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Abstract—Surgical simulation has repeatedly proven its poten-
tial, but is limited by the lack of realism to the surgical experience.
For laparoscopic surgery simulation, an image processing method
known as style transfer can improve the realism by transferring
the style of a picture from surgery onto the video of the
simulator using a stylisation network. In this article, we propose
an adjustable style transfer algorithm for videos to improve
the realism of silicone based models. The results show that our
method can successfully implement multiple stylisations in real-
time onto the video of the simulator while maintaining temporal
consistency and overall smoothness of the video. Comparing to
other style-transfer methods, our technique can offer multiple
stylisations and, except from the method of Johnson et al. [6],
achieves better realness score when evaluated by surgeons. This
method can also be trained on a generic database in only 3h43
contrary to the other image processing techniques such as image
translation which require specific training datasets.

Index Terms—Surgical simulation, Laparoscopy, Style transfer,
Virtual Reality

I. INTRODUCTION

Outside of the operating theatre, surgeons have traditionally
trained using the animal or human cadaveric model [1]. This
has raised a significant number of issues not only relating
to the clear ethical issues but also the expense and access.
Neither model however is ideal for training, with limitations
in anatomy in the case of the animal model, or pliability of
the tissues in the case of the human cadaveric model in part
caused by the embalming process [2].

Surgical simulation aims to provide surgeons with a model
upon which they can train in any environment at any time.
These simulators have proven their potential by showing that
surgeons can improve their performances after using them [3].
The two main types of surgical simulators available are virtual-
reality based or physical simulators. Virtual-reality simulators
can provide visual realism and training for complex surgeries;
however, they often lack tactile feedback and are expensive.
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Physical simulators are generally simpler, as such they tend to
aim at the novice trainee. They can provide tactile feedback
but are not very realistic visually and are also often single-use
only [4].

The laparoscopic procedure is a surgical technique using in-
struments controlled by the surgeon guided by frames captured
from a video endoscope inserted inside the patient. In this
article, we propose to improve the simulation of laparoscopic
procedures by combining the assets of physical simulation and
virtual-reality. The approach is to offer a physical model that
provides tactile feedback while improving the visual realism
by performing style transfer on the video of the surgery.

This paper first summarises the related work on style
transfer then presents the proposed method to enhance visual
realism of surgical simulation. The following sections provide
a description of the experiments and of the results.

II. RELATED WORK

A. Style Transfer

Style transfer was first described by Gatys in 2016 with a
neural algorithm that could implement an artistic style onto
an image [5]. The idea of the method was to feed a style
image and a content image into an optimisation algorithm
which aimed to create an output image with the content
of the content image and the style of the style image. The
optimisation minimises the difference, or loss, of content and
of style between the two images to create this output.

Gatys’ algorithm uses an optimisation method to create
the output image from a white-noise image. The optimisation
process is time-consuming and can process only one content
image at a time. Previous research developed quicker solu-
tions. Johnson et al. [6] proposed to train a feed-forward Con-
volutional Neural Network on a dataset of content images with
one style image; during the training, the optimisation of the
content and style losses is back-propagated on the parameters
of the network. This method can replace the long optimisation
and enables real-time stylisation of multiple content images;
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which means that the processing time is inferior to 40ms to
ensure smooth stylisation with at least 25 frames per seconds.

The stylisation of a video is possible with the previous
method by implementing the algorithm on each frame. How-
ever, with the algorithm being designed to stylise single
images, it does not take into account temporal consistency.
Huang et al. [7] proposed a method to stylise videos in real-
time without temporal fluctuations by calculating the temporal
loss, a loss term that represents the temporal inconsistencies.
The method also implements a Total Variation (tv) loss to limit
the spatial inconsistencies by comparing neighbouring pixels.

B. Image processing and surgical simulation

Image processing has been used in surgical simulation
before. Luengo et al. [8] improved the realism of virtual-reality
based training of eye surgeries. In this study, Luengo et al. [8]
modifies the style of the simulator by implementing different
styles from a video of a surgery. The strength of the algorithm
is that it can implement more than one style on the image and
can change the style selection for different parts of the image.

Another example is the implementation of Engelhardt et
al. [9], which is based on Generative Adversarial Networks
(GANs). Their method can improve the style of physical
simulators made of silicone. Their implementation of tempCy-
cleGAN included a temporal consistency factor which allows
fluid stylisation of videos. To avoid artefacts in the generated
images, they also developed cross-domain conditional GANs
which generates more consistent and realistic outputs [20].
GANs have also shown potential to improve the realism of
virtual simulators with the aim of creating datasets of surgical
images for the training of neural networks [18].

