

BUSINESS PROCESS MODELLING: COARSE TO FINE GRAIN MAPPING
USING METAMODELS

Zaheer Abbas Khan, Mohammed Odeh

CCCS, CEMS Faculty, University of the West of England (UWE), Bristol, UK
Tel: +44(0)117 328 3700, Fax: +44(0)117 328 2587

Email: {Zaheer2.Khan, Mohammed.Odeh}@uwe.ac.uk

ABSTRACT
One of the key objectives of Business Process Modelling
is to better understand and visualise business processes in
order to improve and/or enact them in some IT
infrastructure. This modelling perspective becomes more
complicated and challenging with the expansion of
businesses across geographical boundaries. Further, this
necessitates finding technological solutions to execute
agile business processes. And, in an effort to enact
business process models using distributed technologies,
we present a novel framework for translating business
processes modelled using Role Activity Diagramming
into generic meta-representation with the objective to
access, customize and integrate the modelling constructs
with functional and non-functional processing artefacts.
In this regard we present meta-models to translate coarse
to fine grained process model and provide their relevant
implementation as a step towards bridging the gap
between Business Process Models and Grid-based Service
Oriented Architectures (BPMSOA).

KEY WORDS
Business process modelling, meta-models, translation,
and Role Activity Diagramming

1. Introduction

Business Process Modelling Languages (BPML) play an
important role to make organizational behaviour more
visible and understandable under different contexts.
Further in order to cope with the changing market
demands, organizations seek technological solutions to
execute their process models. However, this process
modelling perspective is not without shortcomings. For
example, a business process model provides coarse
grained process activities which are underspecified and
can limit the scope of the process enactment.

The above limitation may be overcome if the process
modelling languages possess the capability to refine and
transform a high level business process model into more
concrete models. In order to reduce this limitation as well
as to enact business process models, the coarse grained
activities require translations into more fine grained
constructs by using specific programming languages such
as Java [5]. Such translations provide customized control

on the structural and behavioural composition of the
process models. This control further allows the
programmers either to link process activities with
computational services or translate process topology into
more concrete executable scripts.

In context with the above problem, we are in pursuit of
finding technological solutions to model business
processes in high level role-based process modelling
languages and then leading towards their enactment.
There have been efforts for mapping Role Activity
Diagrams (RAD) [2] into system models using
algorithmic approaches [7], simulations [8] and formal
representations [6]. But, less has been achieved in
concrete form. In this regard, this paper reports on a novel
framework to enact role-based business process models
into a highly distributed environment utilising the
Service-Oriented Architecture (SOA) [11] paradigm
rather than adopting the traditional Enterprise Application
Integration (EAI) methods in order to cope with the
increased agility of business processes [12].

Our approach is influenced by Model Driven Engineering
(MDE) in translating business process models into meta-
representation to be interpreted using specially written
application software which also provides additional
control on the processing constructs. These translation
steps affect the level of granularity of the process models
by transforming highly coarse grained models into finer,
open and adaptable levels. Using appropriate technologies
these fine grained models can be analysed using some
measurements and simulation of process computational
complexity. Further, these fine grained model activities
can be integrated with external computational artefacts
such as web services. Also, non functional requirements
(NFR) can be incorporated with the process models which
can lead process enactment in a customized manner. All
these benefits are not possible without affecting the levels
of granularity and access to the processes being modelled.

Enacting a role-based business process model into SOA
enabled grid entails establishing an architectural
framework that can integrate both Business Process
Models and Grid-based Service Oriented Architectures.
This has been named as BPMSOA as briefly presented in
section 2. Further, a generic meta-representation is
provided for role-based modelling languages in section 3.

However, enactment of RAD based models is not a
straightforward task as it requires generic meta-models to
transform abstract process models into more concrete
form which are presented in section 4. In this paper we
only present α-Metamodel and τ-Metamodel. These meta-
models are followed by a brief example implementation
in section 5. Finally, conclusion and brief summary of
future work is presented in section 6.

2. The BPMSOA

In this section, we briefly introduce a novel generic
architectural framework, namely “Business Process
Models and Grid-based SOA (BPMSOA)” to integrate
and bridge the gap between business process models and
grid based SOA. Using BPMSOA, as shown in figure 1, a
business process can be specified in a role-based process
modelling language and then transformed to be enacted
into grid based SOA environment.

