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A B S T R A C T   

The reinforcement and imitation learning paradigms have the potential to revolutionise robotics. Many suc
cessful developments have been reported in literature; however, these approaches have not been explored widely 
in robotics for construction. The objective of this paper is to consolidate, structure, and summarise research 
knowledge at the intersection of robotics, reinforcement learning, and construction. A two-strand approach to 
literature review was employed. A bottom-up approach to analyse in detail a selected number of relevant 
publications, and a top-down approach in which a large number of papers were analysed to identify common 
relevant themes and research trends. This study found that research on robotics for construction has not 
increased significantly since the 1980s, in terms of number of publications. Also, robotics for construction lacks 
the development of dedicated systems, which limits their effectiveness. Moreover, unlike manufacturing, con
struction’s unstructured and dynamic characteristics are a major challenge for reinforcement and imitation 
learning approaches. This paper provides a very useful starting point to understating research on robotics for 
construction by (i) identifying the strengths and limitations of the reinforcement and imitation learning ap
proaches, and (ii) by contextualising the construction robotics problem; both of which will aid to kick-start 
research on the subject or boost existing research efforts.   

1. Introduction 

The idea that robotics would revolutionise the construction industry 
has been around for many years. However, it has not materialised.[36] 
noted that despite numerous attempts to develop robotic systems for 
construction field operations, few practical applications could be found 
in construction sites. They emphasised that the promises of robotics 
remained unfulfilled and the attempts to transfer robotic technologies 
from manufacturing have not succeeded. While some commercial ro
botic solutions exist nowadays, the overall situation has not changed in a 
meaningful manner in the last three decades. 

In recent years, reinforcement learning (RL) —a machine learning 
(ML) paradigm— has been considered as an approach with the potential 
to facilitate and widen the applicability of robotics to many other fields 
besides the traditional ones, such as automotive and advanced 
manufacturing. RL is thought to be well-suited for robotics task planning 
and control; because instead of meticulously programming high- 
dimensional robot movements step-by-step in a manual manner, RL 
can be used to train robot behaviour autonomously [91]. Moreover, 

research indicates that RL methods could be readily applicable to ro
botics by carefully adapting existing RL implementations form other 
fields [79]. 

The RL paradigm enables an agent to learn an optimal sequence of 
tasks to reach an objective by interacting with an environment that 
provides feedback by showing the effects of the agent’s actions on the 
environment and a corresponding reward (Fig. 1). This approach is 
advantageous compared with traditional control methods, because only 
the objectives and rewards need to be specified and not the actual tasks, 
which is a very laborious job. The main disadvantage of RL approaches is 
that the agent needs to explore a large space of actions and their cor
responding environment states to find a successful set of actions that 
accomplish the desired objective. Thus, RL approaches are computa
tionally intensive; and, the processing requirements increase massively 
with marginal increments in the environment’s complexity, i.e. the 
state-action spaces that need to be explored. The Imitation Learning (IL) 
paradigm intends to address the aforementioned issue of the exponential 
explosion of state-action mappings occurring in complex environments, 
for which evaluating every action-state mapping becomes unfeasible. In 
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IL, the agent is provided in advance with demonstrations of high-reward 
actions to follow in given situations by an expert, thus during the 
learning process the exploration is focused and the learning time 
reduced (Fig. 1). In IL, the agent can also ask feedback directly to the 
expert in situations where the best action is not clear, and the expert can 
interact with the environment as well. Note that IL can be considered a 
subtype of RL even though there are significant differences between RL 
and IL. 

Given the potential benefits of RL and IL approaches for robotics, 
they could represent a perfect opportunity to improve development ef
forts in robotics for construction. For instance, RL and IL could poten
tially enable the use of robotics in unstructured environments such as 
construction sites and enable robots with low sensitivity to constant 
changes in the environment. However, there is a lack of structured 
knowledge in this area. Even though RL and IL have been reported in 
literature for many years, they have not been employed for robotics in 
construction widely. The lack of structure limits the transfer of knowl
edge being produced in computer science and manufacturing fields to 
construction. 

The primary objective of this paper is to consolidate, structure, and 
summarise research knowledge on RL-based robotics for construction. 
Also, this paper seeks to explore the potential effects that RL and IL 
approaches might have on advancing the development of robotics for 
construction. More specifically, this paper explores the state-of-the-art 
RL and IL approaches being used to improve robotics, outlines the 
strengths and limitations that could make adoption feasible, and char
acterises the construction situation in terms of RL-based robotics. In 
sum, it provides an overview of the research landscape at the intersec
tion of robotics, reinforcement learning, and construction. 

The paper is structured as follows: in the next section the research 
method employed is presented, then section 3 presents an overview of 
the RL paradigm. The state-of-research, the characterisation of research, 
and research challenges at the intersection of robotics, reinforcement 
learning, and construction are presented in sections 4, 5, and 6 respec
tively. Lastly, the discussion and conclusions are provided in sections 7 
and 8. 

2. Research method 

The research method consists of three phases (Fig. 2): 
(I) Initial Exploration. A preliminary literature review was con

ducted to identify potential impacts that the RL and IL paradigms might 
have on research related to robotics for construction. Publications con
cerning this topic in specific were not found; therefore, publications that 
address how RL and IL impact research in robotics were used to identify 
relevant themes for a further more detailed investigation on the subject, 
e.g. [59,102,7,87,83]. Because this topic has not been systematically 

investigated before, a “two-strand” approach for literature review was 
employed. The first strand is a bottom-up approach, in which the afore
mentioned papers were analysed in detail to characterise the RL and IL 
paradigms to then identify manners in which they can impact research 
on robotics for construction. The second strand is a top-down approach, 
in which themes identified in the papers above were used to search for 
relevant publications in academic databases. Note that both strands 
were carried out in parallel. 

(II) Bottom-up approach. This first strand consists of three steps: 
(A) Characterising RL and IL (section 3), in which first an overall 
description of the RL paradigm was outlined; then, a coarse catego
risation of RL and IL was delineated to facilitate the understanding of the 
existing approaches; and lastly, the strengths and limitations of the ap
proaches were identified. (B) Challenge Identification (section 6), in 
which RL and IL challenges for robotics were compiled from literature 
and categorised for easier understanding; (C) Challenge translation (sec
tion 6), in which construction was formulated as an RL problem in terms 
of its site and tasks characteristics. Also, the known RL and IL challenges 
were translated to construction-specific challenges and put in the 
context of the construction sector characteristics. 

(III) Top-down approach. The second strand has four steps: (1) 
Literature review (section 4.1); in this step, several literature searches 
were carried out using terms identified in the other two phases above. 
The Scopus database and the database storing all the publications pre
sented at the International Symposium on Automation and Robotics in 
Construction (ISARC) were used in this study. These two sources provide 
a broad search scope and variety. The four levels of queries are (i) high- 
level searches in Scopus and ISARC, (ii) mid-level searches in Scopus, 
(iii) mid-level searches in ISARC, and (iv) granular searches in Scopus. 
See Fig. 2 for details on the search terms used and the number of 
resulting publications. For the granular searches in Scopus, a title and 
abstract screening was carried out to identify relevant papers to the 
construction sector and a detailed screening to identify papers that 
address robotics for construction specifically. The resulting papers were 
used in step number four “research characterisation” described below. 
(2) General thematic analyses (section 4.2), in which three analyses were 
carried out: (i) Keyword analysis, which investigated the top-20 most 
common keywords used in 795 publications on robotics, construction, 
and machine learning listed in Scopus. The most used keywords were 
defined by using the Scopus’s keyword ranking and by condensing 
different keywords that refer to the same term, e.g., “neural networks” 
and “artificial neural networks”. (ii) ML methods analysis, which iden
tified the most used ML methods in robotics publications. In this case, 
the keywords indexed in 40,574 publications were analysed and 
condensed to identify the most used methods. (iii) Term co-occurrence, 
in which the VOS Viewer software [35] was used to analyse the terms in 
titles, abstracts, and keywords from 795 publications on robotics, 

Fig. 1. The reinforcement and imitation learning paradigms.  
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construction, and machine learning. (3) Thematic analysis in construction 
publications (section 4.3), in which 1,189 publications related to robotics 
published at ISARC were analysed. The following aspects were investi
gated: general trends and the progression of publications; the use of ML, 
RL, and IL; the use of augmented reality (AR) and virtual reality (VR) in 
conjunction with robotics; and the characteristics of the employed ro
bots. (4) Research characterisation (section 5), in which publications at 
the intersection of robotics, reinforcement learning, and construction 
were analysed in detail. Seventy-eight publications were selected to 
carry out a publication-level analysis in terms of use-cases, ML methods, 
types of robots, and the level of development of the research reported in 

those publications. The papers analysed were selected from the mid- 
level searches in ISARC and the granular searches in Scopus (Fig. 2). 

Note that for the analyses using papers resulting from the mid-level 
searches in ISARC and the granular search in Scopus, publications 
related to off-site construction, additive manufacturing, 3D printing, and 
construction process automation were not considered. Note that were 
taken into account only publications written in English, published in 
conferences and journals in the areas of computer science, engineering, 
and mathematics. Also, different terms that refer to the same types of 
approaches as imitation learning were used to broaden the scope of the 
query, i.e., behavioural cloning, inverse reinforcement learning, and 

Fig. 2. Diagram illustrating the three phases of the research method used.  
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learning from demonstration. 

3. The reinforcement learning paradigm 

RL is a field of study within ML, as well as a type of problem and a 
class of solution methods. The generic RL solution method maps envi
ronment states to actions to maximise a numerical reward signal. The 
learning is carried out by finding what actions yield the most reward 
through trial and error and incentivising a higher but delayed reward 
[101]. RL is very different from the other two main ML strands, i.e., 
supervised learning, in which learning is achieved by providing a set of 
correct predictions or mappings between a description of a situation and 
a label of a correct action. Supervised learning solutions aim to gener
alise its responses to select the correct mapping for situations that are 
not present in the dataset used for learning. Conversely, in RL the correct 
answer is not known, and learning is achieved through exploration. The 
other strand is unsupervised learning, in which the objective is to find 
hidden structures within unlabelled datasets. Its primary aims are 
clustering analysis, summarising data, and feature explanation [43]. 
Table 1 presents the main differences between supervised, unsupervised, 
and RL. Note that IL is not included in the table because it can be 
regarded as an extended version of IL as most of IL approaches use RL 
techniques in one way or another. 

3.1. The general RL approach 

The main components are (i) agents, environments, actions, and states. 
An agent is an information construct that explores an environment by 
taking actions (at) and receives feedback on the outcome of the choices 
made. The environment is the simulated environment in which the agent 
interacts. At every step of the interaction (t), the agent observes a partial 
state of the environment (st) and takes an action. The environment reacts 
to the actions by changing the state and can change the state on its own 
as well. The action space is the set of all possible actions in an envi
ronment. There are discrete action spaces in which a finite number of 
discrete actions can be executed; and continuous action spaces in which 
a finite number of continuous actions can be taken. 

