
1

Context-Aware Multi-User Offloading in Mobile Edge

Computing: A Federated Learning-based Approach

Ali Shahidinejad1*, Fariba Farahbakhsh1, Mostafa Ghobaei-Arani1, Mazhar Hussain Malik2, Toni Anwar3

1Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

*E-mail: a.shahidinejad@qom-iau.ac.ir

Abstract:

Mobile edge computing (MEC) provides an effective solution to help the Internet of Things (IoT) devices

with delay-sensitive and computation-intensive tasks by offering computing capabilities in the proximity of

mobile device users. Most of the existing studies ignore context information of the application, requests,

sensors, resources, and network. However, in practice, context information has a significant impact on the

offloading decisions. In this paper, we consider context-aware offloading in MEC with multi-user. The

contexts are collected using autonomous management as the MAPE loop in all offloading processes. Also,

federated learning (FL)-based offloading is presented. Our learning method in mobile devices (MDs) is deep

reinforcement learning (DRL). FL helps us to use distributed capabilities of MEC with updated weights

between MDs and EDs. The simulation results indicate our method is superior to local computing, offload,

and FL without considering context-aware algorithms in terms of energy consumption, execution cost,

network usage, delay, and fairness.

Keyword: Mobile edge computing. Computation offloading. Context-aware. Federated learning

1. Introduction

In recent years, data production in various scientific and industrial fields and the limitation of resources to

process has resulted in the need for a rich processing environment outside of the user’s equipment. This led

to creating the cloud computing environment with almost endless physical and virtual processing resources

[1]. In computation offloading to the cloud, we face problems due to the large distance of end-users to the

cloud; for example, in cases where we need a real-time response, such as healthcare, waiting for receiving a

response from the cloud can pose serious problems. A computational offloading was proposed to solve this

problem in the fog environment to create a computational level closer to the end-users [2, 3]. For several

years, a new trend was emerging and putting cloud computing functions on the network's edge. One of the

incentives for this approach is the mass production of network EDs (including Wi-Fi router and access point

station). Due to the significant processing power of these devices, high-throughput and delay-sensitive

functions can be implemented. This process model is called mobile edge computing (MEC) [4]. This

technology is developed by the European telecommunications standards institute (ETSI) [5]. The main focus

of the MEC is on radio access networks (RANs) in 4G and 5G cellular networks.

MEC has advanced features like latency, user proximity, high bandwidth, and location awareness

[6]. These enable MEC to run many new types of applications and multi-region services, such as business

and health, augmented reality, video streaming services, and more [7]. At MEC, the user's distance is much

2

closer than the user's distance to the cloud. One of the key technologies of MEC is computational offloading.

This can be examined from both single-user and multi-user aspects. In a single-user computational state, at

any given moment, a user can offload the computing task. In contrast, in multi-user computational

offloading, multiple users are allowed to move their tasks to other computing layers simultaneously. As a

difference between these two states in the multi-user offloading, one module with different data related to

different users can be offload to EDs or the cloud. Since in the single-user mode, each module has got

specific data. Therefore, it can be offload by the user. In the single-mode, there is no need for any data

management for users. Although many works have been done in computational offloading in recent years,

the concept of context-awareness has been used very limitedly [8] in past research. Our meaning about

context is using the properties of offloading, application, mobile, sensors, network and media, and resources.

The context in computing offloading decisions will be very influential because of mobile conditions like

location, network status, and available computing resources [9].

One of the issues that arise in offloading is intelligent tools to detect current or underlying conditions

and implement context-based behavior [10, 11]. This ability can be referred to as context-awareness. As soon

as they make a network available, they perform the offload without considering whether the offloading is in

their favor or not. The computational burden is not always beneficial to obtain the required level of

efficiency and benefit offloading. Here we are investigating to improve the delay and energy consumption by

the proposed offloading method. The distributed nature of MEC requires an appropriate offloading method.

For this purpose, the FL can be useful in this regard. FL can coordinate the training process among multiple

MDs. The DRL technique can solve the offloading problem. The DRL technique is very efficient in finding

the optimal offloading policy in MEC. Since DRL needs much processing, thus the DRL agent has to be

carefully designed and implemented. Some challenges [12] and their solutions in FL are as follows.

- The whole training dataset is not accessible. This challenge is created for the nature of distributed

computation, and it can provide the privacy of data for all users.

- Slow and unstable communication. Based on the proposed

approach, MDs are not completely dependent on EDs. As some nodes become offline, only the weights are

less trained or updated later, but the task performing or offloading is done continuously.

- The trade-off between privacy guarantees and system performance. The computation tasks can be

encrypted by a fast and trusted cryptography algorithm in IoT.

- Interference among MDs (The MDs may be geographically close to each other. This introduces an

interference issue when they update local models to the server. As such, channel allocation policies may

need to be combined with the resource allocation approaches to address the interference issue). DRL can be

considered to model the dynamic environment of MEC and make optimized decisions.

- Comparisons with other distributed learning methods. Some methods use neural networks up to a cut layer,

or others ignore to transmit weights to an aggregating server. FL has a more straightforward implementation

since the participants and the FL server run the same global model in each cluster.

- Learning convergence. We improve this challenge with the loss function, as mentioned in the DRL

algorithm.

3

- Size of model updates. The combinations of weights and contexts help us to reduce the size of model

updates.

Because real systems and environments are multi-user and not single-user, we use multipurpose

computing offloading in our approach. Since these users are located in different locations and conditions,

thus the offloading decision should be made with the knowledge of context and the existing conditions. This

strategy solves the problems shown above, and to improve the service efficiency in computational

offloading, we propose a multi-user conditioned MEC system that changes the conditions of a mobile

computing resource. In this research, after presenting a three-tier architecture (IoT devices, edge servers, and

cloud), the desired content is collected using autonomous management (MAPE control loop) defined at the

edge level (Monitor phase), where we consider some important contexts in this area, using application

context, mobile devices, sensors, networks, edge servers, and media. These contexts are analyzed (Analysis

phase) and to help make decisions about offloading. These contexts send to our context-aware algorithm then

a subsystem (Planning phase) executes the offloading instruction (Execution phase). The question that can be

asked here is whether to use the concept of context-awareness in computational offloading in a multi-user

MEC. As the context information is exchanged, the FL is implemented, and the updated weights related to

the DRL algorithm are shifted between MDs and EDs. Our key contributions in this paper are as follows:

1. We provide a MAPE control loop on the MEC architecture to decide whether to run local or offload

computations to edge or cloud. This loop executes in the lifetime of the network and updates all

parameters in the problem space. Also, we use context information of the application, sensors,

resources, edge servers, and network. These updated contexts improve the offloading process.

2. For optimal use of the distributed capability of MEC, we present an FL-based offloading algorithm.

It uses the DRL to train the MDs and sends the updated weights to EDs and the cloud. It causes

lower data transmission from MDs to EDs and protects the users’ information.

3. The proposed approach evaluates based on some metrics: energy consumption, execution cost,

network usage, delay, and fairness. The results show our proposed method outperforms the original,

offloading, and FL without context methods.

The rest of this paper is organized as follows. In section 2, related works are summarized. The system

model and network architecture are presented in section 3. In section. 4, we explain our offloading

algorithms in detail. In Section 5, the evaluation results of our proposed algorithms are presented and

compare with other methods. Finally, in Section 6, the conclusion is discussed, and suggestions are made for

future work.

2. Related works

In recent years, many studies have been performed about MCC [13, 14] and MEC [4]. We classify these

works to multi-user and context-aware offloading as follows. Also, we collect and analyze some researches

about FL.

2.1. Multi-user offloading

There are some research works about multi-user offloading [15,16,17,18]. Here, we mention these papers

4

based on their objectives and methods. Researchers studied different objectives such as energy consumption

[19,44], computation delay [20], QoS (Quality of service), latency, and accuracy [21,22]. According to [16],

as with cloud services such as PaaS (platform as a service), IaaS (infrastructure as a service), SaaS (software

as a service), cloud computing offloading is also considered as a service (OaaS) in cloud computing. Unlike

the client-server method, which the client always requests from the server for the result of a computational

task, in the computational offloading method, only when it is needed. The proposed method captures and

records user preferences, the current status of devices such as battery level, network bandwidth, CPU speed,

free memory, and so on. The simulation results show that computation offloading to a more robust device

can improve runtime instead of executing close to the user device.

Some researchers minimized the cost under constraints and solve the offloading problem in multi-

user MEC by backtracking, genetic algorithm, and greedy strategies [18]. Paper [23] investigates the

computational offloading with an efficient energy scheme in a multi-user fog computing system. In this

paper, queuing is used to model the execution processes on mobile and fog devices. The problem of efficient

energy optimization is formulated to minimize energy consumption conditional on delay constraints. A

distributed algorithm called ADMM (based on the periodic multiplier method) is presented to solve the

formulated problem. The simulation shows higher performance than other existing designs. The authors in

[44] solved a multi-objective scheduling problem to optimize time and energy consumption. They could

improve the objectives by a whale optimization algorithm in the MCC. Paper [45] also worked on the energy

consumption and also cost for computation offloading of workflow applications in MEC. This research has

been presented by a Non-dominated Sorting Genetic Algorithm (NSGA). The results were better than no

offloading and cloud offloading methods.

It has been argued in [24] that although computational offloading can reduce power consumption on

mobile devices, it may delay further execution, including sending time between mobile devices and cloud

servers. According to theoretical analysis, a multi-objective optimization problem is formulated with

reducing energy consumption, execution delay, and payment cost, by finding the optimal computational

offloading and transmission power for each mobile device.

The results show decreasing in the mentioned objectives.

