
1

Modified multi-direction iterative algorithm for
separable nonlinear models with missing data

Jing Chen, Manfeng Hu, Yawen Mao, Quanmin Zhu

Abstract—Multi-direction iterative (MUL-DI) algorithm is an
efficient algorithm for large-scale models, and it establishes a the-
oretical linkage between least squares (LS) and gradient descent
(GD) algorithms. However, it involves Givens transformation
and dense matrix calculation in each iteration, which leads to
heavy computational efforts. In this letter, a modified MUL-
DI algorithm is proposed for separable nonlinear models with
missing data. Several directions are designed using a diagonal
matrix, and their corresponding step-sizes are obtained based
on LS algorithm. Compared with the traditional algorithms, the
algorithm proposed in this letter has the following advantages: (1)
has a faster convergence rate; (2) has a simple cost function; (3) is
more robust to the condition number; (4) has less computational
efforts. A simulation example shows the effectiveness of the
modified MUL-DI algorithm.

Index Terms—Multi-direction iterative algorithm, separable
nonlinear model, missing data, convergence rate

I. INTRODUCTION

SEPARABLE nonlinear (SN) model is a special kind of nonlinear
models, in which the parameters are decomposed into two parts

depending on if the model is linear or nonlinear with respect to
the parameters [1]–[4]. This kind of models widely exist in modern
society, e.g., in ecological environment [5], [6], in engineering
practice [7], [8]. The identification of SN model is more difficult
when compared with the linear and polynomial nonlinear model
identification, for the reason that the two parameter parts are coupled
with each other [9].

LS algorithm is a classical algorithm which has faster convergence
rates for a linear-parameter-model with low-order. However, it is
inefficient for systems with complex nonlinear structures or with
high-order [10]–[12]. The GD algorithm is an ideal choice for systems
with complex nonlinear structures. It does not require solving a
derivative function, but its convergence rates are quite slow [13]. To
increase the convergence rates, a plethora of modified GD algorithms
are developed [14]. For example, the forgetting factor GD algorithm
[15], the steepest GD algorithm [16], and the conjugate GD algorithm
[17]. There is a bottleneck issue of these modified GD algorithms:
if the condition number of the information matrix is large, whatever
the step-size is, the convergence rate is always slow [18].

For the unique structure of the SN model, the variable projection
(VP) algorithm can be more efficient than the traditional GD (T-GD)
algorithm [19]. The basic idea of the VP algorithm is to transform
the nonlinear model into a linear model with low-order. Although
the low-order model has fewer parameters than those of the SN
model, its cost function is more complex, which leads to a difficulty

J. Chen, M.F. Hu and Y.W. Mao are with the School of Science, Jiangnan
University, Wuxi 214122, PR China (chenjing1981929@126.com, human-
feng@jiangnan.edu.cn, myw0530@163.com).

Q.M. Zhu is with the Department of Engineering Design and Math-
ematics, University of the West of England, Bristol BS16 1QY, UK
(quan.zhu@uwe.ac.uk).

This work was supported by the National Natural Science Foundation
of China (No. 61973137) and the Natural Science Foundation of Jiangsu
Province (No. BK20201339).

in designing an optimal step-size in each iteration [2]. The multi-
direction iterative (MUL-DI) algorithm, which has a simple cost
function, was first proposed in [20]. It designs several directions in
each iteration. The convergence rates of the MUL-DI algorithm are
improved with the increased number of directions. When the number
of directions is larger than 1, the MUL-DI algorithm can get around
the bottleneck issue caused by the condition number. However, the
MUL-DI algorithm requires Givens transformation to calculate the
optimal step-sizes and needs a dense matrix to generate the directions,
which leads to heavy computational efforts.

In this letter, a modified MUL-DI algorithm is proposed for SN
models with missing data. Based on the residual error in each itera-
tion, several directions are designed using a diagonal matrix, and their
corresponding step-sizes are calculated using LS algorithm rather
than Givens transformation method. Therefore, the computational
efforts can be reduced. Compared with the traditional algorithms,
the algorithm proposed in this letter has the following contributions:
(1) has faster convergence rates than the VP and T-GD algorithms;
(2) has a simpler cost function than the VP algorithm ; (3) is more
robust to the condition number of the information matrix than that
of the T-GD algorithm; (4) has less computational efforts than the
traditional MUL-DI algorithm.