(ii) Rewards. In addition to the state, at every time step, the agent is 
also provided with a reward (rt), which is a scalar value indicating the 
level of success or failure to reach the desired objective every time the 
agent takes an action. The total reward (Rt), is the summation of all the 
rewards (rt). (iii) The Value Function specifies what actions will increase 

rewards in the long run. The value (Q) of a state is the total reward that 
an agent can expect to amass in the future starting from that given state. 
Rewards determine immediate successes, while value indicates long- 
term accumulated success. There are two main types of value func
tions: (a) Discounted reward, that incentivises the quick accumulation of 
rewards by including a discounting factor lambda and multiplying it by 
all of the individual rewards obtained (γtrt). The formulation describes 
the expected total future reward that an agent in a given state can 
achieve by executing an action, as follows Qdiscounted(st , at) =

E{γtRt |st , at}. The second one is (b) Average Reward, in this case, the 
function is formulated to maximise the average reward across time so 
that high rewards nearby and distant in time are equally preferred. In 
this case, an average reward (μ) is subtracted to each reward. This dif
ferential reward represents how much more reward the agent will 
receive from the current state in action compared to the average reward. 
The average reward formulation is then Qaverage(st , at) = E{Rt − μπ |st , at}, 
in which (π) represents the selected policy, which is further explained 
below. 

(iv) Policy is a rule that the agent uses to decide what actions to take. 
More formally, a policy (π) is a state-action mapping that maximises the 
cumulative expected reward, i.e., π*(a) = max

a
Q(s, a). There are deter

ministic policies in which the same action is always taken for a given 
state, i.e., a = π(s); and probabilistic policies in which an action is drawn 
from a distribution of actions, i.e. a ∼ π(s, a) = P(a|s). Contrary to su
pervised learning, the agent does not have information about high- 
reward actions and must first explore the environment to find success
ful policies. Once that the agent has identified high rewards, it has to 
decide whether to stick with those or try new actions to find even higher 
rewarded actions. In this sense, two types of exploration methods exist 
(a) Off-policy methods, in which the exploration strategy is codified 
outside the selected policy and can be employed during the learning 
process, and (b) On-policy methods that collect sample information 
about the environment using the employed policy, thus the exploration 
strategy is included into the policy itself. Note that this is only a brief 
overview of the RL approach. Please refer to literature for more detailed 
definitions and formulations, e.g., [59,101]. 

3.2. Deep reinforcement learning 

Deep Learning (DL) is a term that represents a type of neural network 
architecture. The term “deep” denotes the relatively large number of 
hidden layers in a neural network. Note that DL architectures can be 
used for both in supervised and unsupervised learning. Regarding Deep 
Reinforcement Learning (DRL), the term “deep” denotes that the agent 
uses deep neural networks to find successful state-action mappings; 
while in traditional RL the agent uses a relational table of mappings 
between states and actions, called Q table. For most of the real-life 
problems, traditional RL approaches are not suitable because the size 
and complexity of the problems lead to extremely large Q tables that are 
practically impossible to compute. Thus, replacing the Q table with a 
deep neural network enables to estimate a state-action mapping by 
approximating the complexity of the function describing the environ
ment. Fig. 3 presents the RL and DRL general architectures. Note that 
while in the traditional RL architecture a state-action pair maps to a 
single expected reward, in DRL each state is mapped to all the expected 
rewards for all possible actions. 

3.3. A categorisation of approaches for the RL and IL paradigms 

Fig. 4 presents a high-level categorisation of approaches for the RL 
and IL paradigms, while Table 2 and 3 presents the main benefits, dis
advantages, and literature surveys. RL approaches can be classified into 
two major categories depending on whether the agent has access or can 
learn a model of the environment, i.e., model-free and model-based. On 
the other hand, according to (Osa et al., 2018a), IL approaches can be 

Table 1 
Types of machine learning approaches.  

Type Supervised 
Learning 

Unsupervised 
Learning 

Reinforcement 
Learning 

Data Labelled 
data:(x, y)
x is data, y is the 
label 

Data:(x)
x is unlabelled data 

Data:(st , at)

st is state, at is action 

Goal Learn function 
to map: 
x→ŷ 

Learn an underlying 
structure to find 
relationships: 
Pmodel(x) ≅ Pdata(x)

Maximise future 
reward over many time 
steps through 
interaction with the 
environment or with an 
expert 

Problems Classification, 
Regression 

Clustering, feature and 
dimensionality 
reduction 

Optimal Control 

Examples Deep Neural 
Networks 
Convolutional 
Neural 
Networks 
Recurrent 
Neural 
Networks 

Autoencoders 
Variational 
Autoencoders  

Q-Learning 
Policy Optimisation   
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classified in categories depending on whether the agent derives the 
optimal policy —observed from the expert— by using supervised 
learning, i.e., behavioural cloning, or a reinforcement learning approach, 
i.e. inverse reinforcement learning (IRL). [102] also include a Generative 
Adversarial Imitation Learning (GAIL) as another category which com
bines generative adversarial neural networks and model-free IRL [37]. A 
more granular analysis of the RL and IL approaches is presented in the 
two subsequent sections. Note that this categorisation is not extensive or 
definitive. Due to the modularity of algorithms, it is difficult to represent 
the RL and IL fields neatly in a hierarchical diagram. Some state-of-the- 
art approaches combine algorithms form different categories and mix 
learning strategies. Nevertheless, Fig. 4 and Table 2 highlight the most 
fundamental differences and helps to identify trade-offs among the most 
common approaches. 

3.4. Reinforcement Learning: model-based and model-free 

A common way to classify RL approaches is model-free approaches, in 
which the agent learns a value function or a policy by exploring through 
interactions with the environment; and model-based, in which the agent 
has access to a model of the environment, i.e., a function that describes 

the state transitions and rewards. 
Model-Based RL. The main advantage of model-based approaches is 

that they can potentially learn optimal policies in less time. By having 
access to a model of the environment, the agents can simulate state 
changes for a range of actions and select the best option; thus, facili
tating to find optimal policies in fewer interactions with the environ
ment. This feature is usually called sample efficiency. The difference in 
the number of interactions required to learn a policy between model- 
based and model-free approaches can be up to three orders of magni
tude higher. This is very important for robotics because learning time is 
very expensive in physical environments compared with computer- 
simulated environments. The main disadvantage of model-based ap
proaches is that for most real-life cases, it is very unlikely to have access 
to a sufficiently detailed model of the environment. Even when a model 
is available, errors or inaccuracies in the environment models result in 
policies exploiting the model deficiencies. This issue is called model-bias 
and can be identified when the agent performs well in the model of the 
environment but sub-optimally in the real environment. 

Model-based approaches can be divided into approaches for which 
the model is given, i.e. known-model, e.g. [96], and in which the model 
needs to be learned, i.e. learned-model, e.g. [110,41], see Fig. 4. The 

Fig. 3. Main differences between RL and DRL.  

Fig. 4. A categorisation of RL and IL approaches.  
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known-model approaches are essentially planning algorithms in which 
the agent only needs to learn a policy given the model and a particular 
state [83]; while in the learned-model approaches the agent needs to 
learn both the model and the policy. The learned-model approaches 
usually interact with the model using a base policy and then use su
pervised learning approaches to learn an optimal policy. Note that 
model-based learned-model approaches are more sample efficient than 
model-free approaches because the model is a simplification of the 
environment. 

Model-free RL. Contrary to model-based approaches, model-free 
approaches can be regarded as pure trial-and-error algorithms. Model- 
free approaches are relatively easy to implement and to fine-tune, 
they are by far the most reported in literature, but they are very sam
ple inefficient. The main disadvantage of model-free approaches is that 
their high-sample requirements limit their application almost uniquely 
to simulated domains [108]. Model-free approaches lack data efficiency, 
targeted exploration, transfer learning, safety, and are not explainable; 
but require less computation and memory requirements and are far 
easier to implement with significantly fewer parameters to tune. Most 
model-free approaches can be divided into value-based and policy-based 
methods. Other terms that refer to different types of value-based 
methods include value function, Q-learning, critic-only, value 
learning, among others; while terms referring to policy-based methods 
include policy search, policy optimisation, actor-only, and policy 
learning. 

Value-based methods focus on estimating the optimal values in given 
state-action mappings and then deriving an optimal policy from the 
estimated values. Value-based methods are very useful for discrete ac
tion spaces and where a complete search of the action space is possible, 
but for large and continuous spaces they are less effective, e.g., [14]). In 
the case of robotics, value-based methods cannot effectively deal with 
high-dimensional spaces and an approximation for the value function is 
usually required. Conversely, policy-based methods focus on optimising 
policies directly. In these methods, the policy is parameterised, and 
optimal parameters that maximise the policy’s objective function are 
estimated, e.g., [94]. Policy-based methods are more effective when 
dealing with high-dimensional or continuous action spaces [102]; and 
they can exploit both deterministic and stochastic policies. Policy-based 
methods present significant benefits for robotics as could allow for 
straightforward integration of expert knowledge, allow for a domain- 
appropriate pre-structuring of the policy, and can be scaled up rela
tively easy [59]). The main disadvantage of policy-based methods is that 
it is not guaranteed to find a global optimum. There are other methods 
referred to as Actor-Critic methods that seek to address the limitations of 
both value-based and policy-based methods. These methods are a 
combination of value-based and policy-based methods. They use explicit 
representations of values, referred as the critic, and policy estimations, 
referred as the actor, e.g., [63,42]. 

Table 2 
Benefits and disadvantages of RL approaches extracted from the referred surveys.   

Benefits Disadvantages Use-case examples Surveys 

Model- 
Based  

- Sample efficient (fast learning) 
Safer exploration approaches 
Targeted exploration 
Potential for transfer learning 
Explainable  

- Difficult to generate accurate models 
Model-bias 
Additional computation to learn the model 
Instability due to uncertainties and model errors 
Large number of tuneable parameters  

- Navigation 
Robotics control 
Maze solving 
Object transportation 

[102 83 91 
59]  

Known- 
model  

- Learns only the policy  - Known models exist only for limited environment (e.g. board 
games) 

Learned- 
model  

- Model learned using supervised learning 
approaches  

- Learns the model and the policy 

Model-Free  - Easy to implement 
Fast computation 
Low tuning requirements 
Relatively stable  

- Sample inefficient (slow learning) 
Potential unsafe exploration 
Unexplainable in some cases 
Low level of generalisation  

- 2D simplified navigation 
2D object 

transportation 

[102 59] 

Value-based  - Effective in discrete action spaces 
Effective for exhaustive action space 

searches 
Relatively easy problem to compute  

- Inefficient for large action spaces 
Inefficient for continuous action spaces 
Requires total coverage of the state space 
Difficult to scale 

Policy-based  - Effective in continuous action spaces 
Effective in high-dimensional action spaces 
Only requires limited coverage of state 

space 
Relatively easy to scale  

- Significantly harder problem to compute 
Usually only local optima are found  

Table 3 
Benefits and disadvantages of IL approaches extracted from the referred surveys.   

