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Abstract: Reconstituted clays have often provided the basis for the interpretation and modelling of
the properties of natural clays. The term “intrinsic” was introduced to describe a clay remoulded or
reconstituted at moisture content up to 1.5 times its liquid limit and consolidated one-dimensionally.
In order to circumvent the difficulties of measuring an intrinsic constant called “intrinsic compressibil-
ity index” (C*c), a machine learning (ML) approach using traditional non-parametric tree-based and
meta-heuristic ensembles was adopted in this study. Results indicated that tree-ensembles namely
random decision forest (RDF) and boosted decision tree (BDT) performed better in C*c prediction
(average R2 of 0.84 and root mean square error, RMSE of 0.51) compared to stand-alone models.
However, models’ hyper parameters combined meta-heuristically, produced the highest accuracy
(average R2 of 0.90 and root mean square error, RMSE of 0.34). The greatest capacity to distinguish
between positive and negative soil classes (average accuracy of 0.95, precision and recall of 0.86) were
demonstrated by meta-ensembles in multinomial classification.

Keywords: machine learning; regression; big data; deep learning; reconstituted soil; compressibility index

1. Introduction

Reconstituted clays can provide a frame of reference for an assessment of the influence
of soil structure on the mechanical behaviour of intact clays. Hence, geotechnical engineers,
and researchers have often relied on the mechanical properties (such as compressibility,
expansion, and strength, etc.) of reconstituted or remoulded clays to interpret, extrap-
olate and establish the corresponding characteristics of clay subgrade materials. Based
on this, several efforts have been made over the past 80 decades to formulate various
constitutive models and theories to study the behaviour of reconstituted soils. One of the
most popularly known reconstituted soil framework is the “critical state” soil mechanics
which was developed between early and mid-20th century. Critical state soil mechanics
has become so widely embraced as one of the logical concepts that can be applied to solve
many engineering problems given its capacity to incorporate theories of plasticity, yielding,
flow, etc for the modelling of soil behaviour [1–6].

A reconstituted clay could be defined as a clay that has been rigorously mixed at a
moisture content that is equal to or greater than its liquid limit (LL). Burland [7] introduced
the “intrinsic properties” concept of reconstituted clays to serve as a basis for the interpre-
tation of the natural soil. The name “intrinsic” describes the properties of a clay that has
been remoulded at a moisture content of between its liquid limit (LL) and 1.25 to 1.5 times
its LL (without the need for air or oven drying) and then consolidated one-dimensionally.
Figure 1 depicts the intrinsic or inherent compression curve for a given remoulded clay. The
values e∗100 and e∗1000 are the intrinsic void ratios that correspond to effective state pressures
(σv) 100 kPa and 1000 kPa respectively. It is important to note that the asterisk is used
to signify an intrinsic property. Figure 1 also indicates the normalisation of the values
of intrinsic compressibility by the assignment of fixed values to e∗100 and e∗1000 through a
parameter referred to as the void index, Iv (measure of the compactness of a given soil). Void
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index is mathematically expressed as in Equation (1), and could be seen in Figure 1, that a
unique slope called the intrinsic compression line (ICL) has been achieved, and this slope
represents the remoulded clay subgrade material itself rather than one that has undergone
some post-depositional modifications through weathering, desiccation, unloading, etc.
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behavior of three clays. They concluded that intrinsic compression indices tend to increase 
nonlinearly with increasing initial water contents. On the other hand, research carried out 
by Habibbeygi et al. [16], indicated that an inherent property such as clay mineralogy can 
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In order to obtain an accurate measurement and assessment of intrinsic compressibility
index of clays, very expensive and time-consuming experiments are often performed using a
conventional oedometer or in some cases a modified form of the consolidometer. Moreover,
when undertaken on clays with very high initial moisture contents, the procedure may
even become inevitably cumbersome. The associated difficulties of measuring intrinsic
compressibility index prompted a growing body of research in the use of statistically based
estimates or correlation equations. Burland [7] demonstrated that soil’s intrinsic constants can
be empirically correlated with its Atterberg limits. Following this, several modifications to
Burland’s relationships has been made in the most recent past by various researchers [8–13].
Some of these studies have also attempted to extend these empirical correlations to cover
the influence of factors such as initial moisture content, mineralogy, etc on the intrinsic
compressibility of clays [14–17]. For instance, Xu and Yin [14] investigated the influence of
different initial water contents on the compression behavior of three clays. They concluded
that intrinsic compression indices tend to increase nonlinearly with increasing initial water
contents. On the other hand, research carried out by Habibbeygi et al. [16], indicated that an
inherent property such as clay mineralogy can have a considerable impact on the values of
intrinsic constants of reconstituted clays.

