
Expert Systems With Applications 213 (2023) 119233

Available online 9 November 2022
0957-4174/Crown Copyright © 2022 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Performance evaluation of deep learning and boosted trees for 
cryptocurrency closing price prediction 

Azeez A. Oyedele a, Anuoluwapo O. Ajayi b,*, Lukumon O. Oyedele b, Sururah A. Bello b, 
Kudirat O. Jimoh c 

a Department of Law and Finance, University of Bedfordshire, Luton Campus, United Kingdom 
b Big Data, Enterprise and Artificial Intelligence Laboratory (Big-DEAL), University of West of England, Frenchay Campus, Coldhabour Lane, Bristol, United Kingdom 
c Department of Information and Communication Technology, Osun State University, Nigeria   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
Deep learning 
Boosted trees 
Optimization 
Forecasting 
Cryptocurrencies 

A B S T R A C T   

The emergence of cryptocurrencies has drawn significant investment capital in recent years with an exponential 
increase in market capitalization and trade volume. However, the cryptocurrency market is highly volatile and 
burdened with substantial heterogeneous datasets characterized by complex interactions between predictors, 
which may be difficult for conventional techniques to achieve optimal results. In addition, volatility significantly 
impacts investment decisions; thus, investors are confronted with how to determine the price and assess their 
financial investment risks reasonably. This study investigates the performance evaluation of a genetic algorithm 
tuned Deep Learning (DL) and boosted tree-based techniques to predict several cryptocurrencies’ closing prices. 
The DL models include Convolutional Neural Networks (CNN), Deep Forward Neural Networks, and Gated 
Recurrent Units. The study assesses the performance of the DL models with boosted tree-based models on six 
cryptocurrency datasets from multiple data sources using relevant performance metrics. The results reveal that 
the CNN model has the least mean average percentage error of 0.08 and produces a consistent and highest 
explained variance score of 0.96 (on average) compared to other models. Hence, CNN is more reliable with 
limited training data and easily generalizable for predicting several cryptocurrencies’ daily closing prices. Also, 
the results will help practitioners obtain a better understanding of crypto market challenges and offer practical 
strategies to lower risks.   

1. Introduction 

Cryptocurrencies have become a global phenomenon attracting a 
significant number of users due to their decentralization, immutability, 
and security. They are based on trust in technological infrastructure, 
allowing financial resources to be sent from anywhere with almost zero 
latency while network users provide the necessary authentication 
mechanisms. This new concept thus combines the advantages of trans
action anonymity with the speed and convenience of electronic trans
actions without a central management institution. Over a few years, 
their increased transaction frequency, turnover, number of participants, 
and their structural self-organization have resulted in nearly indistin
guishable complexity characteristics experienced in traditional financial 
markets, i.e., the foreign currency market (Forex), at the level of indi
vidual time series (Watorek et al., 2021). 

Consequently, due to their increasing growth and popularity, they 
are now being used in official cash flows and the exchange of goods 
(Chowdhury et al., 2020). Similarly, due to the rapid flow of information 
and the availability of high-frequency data, machine learning (ML) 
techniques have gained popularity in the crypto market, especially price 
prediction, a critical step in financial decision-making related to port
folio optimization, risk evaluation, and trading. However, the crypto
currency market is highly volatile and complex (Choo, 2015; Watorek 
et al., 2021; Zoumpekas et al., 2020), with substantial heterogeneous 
datasets characterized by complex interactions between predictors, 
which may be difficult for conventional ML techniques to achieve 
optimal results. Moreover, as a measure of price fluctuations, volatility 
significantly impacts trade strategies and investment decisions (Guo 
et al., 2018). Thus, it is essential to have models that can predict the 
crypto market accurately at par with the stock market. Furthermore, 
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instant knowledge of price movements can lead to higher profits and 
lower investment risks for investors. Therefore, investigating the pos
sibility of predicting several cryptocurrencies’ closing prices using an 
optimal model configuration on training sets with significant peaks and 
drops in price missing and evaluating prediction accuracies on datasets 
from multiple data sources; is the motivation for this study. 

Thus, this paper develops a decision support tool and contributes to 
the findings on comparing prediction models by making a focused 
comparison of Deep Learning (DL) and boosted tree-based techniques on 
six cryptocurrency datasets collected from three different data sources. 
More specifically, using the same optimal model configuration on 
different cryptocurrencies to investigate their robustness and resistance 
across imperfect training and testing datasets. A situation where training 
data is limited or covers only some of the phenomena in the training set 
has received relatively little attention in the literature. Few studies that 
used boosted tree-based techniques for modeling the crypto market 
either predict a famous and single cryptocurrency platform or use a 
single data source for training and testing the developed models (Sun 
et al., 2020). The DL techniques are selected because they are good at 
discovering intricate structures in high-dimensional data (LeCun et al., 
2015) and their remarkable problem-solving success in several domains. 
Furthermore, the predictive performance of DL techniques is bench
marked with three powerful boosted tree-based techniques that are 
scalable and robust for modeling complex data (Hastie et al., 2009; 
Sheridan et al., 2016). These attributes have resulted in them being 
incorporated into the Spark library for large-scale ML applications. 

The rest of the paper is organized as follows: Section 2 presents the 
applications and benchmarking of Artificial intelligence (AI) and ML 
techniques for cryptocurrency price prediction. Then, Section 3 

discusses the methodology, particularly the description of crypto data
sets and data pre-processing techniques, genetic algorithms, DL, and 
boosted tree-based techniques. Finally, Section 4 discusses prediction 
results, and Section 5 concludes the study. 

2. Related work 

Several quantitative research on financial market modeling has been 
carried out. Watorek et al. (2021) gave a detailed and comprehensive 
review of these studies and the statistical properties of the financial 
market price fluctuations. Based on its high trading activity by investors, 
many scholars are interested in modeling the crypto market or studying 
its linear and nonlinear dynamics. A few examples of such studies 
include using a time-scale multifractal approach to investigate the high 
frequency of Bitcoin prices and volume (Lahmiri & Bekiros, 2020a), 
detecting analysis of structural breaks and volatility spillovers (Canh 
et al., 2019), and modeling large abrupt price swings and long memory 
in volatility (Chaim & Laurini, 2019). Others involve examining long- 
range memory, distributional variation, and randomness of bitcoin 
volatility (Lahmiri et al., 2018) and analyzing the nonlinear correlations 
and multiscale characteristics of the cryptocurrency market (Watorek 
et al., 2021). Other interesting studies closely related to the present 
study are interested in forecasting cryptocurrency prices using artificial 
intelligence and advanced machine learning algorithms (Dutta et al., 
2019; Kwon et al., 2019; Lahmiri & Bekiros, 2019; Lahmiri & Bekiros, 
2020b; Mallqui & Fernandes, 2019; Miura et al., 2019; Zoumpekas et al., 
2020). 

Accordingly, in the last few years, the AI/ML community has deeply 
explored ML techniques (Table 1, i.e., classification, regression, time 

Table 1 
Previous studies using AI/ML approaches for cryptocurrency modeling.  

Reference Algorithms Data source Remarks 

Alonso-Monsalve et al. 
(2020) 

CNN, hybrid CNN-LSTM, ANN, and RBFNN Cryptocompare intraday trend classification for BTC, DASH, Ether, LTC, XMR and 
XRP, based on technical indicators. 

Atsalakis et al. (2019) Neuro-Fuzzy Bitcoincharts to forecast the direction in the change of the BTC price. 
Borges and Neves (2020) LR, RF, SVM and GBM Binance BNB price trend predicting 
Chen et al. (2020) LR, RF, XGB, QDA, SVM and LSTM CoinMarketCap 

Binance 
A classification problem to predict the sign change of BTC price 

Cherati et al 2021 LSTM Not indicated forecast daily closing price direction of BTC  

Chowdhury et al. (2020) Ensemble learning, GBM, ANNs, and K-NN Coinmarketcap forecast the close (closing) price of the cryptocurrency index 30 and 
nine constituents of cryptocurrencies 

Dutta et al. (2019) ANN, LSTM, and GRU Bitcoincharts daily BTC price prediction 
Guo et al. (2018) GARCH, RF, Gaussian process, XGT, ElasticNet, 

LSTM, Temporal mixture models 
Not indicated short-term volatility prediction of BTC price. 

Ibrahim et al. (2021) ARIMA, Prophet, RF, RF Lagged-Auto-Regression, 
and FFDNN 

Coinmarketcap predict market movement direction of BTC 

Jang and Lee (2018) BNN and linear models Bitcoincharts analyzing BTC processes 
Kristjanpoller and 

Minutolo (2018) 
GARCH and ANN Not indicated predict the price volatility of BTC 

Kwon et al. (2019) LSTM and GBM Bithumb a classification problem for the price trend (price-up or price-down) of 
BTC, ETH, XRP, BCH, LTC, DASH, and Ethereum Classic. 

Lahmiri and Bekiros 
(2019) 

LSTM and GRNN Not indicated for price prediction in Dash, XRP, and BTC. 

Lahmiri and Bekiros 
(2020b) 

SVR, GRP, RT, kNN, ANN, BRNN and RBFNN Bitcoin intraday price 
data 

Comparatively evaluate ML techniques in forecasting high-frequency 
price level of BTC. 

Mallqui and Fernandes 
(2019) 

Ensembles, RNNs, ANN, SVM Bitcoincharts and 
Quandl 

Compare different ensembles and neural networks to classify BTC 
price direction and predict closing price. 