The rest of this letter is organized as follows. Section II defines the
SN model and the T-GD algorithm. Section III proposes the modified
MUL-DI algorithm. Section IV provides a simulation example to
demonstrate the main results. Section V concludes the letter and
discusses possible future study directions.

II. PROBLEM FORMULATION

Firstly setup some notations. The norm of a matrix X is defined
as ∥X∥ =

√
λmax[XXT]; λmax[XXT] and λmin[XXT] mean the

maximum and minimum eigenvalues of matrix XXT, respectively;
the norm of a vector z = [z1, z2, · · · , zn]T ∈ Rn is defined as ∥z∥ =

(
n∑

i=1

zi
2)

1
2 ; the superscript T denotes the matrix transpose.

A. SN model with missing data
Consider the following SN model,

y(t) = f(a, u(t))c+ v(t),

where y(t) is the output; u(t) is the input; v(t) is a Gaussian white
noise that satisfies v(t) ∼ N(0, σ2); a ∈ Rm is the nonlinear
parameter vector and c ∈ Rn is the linear parameter vector; f(·)
is a nonlinear function with known structure. Assume that we have
collected L input and output data, and those output data in the
sampling instants o1, o2, · · · , op are measurable, while the other
output data in the sampling instants m1,m2, · · · ,mq are missing,
p+ q = L, p > (m+ n) and p > q.

Two standard tools are usually applied to systems with missing
data: (1) the lifting technique, e.g., the polynomial transformation
algorithm [21], its key is to transform the system into a lifted
system with high-order, and then to estimate the parameters based
on all the measurable data; (2) the imputation technique, e.g., the
imputation based LMS algorithm [22], it firstly estimates the missing
data, and then updates the parameters based on the measurable data
and estimated data. Since the first tool requires identifying more

2

parameters and is only available for noise-free systems, this letter
focuses on the second one.

Define

Y(L) = [y(L), y(L− 1), · · · , y(1)]T ∈ RL,

F(a, u(L)) = [f(a, u(L)), f(a, u(L− 1)), · · · , f(a, u(1))]T ∈ RL×n,

V(L) = [v(L), v(L− 1), · · · , v(1)]T ∈ RL.

We have

Y(L) =F(a, u(L))c+V(L). (1)

B. Traditional GD algorithm
Define the cost function

J(a, c) = ∥Y(L)− F(a, u(L))c∥2.

The negative direction is

dk = −
[

∂J(a,c)
∂a

∂J(a,c)
∂c

]
.

The parameters are updated by[
âk
ĉk

]
=

[
âk−1
ĉk−1

]
+ γdk,

where âk, ĉk mean the estimates in iteration k, and γ is the step-size.
Remark 1. Although the T-GD algorithm can obtain the parameter

estimates without solving a derivative equation. It brings another
challenging issue: the step-size choosing problem. A larger step-size
may make the T-GD algorithm divergent, while a smaller one can
lead to slow convergence rates.

If the considered model is linear, and is written by

Y(L) =F(L)c+V(L), (2)

where F(L) ∈ RL×n is the information matrix which constitutes
of the input data before the sampling instant L. Using the T-GD
algorithm to obtain the parameter estimates ĉk yields

ĉk = ĉk−1 + γFT(L)[Y(L)− F(L)ck−1].

To keep the T-GD algorithm convergent, the step-size γ should satisfy

0 < γ <
2

λmax[FT(L)F(L)]
.

In [23], the optimal step-size was given as follows:

γop =
2

λmax[FT(L)F(L)] + λmin[FT(L)F(L)]
.

For the optimal step-size, the convergence factor is

∥êk∥ = µ∥êk−1∥ =
τ − 1

τ + 1
∥êk−1∥,

where τ is the condition number of the information matrix
[FT(L)F(L)] ∈ Rn×n, and µ is the convergence factor.

Remark 2. Once the information matrix [FT(L)F(L)] is fixed,
no matter what the step-size is, the best convergence factor of the
T-GD algorithm is τ−1

τ+1
. Therefore, if the information matrix is ill-

conditioned or singular, the T-GD algorithm is inefficient.
Remark 3. Owing to the special structure of the SN model,

the information matrix in the T-GD algorithm is changing in each
iteration, thus, we cannot find a fixed interval in which the step-size
can be chosen to keep the T-GD algorithm convergent.