Most of the presently used correlation models of predicting the intrinsic compress-
ibility index of clays are composed essentially of relationships developed from linear
regression techniques. Thus, the resulting analytical correlation equations only tend to
determine unknown coefficients that affect the relationship of an intrinsic constant such
as the compressibility index. Although these models may be effective in some instances
however, they are mostly fraught with a lot of shortcomings that relate to the inherent
non-linearities and complexities of the interrelationships between soil variables. Hence,
an application of artificial intelligence (AI) techniques through machine learning (ML)
paradigms are proposed herein to solve the challenges of forecasting C∗c .

This study uses a ML approach to intelligently model the intrinsic compressibility
index of clays by adopting non-parametric tree-based ensemble learners (decision forest
and boosted decision trees) and meta-heuristic ensembles or combinations of hyperparam-
eters such as the voting and stacking ensembles. Predictions using stand-alone algorithms
(multilinear regressors, Bayesian linear regressors, logistic regressors and artificial neural
networks) are also performed and compared with those of the ensemble learners. Further-
more, since various types of soils of different classes (classified according to the USCS) are
utilised for the prediction, ML multiclass or multinomial classification is applied for the
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first time as a diagnostic test to determine the ability of the classifiers to adequately learn
between the soil types and by so doing discriminate between positive and negative classes.

Iv =
e− e∗100

e∗100 − e∗1000
=

e− e∗100
C∗c

(1)

2. Methodology
2.1. Database Generation and Pre-Processing

Very high-quality dataset of intrinsic compressibility index and basic soil’s index
parameters compiled from rigorous literature search are utilised for this study. Standard-
ised methods of oedometer testing were adopted by the authors for data collection from
the reconstituted soils [11,18–33]. Given the diverse nature and sets of data of intrinsic
compressibility index (herein considered as the independent feature), it was necessary
to transform and normalise these data into usable continuous variables to enable an im-
provement of the significance of findings, greater size effects, lesser threats to any causal
inferences (i.e., the validity of statistical conclusion), and more reliable results. A two-step
approach of data transformation was followed [34]. Step one involved a transformation
of the intrinsic compressibility variables into a percentile rank resulting in uniformly dis-
tributed probabilities. Step two then applied the inverse-normal transformation to the
results of step one into a variable comprising normally distributed z-scores. Figure 2
indicates the normally distributed dataset of the method with very low values of skewness
(0.123457) and kurtosis (−0.09139) (Table 1) meaning therefore that the dataset is very
reliable for use in the ML modelling.
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Table 1. Statistics of intrinsic compressibility index (C∗c ).

Mean Standard
Error

Standard
Deviation Kurtosis Skewness Min. Max. Range

0.789244 0.124782 1.36121 −0.0914 0.123457 0.08 8.5 8.42
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On the other hand, a total of six explanatory features are used in this research namely,
reconstituted soil intrinsic constants (eL, eP and e100), Atterberg limits (Liquid limit (LL)
and plasticity index (PI)) and a soil texture parameter, specific gravity (G). Table 2 depicts
important statistical components of these features. It is observed that the range of values for
the liquid limits (minimum and maximum of 22% and 560% respectively) and plasticity indices
(minimum value of 5% and 508% respectively) suggest wide coverage of the soils of different
plasticity properties. Frequency distribution of the independent features of the dataset as
depicted in Figure 3 generally indicates non-uniform distribution for all the variables except
for the specific gravity of the soils. The pattern of distribution which is noticed to be mostly
right skewed indicates a very strong relationship among the features. Three classes of soils
defined according to the USCS were captured in this study. This will be very useful for the
multinomial classification prediction considered subsequently in this research to determine
the ability of the models to learn between the different categories of soils used.

