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Due to changes in the environment and errors that occurred during skill initialization, the robot’s oper-
ational skills should be modified to adapt to new tasks. As such, skills learned by the methods with fixed
features, such as the classical Dynamical Movement Primitive (DMP), are difficult to use when the using
cases are significantly different from the demonstrations. In this work, we propose an incremental robot
skill learning and generalization framework including an incremental DMP (IDMP) for robot trajectory
learning and an adaptive neural network (NN) control method, which are incrementally updated to
enable robots to adapt to new cases. IDMP uses multi-mapping feature vectors to rebuild the forcing
function of DMP, which are extended based on the original feature vector. In order to maintain the orig-
inal skills and represent skill changes in a new task, the new feature vector consists of three parts with
different usages. Therefore, the trajectories are gradually changed by expanding the feature and weight
vectors, and all transition states are also easily recovered. Then, an adaptive NN controller with perfor-
mance constraints is proposed to compensate dynamics errors and changed trajectories after using the
IDMP. The new controller is also incrementally updated and can accumulate and reuse the learned
knowledge to improve the learning efficiency. Compared with other methods, the proposed framework
achieves higher tracking accuracy, realizes incremental skill learning and modification, achieves multiple
stylistic skills, and is used for obstacle avoidance with different heights, which are verified in three com-
parative experiments.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent decades, learning from demonstrations (LfD), a tech-
nique that develops strategies from example states to action map-
pings [1], has attracted considerable attention along with the
development of robotics and AI technologies. A recent survey on
LfD concluded that current limitations of LfD include representa-
tion of complex behaviours, reliance on labelled data, and subopti-
mal and inappropriate demonstrators [2]. To solve this problem,
this paper proposes an incremental skill learning and generaliza-
tion framework to enable robots to modify simple initial actions
to complex cases. This method is based on motion primitive (MP)
technology, in which a long-term complex motion is divided into
multiple sub-actions. Then, the sub-actions are extracted into
MPs and finally these MPs are reprogrammed and generalised to
fit a new task [2].

The MP can be presented in many forms, e.g. Kernelized Move-
ment Primitive (KMP) [3], Compliant Movement Primitive (CMP)
[4] and Dynamical Movement Primitive (DMP) [5]. DMP was pro-
posed by Ijspeert et al [6,7] and then improved by many research-
ers. In addition to the classical DMP, there are a number of
improved methods such as discrete DMP, periodic DMP, etc., and
some scholars combined DMP with reinforcement learning (RL)
[8,9], deep learning [10], life-long learning and various control
methods [11–13] to expand the scope of DMP. DMP has a very con-
cise expression that is a second-order function with only three
variables and a forcing function. And the applications of DMP con-
tain trajectory tracking in Euclidean space [14], EMGs signal pre-
diction [21], force control in a contact manipulation [22], motion
and state monitoring [23] and special tasks such as obstacle avoid-
ance [15,17], cooperative manipulations [16,24] and multi-modal
skill learning.
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The limitation of the classical DMP is that once the skills are
learned, the characteristics expressed by the forcing function are
fixed. Even though some variables, e.g. position, velocity, can be
generalized in space and time by modifying the starts, goals and
scaling factors. Some improvements of DMP in [15–17,24] are
made by adding additional terms for obstacle avoidance and coop-
erative manipulation. However, the terms are specially designed
by using time-related variables such as position, angle, and veloc-
ity, etc., which cannot be generalized in phase space, like ‘s’ in the
forcing function. If operational requirements keep changing, the
newly learned skills and added terms should update, which costs
a lot of time and increases the complexity of computation. Rein-
forcement learning is used to achieve DMP-based incremental skill
learning. For example, Matteo et al. proposed an incremental
point-to-point motions learning method based on a dynamical sys-
tem. For a new demonstration, the original dynamical system will
be redesigned to approach the new task [25]. Lemme et al. pro-
posed a bootstrapping cycle to build a suitable primitive library
[26]. In this library, the old primitives are refined and new ones
are added, while the unused ones are deleted. Yuan et al. [8] and
Li et al. [9] followed the similar technique and updated weights
by integrating probability-weighted RL to realize skill modifica-
tion. Wang and Wu et al. [27,29] proposed DMP plus (DMP+)
method to realize efficient skill modifications by using truncated
kernels and local biases to achieve two contributions. One is pre-
serving the desirable properties of the original skill and achieving
lower mean square errors (MSEs). The other is the reusability of
existing primitives, which can reduce human fatigue in imitation
learning and correcting errors in demonstration without requiring
further demonstration. Compared with RL-based methods, DMP+
requires less computation and retains the original features, which
is used as a benchmark method for comparison in this method.

The combination of DMP and robot control is another topic that
attracts much attention. Schaal et al., [6,31], proposed a framework
for motor control combining DMP. In our previous research, we
combined DMP and adaptive NN control [21], admittance control
[32], and neural networks [35,36] for robot control. In this paper,
inspired by DMP+, we propose a novel incremental skill learning
and generalization method called incremental DMP (IDMP). The
forcing function of IDMP can be incrementally updated by adding
new features and weights to track new trajectories. Considering
uncertain dynamics parameters and state tracking limitations, an
adaptive NN controller is designed, in which the NN term is also
incrementally updated and can accumulate and reuse the learned
knowledge to improve the learning efficiency. System stability
are ensured by building a barrier Lyapunov function (BLF). The pro-
posed framework is shown in Fig. 1: First, an old trajectory is
Fig. 1. Diagram of trajectory and force dual-increm
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expressed by DMP with a forcing functionf sð Þ. After linear transfor-
mation of the feature vector, we can obtain the incremental term kk
to compose a IDMP function to achieve a new trajectoryxN , which is
then transferred by an inverse kinematic solver to obtain the joint
information as the input of the control part. The real-time joint
tracking errors are applied to create a virtual controller by BLF.
We consider dynamics uncertainties and contact force estimation
errors, and use adaptive control term to estimate and compensate
the errors based on incremental adaptive NN control to ensure sys-
tem stability.