III. MODIFIED MUL-DIRECTION ITERATIVE ALGORITHM

The VP algorithm proposed in [2], [8] has a complex structure,
while the T-GD algorithm has a quite slow convergence rate. To
deal with these dilemmas, the MUL-direction iterative (MUL-DI)
algorithm is introduced in this section.

A. Basic idea of the modified MUL-DI algorithm
For the linear model (2), using the LS algorithm to estimate the

parameters yields

ĉk = [FT(L)F(L)]−1FT(L)Y(L)

= ĉk−1 + [FT(L)F(L)]−1FT(L)[Y(L)− F(L)ĉk−1], (3)

where FT(L)[Y(L)− F(L)ĉk−1] ∈ Rn.
The T-GD algorithm is listed as follows:

ĉk = ĉk−1 + FT(L)[Y(L)− F(L)ĉk−1]γ. (4)

The differences between the T-GD and LS algorithms are shown
in Table I.

TABLE I: The differences between T-GD and LS algorithms

Algorithm T-GD LS
Direction FT(L)[Y(L)− F(L)ĉk−1] [FT(L)F(L)]−1

Step-size γ FT(L)[Y(L)− F(L)ĉk−1]

Number of Directions 1 n

Number of Step-sizes 1 n

When the number of the unknown parameters is n, the LS
algorithm can obtain the optimal estimate in only one iteration based
on n directions and n corresponding step-sizes; on the other hand, the
GD algorithm updates the parameters using only one direction and
one step-size. Therefore, the LS algorithm has faster convergence
rates but heavier computational efforts, while the GD algorithm has
less computational efforts but slower convergence rates.

Remark 4. Although the modified GD algorithms, e.g., the
forgetting factor GD algorithm, the steepest GD algorithm, and the
conjugate GD algorithm, can increase the convergence rates. They
cannot reduce the condition number of the information matrix, which
means that these algorithms are sensitive to the condition number.

Remark 5. The multi-innovation algorithm can increase the con-
vergence rates by designing several innovations in each iteration
[4], [7], [19], where the innovations can be regarded as directions.
However, the two innovations/directions are dependent on each other,
and then their corresponding estimates will be correlated, which leads
to less confidence of the number of the directions. In addition, for
the related innovations, designing the optimal step-sizes for them is
impossible.

A natural question arises, can we develop a novel algorithm which
can update the parameters through l (1 6 l 6 n) directions and l
step-sizes in each iteration, and each direction can be assigned an
optimal step-size. This algorithm, termed as MUL-DI algorithm, will
have faster convergence rates and be robust to the condition number.
It has the following three steps:

(1) compute the residual error as an original direction;
(2) construct several orthogonal directions based on the original

direction;
(3) design the optimal step-sizes for each direction.
Assume that the estimate in iteration k − 1 is ĉk−1, the original

direction in iteration k is

dk,1 =
FT(L)[Y(L)− F(L)ĉk−1]

∥FT(L)[Y(L)− F(L)ĉk−1]∥
.

Use Arnoldi’s method to design the remaining l − 1 directions,

dk,i = Ndk,i−1 −
i−1∑
j=1

(Ndk,i−1,dk,j)dk,j , (5)

where N ∈ Rn×n ̸= I is a non-singular diagonal matrix. This is
different from the work in [20], where N = [FT(L)F(L)] is a dense
matrix. Once dk,i is obtained, let

dk,i =
dk,i

∥dk,i∥
.

3

Then, the l directions are written by

Dk,l = [dk,1,dk,2, · · · ,dk,l] ∈ Rn×l. (6)

Assume that their corresponding step-sizes are

Rk,l = [γk,1, γk,2, · · · , γk,l]T.

Then, the estimate ĉk using the modified MUL-DI (M-MUL-DI)
algorithm is written by

ĉk = ĉk−1 +Dk,lRk,l. (7)

Define the cost function

J(Rk,l) = ∥Y(L)− F(L)ĉk−1 − F(L)Dk,lRk,l∥2. (8)

Let
∥FT(L)[Y(L)− F(L)ĉk−1]∥ = α.

Taking the derivative of J(Rk,l) with respect to Rk,l and equating
it to zero yield

Rk,l = [DT
k,lF

T(L)F(L)Dk,l]
−1DT

k,lαdk,1. (9)

Remark 6. By using the M-MUL-DI algorithm, each direction
has its own optimal step-size. In addition, we can choose different
numbers of directions in each iteration on a case by case basis.