Table 2. Statistics of explanatory features.

Statistic G LL PL PI eL ep e*
100

Mean 2.71 87.62 31.11 56.50 2.37 0.84 1.51
Standard Error 0.01 8.375 1.196 7.82 0.22 0.03 0.10
Standard Deviation 0.10 91.36 13.05 85.25 2.43 0.36 1.08
Kurtosis 0.86 13.93 9.15 16.11 12.94 11.59 9.53
Skewness −0.5 3.60 2.05 3.94 3.49 2.36 2.78
Range 0.56 538 96 503 13.68 2.75 6.65
Min. 2.37 22 12 5 0.59 0.31 0.45
Max. 2.93 560 108 508 14.27 3.06 7.10
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2.2. ML Cross-Validation

Using the cross-validation technique enables an assessment of both the variability
of the dataset used and the reliability of the models utilised to train and test through
the data. In this research, the dataset was first used to train and test the models by first
splitting the data in the ratio 80:20. This means that 80 percent of the dataset were used
for model training while the remaining 20 percent were utilised for testing. This method
shall be referred simply as the train-(validation)-split (TVS) method. For the application of
cross-validation, both the k-fold cross-validation (kFCV) and Monte Carlo cross-validation
(MCCV) techniques were applied. Cross-validation employed in this way, enabled the
sensitivity of the ML prediction to be tested especially when using the TVS method in order
to ensure that overfitting of the dataset was avoided in the modelling process.

k-Fold and Monte Carlo Cross-Validation Techniques (kFCV)

In the k-fold cross-validation (kFCV) techniques, the training, testing, and validation
are performed by splitting the N-dataset into k (k is typically set to 3, 5, or 10) mutually
exclusive subset depending on the size of the data. The model is then trained on a collection
of k–1 subset and the testing done on the remainder of the kth subset. This process is then
iterated k-number of times and each time, a different subset would sequentially take up the
role of the so-called “test set”. The resulting k-test statistical predictions are then averaged
to obtain a more realistic and representative output of the generalised performance of the
model used. In this study, the values of k utilised are both 5-and 10 (i.e., five- and 10-fold
CV) for the sake of comparison.

The Monte Carlo cross-validation (MCCV) is also an iterative technique and could be
regarded loosely as a combination of the TVS and the kFCV methods but with some slight
variations. The MCCV technique involves splitting of the N dataset into nt and nv subsets
by random sampling and without replacing the nt subset data points. The nt subset is then
applied to train the model and validation performed on the nv subset. It should be noted
that unlike kFCV, there exist an (N

nt) unique training set, however, MCCV circumvents the
need to run these many repetitions. It is very necessary to bear in mind that the choice of
the number required for dataset splits (k and/or nt) can influence the trade-offs between
bias and variance. The larger the values of k and/or nt, the higher the variance and the
lower the biases. Moreover, overfitting could be the end result because larger training
datasets tend to be more similar between iterations. An assessment of this phenomena
shall be carried out subsequently during an analysis of the ML models.

3. Supervised ML Models
3.1. Tree-Based Ensembles and Decision Forest Classifier Models

Decision tree prediction models do resemble a natural tree plant with leaf nodes
and decision branches functioning mostly by the aggregation of its separate parts into an
ensemble as shown in Figure 4. A series of simple tests are performed for each instance by
traversing a binary tree-data structure up until a decision node (or leaf node) is reached.
There are different kinds of tree-based models however, in this study, the random decision
forest and the boosted decision tree are considered.