In [25], a mixed-integer linear programming (MILP) optimization model was used. This paper

considers two types of cloud patches: the local cloud patch and the global cloud patch, which have higher

capabilities. The model presented in this paper reduces energy consumption while imposing a significant

amount of delay.

Researchers in [26] provides some disadvantages of cloud processing such as high latency and

unstable QoS (Data dissemination, routing between mobile devices, and cloud servers). Assuming different

real-time computing tasks on different devices, each task is decided to either run locally on the device itself

or be offloaded to one of the edge servers or the cloud server. This paper examines low-complexity

computing offloading policies to minimize the quality of MEC network service assurance of mobile devices'

power consumption. Their method is superior to other compared approaches.

5

2.2. Context-aware offloading

Considering context information in the offloading problem is done based on different objectives and network

architectures such as energy-saving and execution time [27], and latency [28] in MCC [29,30] and MEC. The

paper [31] proposed a framework that supports mobile applications with computational offload capability for

aware conditions. First, a design pattern was proposed to enable the application to be offloaded on demand.

Second, an estimation model was presented to select the appropriate cloud source for offloading

automatically. The third is a framework implemented on both the server and client-side. It includes three

modules: service selection module, computational offload, and runtime management. The evaluation results

and comparison with traditional offshore samples show that the proposed approach can improve runtime and

power consumption for highly computational applications.

In [32], an offloading middleware is presented to the aggregate cloud by considering energy level,

processing power, runtime, and network bandwidth. In this paper, the resource allocation problem is

formulated as a multi-objective optimization that aims to optimize the completion time of the task and the

energy consumption of all participating mobile devices by satisfying the task boundary. An NSGA-II is used

to obtain the beam solution set. Second, a multi-attribute decision-making (MADM) technique is used to

determine the best compromise solution based on the entropy technique and weighting for a priority order.

Evaluation Results show that the proposed method manages well the compromise between completion time

and energy consumption.

The researchers in [46] analyzed the context‑aware energy optimization for services on MDs. Their

evaluation was based on three supervised machine learning methods as naïve Bayesian, decision tree, and

random forest. They provided this result that using the machine learning method is better than others for

reducing the service execution time and the energy consumption in MCC.

In [33], a fault-tolerant aware mobility offloading (MAFO) approach is presented that collects

network information and user mobility over time and uses the Markov chain of the user’s visited networks in

different possible paths. It also predicts the stoppage time of each network based on user mobility. The

evaluation results show that improvements in time and energy consumption. Authors in [34] have suggested

a framework called Thinkair that simplifies developers’ work to migrate their smartphone apps to the cloud.

It uses the concept of smartphone virtualization in the cloud and provides method level computational

offload. It focuses on the resilience and scalability of the cloud and enhances the power of cloud computing

by implementing a parallelization approach using multiple virtual machines. The results show that better

performance and lower power consumption than similar non-parallel methods. In [35], a framework is

considered to decide whether to offload a given method to cloud servers. In this paper, a field-aware

decision-making algorithm is designed, implemented, and evaluated called CADA, which uses user contexts

and historical metrics to optimize the performance of mobile devices with various optimization criteria such

as short response time. The evaluation results demonstrate the high accuracy of CADA algorithm prediction

and improving response time and energy consumption.

2.3. FL-based offloading

Using cooperative models have shown good performance in the IoT devices [36]. FL is a cooperative-based

6

method that can be used in MEC. Here we first try to present a conceptual view of FL and then provide some

offloading problems that are solved by FL.

FL allows users of devices to collaboratively train a shared model while keeping data privacy on

devices. Thus, FL can be used as an enabling technology for ML model training at MEC. In fact, each device

can process its task by a learning model. This can happen on all devices. After that, all devices can share

their experience together. As a result, we will have a global model by aggregating all learning models. This

is very important that in this cooperation, any private data not transferred between devices.

Generally, there are two main entities in FL as N data owners as {1,2,…,N} and the model owner (FL

server). According to Fig. 1, in the initialization as step 1, the FL server specifies the hyperparameters of the

global model and the training process, e.g., learning rate. Then, in step 2, each data owner i (Mobile device)

train a local model 𝑤𝑖 and send it to the FL server (Controller). In step 3, all collected local models in the FL

server are aggregated 𝑤 = ⋃ 𝑤𝑖𝑖∈𝑁 . Steps 2 and 3 are repeated until the global loss function converges or a

desirable training accuracy is achieved [12].

Since the offloading methods in MEC need a real distributed algorithm; thus, FL is an excellent way

to this purpose. In [37], the authors presented an FL-based offloading in MEC. DRL algorithms executed in

MDs and updated weights transfer between MDs and ED. Their used parameters were energy consumption

and transmission time. The results show a better result than centralized DRL. Because in centralized DRL,

the tasks are waiting in a queue to get resources of devices. It might a number of tasks be dropped due to

insufficient resources. Nevertheless, FL can offload some tasks to other devices. This causes a lower drop

task in devices.

A group of researchers proposed an aggregation model of EDs in the Cloud by FL. They used the

difference of convex functions (DC) representation for sparse and low-rank function [38]. It is demonstrated

that the novel method was able to select more devices than other benchmark approaches. The paper [39] is

presented based on a distributed DRL in MEC for caching and communication operations. This research

includes three parts, information collecting, cognitive computing, and request handling. The results show

some improvements in utility for the user equipment. This study is well-done; however, it could have

evaluated and compared with other state-of-the-art methods.

FL is also used to make decisions about computation offloading and energy allocation in MEC [40].

Here, a DRL-based algorithm is proposed to maximize the expected long-term utility. This method has better

results than the centralized and greedy-based offloading algorithms.

As stated in the introduction section's contribution list, the main idea of this research is to use MAPE

and FL-based offloading algorithm. Context information has been used in the previous works. We have tried

to offload the modules with these contexts in the controlled MAPE loop with our distributed algorithm to

improve the mentioned objectives. We try to compare our results with new researches. Also, federated

learning is very close to the distributed learning paradigm. In previous works, DRL or DL has been used in

each device, and devices have not any relation together. We solve this problem with federated learning.

The summary of offloading algorithms is categorized by technique, objectives, architecture, pros,

and cons in Table 1.

7

Table 1: Summary of offloading algorithms (ET: execution time. Arc: Architecture).

Ref Technique Objectives Arc. Pros Cons

[31] FL-DRL

Energy and

transmission

time

MEC

Cooperative model with

improve bandwidth

crowding

Using only one ED

[32]

FL-DC

Accuracy

and

number of

devices

Edge-

Cloud

Selecting maximum

devices

Ignoring edge computing

objectives

[16]

Backtracking, genetic

the algorithm, and

greedy

Cost MEC

Minimizing cost

Time-consuming method

[34] FL-DRL
long-term

utility
MEC

Analysis DRL parameters

and

energy efficiency

Ignoring privacy evaluation

[23]
LP,

deep learning
ET, Energy MEC

Improve network service

quality and

reduce mobile device

power consumption

Long run time of the

proposed algorithms

[21] Queuing
Delay, cost,

and energy
Fog

Increasing performance

with testing

transmission time in the

worst condition

Non-optimal method in

global goals

[14]

Oaas and

matching

algorithm

Cost Fog

Real tools for offloading

Ignoring computational

offloading time delay

[20]
Queuing

and ADMM

Delay,

energy
Fog

Cell-level alignment,

offloading with minimized

power consumption

Solving the problem only up

to

the level of servers and

override local

implementation and

dump computing load to the

cloud

[22] MILP Energy MEC

MILP for force

optimization of large-scale

and MEC without delay

limits defect

The routing process of

requests

through the hierarchical

cloud patch network only

tolerates

a significant amount of

delay,

limited capabilities of the

cloud patch system

[26]

Game theory,

context (Network

connection,

runtime status)

Energy, ET MCC

Decreasing ET and energy

consumption

High complexity and

no comprehensive method

[28]

Markov chain, contexts

(User mobility, device,

program, cloud server,

mobile network)

Energy, ET MCC

Fault tolerance, low energy

consumption, and ET

Non-comprehensive

evaluation

[27]

OMMC, NSGAII,

TOPSIS, contexts

(Device context,

processing power,

Delay,

energy,

deadline

MEC

Good result with the trade-

off

between completion time

and energy consumption

Ignoring method’s

complexity

8

Ref Technique Objectives Arc. Pros Cons

CPU usage,

network bandwidth)

[29]

Thinkair and

contexts (Hardware,

software, network

condition, energy

estimation model)

Cost, ET,

energy
MCC

Resource allocation based

on requests,

parallel reconstruction of

VMs

Unsuitable for IoT

applications

[30]

CADA and contexts

(Signal

strength,

transmission time,

time-of-day,

and location)

Energy, ET MEC

Using daily time for

offloading,

decreasing energy

consumption and ET

Weak energy model

3. System model and problem formulation

In this section, we present the architecture and system model. Fig. 1 shows the three-layer architecture of our

proposed system. This model includes some sections as follows.

Fig. 1: The architecture and system model

3.1. IoT

The IoT component is at the very bottom of the architecture, including communication devices that are

connected through heterogeneous networks. In general, it aims to collect and process data through IoT

devices to extract patterns and discover patterns or to perform predictive analysis or optimization and make

smarter, more timely decisions. However, mobile devices are considered because of the problem of

offloading. The data is first collected by the IoT devices described in this framework, and each user sends

9

their requests to the queue according to the data collected.

3.2. Controller

This component plays the role of the master node in our hierarchical model. This component is located at the

edge command center and is at the top edge of the edge. This component itself is a robust edge resource that

manages resources and sourcing for requests from the lower layer. That decides whether the request will be

executed on the same edge layer or delivered to the cloud layer based on the users’ context and existing

resource conditions (existing edge server features) or if the request is to be in the edge layer. Run this

component to make it a proper edge server component that can execute the request if the submission is sent

and must be moved to the cloud, the cloud component transmits the request to the gateway.

