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Dynamic control and information processing in the Belousov–Zhabotinsky
reaction using a coevolutionary algorithm

Rita Toth,a� Christopher Stone,b� Andrew Adamatzky,c� Ben de Lacy Costello,d� and
Larry Bulle�
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We propose that the behavior of nonlinear media can be controlled dynamically through
coevolutionary systems. In this study, a light-sensitive subexcitable Belousov–Zhabotinsky reaction
is controlled using a heterogeneous cellular automaton. A checkerboard image comprising of
varying light intensity cells is projected onto the surface of a catalyst-loaded gel resulting in rich
spatiotemporal chemical wave behavior. The coevolved cellular automaton is shown to be able to
either increase or decrease chemical activity through dynamic control of the light intensity within
each cell in both simulated and real chemical systems. The approach is then extended to construct
a number of simple logical functions. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2932252�

INTRODUCTION

The theory of evolution was introduced by Charles Dar-
win, namely, that all living species evolve over the course of
generations through a natural selection process.1 The com-
plex mixture of biochemical reactions that build up a living
system is the result of evolution over billions of years.2

These reactions are interacting with each other nonlinearly
producing and maintaining a semiclosed system: An organ-
ism, which consists of cells.3,4 Living cells communicate
with each other and with their environment by passing, re-
ceiving, and processing information and these processes are
dynamically controlled. How the dynamical behavior of
�bio�chemical systems is controlled and how they process
information is an important question.

There is also growing interest in research into the devel-
opment of “nonlinear computers.”5 The aim is to harness the
as yet only partially understood intricate dynamics of nonlin-
ear media to perform complex “computations” more effec-
tively than with traditional architectures and to further the
understanding of how such systems function. Previous theo-
retical and experimental studies have shown that reaction-
diffusion chemical systems are capable of information
processing.6–10 In our previous work �see overview in Ref.
10�, we demonstrated that nonlinear chemical systems are
capable of implementing various kinds of computational pro-
cedures. Experimental prototypes of reaction-diffusion pro-
cessors have been used to solve a wide range of specialized
computational problems, including image processing,11,12

path planning,13,14 robot navigation,15 computational
geometry,16 “chemical diode,”17 counting,18 and implement-
ing memory.19,20 In addition to these applications, logic gates

were constructed in excitable chemical systems9,21–24 and in
bistable systems.25 Various logic gates as well as simple
computational devices based on pattern recognition were
studied in coupled continuously fed stirred tank reactors
�CSTRs�.26–31 Okamoto et al.32 have considered certain en-
zymatic reactions as basic biochemical switching devices.

In this work, we produce networks of nonlinear media—
reaction-diffusion systems—to achieve a user-defined com-
putation in a way that allows direct control of the media. We
use the spatially distributed light-sensitive Belousov–
Zhabotinsky �BZ� reaction which supports traveling
reaction-diffusion waves and patterns. Exploiting the photo-
inhibitory property of the reaction, the chemical activity
�amount of excitation on the gel� can be controlled by the
applied light intensity, namely, can be decreased by illumi-
nating the gel with high light intensity and vice versa. In this
way, a BZ network is created via light and controlled using
cooperative coevolutionary computing to design heteroge-
neous automata networks. We adapt the system described by
Wang et al.33 and explore its computational potential based
on the movement and control of wave fragments. In our ex-
periments, a heterogeneous automata network controls the
light intensity in the cells of a checkerboard image projected
onto the surface of the light-sensitive catalyst-loaded gel.
Initially a certain number of wave fragments are created on
the gel and the automata network is shown to be able to
either increase or decrease the number of wave fragments
through dynamic control of the light intensity within each
cell in both simulated and real chemical systems. Building
upon these results, we increase the complexity of the task
and we design a simple scheme to create a number of two-
input Boolean logic gates: AND, NAND, and XOR both in
simulation and real chemical experiments.