Huang et al. (2019) Decision trees Investing BTC returns prediction 
Miura et al. (2019) LSTM, ANN, Ridge, SVM, and GRU Bitstamp to predict BTC price volatility 
Mudassir et al. (2020) ANN, Stacked ANN, LSTM, SVM Bitinfocharts for predicting BTC price movements and prices in short and medium 

terms 
Nakano et al. (2018) DNN Poloniex to predict price direction on BTC 15-min time intervals using prices 

and technical indicators 
Peng et al. (2018) GARCH with SVR Altcoin Charts predict volatilities of BTC, ETH, and DASH 
Poongodi et al. (2020) Linear regression and SVM Etherchain.org Ether coin close price prediction. 
Shah and Zhang (2014) BNN Okcoin to predict the BTC price variation. 
Sun et al. (2020) Light GBM, SVM, RF Investing forecast the price trend (falling, or not falling) of cryptocurrency 

markets 
Zoumpekas et al. (2020) CNN, LSTM, Stacked LSTM, Bidirectional LSTM, 

and GRU 
Poloniex predict the ETH closing price in a short period   
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series forecasting) to automatically generate profitable trading signals 
for the cryptocurrency market (Kristjanpoller & Minutolo, 2018). Most 
studies on quantitative cryptocurrency trading under classification aim 
to forecast the price trend of Bitcoin (BTC), a protocol based on a peer- 
to-peer network and public and private key cryptographic techniques. 
Bitcoin is also the natural base for other cryptocurrencies (Watorek 
et al., 2021), the leading and most capitalized ($434 Billion) as of July 
2022. For example, studies such as those from Alonso-Monsalve et al. 
(2020), Atsalakis et al. (2019), Ibrahim et al. (2021), Lahmiri and 
Bekiros (2020b), Mallqui and Fernandes (2019), Mudassir et al. (2020), 
Nakano et al. (2018), and Sun et al. (2020) addressed the prediction of 
the next-day direction (up or down) of Bitcoin (BTC) using classification 
models trained on historical data. These studies considered, amongst 
others, statistical and ML techniques such as Autoregressive Integrated 
Moving Average (ARIMA) (Ibrahim et al., 2021), k-nearest neighbor 
(Chowdhury et al., 2020; Lahmiri & Bekiros, 2020a, 2020b), Artificial 
Neural Networks (ANN) (Chowdhury et al., 2020; Ibrahim et al., 2021; 
Lahmiri & Bekiros, 2020b; Mallqui & Fernandes, 2019; Mudassir et al., 
2020), Logistic Regression (LR) (Borges & Neves, 2020; Chen et al., 
2020), Random Forest RF) (Borges & Neves, 2020; Chen et al., 2020; 
Ibrahim et al., 2021; Sun et al., 2020), and Support Vector Machines 
(SVM) (Borges & Neves, 2020; Chen et al., 2020; Lahmiri & Bekiros, 
2020b; Mallqui & Fernandes, 2019; Sun et al., 2020). Others include 
Bayesian Neural Networks (BNN) (Shah & Zhang, 2014), Gradient 
Boosting Machines (GBM) (Borges & Neves, 2020; Lahmiri & Bekiros, 
2020a, 2020b; Sun et al., 2020), Extreme Gradient Boosting (XGB), 
neuro-fuzzy (Atsalakis et al., 2019), Long Short-Term Memories (LSTM) 
and Recurrent Neural Networks (Cherati et al., 2021; Mallqui & Fer
nandes, 2019; Mudassir et al., 2020), and Convolution Neural Networks 
(Alonso-Monsalve et al., 2020). For instance, Atsalakis et al. (2019) 
adopted neuro-fuzzy techniques to forecast the change in the direction 
of the BTC price and reported an increase of 71.21 % in investment 
returns by the proposed model compared to the naive buy-and-hold 
strategy. Also, Alonso-Monclave et al. (2020) used hybrid Convolu
tional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
neural networks, CNN, ANN, and Radial Basis Neural Networks 
(RBFNN) for intraday trend classification of BTC, Dash, Ether, Litecoin 
(LTC), Monero (XMR), and Ripple (XRP), based on technical indicators. 

They reported that the hybrid CNN-LSTM architecture outperformed 
other methods considered. Similarly, Ibrahim et al. (2021) compared 
ARIMA, Prophet, Random Forest, Random Forest Lagged-Auto- 
Regression, and feed-forward deep neural networks (FFDNN); they re
ported that FFDNN achieved the highest accuracy of 54 % compared to 
other predictive models. Also, Borges and Neves (2020) compared LR, 
RF, SVM, and GBM with ensemble voting for the BNB coin market and 
risk value prediction. They reported that the ensemble voting method, 
on average, outperformed other learning algorithms with an accuracy of 
56.28 %. Finally, Chen et al. (2020) compared LR, SVM, LSTM, XGB, 
Linear discriminant analysis, Quadratic discriminate analysis, and RF for 
the Bitcoin price trend prediction. The LSTM model obtained the highest 
accuracy of 67.2 %. Also, Cherati et al. (2021) used an LSTM model to 
forecast the daily closing price direction of the BTC/US and obtained an 
accuracy of 76.83 % on the testing data. 

Regarding regression modeling, studies such as those from Chowd
hury et al. (2020), Dutta et al. (2019), Lahmiri and Bekiros (2019), 
Poongodi et al. (2020), and Zoumpekas et al. (2020) developed regres
sion models for cryptocurrency price prediction. Such studies employed 
ML techniques, i.e., linear regression and SVM for Ether coin price 
prediction (Poongodi et al., 2020), ANN for cryptocurrencies, i.e., BTC, 
ETH, Dash, price prediction (Chowdhury et al., 2020; Dutta et al., 2019), 
GBM (Chowdhury et al., 2020), k-NN (Chowdhury et al., 2020), and 
deep learning LSTM and GRU (Dutta et al., 2019; Kwon et al., 2019; 
Lahmiri & Bekiros, 2019; Zoumpekas et al., 2020) for predictive model 
development. For instance, Dutta et al. (2019) compared Recurrent 
Neural Networks (RNN) and ANNs to predict daily BTC prices, using 
daily data from January 2010 to June 2019. In the study, feature 

selection was based on the Variance Inflation Factor (VIF), and the au
thors reported the performance of RNNs over ANNs on this task. Simi
larly, Lahmiri and Bekiros (2019) benchmarked LSTM with Generalized 
Regression Neural Networks (GRNN) for BTC price prediction and re
ported that LSTM performed better with a smaller Root Mean Square 
Error (RMSE: 2.75 × 103) compared to 8.80 × 103 for GRNN. Also, 
Poongodi et al. (2020) adopted linear regression and SVM models for 
Ethereum (ETH) closing price prediction and concluded that the SVM 
method had higher accuracy (96.06 %) than the LR method (85.46 %). 
Similarly, Zoumpekas et al. (2020) utilized deep learning algorithms to 
predict the closing price of the Ethereum cryptocurrency and reported a 
Squared-R of predicted versus the actual ETH/USD data to a degree of 
more than 60 %. Finally, Chowdhury et al. (2020) used ANN, GBM, 
KNN, and ensemble learning methods to forecast the closing price of the 
cryptocurrency index 30 and nine constituents of cryptocurrencies and 
reported the highest RMSE obtained for BTC as 32.863 with the GBM 
model. 

In terms of time series prediction, Jang and Lee (2018) used Bayesian 
Neural Networks to predict the log price and the log volatility of Bitcoin 
price and obtained MAPE values equal to 0.0198 and 0.6302 for log 
price and log volatility, respectively. The authors also compared the 
predictive performance of BNN with a Support Vector Regression (SVR) 
and linear models. Kristjanpoller and Minutolo (2018) integrated 
Generalized Auto-regressive Conditional Heteroskedasticity (GARCH) 
and ANN with Principal Component Analysis (PCA) to predict Bitcoin’s 
price volatility. They reported that the proposed model could capture 
price volatility to mitigate exposure to financial risk. Also, Peng et al. 
(2018) evaluated the predictive performance of a hybrid GARCH and 
Support Vector Regression model in estimating the volatility of three 
cryptocurrencies and three currencies. Similarly, Guo et al. (2018) 
formulated probabilistic temporal mixture models to capture autore
gressive dependence in price volatility history. They benchmarked the 
predictive performance of the proposed models with some conventional 
techniques and concluded that the proposed model had the lowest RMSE 
in price volatility prediction. Also, Miura et al. (2019) predicted the 
future volatility values based on past samples using ANN, GRU, LSTM, 
SVM, and Ridge Regression techniques. They concluded that the Ridge 
Regression had the overall best performance. 

Consequently, previous studies employing AI/ML techniques have 
aimed to model the cryptocurrency market for improved decision- 
making regarding investments with higher returns and lower risk 
(Borges & Neves, 2020; Kristjanpoller & Minutolo, 2018). This interest is 
associated with increasing efforts being expended by researchers and 
financial organizations to minimize financial risks. However, the pre
dictive performance of current frameworks still needs improvements, as 
evidenced by several cryptocurrency price modeling studies aimed at 
improving forecasting methods for profitable investment decisions 
(Ibrahim et al., 2021; Huang et al., 2019; Jang & Lee, 2018; Kristjan
poller & Minutolo, 2018; Peng et al., 2018; Watorek et al., 2021). 
Furthermore, financial investors need efficient strategies to reduce 
financial risk resulting from the increased complexity characteristics 
observed across most financial markets (Watorek et al., 2021). Tradi
tional ML techniques require manual feature extraction from massive 
datasets to transform data into internal forms to enhance ML models’ 
predictive ability (LeCun et al., 2015) for guaranteed optimal results. 
This limitation, in addition to the specific issue each ML model has. For 
instance, the logistic regression model has difficulty capturing nonlinear 
and local relationships among dependent and independent variables. 
Similarly, despite their ability to learn from data and fault tolerances, 
ANNs can suffer from uncontrolled convergence speed and local optima. 
Also, Bayesian Neural Networks and SVMs have computational 
complexity issues. Also, decision trees can have high variance across 
samples, making predictions and probabilities unstable for new cases. 
Besides these challenges, modern financial markets are characterized by 
a rapid flow of information, high-frequency data, nonlinear interactions, 
and complex characteristics (Watorek et al., 2021), which may be 
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difficult for conventional ML techniques to achieve optimal results. 
Also, in modeling cryptocurrencies and benchmarking different ML 

models’ performance, most existing studies considered a single data 
source of historical data for training, validating, and testing their 
models. In addition, most used ML models to predict famous and single 
cryptocurrency platforms, i.e., BTC price (Atsalakis et al., 2019; Chen 
et al., 2020; Lahmiri & Bekiros, 2020a, 2020b; Shah & Zhang, 2014), 
ETH (Zoumpekas et al., 2020), and BNB (Borges & Neves, 2020). 
However, other cryptocurrencies, i.e., LTC, Dogecoin (DOGE), and 
Stellar (XLM), are among the top 10 currencies with the potential to be 
adopted in financial institutions. Also these other cryptocurrencies had 
attracted relatively less attention. Therefore, besides the established 
cryptocurrencies, it is worth investigating ML models’ robustness on less 
famous ones to offer a suitable strategy for their price prediction and 
understand their overall price dynamics. Similarly, the robustness of an 
optimal model configuration on several cryptocurrencies and perfor
mance on the different testing datasets require an assessment, especially 
models’ sensitivity to training sets, where peaks and drops in prices are 
not adequately represented, has hitherto received little academic 
attention. Therefore, constructing robust predictive models to accu
rately forecast prices for multiple cryptocurrencies is a significant 
business challenge for probable investors and government agencies. 
Accordingly, a robust technique is desirable to improve prediction 
ability to enhance the prediction of cryptocurrencies’ closing prices for 
improved financial investments. 