3.3. Edge server

The edge layer component consists of several edge server components that play the role of a slave in our

hierarchical approach. These components send information about their processing and storage capabilities to

the edge server controller component. This component selects one of them to execute the desired request by

matching the context information and resource capability.

3.4. MAPE

This component, which is the main component of our framework, includes components (monitor, analyze,

plan, and execute). This component collects available conditions and resources available and extensions of

the IoT devices. Mapping these tasks examines the available resources and decides whether to execute them

on the edge layer or offload the super layer's computation. This component rests on the edge server

controller component. Our context-aware algorithm is implemented in this component. To achieve

autonomous computing, IBM has proposed a reference model for autonomous loops, known as the MAPE-K

loop, which has four components (monitor, analyze, plan, execute) [41]. These four components, under

common knowledge in the MAPE-K autonomous loop, an intelligent agent understands its environment

through sensors and uses these perceptions to determine what actions to take in the environment. All four

phases, covered by common knowledge they connect and exchange information.

3.4.1 Monitor

 In the monitoring phase, the properties of the environment are recorded by the sensors. The data is

first received through sensors and intelligent equipment, and according to the data received, a request for

execution is made. Our systems and priorities are categorized and, if they are in accordance with the

circumstances, these requests are planned for implementation in the third phase (planning).

3.4.2 Analysis

 The analysis phase deals with the processing of metrics collected from the monitoring phase, and by

processing these metrics, it obtains data on the status of the current productivity of the system and forecasts

of future needs so that, if necessary, an appropriate response is obtained. In the analysis phase, warnings and

threats are considered. Any violation of the level of needs defined in the analysis phase is considered.

10

3.4.3 Planning

 In the third phase, as planning, based on the tables created in the previous two phases, an

appropriate decision is made that leads to offloading or local computing.

3.4.4 Execution

 The fourth phase, as execution-only, executes the planned third phase (execution) instructions. In

fact, it is responsible for executing the programs approved by the analysis phase. We propose a hierarchical

model for the proposed system, in which the edge layer plays a node (Master) in which all four phases of the

MAPE loop are implemented, and the other nodes play a role (Slave). With this smart, autonomous solution,

decentralized collections are managed in a centralized system. Integrating a centralized and distributed

strategy can be important as an innovative strategy. Autonomous loop computing (MAPE) decision-making

autonomously leads to better management of resources, reduced response time to heavily time-dependent

applications and requests, and reduced system latency.

3.5. Cloud

When requests from the edge server controller component are decided to go to the cloud layer, they are sent

directly to the cloud gateway and through it go into the cloud and, depending on which server the requests

are to be processed, go to the server’s dedicated queue. Finally, when it is time to move to the servers to do

their job, depending on request processing and storage type.

3.6. Case study

The VR-GAME (Virtual reality Game) application is a human-based game. According to the workflow of

this application, EEG signals send to the client module. The client module sends consistent data to the

concentration calculator module. The client module updates the game display to the player. The coordinator

module gathers and distributes measured concentration among players [42].

Fig. 2: Application of virtual reality game

The EEG value could be used to determine the interval between two sensed signals. Based on the

application part of Figure 2, the EEG sensor, display actuator, and client module are placed in the mobile

device. The concentration calculator and the coordinator modules can be placed in the EDs or cloud.

The main problem of this paper is the offloading of modules as {M1, M2, . . . , Mk} to edge servers as {ED1,

ED2, . . . , EDn} or Cloud. The problem formulation is explained as follows. The symbols used in this paper

are defined in Table 2.

Table 2: Symbol definition

11

Symbol Definition



gi



se
i

ftr
i

d

Pi

Ui

Up
i

T1

T2

TD

UMIPS

TAM

Ec

Tn

Ph

N

C

Sc

Tlu

RM



Ul

MIPSA
k

m1

m2

TED

MIPSk

TMA

Li

Si

N'

Tmax

Tst

Ta

ET

Ts

NRT

Q

xj

A

R





Q(S,a)i
m

CPU cycles for processing the task

Number of energy units

Commonly adopted effective switched capacitance

Channel gain between the MD and an ED in epoch i

Transmission power

Transmission data size

Power of ith ED

Utilization of ith FD

Utilization in the previous updates time

The time frame of datacenter

The time frame of host

Difference between current and last process time

Utilization of MIPS

Total allocated MIPS

Current energy consumption

Current time

Host power in last utilization

Number of FDs

Execution cost

System clock

Last utilization update time

Rate per MIPS

Number of processors in a host

Last utilization

Allocated MIPS of kth processor in the host

Number of all processors and allocated processors

Number of allocated processors

ED’s execution time

MIPS of kth processor in the host

Total allocated MIPS of the host

Total latency

The total size of ith tuple

Total number of tuples

Maximum simulation time

Tuple start time

Average CPU time of the tuple type

Emitting time of a tuple

Sending time of a module to another module

Number of receipt tuple types

The number of devices contributed to the offloading

Energy consumption of jth device

Selected action by the agent

Reward value

Learning rate

Importance of the next rewards

Q update value

3.7. Local execution time

If the required resources in MDs are provided, thus we can calculate the time consumption locally. This

value calculates in each episode i. In Eq. (1), μ is CPU cycles for processing the task. Finally, 𝜔 is the

commonly adopted effective switched capacitance that depends on the architecture of chips [37,47].

According to [47], 𝜔 can be given by ∑ 𝛼𝑖 ∗ 𝐶𝐿𝑖 ∗ ∆𝑉𝑖
𝑁
𝑖=1 , where 𝐶𝐿𝑖 is the physical capacitance, 𝛼𝑖 is the

activity weighting factor, each averaged over the N nodes in the circuit. Also, ∆𝑉𝑖 is the voltage change. It is

required to explain, the 𝜔 value is calculated by the simulator.

12

𝑇𝑖 =
𝜇

√
1

𝜔 ∗ 𝜇

(1)

3.8. Data rate between MDs and EDs

 If the MD wants to communicate with an ED, and a wireless link is established for them. The achievable data

rate calculates by Eq. (2). Here, A is the power of interference plus noise. Sei is the channel gain between the

MD and an ED in epoch i [37]. This channel gain is static and independently taken from the state of MD.

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝑖 = 𝜔 ∗ 𝑙𝑜𝑔2 (1 +
𝑠𝑖

𝑒 ∗ 𝑓𝑖
𝑡𝑟

𝐴
) (2)

The transmission power is calculated by ftr
i as Eq. (3). BWi is the bandwidth of ED in epoch i.where

d is the transmission data size required for offloading a module.

𝑓𝑖
𝑡𝑟 =

𝐵𝑊𝑖

𝑑
 (3)

3.9. Edge server’s power consumption

The power consumption of each ED is presented here. According to this equation, an edge server with more

power than the rest of the edge servers is a candidate for an offloading destination.

𝑃𝑖 = 𝑃𝑖
𝑐 + 𝑇1 + 𝑇2 (4)

In Eq. (4), Pc
i is the current power of FD and T1 is the energy consumption of the datacenter in the

current time.

𝑇2 = 𝑈𝑖
𝑝

+
𝑈𝑖 − 𝑈𝑖

𝑝

2
∗ 𝑇𝐷 (5)

In Eq. (5), Ui is the utilization of ith FD. Up
i is the utilization in the previous updates time. TD is the

time difference between the current time and the last process time.

𝑈𝑖 =
𝑈𝑀𝐼𝑃𝑆

𝑇𝐴𝑀
 (6)

The total allocated MIPS of all processing elements is updated as EQ. (7).

𝑇𝐴𝑀 = ∑ ∑ 𝑃𝐸𝑀𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

 (7)

Where TAM is the total allocated MIPS of an ED that is less than or equal to MIPS of that ED

(TAM ≤ EDMIPS).

𝑈𝑖
𝑝

=
𝑈𝑀𝐼𝑃𝑆

𝑃

𝑇𝐴𝑀
 (8)

In Eqs. (6) and (8), Up
i is the utilization value in the previous time, UMIPS is the utilization of MIPS,

and TAM is the total allocated MIPS [42].

3.10. Edge server’s execution time

MIPS calculates the runtime of modules in edge servers. The number of commands that any edge server can

13

handle given its current workload is considered its current capacity. Therefore, according to Eq. (9), each

module can capture and run it at TED, where MIPS is the million executable operations that an edge server

can run per second.

𝑇𝐸𝐷 =
1

𝑀𝐼𝑃𝑆
 (9)

3.11. Edge server’s bandwidth

Each ED includes some hosts as follows.

{𝐻𝑜𝑠𝑡1, 𝐻𝑜𝑠𝑡2, … , 𝐻𝑜𝑠𝑡𝑛} ∈ 𝐸𝐷𝑖 (10)

The main properties of hosts are RAM, bandwidth, storage, and PEs. In a host, as Eq. (11):

𝐵𝑊𝐿𝑜𝑤𝑒𝑟 ≤ ∑ 𝐵𝑊𝑖

𝑁

𝑖=1

≤ 𝐵𝑊𝑈𝑝𝑝𝑒𝑟 (11)

Where BWLower is the lower bandwidth, and BWUpper is the upper bandwidth of each ED. BWi is the

bandwidth of ith host. N is the number of hosts. The total bandwidth of all hosts in each ED is between

BWLower and BWUpper.

4. The proposed approach

As stated above, our goal is to apply the concept of context knowledge to a multi-user mobile edge

computing system. The proposed framework for the context-aware system can be described as follows. In

this system, we have two types of variables: independent variables and dependent variables. Independent

variables are all input variables that the system receives in the form of transactions and does not interfere

with their calculation, such as the types of fields that surround the environment. Dependent variables are

variables that are obtained by using independent variables as inputs to the proposed system. Delay and

energy consumption are those variables. The following sections describe the various tasks in MAPE.