EVOLUTIONARY ALGORITHMS

An Evolutionary Algorithm34 �EA� is a search technique
inspired by biological evolution that mimics the process of
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natural selection. EAs employ a population of individuals,
each coding as a genome a possible solution to a target prob-
lem. By testing each of these individuals against the target
problem, the fitness of that individual with respect to the
problem is obtained. Promising individuals �i.e., those with
high fitness� are then selected from the population and
evolved by means of recombination and/or mutation. Re-
combination involves combining elements from promising
individuals to create new, hopefully better, individuals. We
expect that a high degree of spatial heterogeneity will typi-
cally be required in the present system, rendering the use of
recombination somewhat superfluous. We therefore do not
use recombination in the present work. Instead, mutation is
the sole source of variation used in our EA and it occurs by
changing randomly chosen genes to other random values
with a fixed low probability, allowing alternative possible
solutions to be explored. In this way, a new generation of
offspring individuals is created from the original parent
population, which replaces the previous population. This
cycle is repeated for a specified number of generations or
until an individual with the desired fitness is found.

EAs are being used increasingly in the design and analy-
sis of complex systems �e.g., Ref. 35�. Example applications
include data mining, time series analysis, scheduling, process
control, robotics, and electronic circuit design. EAs are also
used in organic chemistry for laser pulse shape design to split
complex molecules into simpler molecules36 and in the phar-
maceutical industry for product-based design of combinato-
rial libraries.37 Such techniques can be used for the design of
computational resources in a way that offers substantial
promise for application in nonlinear media computing since
the algorithms are almost independent of the medium in
which the computation occurs. This is important in order to
achieve effective nonlinear media computing since an EA
does not need to directly manipulate the material to facilitate
learning and the task itself can be defined in an unsupervised
manner. In contrast, most traditional learning algorithms use
techniques that require detailed knowledge of and control
over the computing substrate involved. Indeed, Harding and
Miller38 have recently described the use of an EA to design a
computational system using liquid crystals and Tour et al.39

constructed a number of logic gates from molecular switches
using an EA.

HETEROGENEOUS AUTOMATA NETWORK

We use an automata network to control the chemical
system. The network has a cellular-automaton topology, i.e.,
finite automata are arranged in a �2D� lattice with aperiodic
boundary conditions �an edge cell has five neighbors, a cor-
ner cell has three neighbors, and all other cells have eight
neighbors each�. Use of an automata network with such a 2D
topology is a natural choice given the spatiotemporal dynam-
ics of the BZ reaction. Each automaton updates its state de-
pending on its own state and the states of its neighbors.
States are updated in parallel and in discrete time. In cellular
automata �CA�, all cells have the same state transition func-
tion �rule�, whereas in this automata network each cell/
automaton can have its own state transition function. In this

work, the transition function of every cell is evolved by an
EA. Rules are initially random and change over the course of
an experiment as the EA searches the space of possible
solutions.

Such automata networks are sometimes called heteroge-
neous CA, but the notion is misleading and contradictory to
the exact sense of CA. However, we will be using this ter-
minology in our paper to keep consistency with previous
works on evolving CA.

Sipper40 has presented a nonuniform, or heterogeneous,
approach to evolving CA. Each cell of a one-dimensional or
2D CA is also viewed as an EA population member, mating
only with its lattice neighbors and receiving an individual
fitness. However, the reliance upon each cell having access
to its own fitness means it is not applicable in the majority of
chemical computing scenarios we envisage. Instead, fitness
is based on emergent global phenomena in our approach.
Thus, following Kauffman,41 we use a simple coevolutionary
approach wherein each cell of a 2D CA controller is devel-
oped via a simple EA. Coevolution is a particular form of
evolution whereby the fitness of an individual in a population
undergoing evolution depends on the fitness of other mem-
bers of that population. Due to the use of a single global
fitness measure, cells do not evolve in isolation and fitness is
influenced by the state of all cells in the grid.

For a given experiment, a random set of CA rules is
created for a 2D array of size 10�10, i.e., 100 cells. The rule
for each cell is represented as a gene in the EA’s genome,
which at any one time takes one of the discrete light intensity
values used in the experiment. As previously mentioned, the
grid edges are not connected �i.e., the grid is planar and does
not form a toroid� and the neighborhood size of each cell is
of radius 1; cells consider neighborhoods of varying size
depending on their spatial position, varying from three in the
corners, to five for the other edge cells, and eight everywhere
else. In the model, each of the 100 cells consists of 400
�20�20� simulation points for the reaction. The reaction is
thus simulated numerically by a lattice of size 200�200
points, which is divided into the 10�10 grid in the same
way as for the chemical experiment.