3.1.1. Random Decision Forest (RDF) and Boosted Decision Trees (BDT)

The random decision forest regressor or classifier model is composed of an ensemble
of various non-parametric decision trees. An individual tree in an RDF would output
a Gaussian distribution as a prediction. The aggregation of trees is performed over the
tree combination to search for the closest Gaussian distribution to the combined total
distribution of all the trees in the decision model. The boosted decision tree model combines
individual trees to reach a decision by using the technique of “boosting” in order to increase
the accuracy of prediction. Boosting simply means that each succeeding tree is dependent
on the preceding on. Hence, the algorithm or model learns by fitting each tree’s residual
that precedes it.
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3.1.2. Meta-Heuristic Ensembles and Voting Ensemble (VE)

In order to further improve ML predictions, meta-ensembles are used. These are
constructed by an aggregation of several models or hyperparameters and thus are also
referred to as model of models. Some of the hyperparameters of the forgoing models were
combined through averaging by the voting and stacking systems. The voting ensemble
estimates the average predictive output of the sum of aggregated models through a majority
voting exhibited by the model with the highest prediction confidence or the model that has
the most popular output. A typical structure of VE is shown in Figure 5.
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While the stacking ensemble (SE) is an adjunct of the averaging system where the
hyperparameters learn and choose when to depend on themselves to enable a more
generalised multistage prediction. Hence, the output of preceding models would become
or serve as inputs for the subsequent models and predictions are being made as shown
in Figure 6.
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3.2. Stand-Alone Algorithms
3.2.1. Linear Regression (REG)

Multiple linear regression is normally applied to enable estimates of certain unknowns
(variables, parameters, or coefficients) by demonstrating how a change in one or more
independent set of variables can affect a corresponding predictor variable. Mathematically,
the general form of REG can be expressed as:

Yn = µ +
m

∑
n=1

αn · xn (2)

where Y = predictor variables and X1, X2, X3, . . . , Xm represent the independent variables
plus the error term that accounts for certain other unknown factors in the prediction.

3.2.2. Logistic Regression (LR)

Logistic regression normally arises from a conditional probability modelling that
suggests that the outcome or predicted variable say Y = 1, given a set of input or predictor
variables say X. Mathematically, the conditional probability (or the hypothesis function) is
modelled by LR as:

Pω(y = ±1|x) = 1
1 + exp−yωT x

(3)

where x represents the dataset, y represents class label and ω ε <n is the weight vector. For
a binary classification problem with two-class training dataset (xi,yi)i=1, xi ε <n, yi ε (1, −1),
then LR tends to maximise the following regularised negative likelihood:

p (ω) = C
l

∑
i=1

log
(

1 + exp−yωT xi
)
+

1
2

ωTω (4)

where C > 0 is regarded as a penalty parameter. It is important to mention that several
optimisation techniques have been applied on a LR problem and some of which are
documented in the literature [35,36].

For a multinomial classification problem, the conditional probability could be mod-
elled using a maximum entropy as:

Pω(y|x) =
exp(ωT f (x, y)

∑y′ exp(ωT f (x, y′))
(5)
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Here, the function vector is expressed f(x, y) ε <n.

3.2.3. Bayesian Linear Regressor (BLR)

Just like the LR, Bayesian linear regressor represents a special case of REG that allows
modelling to be performed within the “Bayes” theorem statistical inference.

Hence, for a given dataset say D = (x1, y1), . . . , (xn,yn) where x ε <d, and y ε <, then a
BLR model can be expressed as:

Prior:
ω ∼ N

(
0, σ2

ω Id

)
Ω is the vector (ω1, . . . , ωd)T, making the previous distribution a multivariate Gaus-

sian; and Id is a d x d identity matrix.
Likelihood

Yi ∼ N
(

ωTxi, σ2
)

With the assumption that Yi ⊥ Yj|ω, i 6= j
If we use the variance, a = 1/σ2, and b = 1/σ2ω then we assume that a and b are

unknown.
We state the prior as:

p(ω) ∝ exp
{
− b

2
ωtω

}
(6)

Furthermore, the likelihood stated as:

p(D|ω) ∝ exp
{
− a

2
(y− Aω)T(y− Aω)

}
(7)

where y = (y1, . . . ,yN)T and A is a n x d matrix
Then, the posterior is:

p(ω|D) ∝ p(D|ω)p(ω)

Which ultimately produces the expression:

p(ω|D) ∼ N (ω
∣∣∣µ, Λ−1)

where the precision matrix Λ is:

Λ = aAT A + bId

µ = aΛ−1 ATy

For the predictive posterior:

p(y|x, D) =
∫

p(y|x, D, ω)p(ω|x, D)dω =
∫

p(y|x, ω)p(ω|D)dω

It is then possible to then get the following:

y|x, D ∼ N
(

µTx,
1
a
+ xTΛ−1x

)
(8)

3.2.4. Artificial Neural Networks (ANN)

The structure and architecture of neural networks are inspired by the network of
input—processes (decisions)—output system such as that of the human nervous system.
More technically, the information or data processing capability of ANN is represented as a
network of input, hidden, and an output layers as depicted in Figure 7.
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Figure 7. Architecture of artificial neural network.

Where x = inputs, wij = neurons’ weight, b = bias and f = activation function that en-
ables the inputs to be transformed into the output by inputs’ (processing neuron) multiplied
by the corresponding weights.

3.3. ML Model Implementation and Multiclass-Class Evaluation Metrics

The implementation and execution of dataset (training, testing, and evaluation) by
the models was conducted on a cloud-based platform that supports Python programming
including its associated libraries. The properties of ML algorithms adopted for optimal
performance are presented in Table 3. The ML methodology followed in this study is
summarised in Figure 8.
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Table 3. Models’ optimised parameter settings.

Stand-Alone Algorithms

Parameter Option/value
REG Regularisation wt. (L2) 0.001

Method Ordinary least squares (OLS)

LR
Optimisation tolerance 1 × 10−7

Regularisation wt. (L1 & L2) 1.00
BLR Regularisation wt. (L2) 1.00

ANN

Normaliser min-max
No. of hidden nodes 100.00

No. of iterative learning 100.00
Hidden layer spec. Full connection

Tree-ensembles

Parameter Option/value

Boosted decision tree (BDT)
Constructed trees 100.00

Tree-forming training instances 10.00
Leaves/tree (max.) 20.00

Random decision forest (RDF)

Tree depth (max.) 32.00
Constructed trees 8.00

Method of resampling Bagging
Samples/leaf node (min.) 1.00
Randomised splits/node 128.00

In terms of the multiclass evaluation metrics, the indicators of performance considered
in this study for ML regression are the coefficient of determination (R2), Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) metrics. Detailed discussions for these
frequently used regression metrics are given in the literature [37,38]. However, for ML
multinomial classification, the following performance metrics shall be elucidated:

Accuracy—is simply an estimate of the average number of correct predictions in a ML
classification problem. It can be expressed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

where: TP = True Positive of prediction; TN = True Negative; FP = False Positive;
FN = False Negative

Precision—is defined as the TP divided by the sum of the positively predicted out-
comes. In order words, precision expresses the model’s unit proportion that are positive as
being actually positive. Precision is given as:

Precision =
TP

TP + FP
(10)

Recall—is defined as the TP divided by the sum of the positively predicted outcomes
in which case, unlike precision, FN are the labels that have been classified as negative even
though they are actually positive. Recall can be expressed as:

Recall =
TP

TP + FN
(11)

4. Results and Discussion
4.1. ML Regression

Table 4 indicates the statistical measures of performance of the ML regression algo-
rithms used for prediction of intrinsic compressibility index of the soils. The TVS method
was used for training, testing, and subsequent validation of the datasets. An indication
of good performance is usually depicted by high values of coefficient of determination
(R2) with corresponding low mean error values given as the mean absolute error (MAE)
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and the root mean square error (RMSE). Among the traditional regression models, the tree
ensembles (RDF and BDT) seem to outperform the stand-alone models (REG, ANN and
BLR) as could be observed in Table 4. With regards the stand-alone algorithms, BLR does
clearly produce the least accuracy when compared to REG and ANN. The outcome of REG
and BLR on a non-linear problem such as that presented by this study may not be entirely
surprising given the models’ underlying assumptions of linearity thus, being unable to
implicitly detect all the possible combinations or interactions between explanatory and
predictor variables. Notwithstanding, the relatively less accuracy of prediction given by
ANN is quite remarkable. Though, depending on a given regression problem, opinions are
quite divided as to the behaviour of ANN as a result of its inherent structure comprising
of ‘black boxes’ which may tend to either cause an over-estimation or not being able to
explicitly learn several unobserved causal relationships during data training. ANN has a
criterion that is not well-established to enable an interpretation of the weights and biases
that exist in a connection matrix. In ANN’s backpropagation method of instinctive search
and optimisation of its weight matrix, successive upgrades or updates tend to all converge
to local minimum error spaces rather than one that is more global.