Compared to DMP-based trajectory planning and various con-
trol methods, the proposed framework offers three advantages:

a) Skill incremental learning and original skill preservation
Similar to DMP + and Acnmp [38], the old skills can be pre-
served during the gradual adaptation process to new situa-
tions, so they can be easily recovered for the old situations.
The difference in the computation from DMP + is the skill
adaptation is realized by adding new linear transformations
of the existing kernels rather than changing kernels, which
gives the forcing function with a stronger nonlinear adapt-
ability and makes it more suitable for the dynamic skill
learning process without adding new kernels.

b) High-accuracy trajectory tracking andmulti-style skill trans-
formation
According to the board learning in [19], the preliminary NN
can achieve better performance after inserting additional
extension nodes, which have a similar function as the linear
transformations of IDMP. Therefore, we use IDMP to
improve trajectory tracking performance and realize multi-
style skill transformation. Multi-style skill transformation
suits the situation that the original skill is ambiguous and
leads to different styles in motion sequence [37]. An exam-
ple, like the following second experiment, is a letter recog-
nized as an ‘a’ first, and it is probably a ‘u’ or a ‘v’ after
confirmation. We show the skill transformation process
from one shape to multi-stylistic shapes based on the same
original and extended features, but with different weights.

c) Adaptive NN control with constraints on the transient track-
ing errors
After renewing trajectory using IDMP, robot system con-
troller should be improved to minimize tracking errors to
the updated trajectory. Additionally, the controller should
process the uncertain dynamics parameters, force estima-
tion errors, and limitations on the transient state errors. In
this paper, we proposed an adaptive NN and BLF-based con-
troller, where the NN nonlinear fitting part can increase the
ental robot skill learning and generalization.
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number of neurons and update the weights, so that it can
accumulate and reuse the learned weights to improve the
learning efficiency.

The remainder of the paper is organized as follows: Section II
briefly introduces DMP. In Section III, we present the details of
IDMP and extend it to the multi-style skill learning. In Section IV,
we propose the new adaptive NN controller with constraints on
transient tracking errors. In Section V, three experiments are con-
ducted to verify the above advantages. Section VI provides a final
conclusion.

2. Related work to dynamical movement primitive

The DMP model proposed by Ijspeert et al., [6,7] is

s _v ¼ K g � xð Þ � Dv þ g � x0ð Þf sð Þ
s _x ¼ v

�
; ð1Þ

where K;D > 0 are stiffness and damping factors and s > 0 is a tim-
ing parameter for adjusting duration of the trajectory, x0 and g are
start and end of the trajectory. f sð Þ ¼ hTWðsÞ is a linear combination

of the normalized Gaussian functionswi, whereh ¼ w1;½ w2; :::;wn�T ;
WðsÞ ¼ w1;w2; :::;wn½ �T , and wi is the weight of wi and the Gaussian
functions wi is expressed as

wi ¼
uiðsÞsPn
i¼1uiðsÞ

; uiðsÞ ¼ exp �hiðs� ciÞ2
� �

; ð2Þ

where ci and hi > 0 are the centre and width of the radial basis func-
tionuiðsÞ. The transformation function (or forcing function)f sð Þ is
expressed by the phase variable s and a canonical system

s_s ¼ �os; o > 0: ð3Þ
The converging time is modified by factor o to ensure s ! 0 at

the end state for erasing the influence of f sð Þ in. The h is (1) esti-
mated by minimizing the function

min
XN
k¼1

f Tark � f sð Þ
� �2 !

ð4Þ

where f Tar sð Þ the target value of f sð Þ that is calculated by the
kth; k ¼ 1;2; :::;N demonstrated trajectory xkd and velocityvk

d:

f Tark ¼ s _vd � K g � xkd
� �� Dvk

d

� �
= g � x0ð Þ ð5Þ

Remark 1. DMP method is also applied multi-style skill learning from
multi-demonstrations, named Stylistic DMP (SDMP) [37]. The SDMP
modifies (1) into.

s _v ¼ K g � xð Þ � Dv þ g � x0ð Þ f
�

sð Þ
s _x ¼ v

(
ð6Þ

where f
�

sð Þ is then expressed asf
�

sð Þ ¼PJ
j¼1f j sj

� �
,f j sj
� � ¼ hTj WjðsjÞ,

hj ¼ wj1;
�

wj2; :::;wjn
�T
; WjðsjÞ ¼ wj1;wj2; :::;wjn

� �T ,wji ¼ ujiðsjÞsjPn

i¼1
ujiðsjÞ

;

ujiðsjÞ ¼ expð�hjiðsj � cjiÞ2Þ. Set s ¼ s1; s2; :::; sJ
� �

as a style parameter

vector and H ¼ h1; h2; :::; hJ
� �

as a parameter matrix, the calculation
purpose is to acquire the optimal parameter vectorH�
¼ h1�; h2�; :::; hJ�
� �

.
Considering different skills expressed by DMP have the same

expression as in (1), and the main difference focuses on the forcing
functionf sð Þ, we can update the f sð Þ to realize skill incremental
learning. Following the idea of board learning system (BLS)
[19,20], an efficient incremental learning system without the need
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for deep architecture, incremental learning algorithm has a
promising performance in calculation accuracy and learning speed.
Especially, with the increase of the enhancement nodes, the net-
work can approach a nonlinear function with any accuracy, which
inspires us to build an incremental updating forcing function that
the vectors h andWðsÞ can be extended to change the learned skills
and fit new trajectories.

The main challenge is how to reshape h and WðsÞ to enable the
new added features and extended terms to satisfy the properties of
DMP. For example, in (2), the feature variables wi; i ¼ 1;2; :::;m are
normalized and satisfyPn
i¼1

wi ¼ u1ðsÞsPn

i¼1
uiðsÞ

þ u2ðsÞsPn

i¼1
uiðsÞ

þ :::þ unðsÞsPn

i¼1
uiðsÞ

¼
Pn

i¼1
uiðsÞsPn

i¼1
uiðsÞ

¼ s

ð7Þ

If we set an extended function as Uj; j ¼ 1;2; :::;m and ŵi as the
modified term towi; i ¼ 1;2; :::; n, they will be normalized and
satisfy:

Xn
i¼1

ŵi þ
Xm
j¼1

Uj ¼ s ð8Þ

Then the main question in IDMP is how to generateUj andmod-

ify ŵi to enable (8) is satisfied. A lemma is presented for the follow-
ing deduction process.

Lemma 1. For matricesA 2 Rn�m,W 2 Rm�1 and Y 2 Rn�1 satisfy-

ingY ¼ AW, if A is extended toA
�
¼ A aj½ � 2 Rn� mþkð Þ, anda 2 Rn�k, then

the new weight vector W
�

2 R mþkð Þ�1 is calculated based on the W as.

W
�

¼ W � dbTY

bTY

" #
ð9Þ

where d ¼ Að Þþa,bT ¼ cþ if c–0

ð1þ dTdÞ�1
dTðAÞþ if c ¼ 0

�
, c ¼ a� Ad.

3. Incremental dynamical movement primitive

3.1. Basic incremental dynamical movement primitive

Similar to (1), we define a new skill expressed by DMP in (10)
that is different from the skills learned from the original demon-
stration. Given new position xN and velocityvN , the new skill is
expressed as

s _vN ¼ K g � xN
� �� DvN þ g � x0ð Þf N sð Þ

s _xN ¼ vN

(
; ð10Þ

where f N sð Þ ¼ hN
� �T

WNðsÞ is a new nonlinear function to be learned,
ands, K and D are as the same as those in (1).