C. Adjustable style transfer

One of the drawbacks from the style transfer techniques
is that they use weights predefined before the training of
the algorithm. To explore the results from varying weights,
a new neural network needs to be trained each time which
is time-consuming. Babaeizadeh and Ghiasi [10] developed
an adjustable style transfer method where two networks are
trained at the same time to offer the possibility of changing the
weights after the training. During the training of the algorithm,
the weights are variable inputs instead of fixed parameters.

III. PROPOSED METHOD

The goal of this article is to enable real touch of instruments
with a physical simulator, but with control over the visual
appearance through an adjustable style transfer method. The
adjustable style transfer method must be able to offer both
multiple stylisation with only one training session of the
algorithm and the possibility of stylising videos.

With the method of Babaeizadeh and Ghiasi [10], it is
possible to stylise an image with multiple stylisations by
adjusting the hyper-parameters after training of the algorithm;
however, their algorithm is trained on images and not on
videos. For this reason, it does not provide temporal stability
between frames when stylising a video. Temporal stability is

an important feature for our application, because the surgeons
will be training on videos of the surgical simulator. The
method from Huang et al. [7] provides temporal stability;
however, it can achieve only one stylisation after the training of
the algorithm. Having one stylisation only is limiting because
it requires to restart the optimisation process to achieve other
stylisations which is time-consuming. Furthermore, different
surgeons might not agree on which stylisation is the most
realistic, which generates the need to be able to provide
quickly multiple types of stylisation. At last, having multiple
stylisations also allows for variety in between different train-
ing sessions on the surgical simulator which makes it more
appealing and challenging to surgeons.

A. Loss Networks

The loss network includes the content loss, the style loss,
and the temporal loss to ensure that our method can perform
the stylisation of videos while maintaining temporal consis-
tency between frames.

1) Content Loss: The content loss can asset the difference
of content between the content image C and the output image
O. It is based on the filters of the different layers (l) of
the VGG19 network. The size of the filter depends on the
layer where it is situated within the neural network. Each
filter targets a special feature inside of the image at different
scales. If we consider Fij the contribution of the ith filter
situated in the layer l on the position j of the image, then the
following function calculates the difference of content between
the output image and the content image:

Lcontent(C,O, l) =
1

2

∑
ij

(Fij(C) − Fij(O)) (1)

2) Style Loss: The Gram matrix is a tool defined to capture
the style of an image; it is the covariance of the contribution
of the different filters at a given layer l:

Gij(O) =
∑
k

Fik(O)Fjk(O) (2)

The following function calculates the loss of style between
the generated image and the style image S at a layer l by
comparing their Gram matrices:

Lstyle(S,C,O) =
∑
ij

(Gij(S) −Gij(O)) (3)

3) Temporal Loss: The temporal loss is defined as:

Ltemporal(O
t, Ot−1) =

1

D

∑
i=[1,D]

ci(O
t
i − f(Ot−1

i )), (4)

where t is the time of the frame, D is the dimension of the
output calculated by D = H×W×N, where H and W are the
dimensions of the output and N is the number of channels, and
f is a function that warps the stylised output at time t-1 to time
t according to the optical flow field that was estimated between
the content images at time t-1 and time t. The parameter c is
between 0 and 1 and defines the per-pixel confidence of the
optical flow.



4) Total Loss: The total loss is defined as:

Ltotal(S,C,O, t) =αtemporalLtemporal(O
t, Ot−1)

+
∑
l

(αstyle(l)Lstyle(S,C,O)

+ αcontent(l)Lcontent(C,O, l)),

(5)

where αcontent and αstyle are parameters depending on the
number of layers. The optimisation algorithm minimises the
total loss to create the final output image. The contributions of
the losses are weighted by αcontent, αstyle, and αtemporal. The
weights define the relative importance of the content vs. the
style in the final stylisation. If αcontent is significantly higher
than αstyle, then the stylised image will be very similar to
the input image with small style variation; if αcontent is very
small comparing to αstyle then the style variation will be very
strong and the content might vary a lot from the initial image.

B. Real-time style transfer with adjustable loss

To be able to modify the weights after training, a condi-
tioner network is implemented following the same model as
Babaeizadeh and Ghiasi [10]. Using this method, the weights
are no longer pre-defined parameters of the network, but inputs
that are changeable after training. This results in three inputs
which are the content image, the style image, and the weights.