Table 4. ML regression performance metrics.

Model
R2 RMSE MAE

% %

REG 0.67 0.73 0.54
ANN 0.59 0.81 0.61
BLR 0.19 1.14 1.02
BDT 0.82 0.53 0.44
RDF 0.86 0.48 0.38
SE 0.93 0.34 0.29
VE 0.93 0.33 0.26

Among the tree-based algorithms, RDF does appear to outperform (R2 of 0.86 and
RMSE of 0.48) though slightly, the BDT with an R2 of approximately 0.82 and RMSE of
about 0.53 both of which have incorporated the technique of ‘bagging’ or ‘bootstrapping’
in order to improve their performances. This method of boosting in addition to their innate
architecture does improve the tree-ensembles’ capacity to learn and predict the complexities
of non-linear interactions between the input features especially when compared to the afore-
mentioned stand-alone models. Nonetheless, tree-ensembles are also known to be ridden
with some setbacks of their own. Since the tree-ensembles function through a progressive
learning with subsequent ‘tree construction’ based on a previously fed training dataset,
there may be an intuitively ‘greedy’ construction phase where a perceived best entity is
most preferred and therefore selected without consideration of a successive aggregation
of another entity which might give even more accuracy than the previous one. This
phenomenon does result in a loss of information during training or testing because of
the continuous splitting and partitioning process. Overall, as could be observed from
Table 4, when all the above-mentioned models’ hyperparameters are meta-heuristically
combined into meta-ensembles (model of models) through the techniques of voting (VE)
and stacking (SE), the accuracy of prediction appears to increase remarkably. Although, a
closer examination would indicate that the method relying on voting does slightly produce
better prediction (RMSE of 0.33 and MAE of 0.26) than model hybridisation through
stacking (RMSE or 0.34 and MAE of 0.29). Further analyses and discussions regarding the
sensitivity of the best performing meta-ensemble models are given in sections following.

4.2. Sensitivity Analysis of the Meta-Ensembles
4.2.1. Comparing between Cross-Validation Techniques

Table 5 and Figure 9 compare the performance of the hybrid meta-heuristic ensemble
models across 3 cross validation methods. At first glance, it is observed that the method
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relying on the TVS seems to generally produce the highest values of R2 (with corresponding
lower RMSE and MAE scores) from Table 5. This phenomenon is also demonstrated by
the less degree of deviation of the predicted curve from the ideal line in Figure 9. On the
other hand, the iterative method of training, testing, and validation for which kFCV and
MCCV depend, tend to produce slightly lowers values of R2 compared to the TVS method.
As mentioned previously, both kFCV and MCCV are used to improve the prediction of ML
regression analyses while also serving as fine-tuning mechanisms to the TVS technique.
Hence, the modelling with training and testing carried out using TVS when compared
to kFCV and MCCV techniques seems to now indicate slight overfitting. Nonetheless,
from Table 5 it is observed that the MCCV method does generally provide slightly much
better accuracy than its kFCV counterpart. When also comparing between models, the
prediction offered by the meta-ensembles using MCCV as a technique of cross validation,
can be said to be more accurate than those of the stand-alone and tree ensembles which rely
on the TVS method (Table 4). Although, when considered in terms of their Bias-Variance
trade-offs, the MCCV is mostly deemed as having greater biases than the kFCV but with
the former seeming to provide slightly more confidence in ML predictions given that it is
more repeatable than the later due to its capacity to provide results with lower degrees of
variance. Besides being characteristically prone to giving results with high variance, one
other reason for KFCV’s poor performance is attributable to the number of its partitioning
being limited by the number of folds used. However, a much closer examination of Table 5
indicates that ML testing and validation relying on a smaller number of folds (for both
MCCV and kFCV) does marginally produce more accuracy.