For a new trajectory, the previous method will redefine a new
pair of vectors hN and WNðsÞ or add new kernels to DMP to adapt
to novel situations [29]. DMP + smartly reused and modified the
kernels and weights for skill efficient adaptation to avoid re-
calculation [27,29]. In IDMP, we create extended feature terms
gjðsÞ by making a linear transformation to the feature
vectorUðsÞ ¼ u1ðsÞ;u2ðsÞ; :::;unðsÞ½ �:

gjðsÞ � fj UðsÞWej þ bej

� �
; j ¼ 1;2; :::;m; ð11Þ
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where fj represents the jth transformation function ofUðsÞ, and Wej

and bej are random weights and bias terms. Then the new feature

terms gjðsÞ are used in combination with ŵ to achieve kk (12) in

to contribute to the output f NðsÞ (see in Fig. 2).
It is obvious that

Pm
j¼1gjðsÞ þ

Pn
i¼1wi–s, such that the property

(8) is not satisfied, but the property (8) is the insurance that the
final state value x converging monotonically tog. Therefore, using
the new term gjðsÞ andwi, we build a new term kk as

kk ¼
qkðsÞuiðsÞ þ ð1� qkðsÞÞgjðsÞPn

i¼1uiðsÞ þ
Pm

j¼1gjðsÞ
s; k ¼ 1; :::;mþ n; ð12Þ

whereqkðsÞ ¼ 1,if k 2 1;n½ � andqkðsÞ ¼ 0,ifk 2 nþ 1;nþm½ �.
It is obvious

Pmþn
k¼1 kk ¼ s, and (12) ifk 2 nþ 1;nþm½ �, can be sim-

plified as

kk ¼
gjðsÞPn

i¼1uiðsÞ þ
Pm

j¼1gjðsÞ
s; ð13Þ

which is a modified term of gjðsÞ and equals to the Uj in (8). If
k 2 1;n½ �, (12) can be simplified as

kk ¼ uiðsÞPn

i¼1
uiðsÞþ

Pm

j¼1
gjðsÞ

s;

¼ uiðsÞsPn

i¼1
uiðsÞ

�
Pn

i¼1
uiðsÞPn

i¼1
uiðsÞþ

Pm

j¼1
gjðsÞ

¼
Pn

i¼1
uiðsÞPn

i¼1
uiðsÞþ

Pm

j¼1
gjðsÞ

wk

ð14Þ

which means the term wk is scaled up
Pn

i¼1
uiðsÞPn

i¼1
uiðsÞþ

Pm

j¼1
gjðsÞ

times and can

be seen as the ŵk in (8) to represent the modifiedwk. Furthermore,
we set a new scaling variable C as

C ¼
Pn

i¼1uiðsÞ þ
Pm

j¼1gjðsÞPn
i¼1uiðsÞ

ð15Þ

Then, we can get
Pn

i¼1uiðsÞ þ
Pm

j¼1gjðsÞ ¼ C
C�1

Pm
j¼1gjðsÞ, and kk in

(12) is rewritten as
Fig. 2. Diagram of incremental dy
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kkðsÞ ¼ qkðsÞuiðsÞsPn

i¼1
uiðsÞþ

Pm

j¼1
gjðsÞ

þ ð1�qkðsÞÞgjðsÞsPn

i¼1
uiðsÞþ

Pm

j¼1
gjðsÞ

¼ qkðsÞuiðsÞs
C
Pn

i¼1
uiðsÞ

þ C�1ð Þð1�qkðsÞÞgjðsÞs
C
Pm

j¼1
gjðsÞ

¼ qkðsÞwiðsÞ
C þ C�1ð Þð1�qkðsÞÞgjðsÞs

C
Pm

j¼1
gjðsÞ

ð16Þ

Here, we set

cjðsÞ ¼
gjðsÞsPm
j¼1gjðsÞ

; ð17Þ

Then kk in (16) is further expressed as

kkðsÞ ¼ qkðsÞ
wiðsÞ
C|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

modified original skill

þð1� qkðsÞÞ
C� 1ð ÞcjðsÞs

C|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
incremental skill

¼ qkðsÞwiðsÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
original skill

þ qkðsÞ
1� Cð ÞwiðsÞ

C|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
old skill modification

þð1� qkðsÞÞ
C� 1ð ÞcjðsÞs

C|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
incremental skill

ð18Þ

Remark 2. Different from trajectory modification methods by adding
extra terms, e.g. cRVu exp �buð Þ in [15] (V , u are physical variables

to represent velocity and joint), to the DMP function, kk and f N sð Þ are
updated by adding new feature termsgjðsÞ, which have nonlinear
relationship with wi in (2). The process is somewhat similar to the
truncating kernels in DMP +. While the difference is, after addinggjðsÞ,
f N sð Þ can keep updating and the learned skills can approach the
desired trajectory with any accuracy, which can be explained by the
principles of incremental learning in [20]. However, DMP + depends on
but is constrained by the limited kernels. The compare of two methods
will be further performed through the following experiment.

Seen from (18), ifm ¼ 0, we havekiðsÞ ¼ wiðsÞ, which is a stan-
dard DMP term. After adding more new terms ofcjðsÞ, the effect
of wiðsÞ changes and the number of kkðsÞ increases. Here, we set
hN and WNðsÞ in (10) as hN ¼ w1;½ w2; :::;wn;wnþ1; :::;wnþm�T
andWðsÞ ¼ k1; k2; :::; kmþn½ �T . Each kk consists of three parts that are
namical movement primitive.
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marked as the original skillqkðsÞwiðsÞ, the old skill modification
qkðsÞwiðsÞ with a coefficient 1� Cð Þ=C and incremental skill gener-
ated by the normalized Gaussian functioncjðsÞ. Set-

tingΥðsÞ ¼ c1ðsÞ; :::;½ cmðsÞ�, then the new forcing functionf N sð Þ is:

f N sð Þ ¼ Pmþn

k¼1
wkð ÞTkkðsÞ

¼ hN
� �T

WNðsÞ
¼ hTWðsÞ|fflfflffl{zfflfflffl}

original skill

þ 1=C� 1ð Þ hC
� �T

WðsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
old skill modification

þ 1� 1=Cð Þ hU
� �T

ΥðsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
enhancement skill

;