CHEMICAL MODEL

Features of the chemical system are simulated using a
two-variable Oregonator model modified to account for
photochemistry:42,43

�u

�t
=

1

�
�u − u2 − �f� + ��

u − q

u + q
� + Du�

2u

��

�t
= u − � .

The variables u and v represent the instantaneous local con-
centrations of the bromous acid autocatalyst and the oxidized
form of the catalyst, HBrO2 and tris �bipyridyl� Ru �III�,
respectively, scaled to dimensionless quantities. The rate of
the photoinduced bromide production is designated by �,
which also denotes the excitability of the system. Low simu-
lated light intensities facilitate excitation while high intensi-
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ties result in the production of bromide ions that inhibits the
process, experimentally verified by Kádár et al.42 The system
was integrated using the Euler method with a five-node La-
placian operator, time step �t=0.001 and grid point spacing
�x=0.62. The diffusion coefficient, Du, of species u was
unity, while that of species v was set to zero as the catalyst is
immobilized in the gel. The kinetic parameters were set to
�=0.11, f =1.1, and q=0.0002. The medium is oscillatory in
the dark which made it possible to initiate waves in a cell by
setting its simulated light intensity to zero. At different �
values, the medium is excitable, subexcitable, or
nonexcitable.

CONTROL PROCESS

Waves were initiated by setting � to zero for a small
area under and just outside the bottom center of the grid.
These waves were channeled into the grid and broken up into
12 fragments by choosing an appropriate light pattern, as
shown in Fig. 1�a�. The black area represents the excitable
medium while the white area is nonexcitable. After initiation,
three light levels were used: one is sufficiently high to inhibit
the reaction, one is at the subexcitable threshold such that
excitation just manages to propagate, and the other low
enough to fully enable it. The modeled chemical system was
run for 600 iterations of the simulator. This value was chosen
to produce network dynamics similar to those obtained in
experiment over 10 s of real time.

A color image was produced by mapping the level of
oxidized catalyst at each simulation point into an RGB value.
These color images were designed to mimic those obtained
from a digital camera during experiments and thus allow
direct comparison between simulation and experimental
results.

Image processing of the color image was necessary to
determine chemical activity. This was done by differencing
successive images on a pixel by pixel basis to create a black
and white thresholded image. Each pixel in the black and
white image was set to white �corresponding to excitation� if
the intensity of the red or blue channels in successive color
images differed by more than 5 out of 256 pixels �1.95%�.
Pixels at locations not meeting this criterion were set to
black. An outline of the grid was superimposed on the black
and white images to aid visual analysis of the results.
Though this may appear to be a somewhat circuitous meth-
odology, for reasons of consistency, we wanted to use the
same techniques for extraction and processing of results for
both modeling and experiment.

The black and white images were then processed to pro-
duce a 100 bit description of the grid for the CA. In this
description, each bit corresponds to a cell and it is set to true
if the average level of activity within the given cell is greater
than a predetermined threshold of 10%. Here, activity is
computed for each cell as the fraction of white pixels in that
cell. This binary description represents a high-level depiction
of activity in the BZ network and is used as input to the CA.
1 cycle of the CA is performed whereby each cell of the CA
considers its own state and that of its neighbors �obtained
from the binary state description� to determine the light level
to be used for that grid cell in the next time step. Each grid
cell may be illuminated with one of three possible light lev-
els. The CA returns a 100-digit ternary action string, each
digit of which indicates whether high ��=0.093 023�, sub-
excitable threshold ��=0.04�, or low ��=0.000 876� inten-
sity light should be projected onto the given cell. The pro-
gression of the �simulated� chemical system, image analysis
of its state, and operation of the CA to determine the set of
new light levels comprises one control cycle of the process.
Figure 2 provides a simplified view of one control cycle and
a typical light pattern generated by the CA controller is
shown in Fig. 1�b�.