Benefits Disadvantages Use-case examples Surveys 

Behavioural cloning  - Simple implementation 
Efficient for short-term environ

ments 
Effective for small state spaces  

- Accumulation of errors 
Lead to potential unknown states 
Requires almost total coverage of the state space  

- Trajectory learning 
Trajectory transfer 
Probabilistic 

movement 

[102 88] 

Inverse Reinforced 
Learning  

- No need to specify reward function 
Limited manual task specification 
Improved generalisation 
Robust against changes in the 

environment  

- Ill-posed problem 
Potential ambiguous solutions 
Low scalability 
Very high computational costs for relatively small state and 

action spaces  

- Complex drone 
maneuvers 

Multi-robot 
patrolling 

[7 6 15 
59]  

Model-based  - Data efficient learning process 
Learned policy satisfies system 

dynamics  

- Learning the model is a difficult task 
Computationally expensive 

Model-free  - Policy is learned directly  - Difficult policy estimation of long-term trajectories 
System dynamics is only implied  
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3.5. Imitation learning: Behavioural cloning and inverse reinforcement 
learning 

For complex environments and tasks, specifying a reward function or 
learning an optimal policy is very hard to accomplish. Thus, IL ap
proaches exploit the fact that for human experts is easier to demonstrate 
a desired task or behaviour than to specify it in sufficient detail for 
replication. The general idea is that an expert (a human or agent) 
demonstrates how to perform a task and the agent learns a policy 
equivalent to the demonstrated task. Some of the main differences with 
RL is that in IL a transition model is used that describes the probability 
that an action a in state s leads to a subsequent state s′, i.e., P(s′|s, a). In IL 
the reward function R(s, a) is unknown, but the agent has access to the 
expert’s demonstration, known as trajectory, which lists a series of state- 
action pairs τ = ([s1, a1], [s2, a2]⋯ ) representing an “optimal” policy π*. 
The main disadvantage of IL approaches is that is usually unfeasible for 
the expert to demonstrate every possible state, and that the quality of the 
demonstrations can be ambiguous or suboptimal in certain areas of the 
state space [6]. There are two main types of IL approaches, i.e., behav
ioural cloning and inverse reinforcement learning (IRL). Note that there are 
model-based and model-free variants for both behavioural cloning and 
IRL as well. 

Behavioural cloning. These approaches leverage supervised 
learning to learn the expert’s policy. The policy that reproduces the 
demonstrated behaviour is obtained by directly mapping the agents’ 
input to the expert trajectory; then a supervised learning approach is 
used to learn the expert’s policy, e.g. [77,87]. The main challenge of 
behavioural cloning is that the state-action pairs do not hold the inde
pendent and identically distribution assumption required for supervised 
learning approaches; thus, errors in different states accumulate and can 
lead to unknown or never-trained states. Some behavioural cloning 
approaches mitigate this issue by enabling access to a demonstrator (a 
human or agent) during the learning process, thus accumulating more 
training data and purging potential errors [2]. 

Inverse Reinforcement Learning. In these approaches the objective 
is to learn the reward function –instead of the policy– directly from an 
expert’s trajectory, and then find the optimal policy using an RL 
approach, e.g. [1,60]. The main IRL challenge is that, as with many 
inverse problems, finding a reward function associated with an expert’s 
trajectory is an ill-posed problem. In the IRL case, many reward func
tions, even sub-optimal ones, can explain the expert’s trajectories [85], 
and two or more very similar reward functions may yield very different 
policies. Also, IRL approaches tend to grow disproportionately in 
complexity with the problem size. See [7] for a detailed explanation of 
the limitations of IRL approaches. 

Similar to RL approaches, there are model-based and model-free IL 
approaches. In this case, the difference resides in whether the agent has 
access to a model of the environment. For IL-model-based approaches, 
the learning process is data-efficient, and the learned policy is ensured to 
satisfy the system dynamics. However, learning the model is a compli
cated and computationally expensive task. For IL-model-free ap
proaches, the policy can be learned directly, but policy estimation, 
especially in long-term trajectories is more difficult (see Table 3). Note 
that the policy learned by an IRL approach is valid as long as the esti
mated reward function represents the desired trajectory correctly, while 
a policy learned by a behavioural cloning approach is valid as long as the 
learned state-action mapping is valid [87]. 

3.6. A comparison between RL and IL approaches 

The main difference between RL and IL approaches is that in RL 
approaches the exploration is completely unrestricted, while in IL the 
exploration is guided by expert demonstrations. 

Table 2 presents a comparison among RL approaches. A first 
distinction between model-based and model-free methods is that model- 

based methods enable fast and safe learning because exploration is 
constrained by the model. However, the drawback is that the models are 
usually very difficult and time consuming to generate and might not 
reflect reality accurately. In model-based methods, a model can be 
given, for example an agent learning to play a board game (known- 
model), or the model can be learned in conjunction with the policy. On 
the other hand, model-free approaches are relatively easy to implement, 
but the learning can be very time-consuming and the learned policies 
unsafe or not relevant to the desired behaviours. Model-free approaches 
can be categorised in value-based and policy-based. Value-based ap
proaches are commonly used for relatively simple problems in discrete 
environments and action spaces; while policy-based approaches are used 
for more complex problems requiring continuous environments and 
action spaces. 

Table 3 presents a comparison among IL spaces. The main distinction 
between behavioural cloning and IRL is that in behavioural cloning the 
reward functions need to be defined explicitly while in IRL it is not 
needed. Behavioural cloning is better suited for small state spaces and 
short-term environments; while IRL is better suited for changing and 
noisy environments, but it is an ill-posed problem that can lead to 
ambiguous solutions. The same distinctions between model-based and 
model-free approaches apply here. Lastly, the major drawback for all RL 
and IL approaches is the limitation on the size of state and action spaces, 
usually around 20 [7], which limits its applications for real-world 
applications. 

4. State-of-research at the intersection of robotics, 
reinforcement learning, and construction 

This section presents three analyses that seek to increase the un
derstanding of the research carried out at the intersection of robotics, 
reinforcement learning, and construction. First is presented an overview 
of the evolution in the number of publications related to robotics, 
reinforcement learning, and construction. Secondly, a thematic analysis 
investigates machine learning methods, most common keywords, and 
co-occurrence of terms. Lastly, a thematic analysis is presented in the 
papers presented at the International Symposium on Automation and 
Robotics in Construction (ISARC) from 1984 to 2019. 

4.1. Evolution of research publications in robotics, reinforcement 
learning, and construction 

Systematic and institutionalised research efforts on robotics for 
construction started in the mid-1980s [17], which is evidenced by the 
increasing number of publications on the subject. Fig. 5 presents two 
graphs that provide an overview of the evolution of research on robotics 
and construction by mapping the progression in the number of publi
cations loosely related to robotics and construction. 

Fig. 5a presents the number of publications listed in Scopus related to 
variations of the terms (i) “robotics” and (ii) “robotics” and “construc
tion” from 1980 to 2020 (see details in Fig. 2). The first striking point is 
that research efforts on robotics and construction represent only a tiny 
fraction of the total research on robotics, as there are about 30 times 
more publications about robotics in general than for robotics and con
struction. Secondly, a slight quasi-linear increase in the number of 
publications on robotics and construction can be appreciated, but this 
trend is very different from the robotics’ trend in general. A noticeable 
increase in the number of publications related to robotics starts at the 
beginning of the 1980s; then, it plateaus at the end of the 1980s and 
during the 1990s. However, at the beginning of the 2000′s the number of 
publications massively increases until the end of that decade, only to 
experience another huge increase by the end of the 2010s. 

Fig. 5b presents the progression in the number of publications pre
sented at ISARC from its first edition in 1984 to 2019. ISARC is probably 
the most reputable and robust international conference on robotics for 
construction, and it represents a valuable source of information to 

J. Manuel Davila Delgado and L. Oyedele                                                                                                                                                                                                 



Advanced Engineering Informatics 54 (2022) 101787

8

understand research on robotics for construction. The first ISARC was 
held in the US in 1984, since then the symposium has been held every 
year. Fig. 5b differentiates the publications that contain variations of the 
terms “robotics” and “drone” in their titles, keywords, and abstracts 
from all the other publications presented at ISARC. Note that publica
tions referring to off-site construction, additive manufacturing, and 
process automation are not differentiated. From the 3,810 papers pre
sented at ISARC since 1984, only around 31 % are in some way related to 
robotics. More importantly, the ratio of papers relating to robotics 
presented at ISARC has been decreasing. In the first editions, the per
centage of robotics-related papers was around 85 %, quickly decreasing 
to 50 % in the 1990s. The ratio decreased to ~ 15 % by the mid-2000s, 
its lower level, and in recent years has increased to approximately 20 %. 
This trend is significantly different from the increasing trend of the total 
number of publications presented at ISARC. 

Fig. 6 presents a more granular analysis of the evolution in the 
number of publications given relevant search terms for this study. The 

intention is to provide an overview of the research interests in the 
intersecting areas of robotics, reinforcement learning, and construction. 
Six sets of terms were defined and searched for in the Scopus database 
(see details in Fig. 2). The number of publications per year for the six sets 
are presented in Fig. 6. The sets of search terms are: (1) “robotics”, (2) 
“robotics” and “construction”, (3) “robotics” and “reinforcement 
learning”, (4) “robotics” and “deep reinforcement learning”, (5) “ro
botics” and “imitation learning”, and (6) “robotics” and “construction” 
and “machine learning”. Note that the term “robotics” was included to 
provide a reference of the larger field, and that the numbers per year 
have been multiplied by a scaling factor so that detail in the other trends 
is not lost. 

Fig. 6 indicates that the number of publications on robotics and 
construction has trailed the overall trend in robotics publications in 
general. Publications for robotics and construction started in the mid- 
1980s, which aligns with the seminal activities in Japan in this field 
that kick-started massive research efforts in robotics for construction, as 

Fig. 5. (a) Progression in the number of publications on Scopus relating to “robotics” in general and to “robotics” and “construction”. (b) Progression in the number 
of papers presented at the ISARC conferences highlighting the papers focusing on “robotics”. 

Fig. 6. Progression of the number of relevant publications. An approximate number of the total number of publications per series is presented in the legend. Note that 
for clarity the yearly numbers of “robotics” publications have been multiply by a scaling factor equal to 0.04. 
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various initiatives were created including university research groups, 
research institutes, conferences, and industry technology centres [17]. 
The second major increase was at the beginning of the 2000s, which 
aligns with the massive increase in publications on machine learning 
[26]. 

Research on robotics and RL also follows a similar trend than for 
robotics in general. Nevertheless, in this case, the trend starts a 
continuous increase at the beginning of the 1990s and then plateaus in 
the late mid-2000s only to increase sharply in the mid-2010s. Compared 
with IL, the total number of RL publications is almost four times more 
than IL publications. IL publications started almost a decade later 
around the mid-1990s; and it was until the beginning of the 2000s that a 
noticeable continuous increase occurred, a decade later than RL publi
cations as well. The overall robotics and IL trend is different as well. IL 
publications show a continuous constant increase, while RL presents a 
massive peak in publications in the last few years increasing the dif
ference in yearly publication greatly. 

DRL publications have only recently appeared and have had a huge 
increase of publications following the RL trend. The number of DRL 
publications surpassed the yearly publications on IL in 2019, while 
having started almost 20 decades later. It is noteworthy that research on 
IL and robotics has not followed the other trends closely, but there is an 
apparent uptick in publications from the mid-2010s. The DRL trend 
could be explained by the recent explosion of interest in deep learning 
and the research successes on computer vision, which have ample 
applicability on robotics. On the other hand, these successes have less of 
an impact for IL, which traces its origins to planning algorithms and 
control theory [88]. 

Note that the progression of publications on “Robotics & Construc
tion & Machine Learning” is plotted as well in Fig. 6 to provide a 
baseline and to identify whether specific approaches to RL have influ
enced research interests in robotics for construction. In this sense, it 
could be argued that RL and DRL could have potentially influenced 
research on robotics for construction much more than IL. More impor
tantly, note that the “Robotics & Construction & Machine Learning” 
trend might be a more accurate representation of the overall research on 
robotics for construction than the “Robotics & Construction” trend. This 

is because unrelated publications cannot be effectively filtered out due 
to limitations on the database searches. Also, it fits better with the trends 
observed in both charts presented in Fig. 5. 

4.2. General thematic analyses 

In this section, results from three thematic analyses on research 
publications are presented, which analyse (i) the most common key
words, (ii) the most-used machine learning methods in robotics, and (iii) 
the co-occurrence of relevant terms in titles, keywords, and abstracts. 