ð19Þ
where hN and WNðsÞ are new weight and state vectors, which are
expressed as

hN ¼ w1; :::;wn wc
1; :::;



 wc
n u1; :::;umj� �T

¼ h hC


 hU


� �T ð20Þ

WNðsÞ ¼ w1ðsÞ; :::;wnðsÞ 1=C� 1ð Þw1ðsÞ; :::; 1=C� 1ð ÞwnðsÞj½
1� 1=Cð Þc1ðsÞ; :::j ; 1� 1=Cð ÞcmðsÞ�T

¼ WðsÞ 1=C� 1ð ÞWðsÞj 1� 1=Cð ÞΥðsÞj½ �T
ð21Þ

where hC ¼ wc
1;w

c
2; :::;w

c
n

� �
is the weight of 1=C� 1ð ÞWðsÞ and

hU ¼ u1;u2; :::;um½ � is the weight of 1� 1=Cð ÞΥðsÞ.
Moreover, f N sð Þ in (19) can be expressed as

f N sð Þ ¼ hTWðsÞ þ 1=C� 1ð Þ hC
� �T

WðsÞ � hU
� �T

ΥðsÞ
� �

¼ f sð Þ þ 1=C� 1ð Þ hC
� �T

WðsÞ � hU
� �T

ΥðsÞ
� � ð22Þ

The desired value of 1=C� 1ð Þ hC
� �T

WðsÞ � hU
� �T

ΥðsÞ
� �

isDf N sð Þ ¼ f N Tar � f sð Þ, where f sð Þ is calculated based on (1), and

f N Tar is calculated based on the new trajectory xN as

f N Tar ¼ s _vN � K g � xN
� �� DvN

� �
= g � x0ð Þ ð23Þ

From (20) and (21), the old vectors h and WðsÞ are preserved in
hN and WNðsÞ and easy to be recovered by reducing new added
terms. On the other hand, the skills can keep updating by extend-
ing hN andWNðsÞ by the new features. Equation (22) shows that the

new forcing function f N sð Þ is calculated based on the oldf sð Þ, and
we can use f N Tar and f sð Þ to compute the desired value of the skill

modification Df N sð Þ and further to obtain hC and hU by pseudo-
inverse calculations.

Setting the initial value of hC asDf N sð Þ WðsÞð Þþ, the weights hC

and hU are updated by Lemma 1 as

hC ¼ hC � dbTC
1�C Df

N sð Þ
hU ¼ bTC

1�CDf
N sð Þ

d ¼ � WðsÞð ÞþΥðsÞ
c ¼ WðsÞð ÞþWðsÞΥðsÞ � ΥðsÞ

bT ¼
cþ if c–0

ð1þ dTdÞ�1
dTðWðsÞÞþ if c ¼ 0

(

8>>>>>>>>>><>>>>>>>>>>:
ð24Þ
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3.2. Incremental dynamical movement primitive for multiple stylistic
skill generalization

IDMP can be applied to generalize multiple stylistic skills when
the initial learning skill is not accurate and there are several possi-
ble generalization solutions. Considering that all the possible skills
are generated based on common initialized features, it is better to
allow these skills to share the same features but with different
weights. We first assume that the position and velocity terms in
the multiple demonstrations are xNi and vN

i ; i ¼ 1;2; :::;m and the
variables are xi and v i in the initial demonstration. By using (1),
we can get an initial skill xi and v i as well as the common feature
nodes WðsÞ and the forcing function f sð Þ in the standard DMP. The
next step is to compute the common extended terms gjðsÞ and the

multiple sets of hC and hU for different trajectories simultaneously.
Here, we set hCk and hUk ; k ¼ 1;2; :::;m as the vectors of the kth

trajectory and set HC ¼ hC1 ; h
C
2 ; :::; h

C
m

� �
and HU ¼ hU1 ;

�
hU2 ; :::; h

U
m

�
as

vectors of the combination of weights. Similar to (23), we set the
ith new learned skill expressed by DMP as

s _vN
i ¼ K g � xNi

� �� DvN
i þ g � x0ð Þf Ni sð Þ

s _xNi ¼ vN
i

(
ð25Þ

The extended term gjðsÞ and new variable kk are computed in
the same way as in (11) and (18) to achieve
ΥcðsÞ ¼ c1ðsÞ½ ; c2ðsÞ; :::; cmðsÞ� andciðsÞ ¼ giðsÞs=

Pm
j¼1gjðsÞ. Then the

ith target value of f N Tar
i sð Þ is

f N Tar
i ¼ s _vN

i � K g � xNi
� �� DvN

i

� �
= g � x0ð Þ ð26Þ

and the f Ni sð Þ in (25) has a similar expression to f N sð Þ in (19) and
(22) as

f Ni sð Þ ¼ hNi
� �T

WðsÞ
¼ hTWðsÞ þ 1=Cc � 1ð Þ hCi

� �T
WðsÞ þ 1� 1=Ccð Þ hUi

� �T
ΥcðsÞ

¼ f sð Þ þ 1=Cc � 1ð Þ hCi
� �T

WðsÞ � hUi
� �T

ΥcðsÞ
� � ð27Þ

where Cc is defined as same as C in (15). The desired value of the

term 1=Cc � 1ð Þ hCi
� �T

WðsÞ � hCi
� �T

ΥcðsÞ
� �

in (27) is

Df Ni sð Þ ¼ f N Tar
i sð Þ � f sð Þ; ð28Þ

where ΥcðsÞ represents the common extended feature vector, then

the term hji; i ¼ 1;2; :::;m; j ¼ C;U in a vector and Hj; j ¼ C;U are cal-
culated based on the common terms ΥcðsÞ andCc , similar to ΥðsÞ
and C in (19), as

hCi ¼ hCi � dbTCc

1�Cc Df
N
i sð Þ

hUi ¼ bTCc

1�Cc Df
N
i sð Þ

d ¼ � WðsÞð ÞþΥcðsÞ
c ¼ WðsÞð ÞþWðsÞΥcðsÞ � ΥcðsÞ

bT ¼
cþ if c–0

ð1þ dTdÞ�1
dTðWðsÞÞþ if c ¼ 0

(

8>>>>>>>>>><>>>>>>>>>>:
ð29Þ

Using (29), we can getm group vectors of the weight set hCi ; h
U
i

� �
to express m stylistic skills. The detailed calculation procedure is
realized by the pseudo code shown in Algorithm 1, for single and
multiple stylistic incremental skill learning.
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Remark 3. Since the IDMP-based multi-skill learning are based on the
common features, the learned multiple skill can be transformed
between each other by only changing the weight vectors. For example,
we set the common state vector for two stylistic skills as

WNðsÞ ¼ WðsÞ 1=C� 1ð ÞWðsÞjj½ 1� 1=Cð ÞΥcðsÞ�T and weight vectors
151
are hN1 ¼ h hC1




 hU1


h iT

and hN2 ¼ h hC2




 hU2


h iT

for two skills with the same

length separately. The transformation of the two skills can be realized
by linear interpolation [30] as.
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s _vN ¼ K g � xN
� �� DvN þ g � xN0

� �
f N sð Þ

s _xN ¼ vN

f N sð Þ ¼ hN
� �T

WNðsÞ
hN ¼ ahN1 þ 1� að ÞhN2

8>>>><>>>>: ; ð30Þ

where a 2 0;1ð Þ is an adaptive factor to enable hN to change from hN1 to

hN2 .