Remark 7. In the M-MUL-DI algorithm, the computational efforts
are generally reduced in two ways: (1) apply a diagonal matrix N
rather than a dense matrix [FT(L)F(L)] to generate l directions [20];
(2) use the LS algorithm instead of the Givens transformation method
to calculate the step-sizes [24].

B. Properties of the M-MUL-DI algorithm
(1) The matrix Dk,l

Based on Equations (8) and (9), the parameters updated using the
M-MUL-DI algorithm are written by

ĉk = ĉk−1 +Dk,l[D
T
k,lF

T(L)F(L)Dk,l]
−1DT

k,lαdk,1

= ĉk−1 +Dk,l[D
T
k,lF

T(L)F(L)Dk,l]
−1DT

k,lF
T(L)×

[Y(L)− F(L)ĉk−1]. (10)

Case 1: rank [Dk,l] = l = n
When l = n, Equation (10) is simplified as

ĉk = ĉk−1 +Dk,lD
−1
k,l [F

T(L)F(L)]−1[DT
k,l]

−1DT
k,lF

T(L)×
[Y(L)− F(L)ĉk−1]

= ĉk−1 + [FT(L)F(L)]−1FT(L)[Y(L)− F(L)ĉk−1].

In this case, the M-MUL-DI algorithm is the same as the LS
algorithm.

Case 2: rank [Dk,l] = l = 1
There is only one direction in each iteration, that is

Dk,l = dk,1.

Substituting the above equation into Equation (10) yields

ĉk = ĉk−1 + dk,1[d
T
k,1F

T(L)F(L)dk,1]
−1dT

k,1αdk,1

= ĉk−1 +
dk,1d

T
k,1

dT
k,1F

T(L)F(L)dk,1
αdk,1.

Since dT
k,1dk,1 = 1, we have

ĉk = ĉk−1 +
1

dT
k,1F

T(L)F(L)dk,1
FT(L)[Y(L)− F(L)ĉk−1].

In this case, the step-size is

γk =
1

dT
k,1F

T(L)F(L)dk,1
.

The step-size of the M-MUL-DI algorithm is adaptively chosen in
each iteration. Therefore, when l = 1, the M-MUl-DI algorithm
is equivalent to the T-GD algorithm. However, the M-MUL-DI
algorithm can be more efficient than the T-GD algorithm for the
reason that the step-size is adaptively chosen.

Case 3: 1 < rank [Dk,l] = l < n
According to Equations (8) and (9), one can get

J(ĉk) 6 J(ĉk−1).

In addition, the original direction in iteration k + 1 is

dk+1,1 = FT(L)[Y(L)− F(L)ĉk].

For simplicity, we do not need to normalize it here. Multiplying both
sides of the above equation by Dk,l yields

dT
k+1,1Dk,l =

[
FT(L)[Y(L)− F(L)ĉk−1 − F(L)Dk,lRk,l]

]T ×
Dk,l

=
[
αdk,1 − FT(L)F(L)Dk,lRk,l

]T
Dk,l.

Substituting Equation (9) into the above equation yields

dT
k+1,1Dk,l =

[
αDk,le1 − αFT(L)F(L)Dk,l ×

[DT
k,lF

T(L)F(L)Dk,l]
−1DT

k,lDk,le1

]T

Dk,l, (11)

where e1 = [1, 0, 0, · · · , 0]T ∈ Rl.
Since dk,i is orthogonal to dk,j (i ̸= j). It follows that

DT
k,lDk,l = I ∈ Rl×l. Then, Equation (11) is simplified as

dT
k+1,1Dk,l = αeT

1D
T
k,lDk,l − αeT[DT

k,lF
T(L)F(L)Dk,l]

−1 ×
DT

k,lF
T(L)F(L)Dk,l

= 0. (12)

It shows that the new direction is orthogonal to the previous direc-
tions.

(2) Convergence properties of the M-MUL-DI algorithm

When l = n, the M-MUL-DI algorithm is the same as the LS
algorithm. Based on [25], for a convex cost function, the LS algorithm
is convergent, and its convergence factor is µ = 0.

When l = 1, the M-MUL-DI algorithm is equivalent to the T-GD
algorithm. From [25], it shows that the T-GD algorithm is always
convergent for a convex cost function, and its convergence factor
satisfies τ−1

τ+1
6 µ < 1.