Therefore, deep learning techniques are adopted in this study 
because of their advantage in discovering intricate structures in high- 
dimensional data, their ability to represent complex data, and their 
remarkable problem-solving successes in several domains (LeCun et al., 
2015). Though, deep learning architectures, i.e., CNN, LSTM, GRU, 

DFNN, have been actively used for cryptocurrency price, volatility, and 
return predictions in recent years (Alonso-Monsalve et al., 2020; Dutta 
et al., 2019; Guo et al., 2018; Ibrahim et al., 2021; Mallqui & Fernandes, 
2019; Nakano et al., 2018; Zoumpekas et al., 2020). However, it is noted 
that in studies such as those from Alonso-Monsalve et al. (2020) and 
Nakano et al. (2018), CNN and DNN techniques were used primarily for 
trend (price direction) classification problems. Instead, this present 
study utilizes both techniques for estimating a real-valued variable 
(closing price). Also, it is observed that Dutta et al. (2019) and Zoum
pekas et al. (2020) adopted deep learning techniques, i.e., CNN and 
GRU, to predict the closing price of either BTC or ETH. In contrast, this 
current study adopts the same configurations of CNN, DFNN, and GRU 
architectures to predict the daily closing prices of multiple crypto
currencies from multiple data sources. Also, the predictive abilities of 
the proposed all-inclusive and optimal deep learning models are 
benchmarked with a few key powerful boosted tree techniques in GBM, 
Adaboost, and XGB using standard metrics from the literature. 

3. Methodology 

3.1. Dataset and data preprocessing 

The study collected datasets from Yahoo finance, UK Investing, and 
Bitfinex to investigate the robustness of prediction models in terms of 
how they respond to patterns in multiple data sources. For example, the 
dataset from Yahoo finance is for training and validating the models, 
while other datasets are for testing the prediction models. The Yahoo 
finance dataset for the six cryptocurrencies (BTC-USD, ETH-USD, BNB- 
USD, LTC-USD, XLM-USD, and DOGE-USD) covers the duration between 
January 1, 2018, to December 31, 2021 (1442 observations). UK 

Fig. 1. Cryptocurrency trends and distributions.  
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Investing dataset covers from July 1, 2021, to March 2, 2022 (245 ob
servations). Also, the Bitfinex dataset for the six cryptocurrencies is from 
January 1, 2021, to July 6, 2021 (187 observations). More importantly, 
validating models on different datasets helps guarantee that they do not 
fit data-specific features. Each dataset has five features, namely, the 
closing price (Close), highest price (High), lowest price (Low), opening 
price (Open), and the daily cryptocurrency volume (Volume). In 

addition, additional features are created, i.e., weighted average (using 
“Price” as values and “year” as weights) and technical indicators that 
may impact prices, which include simple moving average (SMA) and 
exponential moving average (EMA). The rationale for selecting SMA is 
to allow a model to recognize trends by smoothing the data more effi
ciently. At the same time, EMA facilitates the dampening of the effects of 
short-term oscillations. The significant difference between SMA and 

Table 2 
Dataset description - Yahoo Finance.    

Open High Low Volume WP SMA3 SMA10 SMA20 EMA10 Price 

BTC min  3236.3  3275.4  3191.3 2.9e + 9  8.9 3244.0  3397.0  3524.7  3425.1  3236.8  
mean  18408.8  16054.0  15160.1 2.6e + 10  50.5 18405.3  18317.8  18199.8  18319.5  18429.6  
max  67549.7  68789.6  66382.1 3.5e + 11  185.1 66511.3  64698.9  63149.3  64411.4  67566.8  

LTC min  23.5  23.8  22.8 1.9e + 8  0.1 23.6  24.6  27.4  25.3  23.5  
mean  02.7  106.6  98.3 2.8e + 9  0.2 102.6  102.8  103.1  102.8  6.34  
max  387.9  413.0  345.3 1.7e + 10  1.1 374.4  347.2  316.0  342.2  386.5  

ETH min  84.3  85.3  82.8 9.5e + 8  0.2 84.7  89.2  97.3  90.5  84.3  
mean  933.5  965.8  897.0 1.3e + 10  2.6 933. 2  926.7  917.0  926.5  935.1  
Max  4174.6  4891.7  4718.0 8.4e + 10  13.2 4727.8  4655.8  4531.5  4621.4  4812.1  

BNB min  4.5  4.6  4.2 9.3e + 3  0.0 4.6  4.7  5.0  4.8  4.5  
mean  108.6  113.0  103.9 8.8e + 8  0.3 108.5  107.3  105.5  107.3  108.9  
max  676.3  690.9  634.5 1.7e + 10  1.9 655.3  643.1  614.7  637.0  675.7  

DOGE min  0.0  0.0  0.0 2.1e + 6  0.0 0.0  0.0  0.0  0.0  0.0  
mean  0.1  0.1  0.1 1.0e + 9  0.0 0.1  0.1  0.1  0.1  0.1  
max  0.7  0.7  0.6 6.9e + 10  0.0 0.6  0.6  0.5  0.5  0.7  

XLM min  0.0  0.0  0.0 1.9e + 7  0.0 0.0  0.0  0.0  0.0  0.0  
mean  0.2  0.2  0.2 5.1e + 8  0.0 0.2  0.2  0.2  0.2  0.2  
max  0.7  0.8  0.7 1.0e + 10  0.0 0.7  0.7  0.6  0.7  0.7  

Fig. 2. Illustrating the two scenarios (A and B) with respect to training data sizes.  
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EMA is that EMA assigns a greater weight to recent data and reacts faster 
to recent price variations. Furthermore, these technical indicators are 
calculated using different periods, i.e., day 3, day 10, and day 20. 

Fig. 1a depicts the price exhibiting nonlinear dynamical traits for the 
six cryptocurrencies versus time from January 1, 2018, to December 31, 
2021. For instance, in Fig. 1a, BTC indicates that the price significantly 
rose in late 2020 (around 13/11/2020, approximately at index 1048 on 
the graph). Similarly, for ETH, a significant increase in closing price 
becomes noticeable around 02/02/2021, approximately at index 1129 
on the graph. Also, a significant increase in the BNB price is at index 
1136 on the graph, i.e., 09/02/2021. Similarly, Fig. 1a and Table 2 
present the summary statistics of cryptocurrencies (Yahoo finance) from 
2018 to 2021. Though world financial markets do not work simulta
neously due to different time zones, most work around the clock, and 
only temporary price fluctuations caused by the human factor are 
noticeable. Thus, to study this temporary price fluctuation, the per
centage changes in cryptocurrency prices during the day were calcu
lated, and moderate changes ranging from 0.05 % to 1 % were 
discovered. Thus, the time zones have little or no effect on the crypto
currency market. Furthermore, these cryptocurrencies from the three 
datasets (Yahoo finance, UK Investing, Bitfinex) are similar and have 
identical distributions. 

Again, there are no missing values in the datasets; however, there are 
noticeable outliers, as depicted in the box plots containing the infor
mation to identify their distribution. For instance, the closing prices for 
BTC in 2018 and 2020 have outliers (Fig. 1b). Also, LTC in 2020 and 
2021 (Fig. 1c) has outliers, and XLM has outliers in 2018, 2020 and 2021 
(Fig. 1d). Nevertheless, outliers are kept in the predictive modeling 
phase since they carry meaningful information and deleting them could 
cause substantial information loss. However, the normalization tech
nique is adopted to transform raw data into a form where the features 
are all uniformly distributed, i.e., standardizing the features with their 
mean and standard deviation to address the dominant features and 
outliers. Nevertheless, understanding the effect of the training data size 
on the model performance is critical to advancing the knowledge about 
its generalization ability, specifically in investigating the robustness of 
models where specific insights are not in training sets. Thus, two sce
narios are presented in training the prediction models and tuning their 
parameters. The purpose is to investigate the training set size di
mensions’ effects on prediction quality. The first (Scenario A) divides 
each cryptocurrency dataset from Yahoo Finance into training (1154 
days, i.e., from 01/01/2018–28/02/2021) and test (i.e., 305 days: 01/ 
03/2021–31/12/2021). Here prominent peaks in cryptocurrency prices 
are missing from the training set. Scenario B divides each crypto
currency dataset from Yahoo finance into training (1240 days, i.e., from 
01/01/2018 to 25/05/2021) and test set (i.e., 219 days: 26/05/ 
2021–31/12/2021). Thus, scenario B has sufficient peaks and lows in 
prices captured in the training set. For instance, Fig. 2 depicts the two 
scenarios illustrated with BNB/USD, where higher spikes are not part of 
the training set (Scenario A), and some of these spikes are incorporated 
in the training set (Scenario B). 

3.2. Boosted tree-based technique 

This technique represents ensembles of multiple weak trees to 
improve robustness over a single predictive model. The three boosted 
tree-based techniques considered are briefly described. 

3.2.1. Adaptive boosting 
AdaBoost or ADAB is generally less susceptible to overfitting prob

lems and works by fitting a series of weak learners (i.e., decision trees) 
on repeatedly modified versions of data. Predictions from the weak 
learners are then combined through a weighted majority vote to produce 
the final prediction. The data modifications at each boosting iteration 
apply weights w1, w2, …, wN to training samples, with initial weights at 
wj = 1/N. Thus, the first step merely trains a weak learner on the original 

data. Then, the sample weights are individually modified for each suc
cessive iteration, and the learning algorithm is reapplied to the 
reweighted data. At a given step, the training examples with incorrect 
predictions at the previous step will have their weights increased. In 
contrast, those predicted correctly will have their weights decreased. As 
iterations progress, the difficult to predict examples will receive more 
attention. Thus, each subsequent weak learner is forced to concentrate 
on examples previously missed in the sequence (Hastie et al., 2009). 
Mathematically, given a training set with m samples. Let t(j) be the 
actual cryptocurrency price of sample j for j = 1, 2, ⋯, k. ADAB gen
erates L sub-regressors (lp) and trains each regressor on a sampled sub- 
dataset Dp, p = 1, 2, …, L of the same size as the original training set. For 
each regressor lp, the normalized estimation error for sample j, j = 1,2, 

⋯, k, is denoted as ej
p =

|tj − lp(xj) |
maxk

j=1|t
j − lp(xj) |

, and the estimation error of lp 

computed using βp =
∑k

j=1ωj
pej

p. Then, the weight of sample j is updated 
as 

ωj
p =

ωj
p− 1

Zp− 1

( βp− 1

1 − βp− 1

)1− ej
p− 1

(1)  

Where Zp-1 is a normalizing constant, intuitively, by Eq. (1), the samples 
with a significant estimation error in the last iteration are assigned a 
significant sampling weight in the next iteration. Thus, during the 
training process, ADAB reduces estimation errors by paying attention to 
samples that are difficult to predict accurately. The final trained Ada
Boost regressor is a weighted regressor l(x) overall L sub-regressors 

defined as l(x) =
∑L

p=1ln
(

1− βp
βp

)
lp(x), where the weight ln

( (
1 − βp/βp

) )

of regressor lp decreases with estimation errors, βp, i.e., regressors with 
smaller estimation errors contribute more to the final regressor l(x). |The 
genetic algorithm (Algorithm 1) was used to tune three ADAB parame
ters: the number of estimators (n_estimators), loss, and the learning rate 
(learning_rate). A slower learning rate takes much time and has more 
probability of converging or being stuck in an undesirable local mini
mum. At the same time, a higher one makes the learning jump over 
minima. Thus, this study considers the range (1.0 to 1.3) for the learning 
rate since this range was observed to be more appropriate during vali
dation. The number of estimators is another parameter affecting the 
model’s accuracy, as a larger value may lead to overfitting; hence, the 
hyperparameter sample space was limited to between 65 and 75. 
Additionally, the “loss” parameter was set to ‘square’ since it gave the 
best results during validation. Finally, the optimal configuration for 
ADAB was derived by computing the average value of these parameters 
for the repeated trials (6) representing the number of cryptocurrencies 
as depicted in Algorithm 1. 