Table 5. ML regression performance metrics by method of dataset testing and validation.

Model
R2 RMSE MAE

CV Method Set No. of Folds % %

TVS 20 - 0.93 0.34 0.29
10 - 0.67 0.66 0.62

SE KFCV - 5 0.88 0.44 0.33
- 10 0.86 0.44 0.33

MCCV 10 5 0.89 0.40 0.31
20 5 0.88 0.46 0.35
10 10 0.88 0.43 0.34
20 10 0.88 0.46 0.36

TVS 10 - 0.91 0.34 0.29
20 - 0.93 0.33 0.26

VE KFCV - 5 0.88 0.43 0.32
- 10 0.86 0.43 0.32

MCCV 10 5 0.90 0.40 0.32
20 5 0.88 0.45 0.35
10 10 0.87 0.44 0.35
20 10 0.88 0.46 0.36

It is important to bear in mind that depending on the situation, or the regression
problem faced with, both MCCV and kFCV have been reported in the past as being able
to provide better predictions than TVS. Nevertheless, within the context of this study, it
is seen that the reverse seems to be the case. Again, judging from the method of cross
validation used, model combination through voting does outperforms that done by stacking
as Figure 9 indicates.
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4.2.2. Model Residuals

Plot of the residuals of prediction does provide a means of validating ML models. By
using residual plots, the observed errors of the best performing meta-heuristic models are
assessed to ensure they are consistent with their corresponding stochastic errors (i.e., their
randomness and unpredictability). Adopting this procedure is very necessary in this study
given that none of the models used herein was able to produce 100% accuracy hence, these
models could be regarded as inherently possessing some slight degree of errors. Another
reason for using the residual plot is to assess the claims made of supposed overfitting
in using the TVS validation methods and to evaluate the closeness of prediction when
utilising both iterative cross validation methods—kFCV and MCCV.

A good model must always show independence of the residuals by having random
errors left when learning the dataset. Figure 10 compares the independence of the errors of
the meta-heuristic models across the validation methods. It is very interesting to observe
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that the TVS method does show a less independence of the stochastic errors even though
ML dataset training relying on it showed earlier that its performance in terms of the
statistical measures was the highest. However, as indicated in Figure 10, the data points are
less symmetric about the origin while there is a corresponding high density of points and
some measures of trending around the zero line. Moreover, there appears to be a pattern of
distribution that is linear along the horizontal axis. This is indeed a confirmation of the
less accuracy of the models’ prediction due to overfitting, when using the TVS method for
training and testing of the dataset in this research. This also means that the models could
not capture completely, the predictive information presented by the data hence, the reason
there is a seepage of the data into the residuals.

Appl. Sci. 2022, 12, 9940 16 of 25 
 

 

Figure 10. Residual plots. 

 

0 0.5 1

-1.6
-1.2
-0.8
-0.4

0
0.4
0.8

0 20 40 60 80 100

Re
sid

ua
ls

TVS - SE

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

0 20 40 60 80 100
Re

sid
ua

ls

TVS - VE

0 0.5 1

 – 1.6 

 – 1.2 

 – 0.8 

 0 

 0.4 

 0.8 

 – 0.4 

 – 1.6 

 – 1.2 
 – 0.8 

 0 
 0.4 

 0.8 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Re
sid

ua
ls

kFCV - SE

-2
-1.5

-1

-0.5

0

0.5

1

1.5

2

Re
sid

ua
ls

kFCV - VE

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

    2 

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

    2 

 0   0 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Re
sid

ua
ls

MCCV - SE

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Re
sid

ua
ls

MCCV - VE

    – 2 

 – 1.5 

    – 1 

 0.5 
    1 

 – 0.5 

 1.5 

   0 

    – 2 

 – 1.5 

    – 1 

 0.5 

    1 

 – 0.5 

 1.5 

   0 

 2 

Figure 10. Residual plots.