Another 600 iterations are then simulated with those
light levels projected, etc., until 25 control cycles have
passed. After 25 control cycles, the fitness of the emergent
behavior is calculated. As previously mentioned, the EA used
in this work employs a single global fitness measure. The
nature of the tasks undertaken means that it is not possible to
decompose solutions obtained by the EA and apportion fit-
ness to their constituent parts. Instead, a global fitness is
determined according to how well the task has been per-
formed and this fitness is assigned to the genome for each
CA cell.

After fitness has been assigned, some proportion of the
CA genes are randomly chosen and mutated. Mutation is the
variation operator used by the EA to modify a CA cell’s
transition rule to allow the exploration of alternative light
levels for the grid state randomly selected. During mutation,
the transition value for one of the possible states considered

FIG. 1. �a� Initiation pattern; �b� a typical example of a coevolved light
pattern.

FIG. 2. Relationship between the CA controller, applied grid pattern, and
�simulated� chemical system comprising one process control cycle.
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by a CA cell is changed to one of the other possible light
intensities. For a CA cell with eight neighbors, there are 29

possible grid state to light level transitions, each of which is
a potential mutation site. After mutation, a generation of the
EA is complete and the simulation is reset and repeated as
described.

The EA keeps track of which CA states are visited since
mutation. On the next fitness evaluation �at the end of a
further 25 control cycles�, mutations in states that were not
visited are discarded on the grounds that they have not con-
tributed to the global fitness value and are thus untested. We
also performed control experiments with a modified version
of the EA to determine the performance of a random CA
controller. This algorithm ignored the fitness of mutants and
retained all mutations except those from unvisited states.

NUMERICAL RESULTS

We begin by considering two tasks. In the first task, the
CA controller must decrease the amount of excitation on the
grid. In the second task, the goal is to increase the overall
amount of excitation, i.e., the CA controller must create new
fragments.

Figure 3�a� shows the fitness of our coevolutionary ap-
proach averaged over ten runs for the inhibition task wherein
fitness is calculated as the number of cells in the grid that
have an activity level less than the 10% threshold. Note that
for this task fitness increases as grid activity decreases. As
can be seen, the amount of excitation decreases during learn-
ing. Figure 4 shows the snapshots of the spatiotemporal
behavior of a typical solution produced.

Figure 3�b� shows the fitness of our coevolutionary ap-
proach averaged over ten runs for the excitation task wherein
fitness is calculated as the number of cells in the grid that
have an activity level greater than or equal to the 10%
threshold. As can be seen, the amount of excitation increases
during learning. Figure 4 shows the snapshots of the spa-
tiotemporal behavior of a typical solution produced. If the
task were to have been tackled by a person with prior knowl-
edge of the BZ reaction, the number of fragments would be
increased simply via the predominant projection of the low-
est light level. However, it appears from observation that the
number of fragments and thus the total excitation level is
also increased via the application of appropriate high and

low light intensity cells placed by the CA so as to maneuver
and split existing fragments. However, the exact mechanism
of this process is yet to be fully understood.

EXPERIMENTAL IMPLEMENTATION

Given the success of our approach using the simulated
chemical reaction, we have attempted to implement the same
two tasks using a real chemical system constructed using the
following methodology.

Sodium bromate, sodium bromide, malonic acid, sulfuric
acid, tris�bipyridyl� ruthenium �II� chloride, and 27% sodium
silicate solution stabilized in 4.9M sodium hydroxide were
purchased from Aldrich �UK� and used as received unless
stated otherwise.

To create the gels a stock solution of sodium silicate was
prepared by mixing 222 ml of the purchased sodium silicate
solution with 57 ml of 2M sulfuric acid and 187 ml of de-
ionized water.33 Ru�bpy�3SO4 was recrystallized from the
chloride salt with sulfuric acid.44 Gels were prepared by mix-
ing 2.5 ml of the acidified silicate solution with 0.6 ml of
0.025M Ru�bpy�3SO4 and 0.65 ml of 1.0M sulfuric acid so-
lution. Using capillary action, portions of this solution were
quickly transferred into a custom-designed 25 cm long,
0.3 mm deep Perspex mould covered with microscope slides.
The solutions were left for 3 h to permit complete gellation.
After gellation the adherence to the Perspex mould is negli-
gible leaving a thin gel layer on the glass slide. After 3 h, the
slides were carefully removed from the mould and the gels
on the slides were washed in de-ionized water at least five
times to remove by-products. The gels were 26�26 mm2,
with a wet thickness of approximately 300 �m. The gels
were stored under water and rinsed just before use.