To understand the impact of the weights on the stylisation,
we use the same technique as Babaeizadeh and Ghiasi [10]
which is conditional instance normalisation. This method
implements a conditioner network in addition to the stylisation
network; it can condition the activation of the stylisation
network with the weight inputs α = [αcontent, αstyle] to
achieve a normalised activation z instead of the standard
activation x. Normalizing the stylisation allows to adjust the
weight after training by using them as an additional input
parameter.

z = γα
x− µ

σ
+ βα, (6)

where µ and σ are the mean and standard deviations of the
activation at the lth layer across spatial axes. γα and βα are
the learned mean and standard deviations; they are calculated
with the conditioner network. The architecture of the network
is shown in Fig. 1.

We can note that αtemporal is not included in the conditioner
network because it only ensures the temporal consistency and
not the stylisation; for this reason, it is not interesting to
modify its impact after training. The other weights αcontent
and αstyle are four-dimensional vectors, which include one
component for each layer of the VGG19 network.

IV. EXPERIMENTS

A. Implementation details

We used the same architecture as Babaeizadeh and Ghiasi
[10] for the networks. The method is tested by transferring the
style of frames from videos of real surgeries [11], [12] onto
a silicone based simulator. Both networks were trained with
these frames as the stylisation images and using the DAVIS

Fig. 1. Architecture of the model. It consists of three parts: a stylising
network, a conditioner network, and a loss network. The weight vector α is
passed through the conditioner network which will calculate γα and βα. The
two stylised frames are passed through the trained image classifier VGG19 to
calculate Lstyle and Lcontent. The two stylised frames are also compared
to calculate Ltemporal. The stylisation network and the conditioner network
are jointly trained by minimising this weighted sum of the different losses.

video database for the content videos [13]. This database
includes 150 videos of 4.14 GB. At each iteration of the
training, the components of α are randomly selected between
0 and 1; then are fed from the conditioner network to the
stylisation network; the aim of this random selection is to
train the algorithm to perform stylisation with any value of
α. The training is conducted on Anaconda Python 3.7 using a
Pytorch implementation on a NVIDIA RTX 3090 GPU.

The implementation can process a 480x640 frame in 28 mil-
liseconds. The optimization uses the Adam stochastic gradient
descent with a learning rate of 103 [14]. To ensure that each
loss term is in the same range of order during the optimisation,
additional parameters were added into the loss calculation to
equilibrate their contributions. These parameters are selected
empirically. The batch size is 30 and the number of epochs
is 20. Using more epochs does not decrease the overall loss;
decreasing the batch size leads to a less smooth output.

B. Creation of a physical model

The silicone simulator was created by designing moulds
of the soft tissues using the software Rhinoceros (Robert
McNeel & Associates, Washington, USA), and printing them
on a Flashforge Creator Pro 3D printer (Flashforge, Zhejiang,
China). Organ replicas are made by pouring silicone rubber
(Smooth-On Inc., Pennsylvania, USA) into the moulds. The
mould mimics the bile duct, the gallbladder, and the liver to
train surgeons for a laparoscopic bile duct exploration. An
endoscopic camera mimics the choledochoscope. The camera
is connected to the computer where the recorded images go
through the style transfer algorithm.

C. Evaluation of the outcome

The optimised networks are evaluated on pictures and
videos of the physical model, and on a video of the vir-
tual reality simulator LapSim (Surgical Science, Gothenburg,
Sweden). In this validation phase, different stylisations are
created by varying the component of α between 0 and 1. These



Fig. 2. Steps to create a simulator and to record the images.

stylisations are applied to videos and images of the simulator
and are evaluated by the surgeons.

The quantitative evaluation includes a comparison of the
scores of the algorithm with other methods from the state-
of-the-art; the scores include the training time, the processing
time, the optimisation of the different losses, and the tem-
poral consistency. The temporal consistency is tested on two
following frames according to two evaluation metrics.

The first evaluation metric evaluates the percentage of
difference between two following frames ∆. To do so, it uses
a difference score able to compare two images I1 and I2, and
defined using the following procedure:

1. The difference map between the images I1 and I2 is
calculated as the absolute value of the pixel-by-pixel difference
between the images; it is then converted to a grayscale image,

2. A difference score is attributed to the difference map;
this difference score is calculated using the histogram of the
image. Histograms are frequency distribution of the intensity
values that occur in the image; for instance, h(i) defines the
number of pixels in the image with the intensity value i. The
difference score is defined as follow:

difference(I1, I2) =
∑
i

h(i) × i, (7)

where h is the histogram of the difference map calculated
between I1 and I2. Then, ∆ is defined by:

∆ =
difference(two following frames)

difference(black image, white image)
× 100 (8)

The second evaluation metric is the temporal stability [15];
it calculates the temporal inconsistencies between two follow-
ing frames using the temporal loss function defined during the
training of the algorithm in equation 4.