4.2.1. Most common keywords in robotics, construction, and machine 
learning publications 

Fig. 7 illustrates the most common top-20 keywords used in 795 
publications on robotics, construction, and machine learning (see sec
tion 2). The keywords were grouped based on their similarity and or
dered based on the number of instances of each keyword in all the 
papers. These groups of keywords indicate important research topics for 
robotics, machine learning, and construction. The first group clusters 
keywords referring to special types or robots or agents. The relevant 
terms here are “mobile”, “multi”, and “autonomous”, which characterise 
ideal requirements in robotics for construction. For example, robots in 
construction need to be mobile, multi-purpose, autonomous, and should 
be able to collaborate with other robots. 

The second group refers to the ability of robots to sense and interpret 
their environment, which in most cases is done visually using cameras 
and computer vision techniques. Examples abound for this type of 
research. For example, Weng et al. [111] presented an approach based 
on convolutional neural networks (CNN) for supporting robot grasp 
detection using computer vision. The approach used CNN detection in 
two phases to estimate the objects pose and the picking angle. Small 
object detection is an unsolved issue in computer vision, and in robotics 
is a key limitations in various situations. In this sense, Bai et al. [9] 
presented a so called “single shot multi-box detector” for detecting small 
objects; and, Gao, Liu and Ju [38] presented and approach to detect 
hand gestures where the detection target is very small and far from the 
camera. Regarding construction, Huang et al. [49] presented an 

Fig. 7. The most common 20 keywords used in publications on robotics, construction, and machine learning.  

J. Manuel Davila Delgado and L. Oyedele                                                                                                                                                                                                 



Advanced Engineering Informatics 54 (2022) 101787

10

approach to detect whether workers are wearing a helmet. The authors 
note that this approach increases the feature map scale and improves the 
loss function convergence. 

The third group relates to the robot’s ability to navigate the envi
ronment. There have been sizable research efforts in this aspect as well. 
For instance, Zhang et al. [114] presents an approach for trajectory 
planning that improves the kinematic and optimization algorithms of 
traditional robot navigation approaches. Research in this area in
corporates various methods used for optimisation and leverages simu
lation and synthetic data. For example, X. Liu et al. [74,71,73] present 
an approach that leverages genetic algorithms for path planning and 
calibrates and optimises the path by combining virtual and real data. 
Detection and navigation approaches are combined as well. Yuting Liu 
et al. [74,71,73] present an approach that combines target detection, 
searching, localisation, and navigation using images and depth data. 

The fourth group considers the interaction between robots and 
humans; both crucial for the development of effective robotics systems 
in construction sites. The last group clusters varied keywords with 
different but important themes, i.e., simulation, semantics, modular 
construction, virtual reality (VR), Building Information Modelling 
(BIM), and occupational risks. It is clear the relevance of modular con
struction and BIM for robotics, as modular components will facilitate 
assembly and BIM models are indispensable for automating construction 
tasks. The term occupational risk is also very relevant, as robots repre
sent large safety implications and will increase risks to an already haz
ardous sector. The term simulation refers to the simulated agents and 
environment required for RL. In contrast, the term semantics refers to 
the desired ability of robots to move from literal interpretations to 
meaningful and context-aware interpretations when interacting with 
humans or learning from expert demonstrations [40]. Lastly, the rele
vance of VR for robotics was identified some time ago [25], but recently 
the most extensive research efforts of robotics and VR is surgery e.g. [19] 
and medical rehabilitation, e.g. [30]. 

4.2.2. Most-used machine learning methods in robotics 
Fig. 8 presents the most mentioned algorithms in approximately 

40,500 publications on robotics and machine learning published in the 
last four decades that are listed in Scopus (see section 2). The methods 

have been grouped based on their similarity, and the groups have been 
ordered based on the highest number of instances for each individual 
term. Neural networks and all their most common variants populate the 
first group. Reinforcement Learning is in the second group, with a very 
significant number of mentions. Imitation Learning and its two main 
approaches are in third place with a significantly lower number of 
mentions. Evolutionary and classical machine learning approaches are 
in fourth and fifth places, respectively. Lastly, Bayesian networks com
plete the group in sixth place. The prominence of the first group can be 
explained because for almost every machine learning approach for ro
botics a neural network is needed. For example, to capture states and 
rewards from real-life or simulated environments, to find optimal pol
icies in behavioural cloning, or to capture expert’s trajectories in 
imitation learning. Fig. 8 also shows the prominence of RL over IL. A 
reason for this disparity could be that implementing an RL approach is 
significantly easier than implementing an IL approach, and it has 
considerably fewer requirements. For example, IL approaches require 
the implementation of the expert demonstrations, and in some cases, an 
additional supervised learning implementation, alongside the IL 
algorithm. 

4.2.3. Analysis of term co-occurrence 
Fig. 9 shows a co-occurrence diagram indicating the most relevant 

terms found in titles, abstracts, and keyword lists in 795 research pub
lications on robotics, construction, and machine learning. The publica
tions are the same as the ones used for the keyword analysis presented in 
Fig. 7. The diagram was generated using the software called VOS Viewer 
[35]. Only the terms occurring more than ten times in the papers are 
included in the diagram. The terms are arranged within the diagram 
based on the co-occurrences in the titles, abstracts, and keywords using 
the mapping technique called visualisation of similarities[34], in which 
the terms with the higher the number of co-occurrences are placed closer 
together in the map. The size of the circles represents the number of 
instances of each term. Lines link terms that appear in the same paper. 
The thickness of the line indicates how often the keywords appear 
together in different papers. Lastly, the keywords are clustered into 
groups using a clustering technique presented by [105]. 

Five clusters have been defined and named by the term with the most 

Fig. 8. The most mentioned algorithms in publications on robotics and machine learning.  
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instances for each cluster (Fig. 9), as follows: (a) Mobile robots, which 
include terms related to mobility such as motion planning, navigation, 
motion control, and collision avoidance. It also includes terms such as 
simulation and optimisation. (b) Computer vision, which agglutinates 
terms relating to computer vision methods such as object recognition, 
image processing and segmentation, classification; but also, terms were 
included referring to hardware, e.g., cameras and UAV, and others such 
as inspection and occupational risks. (c) Machine design, which clusters 
terms relating to types of robots, i.e., industrial robots, multi-purpose 
robots, multi-robot systems, and modular robots. (d) Human-robot 
interaction, which groups terms relating almost solely to the interac
tion between humans and robots, computers, and machines. (e) Virtual 

reality, which includes the terms behavioural research, costs, personnel 
training, and excavation. 

Note that the co-occurrence diagram was generated by an ensemble 
of machine learning methods, while the categorisation in Fig. 7 was 
done manually. Terms identified in both analyses and the categories and 
clusters were used to carry out a more detail exploration of those terms 
in all the ISARC papers. Note as well that “search terms” used for the 
database queries, e.g. “robotics”, “robots”, “construction”, among 
others, were omitted from the analyses presented in Fig. 7 and Fig. 9; 
because the intention is to identify the prominence of other keywords 
and terms related to the “search terms” used in the queries. 

Fig. 9. A co-occurrence diagram showing the most used terms in the titles, abstracts, and keywords in robotics, construction, and machine learning publications.  

Fig. 10. Publications related to Robotics and Machine Learning presented at ISARC from1984 to 2020.  
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4.3. Thematic analysis of publications on robotics for construction 

This section presents a thematic analysis of the publications pre
sented at ISARC, using some of the terms and categories identified in the 
previous section. Fig. 10 presents a graph plotting all the papers pre
sented at ISARC, which have been increasing moderately to ~ 150–170 
papers presented each year. The number of papers related to robotics 
only and related to ML are plotted as well. There are symposium editions 
with a significantly higher number of papers. These peaks correspond to 
conferences held in Japan, Taiwan, South Korea, and Canada. However, 
only in the editions held in Japan the number of papers related to ro
botics increase significantly as well. In the other cases the increase is 
relatively smaller, and in the case of Taiwan there is a slight decrease. 
Note that the symposium has been organised in the US eight times; 
while, in Japan four times and in Germany-three times. 

Fig. 10 indicates a huge increase in publications presented at ISARC 
in the late 1980s reaching ~ 104 publications out of which ~ 70 pub
lications were related to robotics, almost 70 %. After that, the number of 
publications related to robotics presented at ISARC has been decreasing. 
Recently, the average is ~ 35 publications per year, representing only 
about 20 % of the total publications presented at ISARC. Publications 
related to ML started at ISARC in the mid-1980s; and have remained 
constant until the mid-2000s, with some exceptions in which no papers 
were presented. Since 2016, a constant and significant increase in 
publications related to ML can be observed. 

Fig. 11a plots all the publications related to ML presented at ISARC, 
including papers relating to agent-based modelling and multi-agent 
systems, which are computational approaches that simulate the inter
action of autonomous agents. Papers concerning RL and IL specifically, 
are identified as well. A massive recent increase in ML publications is 
evident in this plot that aligns with the massive increase in ML publi
cations in general. Multi-agent systems started in ISARC in the mid- 
1990s and have remained somewhat constant ever since. However, RL 
and IL have been hardly addressed in robotics for construction. There 
are only four instances of papers that address RL directly, and only one 
instance that addresses IL. All of which are discussed in more detail in 
the next section. 

Fig. 11b presents ISARC papers related to Augmented Reality (AR) 
and Virtual Reality (VR). The papers that address both terms in 
conjunction with robotics are highlighted as well. VR papers started in 
the mid-1990s and AR papers at the beginning of the 2000s; both pre
senting a significant ongoing increase from the 2010s. However, AR and 
VR, in conjunction with robotics, has been explored less. There are only 
five papers addressing VR and robotics, and five addressing AR and 
robotics. Papers on VR and robotics include a model of a VR-based 
approach to programming construction robots [84]; a VR-based 
method to predict humanoid-robots movements [86]; a robotic exca
vating system coupled with VR-based simulations [64]; a survey on 
safety indicators in which robotics and VR impacts to safety are 

discussed [66]; and an approach to simulate crane movements through a 
robotic arm in a VR environment [27]). Papers on AR and robotics 
include a concept for an AR-based robotic construction manager [16]; an 
AR-equipped indoor inspection robot [109]; a system architecture for an 
AR-based robotic teleoperation solution [100]; an AR-based workflow 
for human-robot interaction [62]; and an AR-based system to support 
collaboration among multiple robots [112]. 

Fig. 12 presents two charts analysing the papers presented in ISARC 
related to three sets of terms, i.e.: (i) mobile robots, multi-purpose ro
bots, and multi-robots referred as “3M”; (ii) human-robot interaction 
referred as “HRI”; and (iii) unmanned aerial vehicles (UAV) and un
manned ground vehicles (UGV) referred as “drones”. Fig. 12a presents a 
chart illustrating the ratio between publications related to 3 M, HRI, and 
drones and publications related to robotics in general. Publications on 
3 M topics have been somewhat constant; while publications on HRI 
have been presented from the late 1980s to the late 2000s but have 
decreased significantly since then. Publications on drones started in the 
late 1980s as well but have increased considerably starting from the 
beginning of the 2010s. In the last three editions analysed, papers on 
drones —on average– account for more than 30 % of all the papers on 
robotics presented at ISARC; while in 1988 accounted for only ~5 %. 
Fig. 12b presents a more detailed mapping of papers relating to 3 M, 
HRI, and drones. In the last three editions analysed there has been a 
massive increase in publications related to UAVs and UGVs more than 
doubling the average of the previous years. Only eight papers have been 
presented on multi-purpose robots. The last one was presented in 1996 
and the first one in 1988. Seven papers have been presented on multi- 
robot systems, the first one in 1994 and then the next ones from 2007 
to 2019. Regarding mobile-robots, 49 papers have been presented from 
1986 to 2019. Regarding HRI, only three publications have been pre
sented in the last eight years. 