The catalyst-free reaction mixture was freshly prepared
in a 30 ml CSTR, which involved the in situ synthesis of
stoichiometric bromomalonic acid from malonic acid and
bromine generated from the partial reduction of sodium bro-
mate. This CSTR in turn continuously fed a thermostated
open reactor with fresh catalyst-free BZ solution in order to
maintain a nonequilibrium state. The final compositions of

FIG. 3. The typical fitness over time for both the �a� inhibition and �b�
excitation tasks with the model. Solid lines, mutation rate 1000; dashed
lines, random controller.

FIG. 4. Example solutions to the modeled ��a�–�c�� inhibition and ��d�–�f��
excitation task after ��a� and �d�� initiation and coevolved at generations of
��b� and �e�� 30 �b, e� and ��c� and �f�� 200. State on last of the 25 control
cycles shown.
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the catalyst-free reaction solution in the reactor were 0.42M
sodium bromate, 0.19M malonic acid, 0.64M sulfuric acid,
and 0.11M bromide. The residence time was 30 min.

An InFocus model LP820 projector was used to illumi-
nate the computer-controlled image. Images were captured
using a Lumenera Infinity2 USB 2.0 scientific digital cam-
era. The open reactor was surrounded by a water jacket ther-
mostated at 22 °C. Peristaltic pumps were used to pump the
reaction solution into the reactor and remove the effluent. A
schematic representation of the experimental setup is shown
in Fig. 5. The spatially distributed excitable field on the sur-
face of the gel was achieved by the projection of a 10�10
cell checkerboard grid pattern generated using a computer.
The checkerboard image comprised of cells with three pos-
sible intensity levels of 0.035, 1.6, and 3.5 mW cm−2, repre-
senting excitable, the subexcitable threshold, and nonexcit-
able domains, respectively.

The checkerboard grid pattern was projected onto the
catalyst-loaded gel through a 455 nm narrow bandpass inter-
ference filter, 100 /100 mm focal length lens pair, and mirror
assembly. The size of the projected grid was approximately
20 mm2. Every 10 seconds, the checkerboard pattern was re-
placed with a uniform gray level of 3.5 mW cm−2 for 10 ms
during which time an image of the BZ fragments on the gel
was captured. The purpose of removing the grid pattern dur-

ing this period was to allow activity on the gel to be more
visible to the camera and assist in subsequent image process-
ing of chemical activity.

Captured images were cropped to the grid location and
processed to identify activity in the same manner as for the
model �see above�.

EXPERIMENTAL RESULTS

Figure 6 shows the examples of the spatiotemporal dy-
namics exhibited by the real chemical system. In both cases,
the behavior observed was qualitatively similar to that ob-
served during numerical simulation. Moreover, our coevolu-
tionary approach is able to control the chemical system to
achieve the desired goal to a similar degree of accuracy, i.e.,
fitness, as was seen in the simulations, as shown in Figs. 7�a�
and 7�b� �compare with Figs. 3�a� and 3�b� over the same
period�. We were able to run a maximum of 40 generations
�which required about 6 h� in real chemical experiments be-
cause after that time the excitability of the system changed
due to the “desensitization” effect of high intensity light.45

As before, if the excitation task were to have been tack-
led by a person with prior knowledge of the BZ reaction, the
number of fragments would be increased simply via the pre-
dominant projection of the lowest light level. However, it
again appears from experimental observation that the number
of fragments and thus the total excitation level is increased

FIG. 5. A block diagram of the experimental setup: A, computer; B, projec-
tor, C, mirror; D, microscope slide with the catalyst-loaded gel; E, thermo-
stated Petri dish; F, CSTR; G1 and G2, pumps; H, stock solutions; I, camera;
J, effluent flow; K, thermostated water bath.

FIG. 6. An example solution to the ��a�–�c�� inhibition and ��d�–�f�� excita-
tion task in chemical experiment after ��a� and �d�� initiation and coevolved
at generations of ��b� and �e�� 30 and ��c� and �f�� 200. State on the last of
the 25 control cycles is shown.