BPMSOA consists of four logical layers. These are: (i)
Process Modelling, (ii) Generalisation, (iii)
Transformation and (iv) Enactment. Each layer takes a
specific input, processes it using its internal models and
algorithms to generate a specific output which is
consumed by the subsequent lower layer.
• The Process Modelling layer takes a business process
description as an input and generates its model using the
appropriate role-based business process modelling
language.
• The Generalisation layer takes the modelled business
process as input and translates it into a meta-process
representation using markup languages, and in particular
XML, based on the rules and guidelines defined in the α-
Metamodel.
• The Transformation layer takes the semi-formal
meta-representation of the business process generated
from the processing in the above layer as an input to
interpret and translates these meta-representation into a
formal executable script, for example π-ADL, based on
the rules and guidelines defined in both the τ-Metamodel
and χ-Metamodel.
• The Enactment layer takes the π-ADL based
executable script of the business process as an input and
enact it into an execution environment, in particular the
ArchWare virtual machine [3], utilising the readily
available grid services.

In BPMSOA, the service management and integration
component has been introduced to automate the process
of enacting a given business process model in grid-based
SOA environment. This paper introduces only the
framework for α-Metamodel which is used in the
Abstraction component of the Generalisation layer in
order to translate the business process model into generic
meta-representation. Further, we present the τ-Metamodel
which is used in the Customisation component of the
Transformation layer. More information of the other

components and layers of the BPMSOA are detailed in
[13].

3. The Generic Role-based Meta-
representation

A role based process model is an integrated collection of
composed, flow and interaction elements as shown in
figure 2 and defined below:

• At a higher level, a role based process model is a
collection of distinct composed elements (CE), such as
RAD roles, BPMN Pool/Lane and UML Activity
Diagrams (AD) swimlanes etc. There should be at least
two or more CE in a process model.
• A CE is a collection of multiple distinct flow
elements (FE) such as interaction, activity etc. However,
there can be more than one occurrences of a particular
type of FE in the CE such as activities or interactions.

Business
Process

Modeller

Abstraction

Concretisation

Execution
Engine

Process Modelling

A Business Process

A Business Process Model

Generalisation

A Meta-Representation of the
Business Process Model

Transformation

Executable Script of the
Business Process Model

Enactment

Enacted Business Process using
Grid application services

Service M
anagem

ent and Integration

Grid Application
Services

χ-Metamodel

Customisation

τ-Metamodel

α-Metamodel

BPM Language

Figure 1: Architectural Framework of the BPMSOA

• An FE is a modelling construct with well defined
semantics and is used in a CE to build process structure.
For example, Activity, Trigger, Gateway, Interaction etc.,
o Activity (A) is the processing element of a business

process. It can be classified into sub types such as
action, sub-process or encapsulation, instantiation
and terminate etc. Further, there can be more sub
types in different business process modelling
languages.

o Gateway (G) branches the sequential flow into
multiple flows. Gateway can be divided in
conditional (case-refinement), concurrent (part-
refinement) and repetitive control structures.

o Trigger (T) can be either internal or external to the
process model. These are of type timer, message
and error which can occur at starting, intermediary
or ending stage of the business process.

o State (S) represents the state of the process at a
particular instance of time.

o Interaction (I) takes place between two or more
CEs to exchange resources such as messages.
Interaction can be of type sender or receiver in a
particular CE. Each sender interaction must have
its corresponding receiver interaction in another
CE.

• An interaction element (IE) is a collection of
interactions among CEs. It consists of sender and receiver
interaction elements.

4. The Generic BPMSOA Meta-Models

Most of the role-based business process modelling
languages consists of elements as shown in figure 2. This
however requires a generic meta-model which can
represent graphical role-based business process models
into a machine-accessible and semantically
understandable format. Further, this meta-model can also
customize the process model to incorporate vigilant
control and non-functional requirements in process
execution. In this regard, the BPMSOA has introduced
two generic meta-models such as α-Metamodel and τ-
Metamodel. These meta-models present different
perspectives as discussed in following sections 4.1 and
4.2.