5. Characterising research at the intersection of robotics, 
reinforcement learning, and construction 

In this section, a more granular analysis is presented that provides a 
detailed characterisation of recent research at the intersection of ro
botics, reinforcement learning, and construction. Seventy-eight publi
cations published from 2015 onwards were selected from the ISARC 
database and from the Scopus search result on robotics, construction, 
and reinforcement learning (see details in section 2). All the papers 
describe research efforts to develop robotics systems for the construction 
industry, and in some cases, they employ ML and RL approaches. 

First, an analysis of the type of use-cases addressed in the publica
tions is presented. The use-cases have been grouped in seven categories 
(Fig. 13), i.e.: (1) surveying, which groups research the uses robotics to 
determine three-dimensional attributes and relationship in construction 
elements and its environment. For instance, publications on a robot that 
marks positions on the ground to install pedestals for free access floors 

Fig. 11. Publications related to (a) ML and Agent systems; and (b) AR and VR presented at ISARC from1984 to 2020.  
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[103–104]). (2) Excavation and earth moving, e.g. publications on ap
proaches that enable using traditional excavation machinery autono
mously or remotely with minimum intervention [65], or approaches 
that require a complete overhaul of the hydraulic systems and the 
installation of various types of sensors for precise electrical control [45]. 
(3) Handling building components, which group research that enables 
robotic system to handle and move building components and materials. 
For instance research that explores the advantages of using UAV support 
to enable a robotised crane to move prefabricated concrete components 
from the ground to a higher floor for installation [23]; or research that 
enables accurate real-time tracking of the positions and poses of objects 
grasped by robotic arms [52]. (4) Assembling and installation of building 
components, which group papers that deal with robotic control that 
enable building component installation. Such as research on a robotic 
arm mounted on a mobile platform to install floor tiles [70], or research 
on developing a cable-based robotic system to install curtain wall 
modules. (5) Monitoring and inspection, which agglutinates robotic so
lutions to support environment mapping, progress monitoring, and 
maintenance inspections. For example, research on a UGV that monitors 
the quality (density and moisture content) of embankments [55], 
research exploring the advantages of combining UAVs and UGVs to 

capture geometric data [57], or the development of robotic systems to 
carry out condition inspections of tunnel linings [50]. (6) General con
struction tasks, which groups publications presenting robotic systems for 
various types of tasks commonly carried out in construction sites such as 
drilling [113], concrete chipping [28], or painting [21]. Lastly, (7) other, 
which agglutinates research closely related to construction; e.g., 
research that explores low-cost alternatives for accurate robot posi
tioning and navigation such as fiducial markers [80], or the generation 
of floorplans suitable for robot-assisted living [53]. 

The analysed publications were grouped in four tiers according to the 
number of times that a use-case was addressed in the publications 
(indicated by different colours in Fig. 13). The first tier with the most 
numerous use-case is monitoring and inspection, representing 37 % of 
the papers analysed. A probable reason for this is that UGVs, and 
particularly UAVs, commonly used for inspection are easier and less 
expensive to acquire and to deploy than other types of robots. For 
example, robotic arms used in research cost around 50,000 USD [54], 
heavy-duty UGVs ~ 20,000 USD [81], research-oriented four-wheel- 
drive rovers range from approximately 5,000 to 12,000 USD, and UAVs 
could range from 1000 USD [57]to 200 USD [61]. Also, overall in
spection is a relatively easier task than the other use-cases. Assembly and 

Fig. 12. Publications related to “3M”, “HRI”, and “drones” presented at ISARC from1984 to 2020. (a) Highlights the ratio among the publications related to robotics 
in general and related to each topic in specific. (b) Presents the number of publications per each topic. 

Fig. 13. Distribution of construction use-cases addressed in selected publications.  
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handling follow in a second-tier with significantly lower percentages, 
19 % and 15 % respectively. These use cases are favoured because they 
will enable a streamlined workflow from off-site manufacturing to 
automated installation. Automated excavation and others are in a third 
tier, both with 9 %. While in tier 4 with the least number of publications 
are surveying and generic works with 5 % each. Note that surveying is a 
significantly more complex task than inspection because it requires 
precise measuring and marking; while inspection has been focusing only 
on capturing data using sensors and cameras. 

Next and analysis of the most used computational approaches used is 
presented. Fig. 14 shows the distribution of computational approaches 
used in the selected papers, i.e. (a) reinforcement learning (RL), which 
includes deep reinforcement learning (DRL) and Imitation Learning (IL). 
These publications are discussed in detail below and outlined in Table 4. 
(b) Supervised learning, which groups papers focusing on computer vision 
use-cases such as detecting building mechanical components [106], and 
using CNNS to detect signs of degradation such as cracks [61] and 
delamination [81]. (c) Unsupervised learning, which includes papers that 
use unsupervised learning as support for RL. For example, the use of 
autoencoders to encode expert demonstrations to a representation that 
can be learned easily by the agent [67]. (d) Evolutionary approaches, 
which clusters publications that describe methods to automate certain 
parts of the robot’s behaviour; e.g. the use of optimisation algorithms to 
plan navigation routes so that robots can evade obstacles [10]. (e) 
Control, which groups traditional robotic control approaches. Note that 
publications that do not employ any computational method to control 
robot behaviour are assigned to the “NA” category and that papers that 
use more than one approaches are considered in all the respective cat
egories. From the analysed publications, the large majority, almost three 
fourths, employ traditional control approaches (72 %), while other more 
advanced methods only represent 26 %. From those, 13 % corresponds 
to RL approaches; traditional RL with 8 %, DRL with 4 %, and IL with 
1 %. Supervised learning accounts for 8 %, evolutionary approaches for 
4 %, and unsupervised learning for 1 %. This distribution aligns loosely 

with the keyword analysis presented in Fig. 8, albeit the position of 
supervised learning and RL are swapped. This difference could be 
explained because the former analysis is broader, and the assessment 
here is more specific to construction. 

Fig. 15 presents a mapping of 76 papers published since 2015 on 
robotics in construction according to the level of development of the 
robotic system and the type of robot used. Note that the same research 
efforts reported in multiple papers since 2015, e.g., papers reporting 
progress updates on previous publications, are only considered once. 
The level of development of the reported robotic systems is categorised 
in five levels, i.e.: (i) theoretical studies, (ii) simulations, (iii) evaluated 
in a small-scale restricted environment, (iv) evaluated in a real-scale 
restricted environment, and (v) evaluated in a construction site semi- 
restricted environment. The robot type categories are (a) not defined, 
for generic publications that do not define the type of robot; (b) UAV/ 
UGV for unmanned aerial vehicles and unmanned ground vehicles; (c) 
arms, for static robotic arms; (d) mobile arms, for robotic arms on mo
bile platforms or rails; (d) construction machinery, for automated ex
cavators, dump trucks, dozers; and (e) newly developed, for robotic 
systems specifically developed for the construction industry. The size of 
the circles depends on the number of publications at the intersection of 
each category, which is indicated by the number at the centre of the 
circle. Darker shades indicate a higher level of development. 

Publications on UAVs and UGVs are the most numerous accounting 
for 36 % of the total, followed by publications on static robotic arms 
with 26 %. At the same time, robotics systems specifically developed for 
construction represent the 17 %. Most of the research reported evalua
tions in small-scale restricted environments (34 %), followed by simu
lations (28 %) and real-scale restricted environments (18 %). Only 
UAVs/UGVs and static robotic arms were tested on actual construction 
sites or infrastructure sites. Fig. 15 suggests that research is concentrated 
in robotic systems that are relatively easy to acquire and to test, namely 
drones and small-scale robotic arms. Newly developed robotic systems 
show a homogeneous distribution among all levels of development but 

Fig. 14. Distribution of computational approaches addressed in the selected papers. Supervised Learning (Su), Unsupervised Learning (Un), Evolutionary (Ev).  

J. Manuel Davila Delgado and L. Oyedele                                                                                                                                                                                                 



Advanced Engineering Informatics 54 (2022) 101787

15

Table 4 
Sample of papers addressing Robotics, Construction, and RL. Small-scale restricted environment (SRE). Real-scale restricted environment (RRE).  

Year Description Use-Case RL-IL methods Robot Type Task 
type 

Development 
Level 

References 

1995 Determining gait of a wall-climbing 
quadruped robot 

Inspection RL > Model-Free > Value-based 
and Genetic Algorithms 

4-legged 
wall climbing 

control simulation [24] 

2012 Kinematic and dynamic modelling of a 
mobile robotic arm 

Handling RL is only referred to solve the 
optimal controls. 

mobile 
arm 

control theory [29] 

2013 
2015 

Manipulate and transport parts to 
assemble truss-like structures 

Handling RL > Model-Free > Value-based 
and a heuristic search algorithm 

UAV planning SRE [11,12] 

2014 Manipulate and transport parts to 
assemble truss-like structures 

Handling RL > Model-Free > Value-based 
and a heuristic search algorithm 

multi 
UAV 

planning simulation [13] 

2017 Assembling block-like parts using 
magnets  

Assembly  RL > Model-Free > Policy-based 
RL for choosing among subtask that 
are learned separately. 
Optimal path planning: PSO. 

mobile pusher planning simulation [10] 

2018 Dry stacking irregular objects (2D) Assembly DRL > Model-Free > Value-based arm control SRE [72] 
2019 Slab stone installation on walls Assembly  DRL > Model-Free > Value-based  dual-arm control simulation [69] 

2019 Automated navigation and obstacle 
avoidance 

Handling DRL > Model-Free > Value-based  UGV planning simulation [47] 

2020 Tile ceiling installation Assembly  IL > Behavioural Cloning > Model- 
free 
Autoencoders to generate easy-to- 
learn representations 

arm control simulation   [67] 

2020 Placement of object in a discrete 
environment with obstacles 

Object 
placement 

DRL > Model-Free > Value-based mobile pusher planning simulation [116] 

2021 Assembly of timber joints with a robotic 
arm 

Assembly IL > Behavioural Cloning > Model- 
free  

arm control RRE [4] 

Examples of robotic systems specifically designed for construction (no RL or IL approaches are implemented) 
2015 A 6-legged robot prototype for under- 

bridge inspection using electromagnets 
Inspection NA 6-legged upside- 

down climbing 
control SRE [5] 

2016 Cable-suspended robot for masonry wall 
assembly 

Assembly NA suspended from 
fixed structure 

control simulation [20] 

2016 Steel-structure climbing robot for bridge 
inspection using magnets 

Inspection NA magnetic-based 
wheeled climbing 

control SRE [90] 

2018 Stacker crane to install prefabricated 
façade modules 

Assembly NA modified stacker 
crane 

control SRE [51] 

2018 Wall climbing marking robot to indicate 
installation positions 

Surveying NA vacuum-based 
wheeled climbing 

control RRE [58]  

Fig. 15. Diagram mapping publications on robotics for construction according to their level of development and the type of robots used.  
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have not been tested on real site conditions. Publications on automated 
construction machinery are slightly fewer than newly developed and 
have not been tested on sites either. This could be due to the high safety 
measures that need to be in place to test such systems. Publications on 
mobile arms are the least numerous, and their respective theoretical 
studies were not found in the literature. 