4.1. MAPE

The MAPE control loop consists of four phases the monitor, analyze, plan, and execute. We explain them as

following steps:

4.1.1 Monitoring: This section monitors and collects input modules. This is basically the context

monitor component of our system. The inputs include all requests received from IoT devices and fields

collected from the environment which enter modules. The request is received with a unique identifier. This

request can be either computation or data. In this section, independent parameters such as QoS and SLA are

also monitored and written to the knowledge database. We consider the contexts to include application,

mobile device, sensors, network, and media.

- Offloading contexts: Request id, requester name, sensitivity type (resource-based or time-based), QoS, and

SLA requirements. Based on context information, the QoS depends on data rate between MDs and EDs as Eq. 2,

edge power consumption an Eq. 4, and edge server’s execution time introduced in Sec. 3.6.4.

- Application contexts: Total executed modules, runtime, allocated memory, priorities of modules, and

source type.

14

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 ≤ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗 (12)

According to Eq. (12), the ith module has got more priority than the jth module if the module is

before the jth module in the application's workflow.

- Mobile contexts: Average frequency of CPU, average CPU usage, and battery level. The CPU usage

depends on the MIPS of each CPU.

- Sensor contexts: Sensor id, location, latency, destination module, tuple type, and transmission time.

- Network and media context: Cellular communication and bandwidth mode, Wi-Fi communication mode,

cellular connectivity signal, and Wi-Fi.

- Resource contexts: Resource state, identification, memory, and storage.

All of these fields are stored in our knowledge bank's context database to be used later in the

computing offloading operations.

4.1.2 Analysis: This component deals with the processing of metrics collected from the monitor

component, and by processing these metrics, it obtains data on the status of current system productivity and

forecasts of future needs. In this phase, QoS and SLA are considered. If a resource is assigned to a

computing request, and this results in a breach of service quality, the analyst must detect this and issue the

necessary alert. The second phase of the loop performs such analyzes. This department has a close

relationship with the knowledge bank and is constantly exchanging information with it. The analysis phase's

output contexts are resource id, offloading request-id, QoS, and SLA types.

4.1.3 Planning: This part contains the decision module of our system. Using the information from

the previous section, this section makes the final decision on whether to offload or execute locally through

the knowledge bank. This component decides whether to offload and if so, how to send the task to the

appropriate infrastructure under the current circumstances. The decision module includes two components of

the cost estimation module and the context-aware decision algorithm. This method finds the best destination

for offloading the requester modules to edge-server or cloud. We present two offloading methods as

MUCAO and FLUCO as following.

4.1.3.1 MUCAO

Our first method for finding the best destination for offloading is based on a conditional technique.

Algorithm 1 includes two sections as initialization and MAPE. In the initialization section, firstly, mobile

devices, cloud, applications are created. Secondly, edge servers are built based on the number of departments

and mobiles. Finally, the application is submitted to the edge server controller, and iFogsim is started. In the

MAPE section, four phases execute continuously. In the monitoring phase, the context of modules, sensors,

tuples, network interfaces, mobile devices, cloud, and edge servers are collected. In the analysis phase, the

cost of execution in the local device, edge server, and cloud is calculated, and the network interface state is

checked. In the planning phase, the availability of local devices, edge servers, and cloud are checked.

Finally, the current module offloads to the best destination in the execution phase, which is obtained in the

planning phase or locally executed.

15

 Algorithm 1 MUCAO

1: Create Mobile devices, Cloud, application (Modules, Edges, Tuples, Workow).

2: for i = 1 to DepartmentMax do

3: for j = 1 to MobileMax do

4: Edge server (Node name, MIPS, Ram, Storage, upper BW, lower BW, busy

power, and idle power).

5: end for

6: end for

7: Submit applications.

8: Start iFogsim.

9: while Modules enter from MDs do

10: Monitor:

11: Collect context of modules, sensors, tuples, network interfaces, mobile

devices, cloud, and edge servers.

12: Analyze:

13: Calculate cost of execution in local device, edge server, and Cloud.

14: Check network interface state.

15: Plan:

16: if Available(Local device) then

17: if Available(Cloud) then

18: Decision = MinCost(Local device,Cloud).

19: Break.

20: else

21: Decision = local device.

22: end if

23: else

24: if Available(Wi-Fi) then

25: if Available(Edge server) & Available(Cloud) then

26: Decision = MinCost(Local,Edge,CLoud).

27: end if

28: end if

29: end if

30: Execute:

31: Offload module based on Decision.

32: end while

33: Stop iFogsim.

4.1.3.2 FLUCO

The second proposed approach is based on the DRL. The DRL approach aims to learn the optimal

MEC offloading policy from past experience. We try to extend this method to the distributed system. Our

offloading algorithm implements in the MDs. The EDs and cloud devices analyze the updated weights from

MDs. Then, each MD can decide to offload tasks to the best devices for execution. Here, we define the

module offloading by DRL’s agent as a tuple:

𝐴𝑔𝑒𝑛𝑡 = (𝑀, 𝑆, 𝐴, 𝑄) (13)

In Eq. (13), M is the set of modules’ attributes for allocation by agent, S is the set of all environment

states, A is the set of actions like local execution, FDs, or Cloud, and Q is the quality function that learning

algorithm can select the best destination for module execution by that. These parameters use for the agent’s

action and calculated by Eq. (14).

𝑄: 𝑋𝑖 ∗ 𝐴 → ℝ (14)

Here, xi is based on Eq. (15), A is the selected action by the agent, and R is the reward.

𝑥𝑖 = (𝑧1(𝑥), 𝑧2(𝑥), … , 𝑧𝑛(𝑥)) ∈ 𝑋𝑧 (15)

16

As Eq. (16), each agent can explain modules and environments by Z.

𝑍 = 𝑀 ∪ 𝑆 = {𝑧1, 𝑧2, … , 𝑧𝑛} (16)

 The Q update function is as Eq. (17). α ∈ (0, 1) is the learning rate, γ∈ (0, 1) show the importance of

the next rewards.

𝑄(𝑆, 𝑎)𝑚
𝑖 = 𝑄(𝑆, 𝑎)𝑚

𝑖 + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝛼𝑄(𝑆′, 𝑎′)𝑚
𝑖 − 𝑄(𝑆, 𝑎)𝑚

𝑖] (17)

According to DRL, the maximum value of Q(S, a)𝑚
𝑖 based on action a is 1-𝜖, and other actions have

𝜖 probability. Using a greedy policy [43] technique is to avoid local optimum in the learning algorithms. A

reward function evaluates agent operations [43]. This function should be able to generate output very quickly

so that learning and problem solving can be done without delay. The reward function in the proposed

approach is as Eq. (18).

𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑃𝑖

𝑇𝑖
 (18)

Where Pi is the available power of ith FD and Ti is the execution time of a module in ith FD. Since power

and execution time values are in different ranges, a logarithmic function is used to normalize them in [0,1].

Thus 𝑃𝑖 =
log 𝑃𝑖

10
 𝑎𝑛𝑑 𝑇𝑖 =

log 𝑇𝑖

10
.

DRL algorithm:

The pseudo-code of the DRL is as Algorithm 2. The learning algorithm is executed for all modules. Then,

the Q-table is initialized by 0. For all episodes, the possible actions and Q values of them are calculated, and

the best action is selected by arg max Q. State S' is transferred to state S. Here, the best destination for each

module is selected. After calculation of the reward function, updating the operation of Q and saving episodes

in memory is done.

Algorithm 2 DRL

1: for m = 1 to LastModuleInQueue do

2: Initialize Q(S,a).

3: for i = 1 to EpisodeLast do

4: Set S to S0.

5: for j = 1 to SLast do

6: Select best a by calculation arg max Q.

7: Action a, visit r and S'.

8: Calculate Q(S, a)i
m as Eq. (17).

9: Transfer S to S'.

10: end for

11: end for

12: Select a destination device for each

module.

13: Calculate real-time reward.

14: Save S, r, S', and  in memory.

15: Train Q policy by training samples.

16: Update Q.

17: Save the current episode in memory.

18: end for

Based on our approach, the DRL does not execute in EDs for three reasons.

17

1) The jeopardize of accessing personal data of MDs.

2) Encryption algorithms can protect data, but communication with the EDs weaken MDs’ privacy.

3) Transferring a lot of data from MDs to EDs causes a lot of bandwidth consumption and burden wireless

channels. We face another challenge. If the DRL agent runs on each MD, it will consume a lot of energy and

time. For solving this problem, we have to explain, our proposed method is not based on the separate

learning of each MD, and we use the distribution capability of the MEC. In fact, we propose FL for

distributed training DRL agents. As a result, we will save a lot of energy.

FLUCO algorithm:

In FL-based offloading, each ED is a controller to coordinate some MDs. Each MD can execute a DRL agent

with less computation burden. FL does three steps:

1) Send the DRL agent’s parameters from the ED.

2) MDs use to download data from EDs for upgrading their model.

3) Send updated DRL agent’s parameters from MDs to ED (model aggregation). FL works in a parallel

manner. This increases the performance of the system. To design an optimal control policy on FL, we have

to maximize the expected long-term utility as Eq. (19).

𝐺(𝐸, 𝑈) = lim
𝑁→∞

1

𝑁
∑ 𝑔

𝑁

𝑖=1

(𝐸𝑖 , 𝑈(𝐸𝑖)|𝐸1 = 𝐸) (19)

Where E is the network size, U is the system utility, Ei is the initial network size, g(0) is the immediate utility

at epoch i that is calculated based on the reward function in DRL. Based on the mentioned approach as

Algorithm 2, DRL agents execute in MDs; training is done, local execution or offloading to best ED are

done. Finally, trained weights upload to EDs. EDs do not execute DRL agents and only update and aggregate

their weights and send them to MDs. The weights aggregate by Eq. (20).