4.1 The α-Metamodel
Many role-based business process modelling languages
use syntactically different but semantically similar
constructs such as gateways in BPMN [1] and refinements
in RAD [2] etc. In this regard, the α-Metamodel masks the
syntactic heterogeneity of modelling languages and
provides a common model which can be mapped in a
machine-readable format such as XML. In figure 3 we
have presented the α-Metamodel which is based on the
interaction, structural and flow perspectives. In α-
Metamodel, all CE, FE and IE are identified with a unique
ID and type.

• Interaction Perspective (IP) IP deals with Inter-
Role interaction model. In an interaction between
different CEs, at least two activities must take place such
as Sender Part and Receiver Part which can be traceable
from the Interaction IE. Since both Sender and Receiver
Parts are FEs and belong to particular Roles CEs.
Therefore, the Interaction IE stores and provides IDs of
Sender and Receiver Parts and their encompassing Roles
which are involved in particular interactions.

• Structural Perspective (SP) SP deals with structural
composition of the process model using composed, flow
and interaction elements. It is used to specify the
individual modelling elements in their topological
formation. For example, each CE instance such as Role
may consist of ‘m’ number of FEs such that m > 0.
Further, two or more Role occurrences may interact with
each other. However, it is difficult to determine the
number of possible interactions in advance without
having the actual process model.

Trigger

Activity

Interaction

Gateway
State

Timer Message Error

Sender

Receiver

Action

Sub-process

Instantiation

Terminate

Composed Element
(CE)

Interaction
Element (IE)

Flow Element (FE) Key:
Possible types

Shared between two or more CEs

Trigger
Activity

Interaction

Gateway

State

API
:

Conditional

Concurrency

Iterative

Figure 2: A generic role-based modelling perspective

• Flow Perspective (FP) FP identifies all the possible
links between FE inside Role CE. In order to define the
workflow of the FEs within a Role CE, this perspective
uses two additional attributes for each FE; the Next and
Previous Elements. The Next Element of a particular FE
identifies the ID (s) of the next FE(s) in the flow within a
specific Role CE. Further this Next Element can also
contain ‘n’ number of IDs which results in that a gateway
of type FE is encountered and it consists of ‘n’ number of
separate threads to follow. Similarly, the Previous
Element of the FE gives the ID(s) of the previous FE(s)
within that specific Role CE to determine the reverse flow.
Likewise the Next Element, and the Previous Element can
also contain ‘m’ number of IDs which result in that either
a gateway is closed by merging the ‘m’ number of threads
or ‘m’ number of states are merged in an iterative flow.

4.2 The τ-Metamodel
After mapping a role-based business process model into a
semi-structured and machine-understandable meta-
representation such as XML using the α-Metamodel, we
need to interpret this meta-representation and transform it
in a way which can also incorporate customized control,
non-functional and integration aspects of the business
process. In this regard, we have presented the τ-
Metamodel in figure 4, which covers the structural,
control, non-functional, accessibility and integration
aspects of a business process model towards its
implementation.

• Structural Perspective (SP) SP deals with the
topological structure, more from the implementation and
execution point of view, of the process model by using
the α-Metamodel. In this regard, SP also handles the
workflow of the process model using customised data
structures for complex FEs such as nested gateways. As
an example Java based implementation, we have
presented a complex data structure to handle nested
conditional gateway FE in figure 5. In this data structure
the caseRefinementSeries is a Java Hashtable where each
key refers to the ID of the each case or thread of a
particular conditional gateway in a specific process model.
The value of each key is a Java Vector named as the
caseNextElements. This caseNextElements stores the IDs
of all the Flow Elements which come under a specific
conditional thread. It might be possible that there is a
nested conditional gateway structure. In this case, the ID
of nested conditional gateway is indexed into a Java
Vector innCaseNextElements (just ID) and also reflected
as a normal Flow Element in caseNextElements. This
innCaseNextElements keeps the IDs of all the nested
conditional gateways which exist in other conditional
gateways. Similarly, if there is a nested concurrent
gateway instead conditional gateway then the ID of the
concurrent gateway is indexed into the Case_Ref_Clash
vector. This Case_Ref_Clash vector keeps the IDs of all
the nested concurrent gateways which exist in conditional
gateways. Furthermore, the caseRefinementCollection is a
Java Hashtable where each key refers to a particular
conditional gateway and its value refers to another Java
Hashtable which further refers to the