Table 4 presents selected examples of papers focusing on robotics in 
construction and using RL or IL approaches. The intention is to provide 
an overview of the type of research that has been carried out at the 
intersection of these three fields and to characterise its evolution. The 
table presents a brief description of the paper; the construction use-case 
addressed; the type of RL or IL methods used; the type of robot; the task 
type, i.e., robot control or route planning; and the level of development 
of the robotic system. Note that relevant papers employing RL ap
proaches published before 2015 have been included in this analysis as 
well. 

The early work at the intersection of these areas was characterised by 
research that developed the “building blocks” to enable robot automa
tion. An early example was presented by Bull et al. [24], which 
compared the use of Q-learning, a value-based RL approach, and Genetic 
Algorithms (GAs) to determine the optimal gait of a wall-climbing 
quadruped robot. The proposed robotic system used four vacuum feet 
to climb building walls to support inspection and maintenance tasks. In 
another example, Chu [29]developed a state-space model for a mobile 
robotic arm that would be more useful for construction tasks than a 
static one. Because it would be able to move to various working areas 
and would not need a structured environment. The authors developed a 
9 degrees of freedom (DOF) kinematic and dynamic model, 6 DOF to 
account for the robotic arm movements, and 3 DOF to account for 
translations and rotations of the mobile platform. This state-space model 
is a prerequisite to learn optimal arm movements using RL. 

Then, research focused on enabling UAVs and UGVs to handle and 
transport building components among several locations. For instance, 
[12,11] presented a type of RL approach to determine a set of predefined 
actions to enable a UAV to pick and transport components to build truss- 
like structures. Experiments were carried out in a small-scale restricted 
environment. The authors claim that the approach also considers as
sembly, but the components are joined using magnets, which is very 
different from a real-life scenario. Thus, in Table 4, these studies are 
regarded as handling of construction components only and not for as
sembly. The approach was extended to account for multiple robots as 
well, but in this case, only simulations were presented Barros dos Santos, 
Nascimento and Givigi [13]. Barros dos Santos et al. [10] also presented 
an approach to use a mobile robot to assemble magnetic block-like 
structures. The approach used Particle Swarm Optimisation (PSO) to 
find an optimal path and an RL model-free policy-based approach to 
select from pre-learned subtasks to assemble four different types of 
structures. 

More recently, neural networks have been included in the RL ap
proaches. For example, Hu and Wang [47] presented a DRL approach to 
enable a UGV to navigate and avoid obstacles without precise location 
data. The approach is a 2D simplification that uses two sources of data as 
input, i.e., top-view images of the site and navigation data from the UGV 
sensors. Combining both types of input proved useful in a very simple 
environment. Note that in these examples, the action-state spaces and 
the environments’ complexity have been simplified significantly, so 
most of them cannot be deployed directly in real-world scenarios. 

Research has also focused on manipulating components that are less 
generic and that correspond better to actual building components. Liu 
et al. [72] proposed a value-based DRL approach to build dry stacked 
walls using a robotic arm. In this case, the task was also simplified by 
focusing only on 2D irregular objects. The DRL approach was evaluated 
in a small-scale restricted environment using a static robotic arm. 
Another example is presented by D. Liu et al. [69], in which a value- 
based DRL approach was employed to install stone slabs using a dual- 
arm robot, only results of the simulated environment were presented. 

Lastly, simulated implementations of DRL approaches have been also 
tested to enable the collaboration of agents to achieve a single task, for 
instance for simplified relocation of objects in discrete environments 
[116]. 

IL has been leveraged as well. Liang et al. [67] presented an IL 
approach for installing ceiling tiles using a robotic arm. The approach 
used a set of real-life videos, depicting a human installing the tiles, and 
computer-generated videos to demonstrate the optimal pose of the tile 
for installation. Autoencoders were used to encode the pose information 
from the demonstration videos into a representation that the agent could 
learn more easily; and then, behavioural cloning was used to learn the 
arm movements required to achieve the demonstrated tile’s pose. The 
approach was evaluated using an industrial robotic arm emulator. 
Apolinarska et al. [4] presented an IL approach for assembling timber 
joints that combines human demonstrations in a virtual simulation 
environment. In this case the human demonstration is recorded in a 
simulation environment, in which the human uses a game controller to 
perform the act in the simulation environment. Then, all the training is 
carried out in the simulation environment, and then it is transferred into 
the physical robot. The authors note that their approach can generalise 
to real-world scenarios that have not been learned during training, 
which is a benefit for the intrinsic variability of construction processes. 

Regarding robotic systems designed explicitly for construction 
(Table 4), Arai et al. [5] presented a prototype of a 6-legged climbing 
robot to inspect the underside of steel bridges. The feet were equipped 
with electromagnets, thus enabling walking on vertical surfaces and 
upside-down walking. Small-scale experiments were conducted in 
restricted laboratory conditions. Pham et al. [90] also presented a steel- 
structure climbing robot, but in this case, the robot uses wheels with 
permanent magnets for moving on steel surfaces. The purpose is to 
inspect the condition of steel elements in bridges. A prototype was tested 
in a small-scale restricted environment. In a similar example, Kitahara 
et al. [58] presented a vacuum-based wall-climbing robot. In this case, 
the robot would climb concrete surfaces and paint markings to indicate 
installation positions of equipment, which is usually done manually 
using surveying instruments. The robot was tested on a real scale 
restricted scenario. 

Bruckmann et al. [20] presented simulations of a robot suspended by 
cables that could assembly block structures. In this case, four poles 
demarcate the robot’s rectangular area of action. Cables attached to the 
poles suspend the robot over the area of action, and rotors move the 
cables enabling movement in three dimensions. The intention was that 
the robot could pick blocks from one location, within the demarcated 
area of action, and assembly structures, e.g., a wall. Iturralde and Bock 
[51] presented a robotic system to automate the installation process of 
prefabricated façade modules. The robotic system is based on a vertical 
stacker crane, which would be located along a side of a building. The 
crane would transport the modules from the ground to their correct 
position on the building. The system was tested using a static robotic 
arm in lab conditions. Note that these last two robotic solutions require a 
semi-structured environment, as deployment would require the instal
lation of additional components to restrict the area of action of the 
robots. 

6. Challenges for deploying RL in robotics applications 

RL and IL have the potential to widen the use of robotics into more 
complex and less restricted scenarios and increase the complexity of 
tasks that robots can perform; for example, enabling human-like robot 
hand manipulation [3]). Nevertheless, there are still many and very 
significant challenges. In practice, RL and IL for robotics are only 
feasible for relatively simple tasks in very restricted scenarios due to a 
myriad of limiting factors [59,102], which can be categorised loosely 
into real-world and algorithmic challenges. 
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6.1. Real-world challenges 

(i) High-dimensional spaces. Robotics demands high-dimensional 
state-action spaces that require extremely large amounts of data and 
computation to process. Thus, a vast number of sample action-state in
teractions are required to achieve reasonable learning levels. (ii) 
Expensive real-world learning. Robot exploration in the real-world is very 
expensive compared with simulated environments. It requires human 
supervision and careful maintenance as well as higher operational ex
penses. (iii) Physical-virtual disparities. Suboptimal policies can be 
learned due to differences between the simulated environments and the 
real-world situation, such as: time discretisation variations between 
simulations and robots sampling frequencies, and real-world delays in 
sensing and actuation not accounted for in simulations. (iv) Dynamic 
environments. Real-life environments might change constantly. Even in 
restricted environments, different light conditions and temperatures 
could change through the day and seasonally affecting robot perfor
mance. Also, robots wear, and their performance degrade. Both changes 
could potentially hinder the performance of the learned policies. (v) 
Onerous real-time requirements. Most of the current RL and IL approaches 
use large deep neural networks in various ways. When the systems are 
deployed, these networks will require special high-processing hardware 
to control the robots in real-time. (vi) Higher risks. Compared with ML 
approaches in simulated environments, the errors made by robots while 
interacting in the real-world environment have dramatically larger 
consequences. A single false output might lead to serious accidents. 
These higher risks increase the development and implementation costs 
considerably. 

6.2. Algorithmic challenges 

(i) Under-modelling and model uncertainty. Developing a sufficiently 
accurate model of the robot and its environment is a very challenging 
task. It is also difficult to find the most effective balance between a 
detailed but slow model and a rough but fast one. Moreover, model 
uncertainties are difficult to identify and thus to include in the models. 
(ii) Defining effective rewards. While defining a reward function is 
significantly easier than defining a task explicitly, it is still very 
complicated to define a reward function that leads to a desired robot 
behaviour. RL systems are infamous for exploiting reward functions in 
unanticipated manners. IL approaches that reconstruct the reward 
function from expert demonstrations do not require to specify the 
reward function manually; however, the optimal or intended rewards 
are not always easily achieved either. (iii) Algorithms’ low stability and 
robustness. Compared with other ML methods, RL and IL are relatively 
unstable and sensitive to minor deviations in configurations and 
parameter tuning [46]. (iv) Low generalisation. Most of the RL and IL 
approaches perform satisfactorily for the tasks that were trained for, but 
it is difficult to leverage those learned behaviours for other tasks. 

7. Characterising the construction site requirements for 
deploying RL-based robotics 

This section presents a characterisation of the typical circumstances 
in construction sites to facilitate understanding of the level of technical 
challenges facing the implementation of robotics for construction. The 
major technical challenge in robotics for construction resides in the 
nature of construction sites and construction tasks. Table 5 presents a list 
of the main attributes characterising construction sites and tasks; and it 
compares them with manufacturing shop floors and tasks, a sector in 
which robotics have been implemented widely. 

Construction sites are highly-unstructured environments, in which 
various crews work on different activities sharing the same space and at 
the same time. Construction sites represent very large action-state 
spaces, in which very many different actions can happen that could 
change the environment in a multitude of unexpected manners. 

Moreover, construction sites are in constant change affecting the way 
actions can and should be carried out. Compared with shop floors, 
construction sites are difficult to constrain or to designate specific areas 
for robotic work. Also, in construction sites there is a higher level of 
human interaction than in shop floors, which robotics systems will need 
to address effectively because safety is a high priority. Testing robotic 
systems in floor shops and construction sites is expensive in both cases; 
however, it is more difficult in construction sites, and the disruptions 
will be higher due to their highly-unstructured nature. Lastly, there are 
larger topological variations among construction sites than among 
manufacturing shop floors, which makes more difficult the imple
mentation of generic robotic systems. 

Although some construction tasks are somewhat similar, they are 
very different from the repetitive tasks usually carried out on shop 
floors. Many construction tasks are repetitive, but the cycles are more 
complex than in manufacturing and are not identical [36]). Even in the 
most homogeneous and repetitive tasks, there are subtle differences 
(component size variations, large tolerances) that affect the action 
significantly, especially when considered from a robot’s perspective 
[67]. Furthermore, construction tasks are usually complex, there is a 
broad diversity among tasks, and they are mutually dependent. It is 
difficult to break down tasks into subtasks and compartmentalise them. 
For both cases, it is difficult to capture demonstrations from experts; 
however, for manufacturing activities, there are existing environment 
models, agent models, and simulation environments that facilitate RL- 
based robotics development, which are not available for construction 
sites. 