3.2.2. Gradient boosting machines 
GBMs (Friedman, 2001) derive a strong learner by combining an 

ensemble of weak learners (i.e., decision trees) interactively. For a 

training dataset, S defined as S =
{

xj, yj

}n

1
, the goal of the algorithm is 

to approximate function F*(x) to give F̂(x), i.e., mapping instances of x to 
output values y by minimizing the expected loss function, L (y, F(x)). 
Thus, the algorithm builds an additive approximation of F*(x) as a 
weighted sum of functions defined as Fk(x) = Fk− 1(x)+ωkhk(x) where ωk 
represents the weight of the kth function, hk(x). In constructing the 
approximation, a constant approximation of F *(x) is first derived as 

F0(x) =
argmin

α
∑n

j=1
L
(
yj, α

)
(2)  

With subsequent models minimizing 

ωkhk(x) =
argmin

ω, h
∑n

j=1
L
(
yj,Fk− 1

(
xj
)
+ωh

(
xj
) )

(3) 
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Where each model, hk, is seen as a greedy step in a gradient descent 
optimization for F*, and each hk is trained on a new dataset S =
{

xjγkj

}n

j=1 
with residuals, γkj, derived as 

γkj =

{
∂L

(
yjF(x)

)

∂F(x)

}

F(x)=Fk− 1(x)

(4)  

The value of ωk is consequently computed by solving a linear search 
optimization problem, which suffers from overfitting if the iterative 
process is not correctly regularized (Friedman, 2001). Nevertheless, 
when controlling the additive process of the gradient boosting algo
rithm, several regularization parameters are often considered. One way 
to regularize the algorithm is to apply a shrinkage factor, ϑ, to reduce 
each gradient descent step Fk(x) = Fk− 1(x) + ϑωkhk(x), ϑ ∈ [0, 1.0]. Also, 
regularization can be achieved by limiting the complexity of the trained 
models, i.e., by limiting the depth of the trees or the minimum number of 
instances necessary for node splitting. 

The genetic algorithm was used to tune three GBM parameters: the 
number of estimators (n_estimators), tree depth (max_depth), and the 
learning rate (learning_rate). Boosting may potentially overfit when large 
estimators are used; hence, this range was limited to between 65 and 75, 
a very conservative value compared to examples provided in the liter
ature (Hastie et al., 2009). The tree depths between 3 and 8 are known to 
give the best results (Hastie et al., 2009). Moreover, stumps with only 
one split allow for no variable interaction effects. Thus, a tree depth 
range of between 3 and 6 was used to allow a reasonable interaction. 
Also, the learning rate (α) represents the speed of learning achieved by 
the model. This study considers 0.80 ≤ α ≤ 1.20, due to the small 
number of trees used and to derive a computationally feasible model. 
Using a genetic algorithm (GA) specified in Algorithm 1, a reasonable 
number of estimators (70), tree depth (4), and learning rate (0.999) 
were similarly derived (Table 3). 

3.2.3. Extreme gradient boosting 
The XGB (Chen & Guestrin, 2016) represents an ensemble tree model 

utilizing the gradient boosting framework designed to be highly scalable 

and improve gradient boosting. This algorithm also exhibits better 
capability and higher computation efficiency when dealing with over
fitting. XGB constructs an additive expansion of the objective function 
by decreasing a variation of the loss function, L′ , used to control the 
complexity of the trees and defined as Eq. (5): 

L′

=
∑n

j=1
L
(
yj,F

(
xj
) )

+
∑m

k=1
θ(hk) (5)  

where θ(h) = γZ + 1/2λη2, Z represents the number of leaves in the tree, 
and η represents the output scores of leaves. This loss function is 
incorporated into the split criterion of decision trees leading to a pre- 
pruning procedure. The value of γ controls the minimum loss reduc
tion gain required to split the internal node; however, higher values of γ 
result in simpler trees. An additional regularization parameter, known as 
shrinkage, λ, can be employed to reduce step size in the additive 
expansion. Also, the complexity of trees can be controlled using other 
approaches, i.e., the depth of the trees. Tree complexity reduction en
sures models are trained faster with less storage space requirement. 
Furthermore, randomization techniques (random subsamples and col
umn subsampling) are available to reduce overfitting and training 
speed. Also, three XGB parameters: the learning rate, number of esti
mators (n_estimators), and the maximum depth of the tree (max_depth), 
were tuned using the GA method while setting other parameters at their 
default values. The optimal configurations (Table 3) obtained after 
averaging the best configurations from the six cryptocurrencies are 
learning_rate (1.135), n_estimators (63), and max_depth (5). 

3.3. Deep learning techniques 

These are a new branch of ML techniques that have gained wide
spread recognition and are successfully deployed in various applica
tions. A brief discussion on DL architectures considered is as follows. 

3.3.1. Deep feedforward neural networks 
The deep feedforward neural network (DFNN) is the typical DL 

model for hierarchically learning complex and abstract data represen

Table 3 
Parameter bounds, optimal parameters for each cryptocurrency, and the average value for models.  

Model Parameter Range Cryptocurrency Average 

BTC ETH BNB LTC XLM DOGE 

ADA learning_rate [1.00 – 1.30] 1.283 1.286 1.246 1.218 1.030 1.223 1.214 
72 n_estimators [65–75] 65 73 70 74 75 75  

GBM loss Square – – – – – – 4 
0.999 
70 

max_depth [3–6] 3 3 6 4 3 6 
learning_rate [0.80–1.30] 1.192 1.001 0.868 1.048 1.016 0.864 
n_estimators [65–75] 70 71 65 70 70 74  

XGB max_depth [3–6] 6 6 4 6 3 5 5 
1.135 
63 

learning_rate [0.80–1.30] 1.271 1.137 0.839 1.115 1.149 1.298 
n_estimators [60–70] 63 60 67 63 62 65  

MLP units (each of the 2 layers) [14–19] 15 18 14 15 15 17 16 
45 
83 

batch_size [40–50] 43 41 43 47 50 47 
epochs [80–90] 85 84 84 87 80 80  

GRU units (each of the 2 layers) [11–14] 11 13 13 14 13 11 13 
43 
80 

batch_size [42–45] 42 43 42 44 43 42 
epochs [76–84] 80 84 76 76 79 82  

CNN filters [9–12] 10 12 10 9 9 9 10 
13 
52 
82 

units [10–14] 10 13 14 13 14 12 
batch_size [44–54] 54 52 51 49 54 50 
epochs [75–85] 83 85 77 81 81 84  
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tations. This learning process transmits data through multiple trans
formation layers (Ajayi et al., 2020). The typical architecture of DFNN 
has three layers, namely, input layer, hidden layer, and output layer, in 
which each layer has several interconnected processing units. In DFNN, 
each layer utilizes a nonlinear transformation on its input to produce its 
output. The neural network is assumed to consist of N layers. The output 
signal of the lth layer is expressed as in Eq. (6). 

dl
j = f

(
wT

j al− 1
j + bj

)
l = 1, 2, 3,⋯,N (6)  

where f is the activation function; wT
j is the weight vector which in

dicates the effect of all units in the same hidden layer; al− 1
j defines the 

output signal of the l − 1th layer; bj represents the bias parameter of the 
jth unit in the lth layer. Since this problem is a regression problem, the 
rectified linear unit (ReLU) was selected as the activation function in the 
DFNN architecture to transfer input signals to the output because it is 
computationally efficient and will ensure better performance of models. 
Also, ReLU is nearly linear and easy to optimize with gradient-based 
methods. In addition, it can learn faster with networks consisting of 
many layers, thus allowing the training of deep neural networks without 
an unsupervised pre-training. Mathematically, ReLU is expressed as 

f(x) =

{
0forx < 0
xforx ≥ 0 . Furthermore, the Mean square error (MSE) was 

used to evaluate the model’s prediction accuracy while training the 

DFNN model. MSE is normally expressed as MSE = 1
n
∑n

j=1

(
oj − yj

)2
, 

where n is the number of samples in a training set; oj represent the 
measured values and yj represent predicted values. In constructing the 
DFNN model, the number of hidden layers was first derived. Generally, 
increasing the number of hidden layers imply longer computational time 
and larger storage of training parameters. However, considering the 
datasets and computational cost, it was observed that a neuron network 
architecture with only two hidden layers could reasonably model the 
cryptocurrency problem in this study. Therefore, the architecture con
sisted of an input layer, two hidden layers, and an output layer. The Root 
Mean Square Propagation (RMSprop) optimizer was adopted for the 
MSE loss minimization since its combination with ReLU attained the 
lowest training MSE at 100 epochs. In addition, the RMSProp optimizer 
made the entire network converge faster. Also, the dropout method 
(Srivastava et al., 2014) was used to deal with the overfitting problem. 
The drop rate used is 0.1 %. Choosing an optimal number of neurons for 
each hidden layer is critical to the performance of a neural network. 
Thus, the GA method was used to tune the parameters: the number of 
neurons in each Dense layer (two layers were used), the number of 
epochs, and the training batch size (Table 3), to derive an optimal model 
configuration for the cryptocurrencies. 

