e., the 9th position in the chain. 

• P0124: P0124 does not need to consider other operations and thus 7 positions 

are available behind P0123, k ∈ [1, 7], such as k = 5, the 5th unselected 

position after P0123 position (i.e., 9th), i.e., the 14th position in the chain. 

 

After all operations for P012 have been allocated, there are only three unselected 

polishing operation-parts (i.e., P011, P021 and P022) in the pool. Randomly selected 

one polishing operation-part (e.g., i = 1), which means P011 is chosen. P011 has four 

operations: P0111, P0112, P0113 and P0114, according to the rough to finish polishing 

precedence. 

• P0111: P0111 must be arranged before P0112, P0113 and P0114. Although 

there are 12 unused positions in the chain, only 9 positions can be chosen for 

P0111, randomly choose k ∈ [1, 9], e.g., k = 2, the 2nd unused position, i.e., 

the 2nd position in the chain. 

• P0112: behind P0111, ten positions are available to select. Meanwhile two 

positions must leave for P0113 and P0114. Thus, randomly select k ∈ [1, 8], 

e.g., k = 3, the 3rd unselected position after P0111 position (i.e., 2nd), i.e., the 

7th position in the chain. 

• P0113: after the position of P0112 and leaving one unused position for P0114, 

there are six positions available. Selected k ∈ [1, 6], for example, k = 6, the 

6th unselected position after P0112 position (i.e., 7th), i.e., the 15th position in 

the chain. 

• P0114: the position of P0113 leaves only one position can be selected for 

P0114, k ∈ [1, 1], e.g., k = 1, the 1st unselected position after P0113 position 

(i.e., 15th), i.e., the 16th position in the chain.  

 

Similarly, the positions of P0211 to P0214, and P0221 to P0224 can be allocated, 

respectively. The details of the whole process are displayed in Table 4. As the new 

initial algorithm ensure the rough, semi-finishing and finishing polishing precedence 

constraints, the invalid solutions are excluded from the populations. 

 

 

For Table 4,  

• [Ox - Oy] refers to the range of the number of unselected polishing operation-

parts. 

• Pijk refers to the operation ID, i refers to the ith feature ID and j refers to the jth 

polishing operation-part. 

• [Ai - Aj] refers to the range of the number of the available positions and k is the 

random number generated from the range [Ai - Aj]. 
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• u refers to the number of unused positions. 

• Green boxes represent vacant positions while gray boxes represent unavailable 

positions. 

 

Table 4 Illustration of new initial algorithm 
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Large population size increases the accuracy of the optimization; however, it requires 

more search time. For same number of operations, compared to general optimisation, 

the valid search space for polishing process sequencing is much smaller. This is due to 

the strictly precedence constraint for the multiple operations for a polishing operation-

part. However, beside the number of operations, the search space is highly related to 

the number of polishing operation-parts and the number of operations they include. 

Experimental evaluations showed that population size setting to around five to ten 

times of number of polishing operation-parts can achieve reasonable accuracy. Thus, 

considering the search time, in this research, the population size is setting as six times 

of the number of polishing operation parts the polishing process includes. For example, 

the population size sets to twenty-four for twenty operations polishing sequencing with 

four polishing operation-parts; while the population size sets to 72 for twenty 

operations polishing process sequencing with twelve polishing operation-parts.  

 

4.3. Operators 

 

There are three important generic operators needed to design in the genetic 

algorithm:  selection operator, crossover operator, and mutation operator.  

 

1) Selection operator: Selection refers to a process of selecting individuals 

(called parents) for the following operators (e.g., crossover and mutation) to 

produce the new generation. Once parents are chosen, they will have the 

chance to be used in genetic operations downstream such as crossover and 

mutation. In this research, the 'roulette wheel selection' strategy (Faris et al., 

2019) is used.  

According to Equation shown below, the individuals’ fitness is firstly 

converted to its proportional probability of selection (Pi), which represents 

the region of wheel.  