Table 6 lists the RL challenges discussed in the previous subsection 
and indicates the level of impact that those challenges have for three 
use-cases, i.e. (a) computer-based solutions, (b) robotics for 
manufacturing, and (c) robotics for construction. Computer-based so
lutions refer to solutions that do not require hardware interfaces, such as 
optimal scheduling, e.g. [8]) and automated gameplay, e.g. [96], for 
which RL approaches have proven very useful. For each challenge, a 3- 
level rating has been assigned for the respective use-case. Computer- 
based solutions are the least affected by the challenges as the real-world 
challenges do not apply or have limited impact. The algorithmic chal
lenges are also less impactful since the environments are usually smaller, 
can be modelled fully, and rewards are easier to define. Whereas, ro
botics for manufacturing and for construction are significantly more 
affected. Robotics for construction can be considered as a very hard 
problem for RL and IL approaches, particularly concerning the real- 
world challenges due to the highly unstructured and complex nature 

Table 5 
Environment and tasks characteristics for manufacturing and construction.  

Environment characteristics 
Manufacturing shop floor Construction site 

- Structured environment - Highly unstructured environment 
- Large action-state spaces - Very large action-state spaces 
- Constant or low changing 

environments 
- Fluctuating (constantly changing 
environments) 

- Easy to constrain - Difficult to constrain 
- Low level of human interaction - High level of human interaction 
- Mid difficulty testing in real-world 

scenarios 
- High difficulty testing in real-world 
scenarios 

- Low variations among different shop 
floors 

- Large variations among different sites 

Tasks characteristics 
Manufacturing tasks Construction tasks 
- Mid-complexity - High-complexity 
- Low diversity - Large diversity 
- Low interdependency - Large interdependency 
- High compartmentalisation - Low compartmentalisation 
- Difficult to capture expert knowledge - Difficult to capture expert knowledge 
- Existing environment and agent 

models 
- Lack of existing environment and agent 
models 

- Existing simulation environments - Lack of existing simulation environments  
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of construction sites. For algorithmic challenges, robotics in construc
tion is on par with robotics for manufacturing; nevertheless, the lack of 
existing environments and agent models represents still a substantial 
obstacle. 

7.1. Limits on problem size and dimensionality 

The most critical challenge of RL and IL approaches for construction 
robotics is the strong limitations of the problem complexity and 
dimensionality that these approaches can handle, hindering its appli
cation for real-world tasks. Table 7 presents a comparison between a 
selection of model-based and model-free RL and IL approaches. It pre
sents three metrics: (1) the type and size of environment, this could be 
discrete or continuous; (2) the size of the state space, i.e., the number of 
different states in which an agent can be; and (3) the size of the action 
space, i.e., the number of actions that an agent can take. Given the 
construction site and activity requirements discussed above and the 
presented review, all of the examples construction robotics that leverage 
RL or IL are very simple and highly restricted in terms of environment, 
state and action spaces. Actions are restricted to single digits, while state 
spaces and discrete environments a couple of dozens maximum. Note as 
well that not all authors report these figures in a clear manner, which 
hinders comparisons between different approaches. Another aspect that 
should be presented clearly is the processing requirements and training 
times as the size of the problem increases, as many of these approaches 

have limitations on processing scalability [7]. Another important aspect 
is that there are no clear differences between RL and IL approaches in 
terms of the size and complexity of the problems, for both cases there are 
strong size limitations. It is the same for model-based and model-free 
approaches both a strongly limited by the size of the problem; while 
mode-based approaches enable to reduce the search space this only af
fects the training time but not the problem size. In sum, all RL and IL 
approaches are restricted to be applied to simplified versions of real- 
world tasks, particularly in construction applications in which un
structured and dynamic environments increase the problem size 
considerably. 

7.2. New directions for RL and IL 

This section presents new directions in developing further the RL and 
IL approaches that are relevant to the improvement of robotics for 
construction. 

7.2.1. Multi agent distributed reinforcement learning and collaboration 
One way to reduce the searching time for a successful policy is to 

leverage multiple agents to learn a homogeneous distributed policy. In 
this case, multiple agents collaborate to learn a common policy without 
interacting among them. For example, [92] proposed an actor-critic 
approach in which the policy is learn in a centralised manner, but the 
policy execution is decentralised. Another important aspect is collabo
ration. This approach also enables the transfer of the sum of experience 
of all agents to entire groups of agents or swarms in a way that all 
together work toward the same goal. The approach is demonstrated in a 
multi-robot construction problem in which agents collaborate to arrange 
block elements according to a specified structure. The approach enables 
to use swarms of different swarm sizes without requiring additional 
training. 

7.2.2. Human-centred collaborative robots 
Another critical aspect is human-robot collaboration. In an ideal 

collaboration scenario, the support that the robot provides to the human 
has to be proactive as in traditional human-to-human collaborations in 
which changes in the environment and task requirement are addressed 
in a seamless manner. In this regard, the robot must contribute to the 
task with incomplete data about the state space including the human 
and the environment. The agent must be able to select an appropriate 
action that will contribute to accomplish the task given variations in the 
environment and task requirements. A major challenge is how to deal 
with uncertainties given changing environments and incomplete 
knowledge of the state space. Ghadirzadeh et al. [39] proposed a 
supervised-learning approach that can address uncertainties and find an 
optimal balance between quick and effective actions while minimising 
potential mistakes. The authors claim that this approach allows for more 
fluent collaboration avoiding delays when changes in the environment 
arise. 

In general, IL seems to provide larger benefits for human-robot 

Table 6 
Comparison of the significance levels of the RL challenges for three different use 
cases.  

RL and IL 
Challenges 

Computer- 
based 
Solutions 

Robotics in 
Manufacturing 

Robotics in 
Construction 

Real-world challenges 
- High-dimensional 

spaces 
★ ★★ ★★★ 

- Expensive real- 
world learning 

NA ★★ ★★ 

- Physical-virtual 
disparities 

NA ★ ★★★ 

- Dynamic 
environments 

NA ★ ★★★ 

- Onerous real-time 
requirements 

★ ★★★ ★★★ 

- Higher risks ★ ★★★ ★★★ 
Algorithmic Challenges 
- Under-modelling 

and model 
uncertainty 

★ ★★ ★★★ 

- Defining effective 
rewards 

★ ★★ ★★ 

- Algorithms’ low 
stability and 
robustness 

★★ ★★ ★★ 

- Low generalisation ★★ ★★ ★★  

Table 7 
RL and IL approaches comparison of problem complexity and dimensionality.  

Task Approach environment state space action space Reference 

Inspection RL > Model-Free > Value-based discrete (20) 4 3 [24] 
Assembly  RL > Model-Free > Policy-based continuous 2 8 [10] 

Assembly DRL > Model-Free > Value-based discrete (10–16) 3 2 [72] 
Assembly  DRL > Model-Free > Value-based  continuous 12 6 [69] 

Navigation DRL > Model-Free > Value-based continuous 4 4 [47] 
Assembly  IL > Behavioural Cloning > Model-free continuous 13 6 [67] 

Object placement DRL > Model-Free > Value-based discrete (36) 4 2 [116] 
Assembly IL > Behavioural Cloning > Model-free  continuous 13 6 [4]  
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interaction as could generalise in better manner given variations and 
uncertainties common of complex human interactions. For instance, 
Sasagawa et al., [93] presented an IL method that could execute force 
adjustments given variability in the human manipulation. And Wang 
et al. [107] presented an IL approach for coordinated human–robot 
collaboration that leverages hidden state-space models that enables an 
agent to select between three different tasks given changing states in the 
human actions. 

7.2.3. Long-horizon planning 
Another critical challenge, highly relevant for construction robotics, 

is how to deal with tasks that require multiple steps and inputs at 
different and varying times, commonly known as long-horizon planning. 
A major problem with long-horizon planning tasks is the generation and 
collection of the massive data, across the entire search space, required so 
that RL an IL approaches can generalise effectively. In this case, a 
notable approach is to collect data on demonstration and visited states 
and the ability to revisit those states and relabelling as demonstrations 
for policy learning [75]. 

7.2.4. Cloud federated learning and meta learning 
Federated learning enables multiple agents to learn concurrently and 

then improve their policy learning by acquiring knowledge in the cloud 
compiled by all the robot’s experimentation. For example, Liu et al. [68] 
proposed an IL approach for cloud federated learning in which multiple 
sensor data is shared and distributed among agents. The approach im
proves the efficiency of learning and fuses the different learnt policies 
locally in each agent. 

Meta-learning seeks to improve the task parameters of the learning 
itself using the data collected in several learning episodes. Thus, meta 
learning algorithms learn about two aspects of the models, i.e. (a) a 
policy to complete a task successfully and (b) the change in task pa
rameters when given examples of a new task. These types of approaches 
enable to learn policies that are adaptable to changing environments and 
varying tasks in complex and dynamic environments. For example, Song 
et al. [99] proposed a meta-learning approach that enables agent to 
adapt to changes in environments and states with large noise in state 
data. Kaushik et al. [56] proposed an approach that defines multiple 
initial parameters for learning the policy and enables pre-trained agent 
to select the most effective initial parameters adapting the model to the 
current scenario to minimise the task completion steps. In a different 
manner, particle swarm optimisation algorithms have been used to self- 
tune and optimise agents when affected by external environment 
changes, parameter variations, and random noise [74,71,73,114]. 

7.2.5. Gaps between simulation and reality 
Similar to other machine learning approaches, RL and IL approaches 

also suffer from the immense obstacles of collecting relevant real-world 
data due to the extremely costly and laborious task of gathering suffi
cient data from a wide enough sample. Thus, approaches to use simu
lation environments to generate data and to train agents those 
simulations environments are being developed, e.g., [115]. These types 
of approaches provide a potential infinite source of data and enables safe 
training of agents at initial stages of development. Then, the trained 
agents are transferred to real robots and in some cases additional 
training is carried out in real environments. However, a major drawback 
exists, the simulated environments are only an abstraction of the real- 
world, thus a gap between the simulated and real environment limits 
the performance of the learned policies, which could degrade over time 
if the real-world environment change trough time. This gap between 
simulation and reality is a major challenge for the development of 
construction robotics as the environments in construction are complex 
and dynamic, which require of high-fidelity virtual environments for 
training agents. 

8. Discussion 

8.1. Key findings 

Here is a summary of the most relevant findings presented in this 
paper grouped into three categories i.e., high-level findings, mid-level 
findings, and research characteristics. 

8.1.1. High-level findings 
There are strong indications that research on robotics for construc

tion has not increased considerably since the 1980 s; and, it could have 
even decreased if measured by the number of publications in the 
literature. 

Research that leverages RL for robotics has been significantly more 
prominent than IL. This could be explained because it is relatively easier 
to implement. 

DRL has surged in recent years, most probably driven by the massive 
interest in deep learning approaches to computer vision. 

RL and IL main advantages are that there is no need for large labelled 
datasets and a relatively easy implementation. The disadvantages are 
that it is very computationally expensive and rewards are difficult to 
define. 

8.1.2. Mid-level findings 
The thematic analysis indicates that robotic systems for construction 

require three essential properties (referred here as 3Ms): i.e.: (i) mobile, 
they should be able to move to different work areas in the site, (ii) multi- 
purpose, they should be able to carry out different tasks, and (iv) multi- 
robot, they should be able to collaborate with other robots to carry out 
tasks. 

Also, essential themes for research on robotics for construction are 
human-robot interaction, navigation capabilities and computer vision, 
and AR and VR capabilities. 

ML has been used for research on robotics for construction only 
limitedly, e.g., less than 4 % of all the papers published at ISARC con
cerning robotics address ML. RL and IL have been employed even far less 
than that. 

Publications addressing the 3Ms has been minimal. Mobility is the 
feature most addressed primarily through research on UAVs and UGVs. 

Research on HRI in the construction context is very limited as well, 
and the number of publications on this subject has decreased in recent 
years. 