FIG. 7. The typical fitness over time
for both the �a� inhibition and �b� ex-
citation tasks on the real chemical sys-
tem averaged over three runs. Solid
lines, mutation rate 1000; dashed
lines, random controller.
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also via the projection of appropriate high and low light in-
tensity cells placed by the CA so as to maneuver and split
existing fragments.

SIMPLE LOGIC GATES

To begin examining the potential for the coevolution of
such structures in the continuous, nonlinear 2D media de-
scribed, we have designed a simple scheme to simulate a
number of two-input Boolean logic gates. As before, excita-
tion is fed in at the bottom of the grid into the same branch-
ing pattern. To encode logicals “1” and “0” either both
branches or just one branch of the two “trees” shown in Fig.
1�a� are allowed to fill with excitation, i.e., the grid is divided
into two for the inputs �Fig. 8�. The number of active cells in
the grid, that is, those with activity at or above the 10%
threshold, is used to distinguish between logicals 0 and 1 as
the output of the system. That is, since the above results
indicate that it is possible to either increase or decrease ex-
citation through the coevolution of CA cell rules, we aim to
build upon this by increasing the complexity of the task. For
example, in the case of XOR, the controller must learn to keep
the number of active cells below the specified level for the

00 and 11 cases but increase the number for the 01 and 10
cases.

NUMERICAL RESULTS

Figure 8 shows the typical examples of each of the three
logic gates learned using the simulated chemical system.
Here all parameters were as before except that the mutation
rate was set either at 4000 or 6000. The required number of
active cells was set at 20. That is, 20 or more grid locations
must exhibit sufficient excitation to be above the 10% activ-
ity threshold for the output of the system to be considered as
a logical 1, otherwise an output of logical 0 is assumed. Each
of the four possible input combinations is presented in turn,
00–11, and for each input presentation the system is allowed
to develop for 25 control cycles in a similar way to the in-
hibition and excitation tasks. Fitness of the logic gate is
evaluated after the complete sequence of four-input presen-
tations. Each correct output scores 1, resulting in a maximum
possible fitness of 4 for a correctly functioning gate. Figures
9�a� and 9�b� show the fitness averaged over ten runs for AND

and NAND tasks with a mutation rate of 4000, and similar
results for XOR are shown in Fig. 9�c� for mutation rate 6000.

FIG. 8. Typical examples of solutions
of AND, NAND, and XOR logic gates in
simulation, required active cells: 20,
N: actual number of active cells. Input
states I1, I2 for the logic gates are
shown on the left and consist of two
binary digits, spatially encoded using
left and right “initiation trees” �Fig.
1�a��. Input values of 0 are encoded
using a single branch of the relevant
tree resulting in three fragments, while
binary 1 is encoded using both
branches of the tree resulting in six
fragments. The EA found a solution in
56 �AND�, 364 �NAND�, and 1656 �XOR�
input presentations.

FIG. 9. The average fitness over time
for ten runs for the �a� AND gate, �b�
NAND gate, and �c� XOR gate on the
simulated chemical system. AND,
NAND with mutation rate of 4000, and
XOR with 6000 �solid lines�. Dashed
lines: random controller �ten runs�.
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Favorable comparisons to an equivalent random controller
are also shown in each case, as before.

Table I shows a more detailed comparison, namely, the
results of ten runs for each gate with two different mutation
rates �4000 and 6000�. All these experiments were also run
with random CA controllers. Due to the high computational
requirements needed to perform the simulations, a limited
number of input presentations were allowed for each experi-
ment and an experiment was considered successful if the
controller found a solution within 2000 input presentations.
The success rate shows the number of successful runs out of
10. The AND task was so simple that a solution was easily
found even with a random controller for both mutation rates.
This task was simple because the first three inputs provided
activity levels similar to the correct outputs, and only the
activity levels provided by the 11 input needed to be changed
to generate appropriate output activity, namely, the controller
had to increase excitation to get higher than the required
number of active cells �that is, those with an activity level
greater than or equal to 10%�. In contrast, the NAND gate was
the most difficult task, because the controller had to achieve
the opposite activity levels to those provided by the input
states. For 00, 01, and 10 inputs the initial number of frag-
ments were less than the required value so the controller had
to increase the excitation to get the correct logical 1 output
�N�20�, while for the 11 input the controller had to decrease
the excitation to achieve the logical 0 output �N�20�. This is
seen in the success rates shown in Table I. For this task, the
use of a coevolutionary CA controller and an increased mu-
tation rate resulted in a higher success rate and lower average
number of input presentations required to find a solution for
the NAND gate compared to a random controller and/or lower
mutation rate. The XOR task was also hard because the activ-
ity levels provided by three of the initial inputs �00, 01, and
10� were the opposite of the desired output activity levels
and only the 11 input provided an appropriate direct basis for
correct output activity.