𝑊𝑟+1 = ∑ (
𝐶𝑟

𝑖

𝐶𝑟
∗ 𝑊𝑟+1

𝑖)

𝑆𝑒𝑡𝐿𝑎𝑠𝑡

𝑘=1

 (20)

Where Wr+1 is the weight in the next round, SetLast is the last set of available MDs, Ci
r is the context of ith

MD in round r, and Wi r+1 is the weight ith module in the next round. This process does continuously. Thus,

the computation task executes in MDs or offload to the best ED based on the DRL agent result. One ED is

used in some FL-based offloading methods, and model updates of all MDs transfer to ED. This has many

challenges for bandwidth, congestion, centralized issues, privacy, etc. We propose multi ED in the MEC and

update all EDs according to MDs' download information, which benefits MEC capabilities.

 Algorithm 3 FLUCO

1: Create Mobile devices, cloud, application (Modules, EDs,

 Tuples, Workflow).

2: for x = 1 to DepartmentMax do

3: for y = 1 to MobileMax do

4: Create ED (Node name, MIPS, Ram, Storage,

upper BW, lower BW, busy power, and idle power).

5: Initialize the DRL agent with random weights W0

in the current ED.

6: Initialize the gross training times T0.

18

7: end for

8: end for

9: for M = 1 to MDsLast do

10: Initialize the contexts CM
0

11: Initialize the DRL WM
0

12: Download W0 from the closest ED.

13: WM
0 = W0.

14: end for

15: Submit applications.

16: Start iFogsim.

17: while Modules enter from MDs do

18: for r = 1 to rLast do

19: Monitor:

20: Collect the context of modules, sensors, tuples,

network interfaces, mobile devices, cloud, and edge servers.

21: Analyze:

22: Setr = random set of available MDs.

23: for i = 1 to SetLast do

24: Fetch Wr from ED as Wi
r = Wr.

25: Update context Ci
rounr.

26: Plan:

27: Train the DRL agent with Wi
r on Ci.

28: Upload trained Wi
r+1 to the closest ED.

29: Notify the ED the time's Tr of local training.

30: end for

31: for j = 1 to EDLast do

32: Receive all model updates.

33: Update Tj
r .

34: Aggregate by Eq. (20).

35: end for

36: end for

37: Execute:

38: Offload modules based on the FDL result.

39: end while

40: Stop iFogsim.

The output contexts of the planning phase are Offloading request id, resource type, offloading destination,

and considered media for the relationship with a resource.

4.1.4 Execution: The final responsible for executing the commands in the execution section. In this section,

computations offload to other machines. This section is closely related to the equipment and resources and

stores the latest state of the resources previously mentioned in the knowledge bank for future use. This

section includes our task manager component. The task manager collects information such as (method

entries, libraries needed to execute the task, the network address of the download location), and puts it into

an offloading package. The manager decides to run a hand over the task locally or sends it to the top layers

as edge servers or cloud. The output contexts of the planning phase are offloading request-id, resource type,

offloading destination, and considered media for relation with the resource.

5. Evaluation

The performance of our proposed methods is presented in this section. The simulation environment in this

research is the iFogsim library [42]. This simulator has got classes to implement resource management

strategies. We have extended some classes as the ModulePlacementEdgeward for offloading, controller for

more output metrics. Also, the VRGAMEFOG class is customized based on the architecture of this paper. We

simulate the proposed algorithm and compare the results with other scheduling methods as follows.

19

- Original: In this method, the computations in MDs execute locally. Thus, the computations do not offload

to edge servers or the cloud. Since modules continuously need to execute, MDs might not have enough

resources. As a result, some modules wait in a queue of resources, and delay will increase.

- Offload: In this technique, the destination of tasks or modules is calculated based on the order of edge servers or

cloud in the network [15]. Context-aware is not considered in this method. Here, all devices are in a list, and the

controller assigns those modules that need resources to the elements of this list in order. This method is not

optimal due to ignoring the properties of devices, applications, and network environment. Maybe a device in the

first of the list selects for an offload. However, some devices in the middle or last of the list are the best

destination for offloading modules.

- MUCAO: This algorithm is one of our proposed algorithms. It is an improved offload technique in [15].

We add context-aware to that work. As we presented in the proposed approach section, this method is based

on a MAPE loop and uses the execution cost in MDs, EDs, and cloud. Considering context awareness of

devices, applications, and network environment leads to find the best device for offloading modules.

- FLO: As a state-of-the-art algorithm, FLO is an FL-based algorithm based on DRL [37]. FLO used one

ED. Using one ED converts the computing architecture to the cloud. If the number of modules that need

resources increase in MDs, just one ED might not answer all offloading requests. As a result, some modules

wait for a long time. There are two differences between this work and our proposed algorithm. FLUCO uses

many numbers of EDs. Also, we provide the context-aware.

We run the simulation by 3 departments and 4 mobile devices. The comparisons are based on the best results

of algorithms with the same configuration for each case study.

5.1. Simulation configuration

Here, we present the VRGAMEFOG application configuration in edges, devices, connection latency, and

hosts in Tables 3, 4, and 5, respectively. In Table 3, Pr is the periodicity (mS) of edges.

Table 3: VR game application edge configuration

Source Module
Destination

Module
Pr

Tuple CPU length

(B)

Tuple new length

(B)

EEG Client 0 3000 500

Client Concentration Calculator 0 3500 500

Concentration Calculator Coordinator 100 1000 1000

Concentration Calculator Client 0 14 500

Coordinator Client 100 28 1000

client Display 0 1000 500

The host configuration is as follows. The architecture is x86, OS is Linux, Storage is 106B, BW is

104 BS, VM model is Xen, the cost is 3 $, cost per memory is 0.05 $, cost per storage is 0.01 $, and time

zone is 10. Table 4 shows the parameters of devices including MIPS, RAM (KB), UpBW (Upper bandwidth

by kilobyte per second), DownBW (Down bandwidth by kilobyte per second), level in the hierarchical

topology, the rate per MIPS, busy, and idle power (Megawatt).

Table 4: Devices configuration

Device MIPS Ram Uplink BW Downlink BW Lv Rate per MIPS Busy Power Idle Power

Cloud 44800 40000 100 10000 0 0.01 1648 1332

20

Controller 2800 4000 10000 10000 1 0 107339 834333

EDs 2800 4000 10000 10000 2 0 107339 834333

MDss 500 1000 10000 10000 3 0 8753 8244

Table 5: Connection latency

Device Name Device Name Latency (mS)

Cloud Proxy – Server 100

Proxy – Server Department (Gateway) 4

Department (Gateway) Mobiles 4

EEG sensor Mobile 6

Display EEG sensor 1

Table 6 shows three different mobile types that have been used in this work. Type A is an Apple

iPhone 11, type B is a Samsung Galaxy S10, and type C is a Huawei P30 pro. Their properties include CPU,

memory, and battery. In this table, MT is a mobile type.

 Table 6: Mobile types

Brand CPU

(GHz)

RAM

(MB)

Battery

(mA)

A Apple iPhone 11 6*2.96 4000 3110

B Samsung Galaxy S10 8*2.30 8000 3400

C Huawei P30 pro 8*2.03 8000 4200

5.2. Metrics

To analyze our proposed approach and compare it with other offloading algorithms, we consider some

metrics like energy consumption, total execution cost, total network usage, delay, and Jain index.

5.2.1 Energy consumption: The energy consumption is calculated by Eq. (21) for all edge servers

and cloud when they have serviced the input modules.

𝐸 = 𝐸𝑐 + (𝑇𝑛 − 𝑇𝑙𝑢) ∗ 𝑃ℎ (21)

We calculate the edge server's energy consumption by the power of all hosts in a certain time frame of

execution. Where Ec is energy consumption in the current state, Tn is the current time, Tlu is the update time

at the last utilization, and Ph is the power of a host in the last utilization. To calculate the total energy

consumption, we have to sum all edge servers and the cloud's energy.

5.2.2 Total execution cost:

To obtain the execution cost, we calculate the total MIPS of hosts by the time frame. The time frame is

calculated by the difference between the current time of simulation and the last utilization time.

𝐶𝑜𝑠𝑡 = ∑ [𝐶 + (𝑆𝐶 − 𝑇𝑙𝑢) ∗ 𝑅𝑀 ∗ 𝑈𝑙 ∗ ∑ 𝑀𝐼𝑃𝑆𝑘

𝜔

𝑘=1

]

𝑁

𝑖=1

 (22)

In Eq. (22), N is the number of edge servers, C is the execution cost, SC is the system clock or

current time of simulation, Tlu is update time at the last utilization, RM is the rate per MIPS that is different

for each inter-module edges, and TM is the total MIPS of the host. Ul is the last utilization (Ul) that is

21

calculated by Eq. (23). Where MIPSA
K and MIPSK are the allocated MIPS and MIPS of the kth processor in

the host, and m1 and m2 are the number of all processors and allocated processors in a host, respectively.

𝑈𝑙 = 𝑀𝑖𝑛(1,
∑ 𝑀𝐼𝑃𝑆𝑘

𝐴𝑚2
𝑘=1

∑ 𝑀𝐼𝑃𝑆𝑘
𝑚1
𝑘=1

) (23)

5.2.3 Total network usage

Since tuples define the relationships between modules, thus resources’ usages depend on the transferred

tuples’ size at a certain time. Total network usage is based on Eq. (24).

𝑇𝑁𝑈 =
∑ (𝐿𝑖 ∗ 𝑆𝑖)𝑁′

𝑖=1

𝑇𝑚𝑎𝑥
 (24)

In Eq. (24), Li and Si are the latency and size of ith tuple overall, N' is the total number of tuples, and

Tmax is the maximum simulation time.