 

𝑃𝑖 =
1 𝐹𝑖⁄

∑ 1 𝐹𝑖⁄𝑛
𝑖=1

 

Where Fi refers to the fitness of the ith individual of the populations, 

n is the size of the populations 

 

Then, the individual, whose region that the fixed-point stops, is selected. 

Thus, it can be seen that the individuals having better fitness are more likely 

to be selected. Example of the roulette wheel selection method is presented in 

Figure 10 and Table 5. 
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Figure 10 Example of the roulette wheel selection 

 

 

 

 

Table 5 Fitness values and the according Pi values given for the example 

 Fi Pi 

A 2.5 6.58% 

B 2 8.23% 

C 0.8 20.58% 

D 1.6 10.29% 

E 1.25 13.17% 

F 0.4 41.15% 

 

2) Crossover operator: Crossover refers to the genetic operator that splits and 

recombines two parents from the selected 'parents’ population' to give birth 

to new solutions for the next generation. There are distinct types of 

crossovers based on the number of split positions and different recombining 

strategies between two parents. Obviously, the crossover strategies like 

single-point crossover, are not suitable for polishing process sequencing as 

it may result in an invalid sequence, i.e., some operations appear in a child 

more than once, or not appearing at all. In an attempt to overcome the 

drawback and to produce a valid process sequence, (Li, et al., 2002) 

proposed a modified crossover strategy in which new solutions for the next 

generation (children) are produced following the steps described below.  

• Step 1: Two selected parents are separated into a left section and a right 

section, breaking at a randomly selected splitting point. That is, Parents I and 

II are separated into four sections, namely Left-Parent I, Right-Parent I, Left-

Parent II, and Right-Parent II. 
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• Step 2: Left-Parent I then forms the first section of Child I.  

• Step 3: The second section of Child I consists of bits of Right-Parent I, in 

the order of appearance they have in Parent II.  

• Step 4: Child II is produced in a similar way. That is, Left-Parent II forms 

the first section of Child II, and the second section of Child II consists of 

bits of Right-Parent II, in the order of appearance they have in Parent I.  

The following example illustrates how a modified crossover works. 

Parent I: OP1-OP2-OP3-OP4-OP5-OP6-OP7-OP8-OP9-OP10 

Parent II: OP6-OP2-OP3-OP8-OP4-OP1-OP9-OP5-OP10-OP7 

Assuming the splitting point is at position 5, Parent I is separated into two 

sections: 

Left-Parent I: OP1-OP2-OP3-OP4-OP5 

Right-Parent I: OP6-OP7-OP8-OP9-OP10 

Bits of Right-Parent I in the order of appearance they have in Parent II:  

OP6-OP8-OP9-OP10-OP7 

Then, the new Child I created would be: 

Child I: OP1-OP2-OP3-OP4-OP5|-OP6-OP8-OP9-OP10-OP7 

Similarly, parent II is also separated into two sections: 

Left-Parent II: OP6-OP2-OP3-OP8-OP4 

Right-Parent II: OP1-OP9-OP5-OP10-OP7 

Bits of Right-Parent II in the order of appearance they have in Parent I: 

OP1-OP5-OP7-OP9-OP10 

Then, the new Child II created would be: 

Child II: OP6-OP2-OP3-OP8-OP4|-OP1-OP5-OP7-OP9-OP10 

As shown in the example above, not only does the modified crossover guarantees 

that each operation appears in a child once and once only, but it also retains the 

precedence constraints used in the parents as much as possible. The crossover rate 

is chosen as 0.8. 