<<FE>>
SenderPart

<<FE>>
ReceiverPart

<<IE>>
Interaction

<<CE>>
Role

<<FE>>
State

<<FE>>
Trigger

<<FE>>
Timer

<<FE>>
Message

<<FE>>
Error

<<FE>>
Concurrent

<<FE>>
Conditional

<<FE>>
Gateway

<<FE>>
Repetitive

<<FE>>
Role-Instantiate

<<FE>>
Stop

<<FE>>
Sub-process

<<FE>>
Activity

1..* 1

1..*

1

1

1
*

1 2..*

1..*

1..*

*

1

1..*

1

*

<<FE>>
Action

1 *

1 *
* *

*
*

*

*

I
n
t
e
r
a
c
t
i
o
n

P
e
r
s
p
e
c
t
i
v
e

Structural
Perspective

Flow Perspective

Sender
Part

Receiver
Part

Activity

Trigger State

Gate
Way

Key:

Doubly link between FEs which can be
specified using Next and Previous
Element attributes in FEs. Further,
each FE consists of ID and Type
attributes for unique identification and
type classification respectively.

FE : Flow Element
CE: Composed Element
IE : Interaction Element

Figure 3: The α–Metamodel

caseRefinementSeries. By using this type of data structure
and approach we can track all the conditional gateways
which are present in a process model from the
caseRefienementCollection. Similar approach is adopted
for concurrent gateways.

• Control Perspective (CP) CP deals with controlling
the topological, accessibility, functional and non-
functional aspects of the process model which can be
customized based on the usage context. It may be used to
integrate non-functional aspects with the functional and
structural FEs of the process model. Further, it is used to
provide a controlled access to other systems or external
environment.

• Non-Functional Perspective (NFP) NFP deals with
the non-functional requirements of the process which may
be required during the execution of the process [10], such
as security policies, transaction rollback procedures etc.

• Accessibility and Integration Perspective (AIP)
AIP provides the access to lower level formatted and
customized FEs of the process model using a suitable
interface. Further, these FEs can be translated into any
other format or integrated with other systems. For
example FE of type Activity can be linked with
appropriate behaviour provided by a specific web service.

5. An Example Implementation
As a reference implementation for the α-Metamodel and
τ-Metamodel of the BPMSOA, we have designed a
software application which uses the XML based output of

an exiting proprietary tool such as RADModeller [4]. The
RADModeller generates a high level description of a
RAD based business process model in XML. This XML
representation of RAD based process model seems to fall
under the objectives of the α-Metamodel. Then, in order
to interpret this XML based representation of the business
process and map it into the τ-Metamodel, we have
developed a software application using Java programming
language. This application uses several customized data
structures (as shown in figure 5) and provides access to
individual process model constructs. Further this
application lets these constructs integrate with other
applications or services or translate into any other
executable programming language script.

As an example, figure 6 shows glimpse of XML
representation of the “Order Placement” process which is
modelled using the RADModeller. The RAD model of the
“Order Placement” process can be found in [9, 13]. Due
to space limitation, we can not elaborate on this software
application in this paper and it is presented elsewhere.
This application can parse the XML based RAD process
structure and provide additional control as mentioned in τ-
Metamodel.

6. Conclusions

The layered architecture of the BPMSOA has
demonstrated the applicability of this novel approach in
the generic transformation of business process models for
the later enactment in particular instantiations of IT
environments. Not only BPMSOA is a generic

<<CE>>
Composed
Element

<<FE>>
Flow Element

<<IE>>
Interaction

Element

<<Controller>>
WF Generator

<<NFR>>
Compensation

<<NFR>>
Fault Handling

<<NFR>>
Security

<<Controller>>
Model

Controller

Utility API

<<Accessibility>>
User Interface

GUI

API

Application
Integration for
Behavioural
Perspective

1..*

1..*
2..* 2..*

1..*

*

1 1 1

1

1

<<NFR>>
Others

1
1

1

1

1

1

1

1 1

1

1
1

1

*

1

1

1..*
1

Non-Functional Perspective Structural Perspective

Accessibility and Integration
Perspective

Control
 Perspective

Key:
CE : Composed Element, FE : Flow Element, IE : Interaction Element, API : Application Programming
Interface, NFR: Non-Functional Requirement, GUI: Graphical User Interface, WF: Work Flow

Figure 4: The τ–Metamodel

architecture but also extensible and is able to
accommodate various types of process modelling
paradigms.