We have to mention here that, in the cases where the
success rate was less than 10, the averages in Table I, are the
lowest possible averages, since 2000 was taken as the num-
ber of input presentations required, even though no solution

was found in these cases. For this reason, we can only use
these data as an indication of the difficulty of the task. Com-
paring these results with results of the same tasks but with a
random controller, we can conclude that the success rates for
the coevolutionary CA controller were usually greater than
or equal to the success rates of the runs with a random con-
troller. These results indicate the ability of the coevolution-
ary approach for universal computation since all functions
can be constructed by NAND gates.

EXPERIMENTAL RESULTS

Figures 10 and 11 show how similar performance is pos-
sible on the real chemical system for each of the three logic
functions. In order to produce working XOR and NAND gates
from these experiments, it was necessary to use a value of 15
for the required number of active cells due to the relative
difficulty of these tasks. All other parameters were the same
as those used for numerical simulation.

Because of the limited lifetime of the medium, experi-
ments were once again limited to 40 input presentations. Ini-
tial runs with the CA controller produced no correctly func-
tioning logic gates within this time frame �dashed lines on
Fig. 11�. This is not surprising considering that the average
number of input presentations needed to find a solution in
numerical simulation was considerably higher than 40 be-
cause of the difficulty of the task. We therefore carried out
experiments where the genomes of the CAs were seeded
with ones evolved during successful simulation runs. CAs
seeded in this way �solid lines in Fig. 11� found solutions
very quickly—16 or 20 input presentations—compared to
numerical simulation. This speedup indicates the similarity
of solutions obtained from numerical simulations compared
to those needed for the chemical system. With a seeded so-
lution, a few generations of evolution are still needed to
adapt to the differences between the two systems, but this is
one or two orders of magnitude lower than evolving a solu-
tion from a random genome. These results show that the EA
is capable of adapting to small changes in its environment
and finding a solution very quickly when presented with
domain-specific knowledge obtained from modeling.

TABLE I. The success rate of ten runs and the minimum, maximum, and average number of input presentations
required to find a solution for each gate. An experiment was deemed successful if it found a solution within
2000 input presentations.

Gate Controller Mutation rate Success rate Min. Max. Av. Std. dev.

AND Coevolutionary 4000 10 /10 8 144 61 45.69
Random 4000 10 /10 4 200 64 71.73

Coevolutionary 6000 10 /10 16 84 49 21.89
Random 6000 10 /10 8 176 66 58.64

NAND Coevolutionary 4000 7 /10 288 	2000 1065 767.21
Random 4000 4 /10 300 	2000 1454 744.49

Coevolutionary 6000 9 /10 24 	2000 847 829.22
Random 6000 6 /10 84 	2000 1247 727.81

XOR Coevolutionary 4000 9 /10 348 	2000 808 510.08
Random 4000 10 /10 20 1080 455 333.68

Coevolutionary 6000 9 /10 32 	2000 1118 574.97
Random 6000 6 /10 212 	2000 1336 635.84
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DISCUSSION AND CONCLUSIONS

Excitable and oscillating chemical systems have previ-
ously been used to solve a number of simple computational
tasks. However, the experimental design of such systems has
typically been nontrivial. In this paper, we have presented
initial results from a methodology by which to achieve the
complex task of designing such systems—through the use of
coevolution. We have shown using both simulated and real
systems that it is possible in this way to control dynamically
the behavior of a light-sensitive BZ reaction, showing fun-
damental control by increasing or decreasing the amount of
excitation and the implementation of a number of logic
gates. We also demonstrated that the real chemical experi-
ments can be seeded with learnt solutions evolved during
modeling.