4. Incremental adaptive neural network control

The trajectory is replanned using IDMP method in the Sec-
tion above. However, as the trajectory changes, the controller’s set-
points and performance limits also need to be changed. In this
Section, we will propose an new incremental adaptive NN control
method to accumulate and reuse the learned skill, considering the
limitations of tracking errors and robot dynamics estimation
errors.

4.1. System dynamics model and control objectives

The dynamic model of robot system is expressed in a Lagrange-
Euler form as

M qð Þ€qþ C q; _qð Þ _qþ G qð Þ ¼ sþ se ð31Þ
where q 2 Rn is the simplification of qðtÞ at time t 2 Rþ and repre-
sents the joint information of robot arm, M qð Þ 2 Rn�n is the inertia
matrix, C q; _qð Þ 2 Rn�n is the Coriolis and centrifugal torque matrix,
and G 2 Rn is the gravitational torque. The control torques is s and
se is a torques calculated by se ¼ JTe ðqÞFe , and Fe is forces exerted

by the environment, and JTe ðqÞ is a Jacobian matrix. Setting the posi-
tion of the end effector is x, then the relationship of q and x is
x tð Þ ¼ / q tð Þð Þ; _x tð Þ ¼ J q tð Þð Þ _q tð Þ, where / �ð Þ is a function for joint
and position transformation and J q tð Þð Þ is a Jacobian matrix for
robot system. The desired value of x is set as xd, which is achieved
by using traditional DMP or I-DMP. Usingxd, we can calculate qd

and set the tracking error of q to qd as e ¼ qd � q. The desired track-
ing performance is to enable e to keep within the predesigned per-
formance�k1vðtÞ 6 e tð Þ 6 k2vðtÞ, where k1 and k2 are constants and
vðtÞ is usually set as an exponential decaying performance function.

The dynamics system satisfies the following properties and
assumptions:

Property 1. The matrices _M qð Þ � C q; _qð Þ in (31) is skew -symmetric.
4.2. Incremental adaptive neural network control

In order to realize the predesigned performance, the system
controller is designed as

s ¼ M qd
� �

_aþ C qd; _qd
� �

aþ G qd
� �þ Ks a� _qð Þ � ŝe � g S

�
zð Þ

� �
ð32Þ

wherea ¼ _qd � Le,and L is a factor calculated in the following equa-

tion, Ks is a positive constant factor, and ŝe ¼ JTe ðqÞF̂e and F̂e repre-
sents the estimations of se and Fe separately. Usually, the

estimation error term s
�
e ¼ se � ŝe is coupled with uncertainties

and disturbances [33,34] to achieve a complex term

Y q; _q; e; _e; s
�
e

� �
¼ M

�
_aþ C

�
aþ G

�
þs�e , whereM

�
¼ M qð Þ �M qd

� �
,

C
�
¼ C q; _qð Þ � C qd; _qd

� �
and G

�
¼ G qð Þ � G qd

� �
are the uncertain terms
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caused by joint tracking errors, s
�
e represents the estimation error of

the contact torque. gðS
�

zð ÞÞ is an incremental neural networks term

with an expression ofgðS
�

zð ÞÞ ¼ Ŵ
T
S
�

zð Þ , where Ŵ is an estimated

weight vector and S
�

zð Þ represents a vector consisted of multiple

Gaussian functions. We use gðS
�

zð ÞÞ to approach the error term

Y q; _q; e; _e; s
�
e

� �
¼ W�T S

�
zð Þ þ e zð Þ that is expressed by the composi-

tions of the desired weight vector W�T andS
�

zð Þ, where e zð Þ is the
approximation error of the neural network with the limitation
ofk e zð Þ k 6 e�,e� > 0.

Taking (32) into (31), we have

M qd
� �

_a�M qð Þ€q ¼ �C qd; _qd
� �

aþ C q; _qð Þ _q� Ks a� _qð Þ � se þ bse � G qd
� ��

G qð Þ þ g S
�

zð Þ
� �

ð33Þ

According to definition ofa, we have _a ¼ €qd � _Le� L _e and take it
into (33), then

M qð Þ _a� €qð Þ ¼ �C q; _qð Þa þ C q; _qð Þ _qþ Ks a� _qð Þ þM
�

_aþ C
�
aþ se � ŝeþ

G qd
� �� G qð Þ � g S

�
zð Þ

� �
¼ �C q; _qð Þ a� _qð Þ þ Ks a� _qð Þ þM

�
_aþ C

�
aþ G

�
þs�e � g S

�
zð Þ

� �
¼ �C q; _qð Þ a� _qð Þ þ Ks a� _qð Þ þ Y q; _q; e; _e; s

�
e

� �
� g S

�
zð Þ

� �
ð34Þ

To realize the predesigned performance and ensure the system
stability, we set d ¼ a� _q as the velocity-level tracking error to the
virtual control term a and build the following barrier Lyaponov
function as

Vq ¼ V1 þ V2

¼
Xn
i¼1

hi ln
k2vðtÞð Þ2

k2vðtÞð Þ2 � e2

 !

þ
Xn
i¼1

1� hið Þ ln k1vðtÞð Þ2
e2 � k1vðtÞð Þ2

 !
þ 1
2
dTM qð Þd ð35Þ

where V2 ¼ 1
2 d

TM qð Þd and V1 are the items in the rest of (35), and hi

is defined as

hi ¼
1 e > 0
0 e 6 0

�
ð36Þ

It is obvious that Vq > 0 and the time derivative of Vq is
expressed as

_Vq ¼ 1
2

Pn
i¼1

hi
k2vðtÞð Þ2�e2

k2vðtÞð Þ2
2k2vðtÞ _vðtÞ k2vðtÞð Þ2�e2ð Þ� k2vðtÞð Þ2 2k2vðtÞ _vðtÞ�2e _eð Þ

k2vðtÞð Þ2�e2ð Þ2 þ

1
2

Pn
i¼1

1� hið Þ e2� k1vðtÞð Þ2
k1vðtÞð Þ2

2k1vðtÞ _vðtÞ e2� k1vðtÞð Þ2ð Þ� k1vðtÞð Þ2 2e _e�2k1vðtÞ _vðtÞð Þ
e2� k1vðtÞð Þ2ð Þ2 þ