When 1 < l < n, the inequality J(ĉk) 6 J(ĉk−1) ensures that
the M-MUL-DI algorithm is convergent; Equation (12) means that
the new direction is orthogonal to the previous directions, which can
guarantee the estimates asymptotically converge to the true values.
That is, the M-MUL-DI algorithm will never stop running until the
new original direction dk+1,1 = FT(L)[Y(L) − F(L)ĉk] = 0. In
addition, its convergence factor satisfies 0 < µ < τ−1

τ+1
.

C. M-MUL-DI algorithm for the SN model with missing data
For the SN model, the original direction in iteration k is

dk,1 =

[
ck−1F

′(L,ak−1)
F(L,ak−1)

]
[Y(L)− F(L,ak−1)ck−1].

Define

M=

[
ck−1F

′(L,ak−1)
F(L,ak−1)

]
×

[[ck−1F
′(L,ak−1)]

T, [F(L,ak−1)]
T] ∈ R(m+n)×(m+n).

Since the output vector Y(L) contains unknown outputs, we use the
parameter estimates in iteration k−1 to compute these missing data,

ŷk(mj) = f(ak−1,mj)ck−1, j = 1, 2, · · · , q.

4

The M-MUL-DI algorithm for the SN model with missing data is
written as[

ak
ck

]
=

[
ak−1
ck−1

]
+Dk,lRk,l, (13)

Dk,l = [dk,1,dk,2, · · · ,dk,l] ∈ R(m+n)×l, (14)

Rk,l = [DT
k,lMDk,l]

−1DT
k,l

[
ck−1F

′(L,ak−1)
F(L,ak−1)

]
×

[Ŷk(L)− F(L,ak−1)ck−1], (15)
ŷk(mj) = f(ak−1,mj)ck−1, j = 1, 2, · · · , q, (16)

Ŷk = [y(L), · · · , ŷk(mq), · · · , y(1)]T. (17)

The steps of the M-MUL-DI algorithm are listed as follows:

M-MUL-DI algorithm
Initialize a0 = 1/p0, c0 = 1/p0
Collect measurable data u(1), · · · , u(L) and y(o1), · · · , y(op)
Repeat

for k = 1, 2, · · · , do
Compute ŷk(mj), j = 1, · · · , q based on (16)
Form Ŷk based on (17)
Compute Dk,l according to (14)
Compute Rk,l according to (15)
Update ak and ck using (13)

end
until convergence

Remark 8: In this letter, we consider that the system has missing
output data. If the system has missing input data, the M-MUL-DI
algorithm is invalid. In this case, we can try to combine the M-
MUL-DI algorithm with the imputation model based method in [22]
to deal with this problem.

IV. EXAMPLE

Consider an SN model in [5],

y(t) = c1e
−a2u

2(t−1) cos(a3u(t− 1)) + c2e
−a1u

2(t−1) ×
cos(a2u(t− 2)) + c3e

−a4u
2(t−1) sin(a1u(t− 3)) + v(t),

θ = [cT,aT]T, c = [c1, c2, c3]
T = [2, 3, 2]T,

a= [a1, a2, a3, a4]
T = [1, 1.5, 3, 0.8]T,

where {u(t)} is an input sequence with zero mean and unit variance,
{v(t)} is taken as a white noise sequence with zero mean and
variance σ2 = 0.102. In the simulation, we generate L = 800
pairs of input-output data, where the data in the sampling instants
4, 8, 12, · · · , 4i, · · · , 796 are missing.

Apply the T-GD, VP and M-MUL-DI (l = 3, N =
diag{1, 2, 3, 4, 5, 6, 7}) algorithms for the SN model. The parameter
estimates and their estimation errors τ := ∥θk − θ∥/∥θ∥ are shown
in Fig. 1 and Table II. The predicted and true outputs are shown in
Fig. 2. In addition, use the M-MUL-DI and traditional MUL-DI (T-
MUL-DI) algorithms (l = 3) for the SN model (Intel(R) Core(TM)
i7-8550U: 1.80GHz, 2.00GHz; RAM: 8.0 GB; Windows 10). The
elapsed times and estimation errors are shown in Table III.

From this simulation, we have the following findings: (1) for the
SN model identification, the M-MUL-DI algorithm has the fastest
convergence rates when l > 1, this can be shown in Fig. 1 and Table
II; (2) the VP and M-MUL-DI algorithms can well catch the true
outputs of the SN model, but the T-GD algorithm cannot, as shown
in Fig. 2; (3) the M-MUL-DI algorithm has less elapsed times than
those from the T-MUL-DI algorithm, as shown in Table III, that is,
the M-MUL-DI algorithm has less computational efforts than those
from the T-MUL-DI algorithm.