5.2.4 Application Delay

The delay of application execution is calculated by the system clock and the end time of a tuple.

𝑇𝑇𝑁 = {

𝑆𝐶 − 𝑇𝑠𝑡 𝑖𝑓 𝑇𝑎 = 0,
𝑇𝑠𝑡 ∗ 𝑁𝐸𝑇 + (𝑆𝐶 − 𝑇𝑠𝑡)

𝑁𝐸𝑇 + 1
 𝑖𝑓 𝑇𝑎 ≥ 0

 (25)

The end time of the tuple is calculated by Eq. (25). Where Tst is the tuple start time, SC is the system

clock, (SC-Tst) is the execution time, and NET is the number of executed tuple types. Ta is the average CPU

time based on the tuple type. CC is the system clock, and ET is the emitting time of a tuple. Ts is transfer

time between two modules.

𝑇𝑇𝑅 =
𝑇𝑠𝑡 ∗ 𝑁𝑅𝑇 + 𝑆𝐶 − 𝑇𝑠

𝑁𝐸𝑇 + 1
 (26)

The tuple receipt time is based on Eq. (26). NRT is the number of receipt tuple types. Application delay is

calculated by the difference time between tuple end time in a module and tuple receipt time in another

module.

5.3. Fairness

We evaluate the fairness of the offloading method based on the Jain index [32], which is computed as:

𝐽𝑎𝑖𝑛𝐼𝑛𝑑𝑒𝑥 =
(∑ 𝑥𝑗

𝑄
𝑗=1)2

𝑄 ∗ ∑ 𝑥𝑗
2𝑄

𝑗=1

 (27)

Q is the number of devices that contributed to the offloading, and xj is the jth device's energy consumption.

The Jain index is between
1

𝑄
 and 1; a better offloading method has a more Jain index.

5.4 Comparison scenarios

This section categorizes our scenarios to analyze the proposed approach and other algorithms. Table 7 shows

four different scenarios. Where Scenario 1 is based on a different number of users. Scenario 2 is considered

for four different module sizes. Scenario 3 is for comparing the methods based on four mobile types. Also,

22

we compare our proposed approach with others based on different intervals. The reason for using the values

introduced in the diagram is according to the type of application. Since this application is introduced in the

iFogsim emulator, so it comes with values by default. We tried to consider less and more of these parameters

to get a good estimate in terms of scalability, number and type of mobile devices, and module size.

Table 7: Comparison scenarios

No. Description Values

Scenario 1 Number of users 1, 3, 7, 10

Scenario 2 Module size (MB) 1000, 2000, 5000, 10000

Scenario 3 Mobile types AB, AC, BC, ABC

Scenario 4 Interval (ms) 100, 200, 500, 1000

5.5 Scenario 1: Comparison of offloading performance based on the number of users

One of the parameters to show the performance of the offloading methods is the number of users. Here, we

compare the energy consumption, total execution cost, network usage, and delay of MUCAO in MEC by the

number of users. As can be seen in Figs. 3, 4, 5, 6, and 7, there are values of the number of users by 1, 3, 7,

and 10 in the horizontal axis.

Fog devices serve multiple users simultaneously. On the other hand, given the number of resources

these devices have, when the number of users reaches a certain size, they reach a degree of optimization.

This means that devices can perform resource management operations more efficiently. Due to the

hierarchical structure of the network and users' distribution, it will be possible to improve the results even

with the increase of users, which can be seen in the results.

5.5.1 Energy consumption based on the number of users

The analysis of Fig. 3 shows that the energy consumption of MUCAO is less than the original and offload

methods. MUCAO can decrease energy consumption in a higher number of users. As this figure, the

maximum energy consumption is on the number of users by 7 for the original method by 1.635 * 107 MJ.

The minimum value is on the number of users by 10 for the FLUCO method by 1.58 * 107 MJ. This result

shows that the FL-based method with distributed structure causes less energy consumption than others. Also,

adding context-awareness information to FLO and using more than one ED cause to create a better method

as FLUCO for energy efficiency. The reason for the improvement is a distributed algorithm of FLUCO that

executes in multi EDs. The FLUCO causes MDs with lower resources to transfer more of their modules to

EDs. As a result, the workload in the network has been distributed in a balanced way. There is not much

difference between the energy consumption of methods with increasing the number of users. Since FLUCO

distribute modules in the network, and also the capacity of devices is restricted. Thus the number of modules

in devices cannot increase. Finally, we have not got more computations to calculate energy consumption for

them.

23

Fig. 3: Energy consumption based on the number of users

5.5.2 Total execution cost based on the number of users

The cost is one of the important metrics in this work. We can see in Fig. 4 with increasing the number of

users from 3 to 7, and 10 causes increasing cost in original and offload methods. MUCAO has a balanced

cost than these methods in many users with fluctuating between 4.12 *106 $ and 4.15 * 106 $. Additionally,

FLUCO with minimum energy consumption less than FLO and MUCAO is placed in the first rank of total

execution cost. This result shows that with the increase in the number of users and distribution in the

environment, the FLUCO has managed the cost well and brings economic savings. The main reason for this

improvement is our distributed algorithm in some EDs that cause choosing the best device with high

performance and minimum delay.

Fig. 4: Total execution cost based on the number of users

5.5.3 Network usage based on the number of users

Fig. 5 shows that MUCA than original and offload methods can increase network usage by considering

context-awareness. As this figure, the higher number of users could not increase this metric so much. The

reason for this result is the best matching of offload destination instead of first matching. MUCAO has used

network resources better with higher performance than these two methods. On the other hand, by being

superior to others, FLUCO and FLO managed resources better. Since the main idea of these methods is

distribution; as a result, the modules can offload to a wide range of devices. That is why all devices in the

24

network are almost busy with minimum free time. FLUCO and FLO can be an obstacle for wasting time in

devices.

Fig. 5: Network usage based on the number of users

5.5.4 Delay based on the number of users

The delay of the application loop by MUCAO has a slight decrease except in users 3. These results are better

than original and offload methods. As Fig. 6, the maximum delay is related to the original method in the

number of users by 7. The minimum value is related to FLUCO in the number of users by 10. This showed

that using context information and distributed algorithms cause to fast executing of requests and offloading

process. This means MDs using FLUCO can quickly find the best destination to offload their modules and

save more time.

Fig. 6: Delay based on the number of users

5.5.5 Jain index based on the number of users

We provide the fairness of offloading algorithms by Jain index value in Fig. 7. Since the original method has

not any offloading thus, we compare others. As we mentioned, this metric uses the energy consumption and

the number of edge servers that contribute to offloading. The maximum Jain index is related to FLUCO in

the number of users by 10. This shows in FLUCO; more edge servers are used to offload modules. Also, this

result proves better load balancing in the FLUCO than others. As we mentioned in Eq. (27), energy

25

consumption is an important parameter here. The results also show that devices' proposed approaches cause

to devices have a good cooperative for offloading modules from MDs to the best devices.

Fig. 7: Jain index based on the number of users

5.6 Scenario 2: Comparison of offloading performance based on module size

The module size is another metric for evaluating the offloading methods in this work. Based on Figs. 8, 9,

10, 11, and 12, there are module size’s values by 1000, 2000, 5000, and 100000 in the horizontal axis.

5.6.1 Energy consumption based on module size

According to Fig. 8, the module size hasn’t more effect on energy consumption. The original, offload, and

MUCAO show almost equal energy consumption. On the other hand, FLUCO and FLO have got better

results. This means using distributed structure and context awareness can improve the energy consumption of

the system. Since EDs and cloud resources have more capacities than MDs, different modules can be

offloaded and executed to the upper layer in the network. Also, regarding more devices and widely

distributed modules, the modules size has not got a considerable change in energy consumption.

Fig. 8: Energy consumption based on module size

26

5.6.2 Total execution cost based on module size

 Since different module sizes have no changes in energy consumption for original, offload, and MUCAO, as

Fig. 9, the execution cost is without changes in different module sizes. The context-awareness of application,

devices, and network environment allows MDs to have more selections for offloading their modules. As a

result, the execution cost that is based on MIPS of devices calculates in a wide range. As a result, this has not

got a lot of effects totally. However, FLUCO with minimum execution cost is the best method in comparison

with others.

Fig. 9: Total execution cost based on module size

5.6.3 Network usage based on module size

Fig. 10 shows that the minimum network usage is related to the original method in 2000 B by 1.125 *

FLUCO places 105 MB and its maximum value in 1000 B and network usage by 1.15 * 105. Increasing

module size causes increasing network usage. Also, in comparison with FLO, our proposed method as

FLUCO, can improve network size. We need to explain increasing the module size causes raising total

network usage, but this happens until a specific module size because EDs and cloud capacity is more than

MDs. Thus, total network usage will not have many changes.

Fig. 10: Network usage based on module size

27

5.6.4 Delay based on module size

As shown in Fig. 11, increasing the module size causes a decrease in the delay of methods. The reason for

decreasing delay in the original method is the local execution of modules. Also, we should consider some of

the modules might not execute locally for not being enough resources. Of course, by this way, the energy

consumption of MDs will be increase. Since edge servers have more capacity than module sizes, they can

execute offloaded modules in less time. Also, FLUCO has better results than others in module sizes by 2000

and 5000 B. In module size 1000 and 10000 B, FLUCO has got a little improvement than FLO. This shows

that a distributed algorithm can manage and offload them to the best devices when module size increases.