The results were evaluated by surgeons through an online
survey. Consent was obtained from each participant. The
participants were shown the initial content images and the
processed images using our method and methods from the
state-of-the-art. The initial content images are images as well
as videos from the physical simulator and from the LapSim
simulator. The order of the images was randomized so that the
participants did not know which method they were evaluating.
The surgeons are asked to grade the outputs according to the
”realness score” proposed by Yi et al. [16]. The assessment
ranges from 0 (totally missing), 1 (bad), 2 (acceptable), 3
(good), to 4 (compelling); it evaluates the quality of the
images, the realism of the colors, and the fluidity of the videos.

The impact of the stylisation vector is also evaluated by
analysing images where all weights but one are set to zero.

V. RESULTS

Our method was implemented and compared to the methods
from Babaeizadeh and Ghiasi [10], Huang et al. [7], and
Johnson et al. [6]. The methods were implemented using
two style images from surgery, one from the view on the
gallbladder and one from the view inside of the bile duct.
The content images are the DAVIS database for our method
and for the method of Huang et al. [7] and COCO database
for the other methods [17].

A. Quantitative evaluation

Table 1 and Fig. 3 show that training time and generating
time from the method of Huang et al. [7] are significantly
longer; however, the implementation is on TensorFlow on CPU
and not on Pytorch on GPU. The generating time using the
method of Babaeizadeh and Ghiasi [10] and our method is
significantly longer than the method of Johnson et al. [6]
which could be explain by the utilisation of two networks;
however, the generating time for the three methods is below
40ms which allows for real-time stylisation of the videos for
all the methods. Using the first temporal metric, our method
generates significantly smoother videos than methods with
no temporal loss optimisation; however, using the second
temporal metric the results are not statistically significant, but
the average of our method is lower than the average of the
method of Babaeizadeh and Ghiasi [10].

TABLE I
COMPARISON OF THE SCORES BETWEEN OUR METHOD AND THE

METHODS FROM THE STATE-OF-THE-ART; THE GENERATING TIME AND
TEMPORAL CONSISTENCIES ARE EVALUATED ON EACH FRAME OF A

SEQUENCE OF 209 FRAMES OF 480X640 PIXELS.

Method Babaeizadeh
and Ghiasi [10]

Huang
et al. [7]

Johnson
et al. [6]

Ours

Training time 3h47 8h09 1h11 3h43
Number of styli-
sations

∞ 1 1 ∞

Generating time
(ms)

27.1± 0.2 328.2 ±
0.4

21.3 ±
0.1

27.9±
0.1

Temporal metric
1 (%)

1.7± 0.1 1.2±0.1 1.9±0.1 1.5 ±
0.1

Temporal metric
2 (x1000)

54.4± 15.7 43.6 ±
25.8

40.1 ±
28.0

42.9±
23.8

The impacts of the stylisation vector and of the style image
on the processing time are also evaluated by stylising a video
using two style images and 14 types of stylisation vectors for
each style image; the results show no significant impact.

B. Qualitative evaluation

A qualitative evaluation of the results shows that the al-
gorithm can successfully implement different stylisations in
real-time onto the video of the simulator while maintaining
temporal consistency and overall smoothness of the image.

Eight expert surgeons assessed the ”realness score” of the
images and videos. Table 2 shows that all methods improve
the realism. The average ”realness score” is higher with our
method than with the other methods except from the one of



Content loss Style loss
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Fig. 3. Comparison of the optimisation of the normalised losses between our
method and the methods from the state-of-the-art.

Johnson et al. [6]. The high score from the method of Johnson
et al. [6] could be due to a stronger stylisation. The evaluation
of the realism conducted by the surgeons seems to correlate
to the second temporal evaluation metric; which shows the
importance of the smoothness of the video on realism.

One surgeon commented that the colours from the different
images are all acceptable because they represent the variation
one sees in vivo. This illustrates the benefit of the adjustable
style transfer that can offer the variety of real-life. This is also
visible when surgeons gave similar scores to videos stylised
by our algorithm using different stylisation vectors, resulting
in different stylisations. Furthermore, the surgeons also made
comments such as that two images are good but the best would
be something in between; with this method, it is possible to
adjust the outcome to this kind of comments by modifying α.

TABLE II
COMPARISON OF THE ”REALNESS SCORES” BETWEEN OUR

METHOD AND METHODS FROM THE STATE-OF-THE-ART.