3.3.2. Gated recurrent units 
The gated recurrent units (GRUs) use gates to control information 

flow, and they are introduced to solve the vanishing gradient problem 
with the standard RNNs. Though GRU is similar to LSTM, however GRU 
network has an update gate that combines the forget and input gates of 
LSTM into a single update gate. In addition, the cell state and the hidden 
state are further merged in GRU, thus, making its structure simpler, 
more efficient in the training phase, and, in general, train faster than 
LSTM. Furthermore, GRUs are known to outperform LSTMs in tasks with 
a limited number of data instances. The linking of the writes and forget 
gates in the GRU update gate imposes a restraint on the cell state to 
coordinate the writes and forgets. Alternatively, rather than doing se
lective writes and selective forgets, a selective overwrites, i.e., setting 
the forget gate equal to 1 minus the write gate, is done using Equation 
(7): 

ht = (1 − zt)hht− 1 + zth
h
h1

(7)  

where zt denotes the update gate, and ht represents the memory content. 
An element-wise multiplication, Θ is applied to (1 − zt) and the pre
ceding memory content ht− 1 in (6), followed by an element-wise 
multiplication on zt and the current memory content h̃t, thus resulting 
in a summation of two element-wise multiplications. Usually, the GRU 
unit structure consists of the update gate (zt), reset gate (rt), and the 
current memory content (h̃t). These gates permit the storage of values in 
the GRU unit memory for a certain amount of time and then carry these 
values forward, when required, to the current state to update at a future 
date. The update gate multiplies and adds the input xt and the output 
from the previous unit ht− 1 and is used to tackle the vanishing gradient 
problem when training models. A sigmoid function is used to obtain 
outputs between 0 and 1. The reset gate regulates how much of the past 
information to disregard. The current memory content is where xt is 
multiplied by W and rt is multiplied by ht− 1 elementwise, with a tanh 
activation function applied to the final summation. The final GRU unit 
memory, ht, holds the information for the current unit, which is passed 
on to the network. The GRU architecture consists of a single layer of GRU 
unit driven by the input sequence and the activation function, set as 
ReLU. Also, RMSprop was used to optimize the training and GA (Algo
rithm 1) to tune its parameters (number of neurons in GRU and Dense 
layers, epochs, and training batch size). As a result, the optimal values 
(Table 3) obtained are the number of neurons (13 each) for GRU and 
Dense layers, epochs (80), and training batch size (43), respectively. 

3.3.3. Convolutional neural networks (1-D) 
CNNs typically consist of a set of successive convolutional and sub

sampling layers, one or more hidden layers, and an output layer. The 
first two types of layers are combined to extract high-level feature 
vectors in one dimension. The feature vectors are later handled by the 
fully connected multilayer perceptron and output layers. Also, an acti
vation function is usually applied to the resulting field following the 
convolution operation. The ReLU activation function is computationally 
efficient for CNNs (Dahl et al., 2013), in addition, it is favored because it 
preserves the magnitude of positive signals as they travel forward and 
backward through the network (LeCun et al., 2015). Finally, convolu
tion filters are applied across all inputs simultaneously, which allows 
them to identify correlated patterns across multiple input variables or 
the results of previous convolutions. The advantage of CNN is that the 
training is relatively easy because its number of weights is less than that 
of a fully connected architecture, thus, facilitating the easy extraction of 
essential features. Formally, the 1D forward propagation from convo
lution layer l-1 to the input of a neuron in layer l is expressed as in Eq. 
(8): 

xl
k = bl

k +
∑Nl− 1

i=1
conv1D

(
wl− 1

ik , sl− 1
i

)
(8)  

Where the scalar bias of the kth neuron bl
k, the output of the ith neuron at 

layer l-1 sl− 1
i , and the kernel from the ith neuron at layer l-1 to the kth 

neuron at layer l wl− 1
ik are used to determine the input xl

k at layer l. Also, 
the conv1D (.,.) function represents a 1-D convolution without zero 
padding on the boundaries. Finally, the intermediate output of the 
neuron, yl

k, which is a function of the input, xl
k, and the output of the 

neuron sl
k at layer l (a subsampled version of yl

k) is as defined in Eq. (9): 

yl
k = f

(
xl

k

)
andsl

k = yl
k↓ss (9)  

where sl
k stands for the output of the kth neuron of the layer, l, and “↓ss” 

represents the down-sampling operation with a scalar factor, ss. In 
achieving the utmost computational efficiency, the study adopts a sim
ple 1-D CNN with only one CNN layer and one MLP layer. Moreover, 
most recent studies employing 1D CNN applications use compact (with 
1–2 hidden CNN layers) configurations. Also, since CNN models learn 
very quickly, a dropout layer (Srivastava et al., 2014) was used to help 
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slow down the learning process and facilitate better generalization. 
Furthermore, ReLU, a computationally efficient activation function for 
CNNs (Dahl et al., 2013), and RMSprop were used in learning optimi
zation. Finally, four parameters: the number of filers, the number of 
neurons in the dense layer, the number of epochs, and the batch size for 
the six cryptocurrencies, were tuned using Algorithm 1. The optimal 
values of these parameters are filters (10), units (13), epochs (82), and 
batch size (52).   

3.4. Genetic algorithms 

Genetic algorithms (GA) (Goldberg, 2006) provide the opportunity 
to randomly search the hyper-parameter space while utilizing the pre
vious results to direct the search. Each hyperparameter to optimize is 
encoded as a single gene for each individual. A range is then defined for 
each gene to eliminate searching for disinterested areas in the 

hyperparameter space. Initially, the population is generated by selecting 
each gene from a uniform random distribution, then each individual’s 
fitness is evaluated. Each generation is then formed using selection, 
crossover, and mutation predicated on individuals having the highest 
fitness scores from the previous generation. This procedure represents a 
single generation of random search followed by a result-driven search 
based on the best previous individuals. A selection operation is per
formed by removing individuals from the population with a fitness value 

smaller than their generation’s average fitness. Then, the next genera
tion is created by performing the crossover and mutation operations on 
the remaining individuals. The GASearchCV function in Python’s 
sklearn-genetic-opt is used to optimize the hyperparameters by mini
mizing the RMSE of the prediction models. The algorithm used to derive 
the optimal hyperparameters for the deep learning and tree-based 
methods is depicted in Algorithm 1, and the function code 

A.A. Oyedele et al.                                                                                                                                                                                                                             



ExpertSystemsW
ithApplications213(2023)119233

10

Table 4 
Statistical performance of prediction models.  

Scenario A (Table 4A)  

Model Statistical 
Index   

BTC ETH BNB LTC XLM DOGE Mean 

Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3  

XGB EVS 0.97 0.98 0.99 0.03 0.50 0.50 0.08 0.53 0.55 0.79 0.92 0.92 0.97 0.98 0.98 0.03 0.10 0.10 0.61 
MAPE 1 % 2 % 2 % 25 % 17 % 17 % 24 % 21 % 20 % 2 % 2 % 2 % 2 % 3 % 3 % 65 % 56 % 56 % 18 % 
t-test 0.00 − 0.04 − 0.08 1.43 0.88 0.89 1.14 0.88 0.93 0.32 0.21 0.21 0.18 − 0.06 − 0.12 1.79 1.27 1.27 0.62 
NSE 0.97 0.98 0.99 − 1.96 0.11 0.09 − 1.11 0.16 0.16 0.77 0.92 0.92 0.97 0.98 0.98 − 3.09 − 1.37 − 1.37 0.01  

GBM EVS 0.97 0.95 0.95 0.03 0.50 0.50 0.19 0.59 0.59 0.80 0.92 0.92 0.94 0.97 0.97 0.04 0.13 0.13 0.62 
MAPE 1 % 3 % 3 % 24 % 16 % 16 % 21 % 18 % 18 % 2 % 2 % 1 % 2 % 3 % 3 % 65 % 56 % 56 % 17 % 
t-test − 0.07 0.05 − 0.01 1.38 0.85 0.86 1.13 0.88 0.88 0.31 0.20 0.20 0.39 0.08 − 0.01 1.78 1.30 1.30 0.64 
NSE 0.97 0.95 0.95 − 1.83 0.14 0.14 − 0.85 0.27 0.27 0.78 0.92 0.92 0.93 0.97 0.97 − 3.02 − 1.34 − 1.34 0.04  

ADAB EVS 0.97 0.99 0.99 0.03 0.49 0.49 0.06 0.47 0.47 0.76 0.91 0.91 0.98 0.99 0.99 0.04 0.13 0.13 0.60 
MAPE 1 % 1 % 1 % 25 % 16 % 16 % 28 % 23 % 23 % 2 % 1 % 1 % 1 % 2 % 2 % 64 % 55 % 55 % 18 % 
t-test − 0.03 0.06 0.08 1.42 0.85 0.86 1.36 1.00 1.00 0.34 0.23 0.23 0.15 0.06 − 0.01 1.77 1.29 1.29 0.66 
NSE 0.97 0.99 0.99 − 1.93 0.11 0.11 − 1.70 − 0.07 − 0.07 0.74 0.91 0.91 0.98 0.99 0.99 − 2.98 − 1.32 − 1.32 − 0.04  

GRU EVS 0.98 0.98 0.98 0.76 0.89 0.89 0.81 0.84 0.86 0.99 0.99 0.99 0.98 0.98 0.98 0.91 0.91 0.91 0.92 
MAPE 4 % 2 % 2 % 14 % 12 % 12 % 20 % 29 % 28 % 1 % 3 % 2 % 2 % 4 % 4 % 6 % 24 % 24 % 11 % 
t-test − 2.53 − 0.5 − 0.5 1.57 1.19 1.19 2.01 1.90 2.10 − 0.42 0.54 0.57 − 0.49 − 0.93 − 0.78 0.49 1.28 1.28 0.44 
NSE 0.87 0.98 0.98 0.17 0.73 0.73 0.03 0.26 0.27 0.99 0.98 0.98 0.98 0.96 0.96 0.89 0.75 0.75 0.74  

DFFN EVS 0.99 0.98 0.99 0.99 0.98 0.99 0.83 0.68 0.70 0.98 0.95 0.96 0.98 0.98 0.98 0.75 0.54 0.54 0.88 
MAPE 1 % 2 % 2 % 3 % 8 % 5 % 9 % 42 % 43 % 2 % 5 % 4 % 3 % 3 % 3 % 39 % 79 % 79 % 18 % 
t-test 0.46 0.38 0.4 1.38 1.29 0.98 0.99 2.07 2.13 0.53 0.73 0.60 1.00 0.17 0.18 1.99 2.02 2.02 1.07 
NSE 0.99 0.98 0.98 0.96 0.95 0.98 0.67 − 0.69 − 0.69 0.97 0.92 0.95 0.96 0.98 0.98 − 0.25 − 1.35 − 1.35 0.44  

CNN EVS 0.99 0.99 0.99 0.97 0.99 0.99 0.90 0.88 0.90 0.97 0.98 0.98 0.98 0.98 0.97 0.82 0.82 0.82 0.94 
MAPE 3 % 2 % 2 % 3 % 3 % 3 % 6 % 20 % 19 % 3 % 4 % 3 % 3 % 3 % 3 % 22 % 34 % 34 % 9 % 
t-test − 3.17 0.50 0.40 0.00 0.50 0.59 0.38 1.51 1.68 − 0.88 − 0.75 − 0.6 1.06 0.09 0.18 1.31 1.46 1.46 0.32 
NSE 0.92 0.98 0.98 0.97 0.99 0.99 0.89 0.61 0.62 0.95 0.97 0.97 0.96 0.98 0.97 0.52 0.43 0.43 0.84  