 

3) Mutation: Mutation refers to the genetic operator that randomly changes one 

or more bits of the selected parent. To avoid an invalid sequence, the 

mutation strategy used in this research is: the value at two randomly selected 

positions is swapped. The following example illustrates how the strategy 

works: 

Before mutation:  

OP1-OP2-OP3-OP4-OP5-OP6-OP7-OP8 

Assuming the two randomly selected positions are position 3 and position 6, 

then the result of mutation would be: 
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After mutation: 

OP1-OP2-OP6-OP4-OP5-OP3-OP7-OP8 

The mutation operator is used to prevent the populations from converging to 

a local minimum by providing the populations with new viable solutions that 

may have been lost during successive generations. However, a high mutation 

rate could destroy appropriate solutions and retrograde optimization into a 

random walk. Thus, the mutation rate is set low (i.e., 0.1). 

4.4. Convergence 

The iterative search may stop when the target is met. The target of this research is 

finding the most suitable polishing process sequencing, which means value of the 

fitness function reaches its lowest (in other word, no longer decreases).  

5. Implementation 

Based on the proposed method, a prototype system has been implemented to conduct 

the polishing process planning using Python 3.9.6 and corresponding packages like 

openpyxl and tkinter. Here is an example. Figure 11 shows a mould, in which ten 

features need to be polished. The ten polishing features are further divided into twelve 

polishing operation-parts/groups. Table 6 gives polishing operation selection of the 

example. 

 

Figure 11 An example of a mould insert 

 

Table 6 The results of polishing operation selection of the example 
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The process sequencing is conducted based on the proposed GA-AHP optimization 

method. The population size, crossover and mutation rate are 72, 0.8 and 0.1, 

respectively. As shown in Figure 12, the process sequence is optimized and finally 

reach to its best fitness. The result is output and provides in the Table 7.  

 

Figure 12 Process sequencing for the mould insert example  
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Table 7 The results of process sequence for the example  

Sequence No Operation ID Operation Part ID  

1 O0021 P011  

2 O3116 P071  

3 O3121 P081 GP021 

P091 

4 O1010 P101  

5 O0091 P021 GP011 

P031 

P041 

P051 

6 O3110 P061  

7 O3002 P062  

8 O4118 P102  

9 O0081 P022 GP012 

P032 

P042 

P052 

10 O1518 P082 GP022 

P092 

11 O3002 P012  

12 O1018 P072  

13 O1019 P072  

14 O4119 P102  

15 O1020 P072  

16 O0092 P021 GP011 

P031 

P041 

P051 

17 O3117 P071  

18 O3122 P061  

19 O3122 P081 GP021 

P091 

20 O1011 P101  

21 O1012 P101  

22 O1013 P101  

23 O1014 P101  

 

6. Summary 

For production tooling such as moulds and dies about twenty percent of the 

manufacture costs and around fifty percent of the manufacturing process time are 

apportioned to finishing operations, such as buffing and polishing. Robotics is seen 

as one way to reduce these costs and deal with issue of skilled workers shortage. A 

part of the movement towards robotic adoption is effective and automatic polishing 

process planning. This paper has presented a GA-AHP optimization strategy specially 
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for polishing process sequencing. The strategy is based on the specific constraints 

and rules for polishing sequencing, which previous research does not address. AHP 

has been employed to support multiple objectives optimization by defining the 

required multi-objective fitness function for the optimization, which is able to 

consider the best satisfaction of polishing process sequence rules and minimum 

polishing duration simultaneously. The proposed GA method with a new initialization 

algorithm and specific genetic operators optimizes the polishing process sequence 

until it reaches its best fitness. A prototype system based on the proposed method has 

been developed to demonstrate its effective.  

7. Future works 

It is apparent from the results that further work is necessary. Currently, the generated 

process planning is used to instruct robotic polishing operations, including their 

settings (e.g., polishing tools, abrasive papers, cutting speed, etc.) and their orders. 

However, the robot control code is generated manually. The research needs to be 

extended to interface with robot driver system to implement a completely unmanned 

operation environment. Integration of the polishing process plan with the robot 

control and drive system is required.  

In addition, it is valued to explore the potential to further speed search process by 

combining the proposed GA-AHP optimization strategy with other algorithms, such 

as integrating particle swam optimization (PSO) for quick local search. 
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