Our results may seem to be very complicated solutions
to simple problems, especially in the case of changing the
activity on the surface of the gel. A researcher with prior
knowledge of the BZ reaction may suggest that we could
have increased the activity simply by increasing the number
of low light intensity cells or vice versa. Instead, consider-
able time was spent by the EA to solve the problem by po-

sitioning appropriate high and low light intensity cells so as
to maneuver and split existing fragments. In addition, we do
not fully understand how the EA has reached the various
solutions to the set problems. This lack of transparency may
be confusing and prevent researchers from designing systems
that exploit such complex systems. However, we need to
consider that natural and artificial evolutionary processes are
“blind watchmakers”46—they have no comprehension of the
problem they solve. While human researchers use their prior
knowledge to make their decisions with a specific eye toward
improvement and only implement the solutions that they
consider good and/or useful, evolutionary processes have no
preconceptions and choose solutions from all possible ones.
They do not rule out steps because of prior knowledge and
preconceptions, so they may find novel solutions that a hu-
man designer would never consider. Thus, there is the possi-
bility that the use of this type of EA in chemistry may aid the
discovery of novel phenomena that would in turn help in the
understanding of underlying dynamical control and informa-
tion processing in natural systems and therefore ultimately
help the design of novel information processing technologies
based around natural systems.

FIG. 10. Typical examples of solu-
tions of AND, NAND, and XOR logic
gates in chemical experiment, required
number of active cells: 15 �20 for
AND�, N: actual number of active cells.
Input states I1, I2 for the logic gates
are shown on the left and consist of
two binary digits, spatially encoded
using left and right initiation trees
�Fig. 3�a��. Input values of 0 are en-
coded using a single branch of the rel-
evant tree resulting in three or four
fragments, while binary 1 is encoded
using both branches of the tree result-
ing in six or seven fragments. The
EA—seeded with a CA evolved dur-
ing the simulated runs—found a solu-
tion in 16 input presentations in each
case.

FIG. 11. Showing the typical fitness
over time for �a� the AND gate �muta-
tion rate 4000�, �b� NAND gate �muta-
tion rate of 4000�, and �c� XOR gate
�mutation rate of 6000� on the real
chemical system. Dashed line: random
initial controllers �three runs each�.
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In previous work, we introduced the possibility of con-
structing gates using a dynamical architectureless approach
based on collision based computing.6–10 We demonstrated
both in computational7,8 and experimental studies9 using a
subexcitable BZ system that under carefully controlled con-
ditions compact wave fragments develop in the medium.
These fragments then travel for reasonably long distances
when undisturbed and their collisions can be interpreted as
the implementation of logical operations.

The present paper advances the design of experimental
and simulated prototypes of reaction-diffusion processors
used to implement logical computation and which mimic a
conventional hardware type approach with wires and gates in
a fixed morphology.17–24 We have developed a hybrid �au-
tomaton network plus BZ reaction� system, where the “hard-
wired” architecture �the topology of excitation channels or
wires� is dynamically changing over time to achieve the
desired task.

To present the true and false values of Boolean variables
in the BZ medium, we used a threshold function, namely, if
the amount of excitation exceeds a certain amount then the
system represents logical truth, otherwise falsity. This was
done purely for simplicity in these initial experiments. In
principle, the experimental approach can be extended to
n-valued logical systems by employing classical conven-
tions: x∧y=min�x ,y� and x∨y=max�x ,y�. These operations,
originally invented in n-valued postlogic, have been adopted
in a variety of logical systems, including fuzzy and
continuous-valued logics. The choice of negation operator in
such chemical n-valued logical circuits may depend on many
factors; however, we do not foresee any problems in imple-
menting cyclical negation. Some preliminary results on
implementing a wide range of logics in geometrically con-
strained BZ systems have been already obtained.24

We are also planning to explore the use of EAs to design
collision-based architectureless computers, where instead of
the dynamically changing checkerboard image only one light
level—the subexcitable light level—will be used. The use of
larger gels, populations to evolve cell rules, and alternative
evolutionary approaches to chemical computing are also be-
ing considered.
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