_d
T
M qð Þdþ 1

2 d
T _M qð Þd

¼Pn
i¼1

hi
_vðtÞ k2vðtÞð Þ2�e2ð Þ�k2vðtÞ k2vðtÞ _vðtÞ�e _eð Þ

k2vðtÞ k2vðtÞð Þ2�e2ð Þ þ
Pn
i¼1

1� hið Þ _vðtÞ e2� k1vðtÞð Þ2ð Þ�k1vðtÞ e _e�k1vðtÞ _vðtÞð Þ
k1vðtÞ e2� k1vðtÞð Þ2ð Þ þ _d

T
M qð Þdþ 1

2 d
T _M qð Þd

¼Pn
i¼1

hi
k2e _evðtÞ�e2 _vðtÞ

vðtÞ k2vðtÞð Þ2�e2ð Þ þ
Pn
i¼1

1� hið Þ e2 _vðtÞ�k1e _evðtÞ
vðtÞ e2� k1vðtÞð Þ2ð Þ þ _d

T
M qð Þdþ 1

2 d
T _M qð Þd

ð37Þ

According to the definition ofa, we have _qd ¼ a þ Le ¼ _e þ _q,
then _e ¼ a þ Le� _q, then
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_Vq ¼ Pn
i¼1

hi
k2e a þ Le� _qð ÞvðtÞ�e2 _vðtÞ

vðtÞ k2vðtÞð Þ2�e2ð Þ þPn
i¼1

1� hið Þ e2 _vðtÞ�k1e a þ Le� _qð ÞvðtÞ
vðtÞ e2� k1vðtÞð Þ2ð Þ þ

_d
T
M qð Þdþ 1

2 d
T _M qð Þd

¼Pn
i¼1

hi
k2e a� _qð ÞvðtÞþk2Le2vðtÞ�e2 _vðtÞ

vðtÞ k2vðtÞð Þ2�e2ð Þ þPn
i¼1

1� hið Þ e2 _vðtÞ�k1e a� _qð ÞvðtÞ þ Lk1e2vðtÞ
vðtÞ e2� k1vðtÞð Þ2ð Þ þ

_d
T
M qð Þdþ 1

2 d
T _M qð Þd

¼Pn
i¼1

hi
k2e a� _qð Þ
k2vðtÞð Þ2�e2

þPn
i¼1

hi
k2Le2vðtÞ�e2 _vðtÞ
vðtÞ k2vðtÞð Þ2�e2ð Þ þ

Pn
i¼1

1� hið Þ �k1e a� _qð Þ
e2� k1vðtÞð Þ2 þ

Pn
i¼1

1� hið Þ e2 _vðtÞ þ Lk1e2vðtÞ
vðtÞ e2� k1vðtÞð Þ2ð Þ þ _d

T
M qð Þdþ 1

2 d
T _M qð Þd

¼Pn
i¼1

hik2e
k2vðtÞð Þ2�e2

� k1 1�hið Þe
e2� k1vðtÞð Þ2

h i
a� _qð Þ þPn

i¼1
hi k2L� _vðtÞ

vðtÞ

� �
e2

k2vðtÞð Þ2�e2
þ

Pn
i¼1

1� hið Þ _vðtÞ
vðtÞ þ Lk1
� �

e2

e2� k1vðtÞð Þ2 þ _d
T
M qð Þdþ 1

2 d
T _M qð Þd

ð38Þ

If we set L asL ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
k2

� �2
þ 1

k1

� �2
þ kcð Þ2

r
k _vðtÞ
vðtÞ k, since

e2

k2vðtÞð Þ2�e2
> 0 and e2

e2� k1vðtÞð Þ2 > 0, then we have

Pn
i¼1

hi k2L� _vðtÞ
vðtÞ

� �
e2

k2vðtÞð Þ2�e2
þ Pn

i¼1
1� hið Þ _vðtÞ

vðtÞ þ Lk1
� �

e2

e2� k1vðtÞð Þ2 <

�kc
Pn
i¼1

hi
e2

k2vðtÞð Þ2�e2
þ Pn

i¼1
1� hið Þ e2

e2� k1vðtÞð Þ2

� �
ð39Þ

Following the inequality � e2

k2vðtÞð Þ2�e2
6 � ln k2vðtÞð Þ2

k2vðtÞð Þ2�e2

� �
and� e2

e2� k1vðtÞð Þ2 6 � ln k1vðtÞð Þ2
e2� k1vðtÞð Þ2
� �

, (39) can be expressed as

Pn
i¼1

hi k2L� _vðtÞ
vðtÞ

� �
e2

k2vðtÞð Þ2�e2
þ Pn

i¼1
1� hið Þ _vðtÞ

vðtÞ þ Lk1
� �

e2

e2� k1vðtÞð Þ2

< �kc
Pn
i¼1

hi ln
k2vðtÞð Þ2

k2vðtÞð Þ2�e2

� �
þ Pn

i¼1
1� hið Þ k1vðtÞð Þ2

e2� k1vðtÞð Þ2
� �� �

¼ �kcV1

ð40Þ
Then (38) can be simplified as

_Vq 6 �kcV1 þ
Xn
i¼1

hik2e

k2vðtÞð Þ2 � e2
� k1 1� hið Þe
e2 � k1vðtÞð Þ2

" #
d

þ _d
T
M qð Þdþ 1

2
dT _M qð Þd ð41Þ

According to (34), we

haveM qð Þ _d ¼ �C q; _qð Þdþ Ksdþ Y q; _q; e; _e; s
�
e

� �
� g S

�
zð Þ

� �
. Follow-

ing Property 1, (41) can be simplified as

_Vq 6
Pn
i¼1

hik2e
k2vðtÞð Þ2�e2

� k1 1�hið Þe
e2� k1vðtÞð Þ2

h i
d� dTC q; _qð Þdþ dTY q; _q; e; _e; s

�
e

� �
�

dTg S
�

zð Þ
� �

þ 1
2 d

T _M qð Þd� Ksd
Td� kcV1

¼Pn
i¼1

hik2e
k2vðtÞð Þ2�e2

� k1 1�hið Þe
e2� k1vðtÞð Þ2

h i
dþ dTY q; _q; e; _e; s

�
e

� �
� dTg S

�
zð Þ

� �
� Ksd

Td� kcV1

¼ Pn
i¼1

hik2e
k2vðtÞð Þ2�e2

� k1 1�hið Þe
e2� k1vðtÞð Þ2

� �
þ Y q; _q; e; _e; s

�
e

� �
� g S

�
zð Þ

� �� �
d� Ksd

Td� kcV1

ð42Þ

According to the definition of hi, we have hik2e
k2vðtÞð Þ2�e2

P 0

and� k1 1�hið Þe
e2� k1vðtÞð Þ2 P 0, then
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max
k2k e k

k2vðtÞð Þ2 � e2
� � ; k1k e k

e2 � k1vðtÞð Þ2
� �

0@ 1A
P

hik2e

k2vðtÞð Þ2 � e2
� �� k1 1� hið Þe

e2 � k1vðtÞð Þ2
� �P 0 ð43Þ

then we define Fi ¼ hik2e
k2vðtÞð Þ2�e2

� k1 1�hið Þe
e2� k1vðtÞð Þ2 as a positive but limited

term.