In addition, the twofold role of meta-models makes the
BPMSOA generic and facilitates intermediary
transformations towards process enactment. Using the α-
Metamodel, a business process model is represented in a
common and unique meta-representation which makes the
model more accessible to the components of the lower
layers of the BPMSOA. This model representation
provides flexibility to programmers to use their
proprietary programming models or legacy systems or
software at different layers of the BPMSOA. On the other
hand, the customised control provided by the τ-
Metamodel allows tracing back the original requirements
presented in the business process model.

The application of the new approach in this paper to the
above RAD based process model indicates that role-based
business process models can be transformed into meta-
representation and further translations into procedural
programming makes it more accessible in providing
customised control and linking both the non-functional
and functional aspects using the appropriate IT
infrastructure. Further work is being carried out to
investigate transforming model-based representations of
processes into executable languages and in particular Pi-
ADL [9, 13], with an additional support of domain
specific libraries (functions/behavioural aspects) and

service orientation. And, hence this will allow us to enact
business process models at wider scale e.g utilising Grid
based Service Oriented Architectures.

References
[1] Stephen A. White, Introduction to BPMN,
http://www.bpmn.org/ Last Accessed July 2007.
[2] Ould M., Business Processes: Modelling and Analysis
for Re-engineering and Improvement ISBN # 0-471-
95352-0, 1995.
[3] ArchWare Tools, URL: http://www.arch-ware.org/
Last accessed July 2006.
[4] Instream Tool, 2006, The RADModeller:
http://www.instream.co.uk/radmodeller.html, Last
accessed November 2006.
[5] Michael Havey, 2005, Essential Business Process
Modelling, ISBAN: 0-596-00843-0, O’Reilly Publishers.
[6] Badica C. et.al., Business Process Modelling Using
Process Algebras, presented at OR'43 (BPCME'01), Bath,
UK, 2001.
[7] Odeh M., et. al., 2003, Bridging the Gap between
Business Models and System Models, Information and
Software Technology, Special Edition on Modelling
Organisational Processes, 45(15), 1053-1060.
[8] Martinez, A.I. et. al., 2002, Integrating Process
Modeling and Simulation Through Reusable Models in
XML, In Proceedings of the Summer Computer
Simulation Conference 2002, The Society for Modeling
and Simulation International-SCS, ISBN 1-56555-255-5.
pp. 452-460, 2002.
[9] Khan Z. A., Odeh M., A Framework for Translating
RAD business process models into π-ADL, Proceedings
of ACIT2007, Syria, November 2007.
[10] F. Aburub et al., Modelling non-functional
requirements of business processes, Inform. Softw.
Technol. (2007), doi:10.1016/j.infsof.2006.12.002.
[11] The Integration Journey – a Field Guide to Enterprise
Integration for SOA, BEA White paper,
http://contact2.bea.com/bea/www/soa_mom/mom3.jsp?P
C=56TU3GXXWPBE Accessed July 2007.
[12] David S. Linthicum, Next Generation Application
Integration: From Simple Information to Web Services
ISBN: 0-201-84456-7, 2004.
[13] Zaheer A. Khan, Bridging the Gap between Business
Process Models and Grid-based SOA, Technical Report #
UWE-CEMS-CCCS-SERG-0004, UWE, Bristol, UK.
http://www.cems.uwe.ac.uk/cccs/ , April 2007.

Figure 6: A snippet of XML representation of the Order Placement process [9]

Key Value

Conditional
Gateway ID

CaseRefinementCollection

Key Value
CaseRefinementSeries

Particular
Case or
Thread ID
(String)

CaseNextElements

FE ID
(String)

Case_Ref_Clash If ID of Nested
Concurrent
Gateway

InnCaseNextElements If ID of Nested
Conditional
Gateway

Figure 5: Data Structure for Conditional Gateway