Scenario B (Table 4B)  
XGB EVS 0.99 0.99 0.99 0.95 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.96 0.98 0.98 0.81 0.98 0.98 0.97 

MAPE 1 % 1 % 1 % 3 % 2 % 2 % 3 % 3 % 3 % 1 % 1 % 1 % 2 % 3 % 3 % 8 % 8 % 8 % 3 % 
t-test 0.10 0.14 0.16 0.44 0.25 0.27 − 0.17 − 0.14 − 0.12 − 0.25 − 0.05 − 0.02 0.24 0.08 − 0.03 − 0.5 − 0.44 − 0.44 − 0.03 
NSE 0.99 0.99 0.99 0.94 0.99 0.99 0.97 0.99 0.99 0.98 0.99 0.99 0.95 0.98 0.98 0.76 0.98 0.98 0.97  

GBM EVS 0.98 0.98 0.98 0.94 0.98 0.98 0.95 0.98 0.98 0.99 0.99 0.99 0.95 0.98 0.98 0.69 0.97 0.97 0.96 
MAPE 1 % 2 % 2 % 3 % 3 % 3 % 5 % 5 % 5 % 1 % 1 % 1 % 2 % 3 % 3 % 10 % 9 % 9 % 4 % 
t-test − 0.34 − 0.02 − 0.02 − 0.06 − 0.11 − 0.16 − 0.32 − 0.19 − 0.19 0.2 − 0.03 − 0.09 0.16 − 0.07 − 0.14 − 0.57 − 0.46 − 0.46 − 0.16 
NSE 0.98 0.98 0.98 0.94 0.98 0.98 0.95 0.98 0.98 0.99 0.99 0.99 0.95 0.98 0.98 0.58 0.97 0.97 0.95  

ADAB EVS 0.99 0.99 0.99 0.96 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.96 0.99 0.99 0.61 0.95 0.95 0.96 
MAPE 1 % 1 % 1 % 2 % 2 % 2 % 1 % 3 % 3 % 1 % 1 % 1 % 1 % 2 % 2 % 15 % 16 % 16 % 4 % 
t-test 0.08 0.05 0.06 0.34 0.29 0.31 − 0.44 − 0.36 − 0.32 0.38 0.16 0.15 0.22 0.08 − 0.02 − 1.07 − 0.73 − 0.73 − 0.09 

(continued on next page) 
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genetic_parameters_tune defined in the Code Ocean platform https: 
//codeocean.com/capsule/0499275/tree/v1. 

After deriving the best parameters of the models on each crypto
currency dataset, the average value of these parameters was then 
determined as the optimal model configuration. Table 3 presents the 
optimal configurations of predictive models’ hyperparameters for 
cryptocurrencies considered in this study. Some important GASearchCV 
arguments used are: 

1) population: This represents the initial amount of hyperparameters 
candidates to generate randomly, thus was set to 10 in this study. 

2) generations: The argument represents the number of iterations the 
algorithm will make and creates a new population every generation. It 
was set to 5 in this study. 

3) crossover_probability: The probability that a crossover occurs in a 
particular mating. A crossover probability of 0.9 was used in this study. 

4) mutation_probability: The probability that an already fixed indi
vidual suffers a random change in some of its hyperparameters values. A 
mutation probability of 0.05 was used to limit the search radius for 
faster convergence. 

5) param_grid: a dictionary with keys as names of hyperparameters 
and their values, i.e., a list of parameters for a typical GBM model can be 
expressed as: 

param_grid = {‘learning_rate’: Continuous (0.8, 1.3), ‘max_depth’: 
Integer (3, 6), ‘n_estimators’: Integer (65, 75)}. 

3.5 . Performance evaluation 

Consequently, to finally evaluate the performance of prediction 
models on testing datasets (yahoo finance; validating sets -UK Investing 
and Bitfinex), statistical analysis involving standard metrics is con
ducted to quantify the extent to which the predicted closing prices are 
close to the corresponding true values. These metrics are briefly 
described: 

1) Nash-Sutcliffe coefficient of Efficiency (NSE) provides a more 
direct measure of the agreement between the observed closing price and 
predicted values, and it is expressed as in Eq. (10). 

NSE = 1 −

[∑n
j=1

(
oj − yj

)2

∑n
j=1(oJ − o)2

]

(10)  

where yj represents forecasts, oj represents corresponding measured 
outputs, and o represents the mean of the measured output. A value of 
NSE closer to 1 implies that the model can satisfactorily reproduce the 
observed cryptocurrency closing price. NSE = 1.0 indicates a perfect 
match of the model predictions to the observed values. 

2) Explained Variance Score (EVS) compares the variance within the 
expected outcomes to the variance in the model error. This metric 
essentially represents the amount of variation (dispersion) in the orig
inal dataset that a model can explain, and it is estimated as follows. 

EVS(o, y) = 1 −
var(o − y)

var(o)
(11)  

where y is the estimated target output, o represents the corresponding 
target output, and var is the variance (i.e., the square of the standard 
deviation). The best possible score is 1.0, and lower values are worse for 
prediction models. 

3) The t-test illustrates the overestimation or underestimation of the 
data at a 95 % significance level. The t-test is calculated (Eq. (12)) as the 
ratio of SS1 and SS2 

t =
SS1

SS2
(12)  

where SS1 =

∑n
j=1(oj − yj)

n , is the average of the differences between the 
measured, oj, and the estimated, yj, cryptocurrency price values, and Ta
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SS2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
j=1|(oj − yj)− SS1 |

2

n− 1

√

. Where a population of n > 120 and the ab
solute value of t <=1.96, there is no statistically significant difference 
between the observed and calculated data at a 95 % confidence level. 
Values of t close to zero indicate a higher accuracy. For a positive t-test 
value, the measured value is not statistically greater than the estimated 
one (at 95 % confidence level). Conversely, for a negative t-test value, 
the calculated value is not significantly greater than the measured value 
at the confidence level of 95 %. 

4) The Mean Absolute Percentage Error (MAPE) measure determines 
the percentage of error per prediction and is defined in Eq. (13): 

MAPE =
1
n
*
∑n

j=1

⃒
⃒
⃒
⃒
yj − oj

oj

⃒
⃒
⃒
⃒*100 (13) 

The smaller the MAPE, the better the performance of the model. 
MAPE is relevant in finance as gains and losses are often measured in 
relative values. In addition, it is valuable for calibrating products’ prices 
since customers are sometimes more sensitive to relative variations than 
absolute variations. 

To further investigate the performance of the prediction models, 
graphical techniques were employed to determine the degree of agree
ment between forecasts and measured closing price values. Also, the 
graphical methods facilitate qualitative and subjective evaluation. 
Finally, all the models were developed using the Keras high-level DL 
library and TensorFlow as the low-level backend. All experimental work 
was carried out on a personal computer (2.9 GHz 6- Core Intel with 32 
GB of RAM and a hard disk memory of 1 TB). Also, sample outputs 
presented in the following sections can also be simulated by interested 
readers using the source code available on Code Ocean (10.24433/CO.2 
359079.v1). 

4. Results and discussion 

The performance evaluation of models using statistical indicators: 

NSE, EVS, t-test, and MAPE on each cryptocurrency for the two scenarios 
is summarized in Tables 4 and 5. The results (Table 4A: Scenario A) 
indicate that the average EVS for the six cryptocurrencies ranges be
tween 0.60 and 0.94. However, DL techniques obtained a more signifi
cant percentage (between 88 % and 94 % on average), indicating that 
they have accounted for the total variance in the observed data. This 
result contrasts those from boosted tree-based models having average 
EVS values ranging from 0.60 to 0.62, thus, struggling in their pre
dictions, especially for ETH, BNB, and DOGE, due to insights not 
captured in training sets. Similarly, in comparing the robustness of 
models with different data sources, DL models, especially CNN and GRU, 
produce consistent and higher EVS values (0.76 ≤ EVS ≤ 0.99) 
compared to boosted tree-based models, which are extremely low in 
some cases (0.03 ≤ EVS ≤ 0.50) for ETH and DOGE. Thus, boosted tree- 
based models exhibit unreliable predictions for these cryptocurrencies 
when certain information is missing from the training set. Nonetheless, 
in Table 4B (Scenario B), there is an improvement in predictions from 
most models as the EVS for predictions ranges between 0.75 and 1. A 
high value of EVS indicates more significant similarities between the 
measured and predicted values. A perfect model has EVS = 1. Thus, 
predictions (on average) from CNN and GRU models (Scenarios A and B) 
for most cryptocurrencies are considered ideal since 0.95 ≤ EVS ≤ 0.96 
and acceptable 0.91 ≤ EVS < 0.93 (for DFNN). However, predictions (on 
average) from the boosted tree-based models (Scenarios A and B) can be 
considered very good (0.78 ≤ EVS ≤ 0.80). 

The MAPE metric quantifies how close the models’ predictions are to 
the actual (closing price) values. The smaller the MAPE value (closer to 
zero), the closer the predictions are to the true values and the better the 
predictive models’ performance. As shown in Tables 4 and 5, the pre
dictive models yield smaller MAPE values (Scenario A). For example, the 
CNN model has the smallest average MAPE of 9 %, followed by GRU 
with an average MAPE of 11 %, GBM (average MAPE of 17 %), DFNN 
(average MAPE of 18 %), XGB (average MAPE of 18 %), and ADAB 
(average MAPE of 18 %). However, the MAPE indexes of the closing 

Table 5 
Summary of models’ performance in the two scenarios.  