Then the updating rate of the weight vector Ŵ is

_̂W ¼ Cs S
�

zð Þ þ utanh
ud
-

� �
d� KsCsŴ ð44Þ

where Cs > k W
�

k is a large positive matrix, tanh �ð Þ is a hyperbolic
tangent function and Ks is positive factor.

We further create a quadratic term Vm ¼ W
� T

C�1
s W

�
> 0 and the

time derivative of Vm is

_Vm ¼ W
� T

C�1
s

_
W
�

¼ W
� T

C�1
s �Cs S

�
zð Þ � uitanh

uid
-i

� �
dþ KsCsŴ

� �
¼ W

� T

C�1
s �Cs S

�
zð Þ � uitanh

uid
-i

� �
dþ KsCs W� �W

�� �� �
¼ �W

� T

S
�

zð Þd�W
� T

C�1
s uitanh

uid
-i

dþW
� T

Ks W� �W
�� �

ð45Þ

Therefore for the hybrid Lyapunov function V ¼ Vq þ Vm > 0,
the time derivative is expressed as

_V 6
Pn
i¼1

Fi þ Y q; _q; e; _e; s
�
e

� �
� g S

�
zð Þ

� �� �
d�W

� T

S
�

zð Þd�W
� T

C�1
s uitanh

uid
-i

dþ

W
� T

Ks W� �W
�� �

� Ksd
Td� kcV1

¼ Pn
i¼1

Fi �W
� T

C�1
s uitanh

uid
-i

þ e zð Þ
� �

dþ W
� T

Ks W� �W
�� �

� Ksd
Td� kcV1

ð46Þ
Following the Young’s inequality and definition ofCs, we can

obtain the following inequality [18]

Fd�W
� T

C�1
s udtanh

ud
- 6 i- ð47Þ

Thus (46) can be further deduced by expressing the weights by

the extended matrices as W� ¼ W�
ori W�

ex

� �T andW
�

¼ W
�

ori W
�

ex

h iT
,

where W�
ori and W

�
ori represent the vectors of the original weight

and weight error, and W�
ex and W

�
ex are the vectors of the extend

features. Then

_V 6 �kcV1 þ 1
2 e zð Þ2 þ i-� Ksd

Td� 1
2W

� T

Ks W
�
þ 1

2W
�TKsW

�

¼ �kcV1 � Ksd
Td� 1

2Ksk W
�

ori

W
�

ex

k
2

þ 1
2 e zð Þ2 þ i-þ 1

2Ksk
W�

ori

W�
ex

k
2

ð48Þ
Considering the completed expression of V is

V ¼ V1 þ V2 þ Vm ¼ V1 þ dTM qð ÞdþW
� T

C�1
s W

�
, then can be

expressed as

_V ¼ �gV þ r ð49Þ

where g ¼ min kmin kcð Þ; 2kmin Ksð Þ
kmax M qð Þð Þ ;

2kmin Ksð Þ
kmax C�1

sð Þ
� �

andr ¼ 1
2 e zð Þ2 þ i-þ

1
2Ksk W�

ori
W�

ex
k
2

, and the solution is
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V tð Þ 6 V 0ð Þ � r
g

� �
exp �gtð Þ þ r

g
6 V 0ð Þ exp �gtð Þ þ r

g
ð50Þ

Since the termse zð Þ , i- and Ksk W
� �

ori W
�� �T

k
2

are bounded and

r=g is bounded, then V tð Þ is bounded and converged along with
the time. This completes the proof.

Remark 4. In our previous research [18] and [33], we proposed a
combining framework of trajectory learning and board learning-based
control to approximate the unknown dynamics of the robot. The
improvements of this proposed method are building a new Lyapunov
function and creating a new weight estimation function (44) based on
the trajectory learned by IDMP. Therefore, the controller is designed
with a specific parameters as L in the definition ofa.
5. Experiments

We will verify the three contributions shown in the Introduc-
tion through three following experiments.

5.1. Experiment 1: Accurate trajectory approaching

In this experiment, we aim to verify the improvement of trajec-
tory tracking accuracy by IDMP, compared with other DMP-based
methods. We prepare a handwriting letter ‘A’ in blue in Fig. 3
and use the standard DMP, DMP + proposed by Wang and Wu
et al. in [29], and IDMP in this paper to track this trajectory with
the same kernels.

First we choose 5 kernels for the forcing function for all DMP-
based methods. The 5 initial kernels are chosen with random cen-
tres and widths of the radial basis functions for all three methods.
Fig. 3. Handwritting trajectory learning by using stand
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The initial learning results of DMP in Fig. 3(a) show a not good
tracking effect.

With DMP+, the 5 kernels are modified and the mean squared
error (MSE) in tracking the demonstrated trajectory is significantly
reduced (see Fig. 3(b)). IDMP can extend the feature vector WðsÞ by
adding new transformation terms gjðsÞ of the 5 original kernels in
(11), so that the trajectory tracking performance is further
improved (see Fig. 3(c)).

We further expand the number of initial kernels in three meth-
ods from 5 to 20 and the simulation results are shown in Fig. 3 (d)
to (f). The tracking performances of all methods are significantly
better than those with 5 kernels. The MSEs to the original trajec-
tory of IDMP are much lower than the results of the previous
two cases and the trajectory almost coincides with the demonstra-
tion, which benefits from the increasing number of the extended
features and certifies that IDMP has the best trajectory tracking
accuracy among the three methods. But, it also shows that the
tracking errors are still partially affected by the initial number of
kernels.
5.2. Experiment 2:Multi-style skill learning and transformation

The second experiment is to examine multi-style skill learning,
modification, and transformation. As shown in Fig. 4, we retrofitted
a PHANTOM Desktop haptic device and fixed a pen at the end of
the effector. The demonstrator operates the haptic device to write
letters and the device records trajectories of the end tip. The trajec-
tories are processed (e.g., alignment and filtering) and then used
for handwriting style learning and transformation under the con-
trol of the incremental adaptive NNcontroller in (32).