TABLE II: The parameter estimates and their estimation errors

Algorithm k c1 c2 c3 a1 a2 a3 a4 τ (%)
100 0.11 0.10 0.10 0.10 1.12 1.21 0.21 82.02

T-GD 200 0.13 0.09 0.10 0.10 1.34 1.42 0.23 80.30
500 0.18 0.05 0.08 0.10 2.14 1.98 0.29 78.06
100 3.60 0.53 10.62 0.08 1.14 1.51 0.26 170.04

VP 200 3.24 1.82 2.73 0.61 1.95 2.16 0.46 39.36
500 2.77 2.26 1.98 0.96 1.79 2.33 0.58 24.12
100 2.85 2.18 1.98 0.96 1.83 2.28 0.57 26.42

M-MUL-DI 200 2.05 2.95 1.98 1.01 1.52 2.94 0.76 1.94
500 2.01 2.99 1.97 1.02 1.51 2.98 0.78 0.83

True Value 2.00 3.00 2.00 1.00 1.50 3.00 0.80

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 k

τ

T−GD
VP
M−MUL−DI

Fig. 1: The parameter estimation errors

TABLE III: The elapsed times and estimation errors

Algorithm Estimation error Elapsed time (second)
T-MUL-DI 0.82526% 20.048
M-MUL-DI 0.82643% 16.414

700 710 720 730 740 750 760 770 780 790 800

0
2
4
6

 t (T−GD)

ou
tp

ut
 d

at
a

True outputs
Estimated outputs

700 710 720 730 740 750 760 770 780 790 800

0
2
4
6

 t (VP)

ou
tp

ut
 d

at
a

700 710 720 730 740 750 760 770 780 790 800

0
2
4
6

 t (M−MUL−DI)

ou
tp

ut
 d

at
a

Fig. 2: The true outputs and their estimates

V. CONCLUSIONS

An M-MUL-DI algorithm is proposed for SN models with missing
data in this letter. The algorithm constructs several orthogonal direc-
tions in each iteration, thus it has faster convergence rates than the T-
GD algorithm, and has a simpler cost function than the VP algorithm.
In addition, it has less computational efforts when compared with the
T-MUL-DI algorithm. The benefits of the M-MUL-DI algorithm are
demonstrated through a simulation example.

The M-MUL-DI algorithm has some advantages over the tradi-
tional algorithms, and can be used in wide range of cutting edge
applications. However, some challenging issues need to be further
discussed to enrich and enhance the MUL-DI algorithm. For example,
how to choose the optimal number of directions in each iteration, and
how to avoid the same direction in different iterations. Similar topics
will remain as meaningfully challenging issues in future studies.

5

REFERENCES

[1] G.H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and
nonlinear least squares problems whose variables separate,” SIAM J.
Numer. Anal., vol. 10, no. 2, pp. 413-432, 1973.

[2] G.H. Golub and V. Pereyra, “Separable nonlinear least squares: the
variable projection method and its applications,” Inverse Probl., vol. 19,
no. 2, pp. R1-R26, 2003.

[3] L. Xu, F. Ding, L.J. Wan, and J. Sheng, “Separable multi-innovation
stochastic gradient estimation algorithm for the nonlinear dynamic
responses of systems,” Int. J. Adapt. Control Signal Process., vol. 34,
no. 7, pp. 937-954, 2020.

[4] H. Xu, F. Ding, and B. Champagne, “Joint parameter and time-delay
estimation for a class of nonlinear time-series models,” IEEE Signal
Process. Lett., vol. 29, pp. 947-951, 2022.

[5] M. Gan, C.L.P. Chen, L. Chen, and C.Y. Zhang, “Exploiting the inter-
pretability and forecasting ability of the RBF-AR model for nonlinear
time series,” Int. J. Syst. Sci., vol. 47, no. 8, pp. 1868-1876, 2016.

[6] N.C. Stenseth, W. Falck, et al., “From ecological patterns to ecological
processes: Phase and density-dependencies in Canadian lynx cycle,”
Proc. National Academy Sci., USA, vol. 95, no. 26, pp. 15430-15435,
1999.

[7] Y.H. Zhou and F. Ding, “Modeling nonlinear processes using the ra-
dial basis function-based state-dependent autoregressive models,” IEEE
Signal Process. Lett., vol. 27, pp. 1600-1604, 2020.