Fig. 11: Delay based on module size

5.6.5 Jain index based on module size

In Fig. 12, the fairness of the offloading method is between 0.6 and 0.8. However, the range of this metric in

MUCAO is between 0.8 and 1.0. This proves MUCAO with considering context information is fairer than

the offloading method. On the other hand, using distributes algorithms, and more EDs convert FLUCO to the

best algorithm, among others. This means the energy consumption of all devices in the network was in a

distributed manner. Also, decreasing the delay of modules cause all devices to consume less energy, so that

the proposed approaches are better in this case.

Fig. 12: Jain index based on module size

28

5.7 Scenario 3: Comparison of offloading performance based on mobile types

Figs. 13, 14, 15, 16, 17 are based on different mobile types, as shown in Table 6.

5.7.1 Energy consumption based on mobile types

Analysis of energy consumption based on mobile types shows better results of FLUCO than others in all

states AB, AC, BC, ABC. The results in Fig. 13 proves the diversity of mobiles can cause less energy

consumption by the proposed method. FLUCO, with minimum energy consumption of about 1.58*107 MJ, is

the best method than others. This method shows that a distributed algorithm in different devices can offload

modules with less energy consumption. Also, heterogeneous devices with different configurations have got

required resources for local computation.

Fig. 13: Energy consumption based on mobile types

5.7.2 Total execution cost based on mobile types

According to Fig. 14, using different mobile types decreases total cost in all methods. FLUCO has better

results than others. More capacity of CPU, memory, and battery causes mobile devices to execute more

modules locally. This process decreases the offloading cost. Another reason for improving the FLUCO can

be fair offloading in a wide range of devices. Thus, decreasing the cost in a device and distributing fair

offloading to other devices can present lower cost.

29

Fig. 14: Total execution cost based on module size

5.7.3 Network usage based on module types

Based on Fig. 15, network usage has a gradual increase by different mobile types. We can see in this figure

that the FLUCO has maximum network usage in mobile type BC by 2.6 * 105 KB. Thus, diversity in mobile

types has a direct effect on network usage. Using a distributed structure of the network causes more network

usage in the MEC. This means the FLUCO with a distributed method can use many devices in the network

and the number of jobless devices will decrease.

Fig. 15: Network usage based on module types

5.7.4 Delay based on module types

Fig. 16 shows that delay in all mobile types AB, AC, and BC has sensitive changes. FLUCO has a minimum

delay equal to 226.2 mS on mobile type ABC. The results prove that the increase in the diversity of MDs

causes more challenges in delay. The distributed algorithms as FLO and FLUCO can do better than others.

FLUCO has got less delay when the mobile type is AC. The reason for this improvement can be the context

awareness in FLUCO than FLO.

30

Fig. 16: Delay based on module types

5.7.5 Jain index based on module types

The fairness metric shows that FLUCO has the best results in all mobile types. Also, Fig. 17 proves the

minimum fairness is related to the offloading method in mobile type AB by 0.6. Thus, distributed multi-user

context-aware is a suitable offloading method in MEC. In fact, if the offloading method can place the

modules on a wide range of devices, we will have a fairway.

Fig. 17: Jain index based on module types

5.8 Scenario 4: Comparison of offloading performance based on interval

Offloading’s interval shows the time distance between the resource management process. We control the

workflow to the system by interval value. The energy consumption, total execution cost, network usage,

delay, and Jain index are evaluated by offloading’s intervals equal to 100, 200, 500, and 1000 mS. We set

these values for the spacing between the input data goes back to the type of application. Since the application

is intended to process input data in an average of 200 mS. Therefore, we consider numbers in the same

range.

5.8.1 Energy consumption based on interval

Fig. 18 proves that our proposed MUCAO and FLUCO methods can decrease energy consumption than the

original, offload, and FLO methods. FLUCO with 1.57* 107 MJ is the best than others. Thus, FLUCO is very

31

suitable for offloading in the VRGAMEFOG application. Since the interval value means the distance time

between the resource management process, increasing that causes the offloading method will have more time

for process or offloading modules to best devices. As a result, we can see; generally, the FLUCO used this

chance better than others.

Fig. 18: Energy consumption vs interval

5.8.2 Total execution cost based on the interval

Analysis of execution cost by all offloading methods shows that interval equals 500 causes more energy

consumption. According to Fig. 19, the minimum execution cost of 4.9 * 106$ is related to FLUCO by

interval 200 mS. The worst execution is related to the original method by 4.18 * 106$ in the interval of 500

mS without any offloading. The results prove the superiority of the distributed algorithm over others in

MEC. The fair using of resources in devices causes less cost, so FLUCO with the capability of distribution

and context awareness has better results than others.

Fig. 19: Total execution cost vs interval

5.8.3 Network usage based on interval

The results of the simulation show the competition between all methods. They cause to near network usage

values in the interval by 100, 500, and 1000 mS. Fig. 20 indicates, in the average stats, FLUCO is the best

32

offloading method than others. The main reason for this improvement is the distributed structure of FLUCO,

also using the properties of devices, application modules, and environment are important in context-

awareness.

Fig. 20: Network usage vs interval

5.8.4 Delay based on the interval

Based on Fig. 21, the MUCAO method has a gradual increase in the delay parameter when the interval is

grown. Of course, this MUCAO is an excellent method in intervals by 100 and 200 mS. According to this

figure, the original method has the worst result in the interval by 1000 mS. The offload method has a

fluctuated result with the lowest in the interval of 200 mS and higher in the interval by 500 mS. More

analysis shows that FLO and FLUCO have got lower delays than others. The results show that these two

methods can quickly offload the modules to the best devices with minimum delay. Of course, the lowest

delay equal 226.3 mS, is related to FLUCO in an interval of 200 mS.

Fig. 21: Delay vs interval

5.8.5 Jain index based on interval

According to Fig. 22, MUCAO and FLUCO have a gradual increase in the Jain index with maximum

fairness in interval of 1000 mS. However, the offloading method has fluctuated values, and it could

33

approximately close to MUCAO in 1000 mS. However, FLUCO with the highest Jain index is better than

others. This proves that a distributed algorithm can be a fair offloading method. Thus, the dynamic context-

awareness and distributed structure of the proposed algorithm can improve the performance of MEC.

Fig. 22: Delay vs interval

6 Conclusion

Computation offloading in MEC is faced with many challenges. In this paper, we investigate context-aware

offloading by considering multi-user. We also present a distributed algorithm as FLUCO to got close to the

MEC structure. To solve this problem, a MAPE loop is used in all offloading processes. Our method helps

MDs to offload their modules to edge servers or cloud if they can not execute those locally with less cost.

The results show that FLUCO is superior to original, offload, MUCAO, and FLO methods in energy

consumption by 2%, 2%, 2.1%, and 0.7% in total execution cost by 3%, 3%, 2.34%, and 1.08% network

usage by 2%, 2%, 1.21%, and 0.001% delay by 0.01%, 0.01%, 0.005%, and 0.001% and 0.002%,

respectively. Also, FLUCO is fairer than offload, MUCAO, and FLO methods in the Jain index by 18%,

4.01%, and 1.6%, respectively. These results prove that our proposed offloading algorithm with context-

aware information and distributed structure could improve the network performance in the mentioned

metrics. As future work, we work on MEC with FL-based methods on other case studies. Cooperative mobile

crowding is another challenge of FL in MEC for more research. FL is vulnerable to communication security

issues such as Distributed Denial-of-Service (DoS) and jamming attacks. Also, we will research on the

protection of data privacy for MEC users.

References

1. Gourisaria, M. K., Samanta, A., Saha, A., Patra, S. S., & Khilar, P. M. (2020). An Extensive Review on Cloud

Computing. In Data Engineering and Communication Technology (pp. 53-78). Springer, doi: 10.1007/978-981-15-

1097-7-6.

2. Mutlag, A. A., Ghani, M. K. A., Arunkumar, N. A., Mohammed, M. A., & Mohd, O. (2019). Enabling technologies

for Fog Computing in Healthcare IoT Systems.Future Generation Computer Computer System ,90,62-

78.doi:10.1016/j.future.2018.07.049.

3. Ghobaei-Arani, M., Souri, A., & Rahmanian, A. A. (2019). Resource management approaches in fog computing: a

comprehensive review. Journal of Grid Computing, 1-42.doi:10.1007/s10723-019-09491-1

34

4. Wang, F., Xu, J., & Cui, S. (2020). Optimal Energy Allocation and Task Offloading Policy for Wireless Powered

Mobile Edge Computing Systems. IEEE Transactions on Wireless Communications.

doi:10.1109/TWC.2020.2964765.

5. Hu, Y. Patel, M. Sabella, D. Sprecher, N. Young, V. (2015). Mobile edge computing a key technology towards 5G.

ETSI White Paper 11(11)(2015) 1-16.

6. Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE

Communications Surveys & Tutorials, 19(3), 1628-1656.

doi:10.1109/COMST.2017.2682318.

7. Aral, A., Brandic, I., Uriarte, R. B., De Nicola, R., & Scoca, V. (2019). Addressing Application Latency

Requirements through Edge Scheduling. Journal of Grid Computing, 17(4), 677-698.

doi:10.1007/s10723-019-09493-z

8. Rahman, A. U., Malik, A. W., Sati, V., Chopra, A., & Ravana, S. D. (2020). Context-aware opportunistic computing

in vehicle-to-vehicle networks. Vehicular Communications, 24, 100236.doi:10.1016/j.vehcom.2020.100236.

9. Liang, Z., Liu, Y., Lok, T. M., & Huang, K. (2019). Multi-user computation offloading and downloading for edge

computing with virtualization.IEEE Transactions on Wireless Communications,18(9),4298-4311.

doi:10.1109/TWC.2019.2922613.

10. Orsini, G., Bade, D., & Lamersdorf, W. (2018). CloudAware: empowering contextaware self-adaptation for mobile

applications. Transactions on Emerging Telecommunications Technologies, 29(4), e3210.

doi:10.1002/ett.3210.