Model Metric Scenario A (mean) Scenario B (mean) Overall mean 

XGB EVS  0.61  0.97  0.79 
MAPE  0.18  0.03  0.11 
t-test  0.62  − 0.03  0.30 
NSE  0.01  0.97  0.49  

GBM EVS  0.62  0.96  0.79 
MAPE  0.17  0.04  0.11 
t-test  0.64  − 0.16  0.24 
NSE  0.04  0.95  0.50  

ADAB EVS  0.60  0.96  0.78 
MAPE  0.18  0.04  0.11 
t-test  0.66  − 0.09  0.29 
NSE  − 0.04  0.94  0.45  

GRU EVS  0.92  0.98  0.95 
MAPE  0.11  0.04  0.08 
t-test  0.44  0.49  0.47 
NSE  0.74  0.96  0.85  

DFNN EVS  0.88  0.95  0.92 
MAPE  0.18  0.12  0.15 
t-test  1.07  0.98  1.03 
NSE  0.44  0.75  0.60  

CNN EVS  0.94  0.98  0.96 
MAPE  0.09  0.07  0.08 
t-test  0.32  0.62  0.47 
NSE  0.84  0.91  0.88  

Fig. 3. The plot of residuals against predicted closing prices (Scenario A- deep 
learning models) for the cryptocurrencies. The models’ predictions are on the x- 
axis, and the residuals are on the y-axis. 
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prices estimated by the models for all cryptocurrencies on the three 
testing sets are within 3 % to 12 % (Table 4: Scenario B), implying a high 
prediction accuracy of models. In addition, all the predictive models 

obtain the absolute (t-test) value, t<=1.96, for all cryptocurrencies, 
except DFNN (1.99≤ t-test ≤ 2.02) for DOGE (Scenario A). Thus, for 
most predictive models, there is no statistically significant difference 
between the observed and predicted closing price at a 95 % confidence 
level, as depicted in Table 4. Also, the predictive models’ fit expressed as 
NSE obtained in Scenario A ranged from − 3.09 to 0.99 (Boosted tree- 
based models) and − 1.35 to 0.99 (DL techniques). Similarly, NSE 
(Scenario B) ranged from 0.16 to 1.00 (Boosted tree-based techniques) 
and − 0.37 to 0.99 (DL techniques). The NSE higher values indicate 
better model performance. Thus, the mean Nash–Sutcliffe coefficient 
obtained by combining both scenarios for all models ranges between 
0.45 and 0.88 (Table 5), with the highest mean Nash–Sutcliffe coeffi
cient value obtained by CNN (0.88) followed by GRU (0.85). The least 
overall mean of the Nash–Sutcliffe coefficient was obtained by ADAB 
(0.45). 

Furthermore, as a means of visual inspection, the fitness of the pre
diction models was evaluated using residual plots to examine the pre
diction bias of models (Scenario A) on the UK Investing datasets. For the 
DL techniques, most cryptocurrencies have residuals randomly distrib
uted around the zero horizontal lines, except CNN (BTC and DOGE), 
DFNN (DOGE), and GRU (BTC, ETH, and BNB). Thus, the residuals 
(Fig. 3), for most cryptocurrencies, exhibited no defined patterns and 
satisfied the assumption that the residuals have a constant variance. 
However, residuals from the boosted tree-based counterparts (Fig. 4) 
were neither symmetric to the origin nor randomly distributed. Hence, 
their inability to learn from limited examples and generalize some de
gree of knowledge in predicting closing prices. Figs. 5–8 further 
demonstrate the daily variations of the observed and predicted closing 
prices for the UK investing and Yahoo finance datasets (Scenarios A and 
B). As shown in Fig. 5. (Scenario A), the DL-based models’ predictions 
correspond well with the observed values, i.e., the overall trend or 
pattern is entirely consistent, showing a good correlation, especially for 
CNN models. Thus, CNN produces more accurate and robust results for 
the different cryptocurrency datasets. However, by outputting high 

Fig. 4. The plot of residuals (tree-based models) against predicted closing 
prices (Scenario A) of cryptocurrencies. 

Fig. 5. Scenario A: Daily variation of estimated closing prices (Yahoo finance) of DL models compared with measured values.  
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Fig. 6. Scenario A: Predicted daily closing prices (Yahoo finance) from tree-based models.  

Fig. 7. Estimated daily closing price predictions of DL models (UK Investing- Scenario B).  
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error margins, the boosted tree-based models underfit some crypto
currency datasets (i.e., ETH, BNB, and DOGE). Thus, they do not present 
a representative picture of the relationship between predictions and 
measured values for these cryptocurrencies. Consequently, the results 
confirm the boosted trees-based limitations when vital information is 
missing from training sets. However, all six predictors performed well 
and produced more accurate results on the validation datasets as more 
training data, capturing peaks and drops in prices, were used. This 
realistic prediction performance is captured in Table 4: Scenario B (all 
validation sets- Yahoo finance, UK investing, and Bitfinex) and Figs. 7 
and 8 for the UK investing datasets (Table 6). 

The performance of DL and boosted tree-based models is also 
graphically evaluated using Taylor’s diagram (Figs. 9 and 10 – Scenario 
A). The diagram graphically displays a statistical summary of how well 
the predictions from the models correspond to the observed values in 
terms of their correlation coefficient, center RMSE, and standard devi
ation. From Fig. 9, the position of colored numbers (i.e., 1, 2, 3, 4, 5 and 
6) quantifies how close the predictions from the models (i.e., ADAB, 
GBM, XGB, GRU, DFNN, and CNN) are to the observed closing prices for 
each cryptocurrency. The red dotted arc in the diagram represents the 
observed standard deviation at the point marked “observed” on the x- 
axis. Predictions from boosted trees are farther from the point marked 

“observed” for ETH-USD, BNB-USD, LTC-USD, and DOGE-USD, 
compared to predictions from the DL techniques. 

Also, in Fig. 10, black contours indicate the centered RMSE between 
the predictions and observed values, and this RMSE is proportional to 
the marked point “observed” on the x-axis. Predictions (Fig. 10) 
correspond well with observed values (lying nearest to the red arc 
marked “observed”) and have high correlation and low RMSEs. It can 
be deduced from Fig. 10 that predictions of models agree best with 
measured closing prices. 

Thus, for most cryptocurrencies (Scenario A), the CNN, GRU, and 
DFNN models produce high correlation coefficients, low RMSE, and 
standard deviations from the measured observations, compared to tree- 
based models that did not work effectively for some cryptocurrencies 
due to the presence of noisy random features and extreme volatility. 
Hence, DL techniques are more reliable when the training data is limited 
or when peaks and drops in crypto prices are inadequately captured. 

4.1. Comparison with results in the literature 

A comparison of the result obtained by the optimal configuration in 
this paper and a few other studies (Chowdhury et al., 2020; Dutta et al., 
2019; Lahmiri & Bekiros, 2019; Mudassir et al., 2020) listed in Table 1, 
especially those related to prediction/regression problems regarding the 
daily Bitcoin price prediction is presented. Furthermore, a Root Mean 

Square Error metric, RMSE 
̅̅̅̅̅̅∑√ n

j=1

(
oj − yj

)2
/n, is adopted in comparing 

the results since all these studies utilized RMSE to measure differences 
between predicted crypto prices and actual observations. The result 
summary is presented in Table 5. For example, Chowdhury et al. (2020) 
adopted GBM and ensemble techniques to forecast the BTC/USD closing 
price and reported an RMSE of 32.86 for the GBM method. Similarly, 
Dutta et al. (2019) obtained RMSE values of 0.03 and 0.02, respectively, 
for neural networks and LSTM for the BTC closing price prediction. 

Also, Lahmiri and Bekiros (2019) and Mudassir et al. (2020) used 
deep learning techniques (i.e., GRNN, LSTM, Stacked ANN) to forecast 
the BTC/USD price. In Lahmiri and Bekiros (2019), the LSTM and GRNN 

Fig. 8. Estimated daily closing price predictions of boosted tree models (UK Investing- Scenario B).  

Table 6 
Comparison with existing studies.  

Existing study Model RMSE Cryptocurrency 

Chowdhury et al. (2020) GBM  32.86 BTC 
Dutta et al. (2019) Neural networks  0.03 BTC  

LSTM  0.02  
Lahmiri & Bekiros (2019) LSTM  2750.00 BTC  

GRNN  8800.00  
Mudassir et al. (2020) Stacked ANN  156.30 BTC  

LSTM  219.59  
Present study optimized CNN  0.03 BTC  

Optimized GRU  0.02 BTC  
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models obtained RMSE values of 2750 and 8800, respectively, while in 
Mudassir et al. (2020), with the data collection period from April 1, 
2013, to December 31, 2019, the stacked ANN and LSTM obtained RMSE 
values of 156.30 and 219.59 (for 30th-day forecast) respectively. 
However, comparing the result from this study with previous studies 
such as those from Chowdhury et al. (2020), Dutta et al. (2019), Lahmiri 
and Bekiros (2019), and Mudassir et al. (2020), the RMSE values ob
tained in these studies were higher than an RMSE of 0.01 obtained by 
the best model, optimal CNN, in this study. 

Thus, the proposed optimal architecture could efficiently model the 

trends and patterns in these cryptocurrencies and produce a more reli
able result, especially for the BTC closing price prediction. Conse
quently, the optimal deep learning models, especially the optimal CNN 
architecture, exhibit an inclusive and exemplary performance in the 
overall prediction of cryptocurrencies’ closing prices, an important 
attribute helpful for the older and well-established financial markets 
(stock, forex, commodities) with same complexity characteristics, i.e., 
volatility clustering, non-linear correlations, effects resembling fractal
ity and multifractality (Watorek et al., 2021). 

Fig. 9. Taylor’s diagram showing a statistical comparison between forecasts and measured values (Yahoo finance).  
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4.2. Implication for study 

The results of this research are twofold: (1) in creating predictive 
models based on advanced ML methods for modeling the crypto market 
to lower investment risks, and (2) suggesting an optimal configuration 
for the predictive analytics models to forecast the daily closing price of 
any cryptocurrency efficiently. The previous studies in the area mainly 
focus on a single historical data source for training, validating, and 
testing their models. Also, they use ML models to predict famous and 
single cryptocurrency platforms. To the best of our knowledge, this 

study is the first to forecast daily closing prices by benchmarking the 
robustness of DL and boosted tree techniques in terms of using an 
optimal model’s configuration across several cryptocurrencies. Also, to 
guarantee the effectiveness of the models, a genetic algorithm is utilized 
to determine their optimal configurations, including the number of 
neurons in the hidden layers, batch size, and the learning rate. In 
addition, the performance of prediction models on three different testing 
sets was investigated, and their sensitivity to the training data, where 
peaks and drops in prices are not adequately captured in training sets, 
was evaluated. Unlike previous studies, a report detailing the 

Fig. 10. Taylor’s diagram showing a statistical comparison between forecasts and measured values (UK Investing).  
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conservative estimate of the explained variances using four statistical 
metrics (EVS, MAPE, t-tests, and NSV) and graphical plots (residuals, 
Taylor diagram, time variation plots) was presented. Thus, this study’s 
results can help make futuristic plans to minimize risks and uncertainties 
and increase investment returns. 

5. Conclusion 

Forecasting the cryptocurrencies market is a challenging task in 
finance and a concern to investors due to its high volatile behavior. 
Therefore, this paper proposes a robust and optimal predictive models’ 
configuration that can predict cryptocurrency closing prices with a 
training set having significant peaks and drops in prices not captured. 
Thus, the study benchmarks DL and boosted tree-based techniques, 
using the models’ optimal configurations to predict the daily closing 
prices of six different cryptocurrencies datasets collected from more 
than one data source. Based on the prediction results achieved in the 
present study, the following conclusions can be drawn, given a limited 
training data sample: 

1 The DL techniques obtain a more significant EVS percentage (be
tween 88 % and 98 %), indicating that they have accounted for the 
total variance in the observed data. However, the boosting trees 
techniques struggle to predict daily closing prices for ETH, BNB, and 
DOGE cryptocurrencies due to the missing insights from the training 
set. However, the CNN model produces more accurate results than 
other DL techniques.  