Method Intial Babaeizadeh
and Ghiasi [10]

Huang
et al. [7]

Johnson
et al. [6]

Ours

Average ”Re-
alness score”

1.5 1.6 1.8 2.2 2.1

Fig. 4 shows that each layer changes different features of
the image; the last layer generates more contrast between the
features making the smaller details such as the blood vessels
more visible, while the first layer generates a smoother texture.
Each layer creates a different type of stylisation; however,
there is not one stylisation better than the others, each surgeon
might find different results more appealing. The choice of the
stylisation vector also has an impact on the colours.

The texture of the soft tissues is sometimes blurry and
presents a pronounced texture which does not seem very
realistic compared to the smooth aspect of real tissues. The
choice of style image could explain this limitation; on the
style image there is no large neat and smooth area, which
could prevent the algorithm to learn the stylisation of smooth
surfaces. Furthermore, the light is reflected on multiple small
points in the style image, generating a lot of contrast on a
small scale; the algorithm could interpret that as a part of the

style of the image and try to recreate this high level of contrast
on the output image, resulting in a less convincing stylisation.

Fig. 4. Results from adjusting the input vector α in real-time after training.
The targeted weight αi is set to 1, while maintaining the others at 0. Each
image differs in style which is visible with the variations of colours and
contrast; deeper layers highlight more details.

Style
images

Content
images

Ours

Babaeizadeh
and Ghiasi
[10]

Huang et
al. [7]

Johnson et
al. [6]

Fig. 5. Comparison of the generated images between our method and the
methods from the state-of-the-art for different sets of stylisation and content
images. The first row shows the style image, the second row the content
images, the following four rows show the results from our method and from
the methods from Babaeizadeh and Ghiasi [10], Huang et al. [7], and Johnson
et al. [6] respectively. Each row displays a different stylisation.

The generated images from the different algorithms in Fig.
5 display the variety of stylisations possible. The method
of Huang et al. [7] creates smoother results, which can be
explained by the tv-loss term, while the method of Johnson
et al. [6] creates a more pronounced stylisation, as visible on
the gallbladder with pronounced blood vessels, this can also
be useful to recreate the details of real-life tissues; however,
both results depends on the hyper-parameters chosen before
training and the two algorithms could generate very different
results. The method of Babaeizadeh and Ghiasi [10] and our
method can generate multiple stylisations; however, the texture
is less convincing than the stylisation of Huang et al. [7].



In our method, the temporal loss is only evaluated between
frames at time t and t-1, which can lead to inconsistencies
between views during the training. Previous work managed to
achieve global temporal consistency across views by adding a
neural rendering approach to the image translation [19].

Comparing to other image processing techniques used in
surgical simulation, our method has the advantages of being
quick and easy to implement and of being able to offer
diversified stylisations. The method of Engelhardt et al. [9] can
stylise videos with a good level of realism; in an evaluation
among surgeons, they achieved an average realness score of
3.3 using the same scale as ours. However, the method is
based on image-to-image translation which requires to train
on specific databases including images from the simulator
and images from surgery; while our method, based on style
transfer, aims to implement a style onto an image while
preserving its content. For this reason, the type of content
of the training images does not matter and a generic database
allows to stylise any type of images.

The stylisation technique from Luengo et al. [8] is too
complex to be used in real time and does not include a
temporal loss, both factors are limiting its use in simulation;
however, Luengo et al. [8] managed to implement multiple
stylisation within one frame, depending on the elements in
the frame. This is valuable because the instruments require
different stylisation from the tissues. With our method, the
instruments are modified using the same stylisation as the
tissues and no longer look as realistic. The inconsistencies
of objects that are not soft tissues was also a limitation for
Engelhardt et al.; a solution was to use landmark detection
[21].

TABLE III
BENEFITS AND LIMITATIONS OF OUR METHOD COMPARING TO OTHER

IMAGE PROCESSING METHODS USED FOR SURGICAL SIMULATION.

Method Benefits Limitations
Luengo et al.
[8]

Multiple styles in one frame
Generic dataset

Not real-time
No temporal consistency

Engelhardt
et al. [9]

Realism
Temporal consistency

Specific training dataset

Ours Adjustable style selection
Real-time
Generic dataset
Temporal consistency

Realism
One style per frame

VI. CONCLUSION

This paper aims to present a method to adjust the styli-
sation of videos in real-time. The targeted application is the
enhancement of the videos of laparoscopic surgery simulators
to improve the visual realism and the training experience of
surgeons. The strengths of the method are the possibility to
adjust the stylisation to the end-user preferences and the quick
and easy implementation requiring only a generic database.
The main limitation of the method is that it can only apply on
type of stylisation per frame, which can lead to inconsistencies
when there are instruments in the frame. Future work should
focus on the possibility to adjust to the style selection.
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