As shown in Fig. 5 (a), we write five letters ‘a’, ‘z’, ‘l’, ‘k’ and ‘w’
with similar size and same start and end. The letter’a’ is selected as
the initial writing style and the others are provided as the writing
ard DMP, DMP + and IDMP with different kernals.



Fig. 4. Experimental setup.
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styles after skill modification and transformation. After matching
and resampling the demonstrated trajectories, we use the method
described in Algorithm 1 to learn stylistic letters and realize skill
modification and transformation from ‘a’ to other letters. The pro-
cesses for the skill transformations are presented in Fig. 6.

The initial trajectory ‘a’ is coloured red, marked with a red
square in the centre of Fig. 6, and learned with the standard
DMP. The targeted manuscripts are presented with black squares
in the four corners. The transformation starts at centre ‘a’ to
approach the handwritings in the corners, performing every 5
incremental steps. In this way, the shapes near the centre are more
similar to ‘a’. With the extension of feature vector and weight vec-
Fig. 5. Human demonstrations of handwritting and rob

Fig. 6. Incremental learning process from the letter ‘a’
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tor, the learned trajectories are gradually changed from ‘a’ to other
stylistic letters. After adding 30 extended feature kernels, the mod-
ified letters are clearly distinguishable from each other, resulting in
the letters in the corners of Fig. 6. For some letters, such as ‘z’ and
‘k’, the modified letters from ‘a’ have been similar to the final tra-
jectories. While, others, such as ‘w’ and ‘l’, are changed gradually to
the desired states. Since the common features are determined by
all the stylistic letters, the trained trajectories that are closest to
the corner demonstrations still have some differences that can be
considered as compromise results. The skill transformation
between different stylistic actions is realized by using (30) to
change weight vectors. Finally, we utilize the haptic device as an
actuator and use adaptive NN control method to draw the learning
results, as shown in Fig. 5(b).
5.3. Experiment 3: Dual-incremental skill learning and control for
crossing different-height obstacles

The third experiment is also conducted with the haptic device
PHANTOM Desktop and a height-adjustable obstacle to illustrate
incremental skill learning process and its application of obstacle
avoidance in practice. As shown in Fig. 7, humans hold the joystick
to cross the obstacle and put the pen tip to touch the intended tar-
get point. The current obstacle is consists of three 2 cm*2 cm*2 cm
cubes, each of which can be added and removed to change the
height of the obstacle. On the top of the cubes, we add a
2 cm*8 cm*0.2 m lip. On the base plane, we set one start point
and nine target points on the two sides of the obstacle. The central
point on the right side is used for human demonstration and the
other points, which are 2 cm away from each other, are used for
skill generalization.
ot drawing results after multi-style skill learning.

to multilple syles of handwrittings:’w’,’z’,’k’and’l’.



Fig. 7. Experimental setup for obstacle avoidance.
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After collecting data from demonstrations (gray lines in Fig. 8
(a)), we use DMP to learn an initial skill of crossing an obstacle
with a height of 1 block (red line in Fig. 8 (a)). In our previous work
[21,28], the demonstrations for the height-adjustable obstacle are
divided into several phases and the final positions of the internal
phases are changed according to the heights of the new obstacles.
In this paper, we use the IDMP to realize skill modification. As
shown in Fig. 8 (b), the deep green and dark blue lines are the final
Fig. 8. Skill incremental learning and generalization based on IDMP and adaptive NN-ba
are trajectories of demonstrations and the red line is the learned skill) (b) Incremental l
height, green line is the crossing skill for 2-block height, and blue line is for the height of
of the skills) (c) Generalization of the skill for the 2-block height (green line shows the ski
skill for the height of 3 blocks (green line shows the skill learning and red lines show th
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learning results for crossing two and three blocks. The lines with
gradient colours from red to green and from green to blue show
the learning process with the increase of extended features,
according to the diagram in Algorithm 1. Fig. 8 (b) also verifies
the convergence of the learning results such that the degrees of
curve changes are decreasing until they approach the final learning
results. After gaining the ability to overcome the obstacles of dif-
ferent heights, we can generalize them to achieve different goals
by changing factor g in (25).

In Fig. 8 (c) and (d), the green lines show the learning effect for
different obstacles and the red lines are the generalized trajectories
of the robot end to achieve different goals.

Using the adaptive NN controller in (32), the joystick works as
an actuator to follow the generalized skills with limited tracking
errors. Figure. 9 (a) shows human demonstrations process. Figure.
9 (b) and Figure. 9 (c) show the joystick movement to reach the
predefined goals without conflicting with obstacles.

5.4. Discussion

The three experiments verify three properties of the incremen-
tal trajectory and force learning framework for robots proposed in
the Introduction. Experiment 1 shows the advantage of IDMP in
terms of accuracy, compared to DMP + and standard DMP and
sed control method (a) Demonstrations and skill learning based on DMP (gray lines
earning process for different learning skills (red line is the crossing skill for 1 block
3 blocks, and the thin lines between the different skills represent the transformation
ll learning and red lines represent the skill generalizations) (d) Generalization of the
e skill generalization).



Fig. 9. Skill generalization and control for height-adjustable obstacle avoidance based on human demonstations.
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can realize life-long skill learning to some extent. Experiment 2
shows the versatility of IDMP in generalizing and transforming
skills into multiple styles. The incremental adaptive controller
ensures system stability and keeps trajectory tracking errors
within performance limits. Experiment 3 shows applications of
the proposed framework in obstacle avoidance. Moreover, the
properties can be used in combination to achieve other goals. For
example, we can first generalize the original skill to multi-style
157
skills, and then further refine the details of a specific style. Since
the old features and weights are contained in the vectors, we can
easily perform skill transformation from one to another or trans-
formation between different skills as Remark 3 shown, and ensure
the smoothness of the transformation by choosing an appropri-
atea. But, since IDMP is calculated based on the elements of the
original DMP skills, the proposed method is still limited by the
original learning outcomes.
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6. Conclusion

In this paper, we propose a new framework for incremental tra-
jectory and force learning and generalization to modify initially
learned skills due to the environmental changes and inaccurate ini-
tialization. The trajectory learning part is based on the IDMP, and
the controller uses adaptive NN control method to reduce the cost
and improve the efficiency of learning. Three experiments are
taken to verify the effectiveness and advantages of the proposed
framework in accurate trajectory tracking, multi-stylistic trajec-
tory tracking and application in obstacle avoidance. Compared to
other DMP-based methods, this framework achieves better perfor-
mance in robot trajectory tracking and greater flexibility in skill
modification and transformation.
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