8.1.3. Characteristics of the reviewed research outputs 
Inspection is the most employed use-case in research on robotics for 

construction accounting for almost 40 % of all publications, which is 
probably the easier use-case to tackle. Thirty-four percent is focused on 
research concerning the handling and assembly of construction 
components. 

RL and IL approaches have not been widely adopted, as traditional 
control approaches account for ~ 72 % of the publications. 

Research is concentrated in robotic systems that are relatively easy to 
acquire and to test, namely UAVs, UGVs, and small-scale static robotic 
arms, accounting for around 62 % of the publications analysed, while 
only 7 % is evaluated in real-world albeit restricted environments. 

Almost 80 % of the publications employ off-the-shelf robotic systems 
or adapted systems designed initially for other purposes. Moreover, the 
newly developed robotic systems specific for construction have not been 
tested on real site conditions. 

The complex and dynamic conditions at construction sites coupled 
with the complex cycles and variable construction tasks represent a very 
hard problem for RL and IL approaches. 
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8.2. Outlook: The prospects of deploying RL for construction robotics 

8.2.1. Construction is a very hard problem for RL-based robotics 
RL approaches have been very successful for specific problems with 

simple state-action spaces and clear reward functions, e.g., videogames 
[82]) or boardgames [95]. However, the translation to the real-world is 
very difficult, and the same level of success has not been achieved in 
robotics. The computational power required for RL and IL approaches 
increases massively with low increments in the state-action spaces, 
which in most cases makes them impossible to implement for robotics in 
real-life situations [102]. In the case of robotics for construction, this 
problem is even more significant as the state-action spaces are even 
larger due to the unstructured nature of the construction sites. The tasks 
are also more complex; while they are also repetitive, their cycles are 
more varied. In addition, the cost of training a robotic system using RL is 
exceptionally high because it will require training in both the simulated 
environment and the real environment. For example, a recent effort, 
reported in literature, to train a static robotic arm to grasp different 
objects required seven arms grasping continuously and in parallel for 
four months (~800 robot-hours), generating 600,000 sample grasps, 
and a deep neural network with 1.2 million parameters [54]. These 
numbers could be significantly higher for training a robotic system with 
a larger and more complex state-action space required for construction 
use-cases. 

8.2.2. Transcending the low-hanging-fruit approach. 
Robotics for construction suffers from the lack of dedicated systems 

as most of the research and development efforts are adaptations from 
other industries. As presented in this study, robotic systems designed 
explicitly for construction use-cases account for only ~ 17 % of all the 
research efforts reported in literature. Using of-the-shelve robots is the 
easier and less expensive way to start developing robotic systems for 
construction; and in many cases, it is the best option to start research on 
the subject. This is the low-hanging-fruit approach. Nevertheless, this 
approach has intrinsic limitations that hinder the development of 
genuinely effective robotic systems for construction. For instance, ap
proaches to robotics used in manufacturing are not optimal for con
struction, as the structured nature of the environments typical in 
manufacturing is entirely different in the construction industry. Also, 
there are large differences in scale and accuracy and precision re
quirements. For a truly step-change in robotics for construction, dedi
cated robotic systems must be developed that address the specific 
requirements of construction; otherwise, advances in robotics for con
struction will remain limited and at a basic level. 

8.2.3. Structuring construction sites vs smarter robots 
There are two major ways to advance robotics for construction, both 

with advantages and disadvantages. One way is to organise and struc
ture construction sites to make them similar to manufacturing shop 
floors and manufacture building components off-site. In this way, pre
fabricated building components could be assembled by robots in semi- 
structured construction sites. The advantages of this way are that ro
botics approaches already developed for manufacturing could be 
translated into construction in a relatively easy manner. However, it 
requires that the design, manufacturing, and assembly of building 
components become highly integrated. The large investments required 
to accomplish this integration are only justifiable for very large and 
repetitive construction projects. The other way entails developing 
smarter and more flexible robotic systems that can operate in unstruc
tured construction sites. The advantage of this approach is that it will 
enable the use of robotics for a wide variety of constructions projects 
from small one-offs to large repetitive ones. The disadvantage is that 
developing sufficiently smart robotic systems is a very tall order. The 
authors believe that both approaches are relevant, should be pursued, 
and will provide substantial benefits to the construction industry as a 
whole. 

8.3. Directions for future research in construction robotics 

Concerning further work, the authors suggest four research areas 
that would aid fostering research in this subject. (i) The formalisation of 
the construction problem for RL. It is necessary to analyse in detail the 
construction tasks characteristics, e.g., by structuring construction tasks 
into different complexity levels [36], thus facilitating the development 
of workflows appropriate for robotic systems. The identification of op
portunities for robotics requires analysis of construction work at the 
most basic levels and the analysis of its cycles and relationships with 
higher-level workflows. (ii) Identification of limiting and driving fac
tors. Limiting and driving factors for robotics have been reported in 
literature, but in a disjointed manner, e.g., [22,31,89]. Integrating 
knowledge about limiting and driving factors will help to devise effec
tive strategies to advance research in the area, e.g., [33]. (iii) The 
development of a research roadmap that outlines the principal research 
avenues alongside outstanding challenges and technology limitations. 
This roadmap would help researchers to focus their efforts more effec
tively, and it would facilitate the identification of bottlenecks limiting 
research progress, e.g. [18],Davila Delgado et al. [32]. For instance, 
[44] presented framework for the implementation of robotics in con
struction that define three major aspects to consider i.e., technology, 
organisation and people. Each of the aspects contains a set of recom
mended actions that could facilitate the implementation of robotics in 
construction. This study represents a first step in the development of a 
roadmap for the adoption of robotics in the construction industry. In 
addition, (iv) specific evaluation criteria and benchmarks for different 
types of robots in construction need to be defined in a systematic 
manner. In this regard, Ma and Hartmann [76] presented seven criteria 
to evaluate wall-climbing robots and assessed three adhesion techniques 
and three locomotion techniques most commonly used in wall climbing 
robots. These types of studies are essential to guide a further research 
into robotics ensuring correct applicability for construction specific re
quirements. In this sense, clear declarations on the size of environments, 
action and state spaces, and processing requirements must be present in 
all published research efforts. Lastly, (v) it is necessary the development 
of a maturity model that guides the evaluation of the robotic systems 
being developed, thus facilitating recording and keeping track of the 
achieved research progress. 

8.3.1. Addressing the high-level challenges for robotics in construction 
through research 

Identifying the high-level factors that limit the adoption of robotics 
for the construction industry is an essential first step to address the low 
adoption issue. A few research efforts have identified a number of 
limiting factors, e.g., [78,22]; while, [31] presented an in-depth study 
into the limiting factors, outlining four distinct categories, i.e. 
contractor-side economic factors, client-side economic factors, technical 
and work-culture factors, and weak business case factors. However, 
these studies have focused on high-level challenges for industry adop
tion such as high capital and maintenance costs, low maturity of the 
technologies, and the fragmented nature of the construction industry. 
While these studies provide a relevant overview of the problem and 
enable a rough understanding of the obstacles, more granular studies are 
required that shed light on how these limitations can be overcome. For 
example, the limiting factors identified are very different in nature and 
different strategies are necessary to tackle them. 

Here, a brief examination is presented of how some of the limiting 
factors referred above can be addressed directly through research while 
taking into consideration the findings of this study. The two limiting 
factors identified by all the three studies above [78,22,31], are the 
“fragmented nature of the construction industry” and the “the unskilled 
workforce and lack of experts in the field”. From these limiting factors, 
only the latter can be addressed through research. Lack of experts in the 
field can be addressed by training construction robotics experts 
instructing them on relevant areas including ML, RL, cyber-physical 
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systems, and robotics in conjunction with construction-related areas 
such as civil engineering. Three limiting factors were identified by more 
than one study, i.e., “low R&D budgets in construction”, “unproved 
effectiveness and unclear business case”, and “immature technology”. In 
this case, only the latter two can be addressed by research directly. The 
perception that robotics for construction has not proved its effectiveness 
and that it is not a mature technology can be tackled by developing 
solutions for the construction industry from the ground up and not by 
only adapting what is being developed for other sectors. Most of the 
current solutions reported in literature give the impression of being 
literal translations of existing solutions that do not tackle the essential 
characteristics of the problem. Robotic solutions developed specifically 
for the construction industry will facilitate demonstrating their effec
tiveness and maturing the developed technologies. More importantly, 
note that the highest costs of deploying robotic solutions are the soft
ware and the required adequations to the environment, rather than the 
robot itself [98]. Both of these can be addressed by research through 
developing low-maintenance software and smarter agents that require 
fewer physical adequations. 

8.4. Limitations of the study 

There are two main limitations in the study presented here, i.e.: (1) 
some publications that are not explicitly related to construction might 
have been included in the high-level and mid-level analyses. This is due 
to filtering limitations and ambiguities in search terms, which can 
potentially distort the actual numbers of publications and ratios pre
sented here. However, the authors believe that this potential deviation is 
not significant, and that the trends and overall landscape of the state-of- 
research presented in this study are representative of the actual situa
tion. Moreover, this limitation was mitigated by including publications 
from the ISARC database, which focuses specifically on construction. (2) 
The detailed analysis might not have considered some relevant publi
cations on the subject as only a sample of publications were selected. In 
this case, the authors believe that an exhaustive analysis that assesses all 
the existing publications on the subject is not indispensable and that a 
significant sample can provide most of the relevant information required 
for this study. All in all, note that the statistics, graphs, and analyses 
presented here are intended to provide only an overview of the state-of- 
research at the intersection of robotics, reinforcement learning, and 
construction. Lastly, other studies have recently focused on surveying RL 
and IL approaches in robotic applications in general e.g., [48,97], which 
arrive to very similar categorisations and insights as this study in terms 
of limitations and future research directions. 

9. Conclusions 

This paper has presented a series of analyses that provide an over
view of the state-of-research at the intersection of robotics, reinforce
ment learning, and construction. Overall, it can be concluded that the 
amount of research on robotics for construction has not increased 
significantly as in other fields, and it probably has remained constant 
since the mid-1980s. RL and IL approaches have not been used widely in 
robotics for construction, and traditional control methods are still the 
most used. The intrinsic characteristics of construction, namely the 
unstructured and dynamic nature of construction sites and the complex 
task cycles, make construction a tough problem for RL-based robotics. In 
order to enable a step-change in robotics for construction, it is impera
tive to develop dedicated hardware and software systems that address 
the specific requirements of the construction industry. Special attention 
is essential at the software level because it is the bottleneck that limits 
the development of smarter and more flexible robotic systems needed 
for unstructured and dynamic construction sites. In this sense, it is 
important to consider that the highest cost of implementing a robotic 
solution is the cost of software at ~ 45 % of the total cost; while ~ 30 % 
are costs for constraining the environment [98]. Thus, RL and IL are 

promising approaches to reduce these costs because they represent a 
reduction in software development costs and a reduction in the need for 
constrained environments. 

This paper provides a very relevant contribution to knowledge. This 
paper contributes by (i) consolidating, structuring, and summarising 
research knowledge at the intersection of robotics, reinforcement 
learning, and construction. (ii) Identifying strengths and weaknesses of 
RL-based robotics approaches and translating and putting them in 
context according to the intrinsic characteristics of construction. And, 
(iii) hinting new possible research avenues and research gaps. The 
contribution of this paper will help researchers kick-start new research 
efforts on robotics for construction and boost existing ones. It facilitates 
the understanding of existing limitations of RL-based robotics and pro
vides high-level information on how to employ them effectively. It also 
aids to identify what approaches are more useful for different situations 
and offers a rough idea of the essential requirements to start developing 
robotic systems for construction. 
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