[8] G.Y. Chen, M. Gan, S.Q. Wang, and C.L.P. Chen, “Insights into
algorithms of separable nonlinear least squares problems,” IEEE Trans.
Image Process., vol. 30, pp. 1207-1218, 2021.

[9] H. Xu and E.F. Yang, “Three-stage multi-innovation parameter estima-
tion for an exponential autoregressive time-series model with moving
average noise by using the data filtering technique,” Int. J. Robust
Nonlinear Control, vol. 31, no. 1, pp. 166-184, 2021.

[10] X.P. Liu and X.Q. Yang, “Identification of nonlinear state-space systems
with skewed measurement noises,” IEEE Trans. Circuits Syst. I., 2022.
DOI: 10.1109/TCSI.2022.3193444.

[11] G. Pillonetto, F. Dinuzzo, T.S. Chen, G.D. Nicolao, and L. Ljung,
“Kernel methods in system identification, machine learning and function
estimation: A survey,” Automatica, vol. 50, pp. 657-682, 2014.

[12] B. Sinquin and M. Verhaegen, “K4SID: Large-scale subspace identifi-
cation with kronecker modeling,” IEEE Trans. Autom. Control, vol. 64,
no. 3, pp. 960-975, 2019.

[13] D.Q. Wang, L.W. Li, Y. Ji, and Y.R. Yan, “Model recovery for Ham-
merstein systems using the auxiliary model based orthogonal matching
pursuit method,” Appl. Math. Model., vol. 54, pp. 537-550, 2018.

[14] M. Jiao, D.Q. Wang, and J.L. Qiu, “A GRU-RNN based momentum
optimized algorithm for SOC estimation,” J. Power Sources, vol. 459,
2020. DOI: 10.1016/j.jpowsour.2020.228051

[15] Y.M. Fan and X.M. Liu, “Data filtering-based multi-innovation for-
getting gradient algorithms for input nonlinear FIR-MA systems with
piecewise-linear characteristics ,” J. Frankl. Inst., vol. 358, no. 18, pp.
9818-9840, 2022.

[16] M. Gerard, B.D. Schutter, and M. Verhaegen, “A hybrid steepest descent
method for constrained convex optimization,” Automatica, vol. 45, no.
2, pp. 525-531, 2009.

[17] L.T. Qi, M.L. Shen, D.L. Wang, and S.Y. Wang, “Robust cauchy kernel
conjugate gradient algorithm for non-Gaussian noises,” IEEE Signal
Process. Lett., vol. 28, pp. 1011-1015, 2021.

[18] J. Chen, D.Q. Wang, Y.J. Liu, and Q.M. Zhu, “Varying infimum gradient
descent algorithm for agent-sever systems using different order iterative
preconditioning methods,” IEEE Trans. Ind. Inform., vol. 18, no. 7, pp.
4436-4446, 2022.

[19] M. Gan, X.X. Chen, F. Ding, G.Y. Chen, and C.L.P. Chen, “Adaptive
RBF-AR models based on multi-innovation least squares method,” IEEE
Signal Process. Lett., vol. 26, no. 8, pp. 1182-1186, 2019.

[20] J. Chen, B. Huang, et al., “A novel reduced-order algorithm for rational
model based on Arnoldi process and Krylov subspace,” Automatica, vol.
129, 2021. DOI: 10.1016/j.automatica.2021.109663

[21] J. Ding, L.L. Han, and X.M. Chen, “Time series AR modeling with
missing observations based on the polynomial transformation,” Math.
Comput. Model., vol. 52, no. 5-6, pp. 527-536, 2010.

[22] S. Mukhopadhyay and A. Mukherjee, “ImdLMS: An imputation based
LMS algorithm for linear system identification with missing input data,”
IEEE Trans. Signal Process., vol. 68, pp. 2370-2385, 2020.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for
Industrial and Applied Mathematics, 2003.

[24] J. Chen, J.X. Ma, M. Gan, and Q.M. Zhu, “Multi-direction gradient
iterative algorithm: A unified framework for gradient iterative and
least squares algorithms,” IEEE Trans. Autom. Control, 2021. DOI:
10.1109/TAC.2021.3132262

[25] T. Söderström and P. Stoica, Systen Identification, Englewood Cliffs, NJ:
Prentice-Hall, 1989.