2 In comparing the robustness of the models on the different test 
datasets (Yahoo finance, UK investing, and Bitfinex), DL models 
(CNN and GRU) on average, produce consistent and higher EVS 
values (0.92 ≤ EVS ≤0.98) compared to boosted tree-based models, 
which are low in some cases (0.03 ≤ EVS ≤ 0.50) for ETH and DOGE, 
thus showing the unreliability of the predicted regression for these 
group of cryptocurrencies when certain information is missing from 
the training set.  

3 For Scenario A, the CNN model has the smallest average MAPE of 9 
%, followed by GRU with an average MAPE of 11 %, GBM (an 
average MAPE of 17 %), DFNN (18 %), XGB (average MAPE of 18 %), 
and ADAB (average MAPE index of 18 %).  

4 The residuals from the DL techniques are randomly distributed 
around the zero horizontal lines, thus exhibiting no defined patterns, 
and satisfying the assumption of residuals having a constant vari
ance. However, residuals from the boosted tree-based counterparts 
are either not symmetric to the origin or randomly distributed due to 
peaks and falls of crypto prices not adequately captured in the 
training sets. Hence, their inability to learn from limited examples 
and generalize some degree of knowledge in predicting closing prices 
in this scenario.  

5 The CNN optimal model configuration produces high correlation 
coefficients, low RMSE, and standard deviations from the measured 
observations for most cryptocurrencies. Hence, it is more reliable for 
limited training data or when peaks and drops in crypto prices are 
inadequately captured in the training data. Hence, CNN is efficient 
and readily generalizable to predict any cryptocurrency’s daily 
closing price.  

6 This study has revealed the possibility of a single and optimal 
model’s architecture for predicting the prices of multiple crypto
currencies. Though, predicting the financial market is difficult due to 
its complex systems dynamics. However, deep learning techniques 
have been the modern approaches to modeling this market. For 
instance, deep learning architectures have been applied for stock 
market prediction (Nelson et al., 2017; Ticknor, 2013), forex market 
prediction (Hadizadeh Moghaddam & Momtazi, 2021; Ni et al., 
2019), and commodity market volatility prediction (Kamdem et al., 
2020). In the same vein, the computationally efficient deep learning 
models developed in this study, especially the optimized CNN model, 

can be adapted with little modifications to other financial markets (i. 
e., stock, bond rates, forex, commodities). 
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Alonso-Monsalve, S., Suárez-Cetrulo, A., Cervantes, A., & Quintana, D. (2020). 
Convolution on neural networks for high-frequency trend prediction of 
cryptocurrency exchange rates using technical indicators. Expert Systems with 
Applications, 149, 113250. 

Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price 
forecasting with neuro-fuzzy techniques. European Journal of Operational Research, 
276(2), 770–780. 

Borges, T., & Neves, R. (2020). Ensemble of machine learning algorithms for 
cryptocurrency investment with different data resampling methods. Applied Soft 
Computing Journal, 90, 106187. https://doi.org/10.1016/j.asoc.2020.106187 

Canh, N. P., Wongchoti, U., Thanh, S. D., & Thong, N. T. (2019). Systematic risk in 
cryptocurrency market: Evidence from DCC-MGARCH model. Finance Research 
Letters, 29, 90–100. https://doi.org/10.1016/J.FRL.2019.03.011 

Chaim, P., & Laurini, M. P. (2019). Nonlinear dependence in cryptocurrency markets. 
The North American Journal of Economics and Finance, 48, 32–47. 

Chen, Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An 
approach to sample dimension engineering. Journal of Computational and Applied 
Mathematics, 365, 112395. 0.1016/j.cam.2019.112395. 

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In 
Balaji Krishnapuram (Ed.), 22nd International Conference on Knowledge Discovery and 
Data Mining (pp. 785–794). ACM.  

Cherati, M. R., Haeri, A., & Ghannadpour, S. F. (2021). Cryptocurrency direction 
forecasting using deep learning algorithms. Journal of Statistical Computation and 
Simulation, 91(12), 2475–2489. 

Choo, K. K. R. (2015). Cryptocurrency and virtual currency: Corruption and money 
laundering/terrorism financing risks? Handbook of digital currency: Bitcoin, 
innovation, financial instruments, and big data, 283–307. 

Chowdhury, R., Rahman, M., Rahman, M., & Mahdy, M. (2020). An approach to predict 
and forecast the price of constituents and index of cryptocurrency using machine 
learning. Physica A. Statistical Mechanics and Its Applications, 551, Article 124569. 
https://doi.org/10.1016/j.physa.2020.124569 

Dahl, G., Sainath, T., & Hinton, G. (2013). Improving deep neural networks for LVCSR 
using rectified linear units and dropout. In R. Ward, & Deng Li (Eds.), International 
Conference on Acoustics, Speech and Signal Processing (pp. 8609–8613). IEEE.  

Dutta, A., Kumar, S., & Basu, M. (2019). A gated recurrent unit approach to Bitcoin price 
prediction. Journal of Risk and Financial Management, 13(23), 1–16. 

Friedman, J (2001). Greedy function approximation: A gradient boosting machine. The 
Annals of Statistics, 29(5), 1189–1232. 

Goldberg, D. E. (2006). Genetic Algorithms. Pearson Education.  
Guo, T., Bifet, A., & Antulov-Fantulin, N. (2018). Bitcoin volatility forecasting with a 

glimpse into buy and sell orders. IEEE International Conference on Data Mining 
(ICDM), 989–994. 

Hadizadeh Moghaddam, A., & Momtazi, S. (2021). Image processing meets time series 
analysis: Predicting Forex profitable technical pattern positions. Applied Soft 
Computing, 108, 107460. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data 
mining, inference, and prediction. Springer.  

Huang, J. Z., Huang, W., & Ni, J. (2019). Predicting Bitcoin returns using high- 
dimensional technical indicators. The Journal of Finance and Data Science, 5(3), 
140–155. 

A.A. Oyedele et al.                                                                                                                                                                                                                             

https://www.sciencedirect.com/science/article/pii/S0925753520300539
https://www.sciencedirect.com/science/article/pii/S0925753520300539
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0010
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0010
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0010
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0010
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0015
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0015
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0015
https://doi.org/10.1016/j.asoc.2020.106187
https://doi.org/10.1016/J.FRL.2019.03.011
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0030
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0030
http://refhub.elsevier.com/S0957-4174(22)02251-5/optFKyxOAy7Ng
http://refhub.elsevier.com/S0957-4174(22)02251-5/optFKyxOAy7Ng
http://refhub.elsevier.com/S0957-4174(22)02251-5/optFKyxOAy7Ng
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0040
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0040
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0040
https://doi.org/10.1016/j.physa.2020.124569
http://refhub.elsevier.com/S0957-4174(22)02251-5/opt6DFbefHHfz
http://refhub.elsevier.com/S0957-4174(22)02251-5/opt6DFbefHHfz
http://refhub.elsevier.com/S0957-4174(22)02251-5/opt6DFbefHHfz
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0055
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0055
http://refhub.elsevier.com/S0957-4174(22)02251-5/optOOFqt7lGU8
http://refhub.elsevier.com/S0957-4174(22)02251-5/optOOFqt7lGU8
http://refhub.elsevier.com/S0957-4174(22)02251-5/optT13H4ssA8x
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0060
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0060
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0060
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0065
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0065
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0065
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0070
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0070
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0075
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0075
http://refhub.elsevier.com/S0957-4174(22)02251-5/h0075


Expert Systems With Applications 213 (2023) 119233

19

Ibrahim, A., Kashef, R., & Corrigan, L. (2021). Predicting market movement direction for 
bitcoin: A comparison of time series modeling methods. Computers & Electrical 
Engineering, 89, 106905. https://doi.org/10.1016/J.COMPELECENG.2020.106905 

Jang, H., & Lee, J. (2018). An empirical study on modeling and prediction of Bitcoin 
prices with Bayesian neural networks based on blockchain information. IEEE Access, 
6, 5427–5437. 

Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting framework 
integrating GARCH, artificial neural network, technical analysis and principal 
components analysis. Expert Systems with Applications, 109, 1–11. 

Kwon, D., Kim, J., Heo, J., Kim, C., & Han, Y. (2019). Time series classification of 
cryptocurrency price trend based on a recurrent LSTM neural network. Journal of 
Information Processing Systems, 15(3), 694–706. 

Lahmiri, S., Bekiros, S., & Salvi, A. (2018). Long-range memory, distributional variation 
and randomness of bitcoin volatility. Chaos, Solitons & Fractals, 107, 43–48. 

Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep learning chaotic 
neural networks Chaos. Chaos, Solitons & Fractals, 118, 35–40. 

Lahmiri, S., & Bekiros, S. (2020a). Big data analytics using multi-fractal wavelet leaders 
in high-frequency Bitcoin markets. Chaos, Solitons & Fractals, 131, 109472. https:// 
doi.org/10.1016/J.CHAOS.2019.109472 

Lahmiri, S., & Bekiros, S. (2020b). Intelligent forecasting with machine learning trading 
systems in chaotic intraday Bitcoin market Chaos. Chaos, Solitons & Fractals, 133, 
109641. https://doi.org/10.1016/j.chaos.2020.109641 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 
Mallqui, D., & Fernandes, R. (2019). Predicting the direction, maximum, minimum and 

closing prices of daily Bitcoin exchange rate using machine learning techniques. 
Applied Soft Computing Journal, 75, 596–606. 

Miura, R., Pichl, L., & Kaizoji, T. (2019). Artificial neural networks for realized volatility 
prediction in cryptocurrency time series. International Symposium on Neural Networks, 
165–172. 

Mudassir, M., Bennbaia, S., Unal, D., & Hammoudeh, M. (2020). Time-series forecasting 
of Bitcoin prices using high-dimensional features: A machine learning approach. 
Neural Computing and Applications, 1–15. https://doi.org/10.1007/S00521-020- 
05129-6/FIGURES/10 

Nakano, M., Takahashi, A., & Takahashi, S. (2018). Bitcoin technical trading with 
artificial neural network. Physica A Statistical Mechanics and Its Applications, 510, 
587–609. 

Nelson, D., Pereira, A., & de Oliveira, R. (2017). Stock market’s price movement 
prediction with LSTM neural networks. International Joint Conference on Neural 
Networks, 1419–1426. 

Ni, L., Li, Y., Wang, X., Zhang, J., Yu, J., & Qi, C. (2019). Forecasting of Forex time series 
data based on deep learning. Procedia Computer Science, 147, 647–652. 

Peng, Y., Albuquerque, P. H. M., Camboim de Sá, J. M., Padula, A. J. A., & 
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