11. Luo, C., Goncalves, J., Velloso, E.,&Kostakos, V. (2020). A Survey of Context Simulation for Testing Mobile

Context-Aware Applications. ACM Computing Surveys (CSUR), 53(1), 1-39.

doi:10.1145/3372788.

12. Lim,W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.C., Yang, Q., Niyato, D. and Miao, C. (2020). Federated

learning in mobile edge networks:A comprehensive survey. IEEE Communications Surveys & tutorials.

doi:10.1109/COMST.20020.2986024

13. Ren, J., Zhang, D., He, S., Zhang, Y., & Li, T. (2019). A Survey on End-Edge- Cloud Orchestrated Network

Computing Paradigms: Transparent Computing, Mobile Edge Computing, Fog Computing, and Cloudlet. ACM

Computing Surveys (CSUR), 52(6), 1-36.doi:10.1145/3362031.

14. Boukerche, A., Guan, S., Grande, R. E. D. (2019). Sustainable Offloading in Mobile Cloud Computing: Algorithmic

Design and Implementation. ACM Computing Surveys (CSUR), 52(1), 1-37.doi:10.1145/3286688.

15. Tang, L. and He, S. (2018). Multi-User Computation Offloading in Mobile Edge Computing: A Behavioral

Perspective, IEEE Network, 32(1), 48-53.

doi:10.1109/MNET.2018.1700119.

16 . Tran, D.H., Tran, N.H., Pham, C., Kazmi, S.M.A., Huh, E.-N., Hong, C.S. (2017). OaaS: offload as a service in fog

networks. IEEE Computing 99(11), 1081–1104.doi:10.1007/s00607-017-0551-z.

17. Zhan,W., Luo, C., Min, G.,Wang, C., Zhu, Q.,&Duan, H. (2020). Mobility-Aware Multi-User Offloading

35

Optimization for Mobile Edge Computing. IEEE Transactions on Vehicular Technology 69(3)3341-3356.

doi:10.1109/TVT.2020.2966500.

18. Kuang, L., Gong, T., OuYang, S., Gao, H., & Deng, S. (2020). Offloading decision methods for multiple users with

structured tasks in edge computing for smart cities. Future Generation Computer Systems.

doi:10.1016/j.future.2019.12.039.

19. Kuang, Z., Shi, Y., Guo, S., Dan, J., & Xiao, B. (2019). Multi-User Offloading Game Strategy in OFDMA Mobile

Cloud Computing System. IEEE Transactions on Vehicular Technology, 68(12), 12190-12201.

doi:10.1109/TVT.2019.2944742.

20. Yang, X., Fei, Z., Zheng, J., Zhang, N., & Anpalagan, A. (2019). Joint Multi- User Computation Offloading and

Data Caching for Hybrid Mobile Cloud/Edge Computing. IEEE Transactions on Vehicular Technology, 68(11),

11018-11030.doi:10.1109/TVT.2019.2942334.

21. Liu, Z. Z., Sheng, Q. Z., Xu, X., Chu, D., & Zhang, W. E. (2019). Context-aware and Adaptive QoS Prediction for

Mobile Edge Computing Services. IEEE Transactions on Services Computing.doi:10.1109/TSC.2019.2944596.

22. Lin, W., Peng, G., Bian, X., Xu, S., Chang, V., & Li, Y. (2019). Scheduling Algorithms for Heterogeneous Cloud

Environment: Main Resource Load Balancing Algorithm and Time Balancing Algorithm. Journal of Grid

Computing, 17(4), 699-726.

doi:10.1007/s10723-019-09499-7

23. Chang, Z., Zhou, Z., Ristaniemi, T., Niu, Z. (2017). Energy efficient optimization for computation offloading in fog

computing system. In: GLOBECOM 2017–2017 IEEE Global Communications Conference,pp.1–6.

doi:10.1109/GLOCOM.2017.8254207.

24. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T. (2018). Multi-objective optimization for computation

offloading in fog computing. IEEE Internet Things J. 5(1), 283–294.

doi:10.1109/JIOT.2017.2780236.

25. Al-Ayyoub, M. Al-Quraan,M.Lo’ai A. (2017). Delay-aware power optimization model for mobile edge computing

systems. Springer, Volume 21, pp 1067–1077.doi:10.1007/S00779-017-1032-2.

26. Huang, L., Feng, X., Zhang, L., Qian, L., &Wu, Y. (2019). Multi-server multi-user multi-task computation

offloading for mobile edge computing networks. Sensors, 19(6), 1446.

doi:10.3390/s19061446.

27. Salehan, A., Deldari, H. & Abrishami, S. (2019)An online context-aware mechanism for computation offloading in

ubiquitous and mobile cloud environments. J Supercomput 75, 3769–3809 .

doi:10.1007/s11227-019-02743-7.

28. Cho, J., Sundaresan, K., Mahindra, R., Van der Merwe, J., & Rangarajan, S.

(2016, December). ACACIA: context-aware edge computing for continuous interactive applications over mobile

networks. In Proceedings of the 12th International on Conference on emerging Networking EXperiments and

Technologies (pp. 375-389).

doi:10.1145/2999572.2999604.

36

29. Nawrocki, P., & Sniezynski, B. (2017). Autonomous context-based service optimization in mobile cloud

computing. Journal of Grid computing, 15(3), 343-356.doi:10.1007/s10723-017-9406-2

30. Baraki, H., Jahl, A., Jakob, S., Schwarzbach, C., Fax, M., & Geihs, K. (2019). Optimizing Applications for Mobile

Cloud Computing Through MOCCAA. Journal of Grid Computing, 17(4), 651-676.doi:10.1007/s10723-019-09492-0

31. Chen, X., Chen, S., Zeng, X., Zhang, Y., Zheng, X., & Rong, C. (2017). Framework for context-aware computation

offloading in mobile cloud computing. Journal of Cloud Computing: Advances, Systems and Applications, 6(1), 1–

17.doi:10.1186/s13677-016-0071-y.

32. Ghasemi-Falavarjani, S. Nematbakhsh, M. Ghahfarokhi, B. S. (2015). Contextaware multi-objective resource

allocation in mobile cloud, Computers & Electrical Engineering, vol. 44, pp. 218-

240.doi:10.1016/j.comeleceng.2015.02.006.

33. Roostaei, R. Movahedi, Z. (2016). Mobility-aware and fault-tolerant computation offloading for Mobile Cloud

Computing. Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing.

34. Kosta, S. Aucinas, A. Hui, P. Mortier, R. Zhang, X. (2012). Thinkair: dynamic resource allocation and parallel

execution in the cloud for mobile code offloading. In IEEE Proceedings of INFOCOM, pp. 945–953.

doi:10.1109/INFCOM.2012.6195845.

35. Lin,T. ,Lin, T. A. Hsu, CH. King, CH. (2013). Context-aware decision engine for mobile cloud offloading. IEEE

Wireless Communications and Networking Conference Workshops (WCNCW).111-116.

doi:10.1109/WWCNCW.2013.6533324.

36. Kotb, Y., Al Ridhawi, I., Aloqaily, M., Baker, T., Jararweh, Y., & Tawfik, H. (2019). Cloud-based multi-agent

cooperation for IoT devices using workflow-nets. Journal of Grid Computing, 17(4), 625-650.

doi:10.1007/s10723-019-09485-z

37. Ren, J.,Wang, H., Hou, T., Zheng, S., & Tang, C. (2019). Federated learning-based computation offloading

optimization in edge computing-supported internet of things. IEEE Access, 7, 69194-69201.

DOI:10.1109/ACCESS.2019.2919736.

38. Yang, K., Jiang, T., Shi, Y., & Ding, Z. (2020). Federated learning via over-the-air computation. IEEE Transactions

on Wireless Communications, 19(3), 2022-2035.doi:10.1109/TWC.2019.2961673.

39. Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge ai: Intelligentizing mobile edge

computing, caching and communication by federated learning. IEEE Network, 33(5), 156-165.

doi:10.1109/MNET.2019.1800286.

40. Shen, S., Han, Y., Wang, X., & Wang, Y. (2019). Computation Offloading with Multiple Agents in Edge-

Computing–Supported IoT. ACM Transactions on Sensor Networks (TOSN), 16(1), 1-27.

doi:10.1145/3372025.

41.A.Computing, et al.,An architectural blueprint for autonomic computing ,IBM White Paper 31(2006) 1-6.

42. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of

resource management techniques in the Internet of Things, Edge and Fog computing environments. Software:

Practice and Experience, 47(9), 1275-1296.doi:10.1002/spe.2509.

37

43. Sutton, R. S and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.

44. Hua, P. Wu-Shao, W. Ming-Lang, T. Ling-Ling, L. (2020). Joint optimization method for task scheduling time and

energy consumption in mobile cloud computing environment. Applied Soft Computing Journal 80:534–545.

doi: 10.1016/j.asoc.2019.04.027

45. Peng, K. Zhu, M. Zhang, Y. Liu, L. Zhang, J. Leun, V. C. M. and Zheng, L. (2019). An energy- and cost-aware

computation offloading method for workflow applications in mobile edge computing. EURASIP Journal on

Wireless Communications and Networking 207:1-15.

doi: 10.1186/s13638-019-1526-x

46. Nawrocki, P. Sniezynski, B. (2020). Adaptive Context‑Aware Energy Optimization for Services on Mobile Devices

with Use of Machine Learning. Wireless Personal Communications 115:1839–1867.

doi: 10.1007/s11277-020-07657-9

47.Burd, T. D. Brodersen, R. W. (1996). Processor Design for Portable Systems. Journal of VLSI Signal Processing

Systems 13, 203-221.

doi: 10.1007/BF01130406