Appl. Sci. 2022, 12, 9940 15 of 23

Figure 10 also shows that the residuals of ML prediction given by the models with
cross validation performed using both kFCV and MCCV techniques are quite independent.
As could be observed, there are no forms of trending of the data points around the origin
rather, there is much scatter and disordered patterns. Nevertheless, Figure 10 shows that
that ML prediction of intrinsic compressibility with the cross validation carried out by
using MCCV, provides the most accuracy given the symmetric and random distribution
of residuals (no observable trends) about the origin for both voting and stacking models.
Again, this diagnostic test has further validated the training, testing and validation of the
meta-heuristic models performed using the MCCV as the best technique at least within the
confines of this study.

4.2.3. Distribution of Residuals

Normal frequency distribution of the residuals does provide another ground for which
a ML model effectiveness and authenticity can be assessed. Figure 11 indicates the normal
distribution and histogram of the meta-heuristic models under three validation methods.
Notice how both the models trained and validated by TVS and kFCV tend to be biased
towards predicting values that are higher and lower, respectively, than the actual values of
intrinsic compression index thus confirming their behaviour as demonstrated previously by
their residual plots. On the other hand, ML prediction carried out with the models trained
and validated using MCCV shows a much-balanced distribution as shown by the curve and
indicating much better prediction. The corresponding histograms are also used to validate
the accuracy of ML prediction. In this case, a very good model will tend to have its residuals
peaking at zero but with few of the stochastic errors at its extremes while a low performing
model will have its residual distribution spreading out but with fewer errors around zero.
Using this theory, it could be observed that the best performing meta-ensemble models do
have their training and validation done by adopting the MCCV method. It should also
be mentioned that the voting technique across the three cross validations tend to slightly
perform better than the technique of voting in general.

4.3. ML Classification

Different types of soils have been used for ML prediction from the forgoing. Hence,
machine learning classification shall be applied as another form of diagnostic test in the
forecast to ensure that the algorithms used properly learnt the different soil types and
as such able to discriminate between each of the soil categories. By relying on their
plasticity properties, this study utilises three different classes of soils defined according to
the unified soil classification system (USCS) in the ML prediction. Hence, for the type of
ML classification problem considered herein, the multiclass elements of the meta-models
are used to predict the soil categories. The distribution of the soil classes in the dataset was
given previously in Figure 3.

4.3.1. Receiver Operating Characteristic Curve (ROC) and Area under Curve (AUC)

To depict how well the meta-models are able to predict the probability of intrinsic
compression index belonging to the different soil classes across some decision thresholds, the
AUC-ROC are used. ROC plots the true positive rate (TPR) or sensitivity against false positive
rate (FPR) or one less specificity given under various thresholds therefore separating “noise”
from “signals” (Figure 12). Higher values on the horizontal axis, indicates higher number of
the false positives compared to the true negatives. On the other hand, higher values on the
vertical axis, indicate a higher number of true positives compared to false negatives. Hence,
balancing between false positive and false negatives remains the choice of a chosen threshold.
Meanwhile, AUC measures the actual capability of a model to differentiate between class
labels. Hence, the higher the larger of AUC, the better the classifier at being able to distinguish
between the positive and negative classes. When AUC equals 1, it therefore means that the
model has been able to perfectly distinguish between the classes. However, a zero value
would mean that the model has predicted all the positives as negatives and all the negatives



Appl. Sci. 2022, 12, 9940 16 of 23

as positives. When AUC is between 0.5 and 1, it means there is a higher chance that the model
is capable of detecting more numbers of true positives and negatives than false negatives and
positives. If AUC is exactly 0.5, then it means that the classifier is not able to differentiate
between classes, in which case, it is just predicting constant or random class.
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It could be observed from the ROC (Figures 13 and 14) that the meta-ensembles all
demonstrate the ability to discriminate between positive and negative classes. This also
means that using the meta-ensembles in the multinomial class prediction has enabled a
reduction in both type 1 and 2 prediction errors.
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The dataset training and testing performed using the TVS appears to show perfect
classification with an alignment of ROC with the top horizontal and left vertical axes. This
again indicates an overfitting of the dataset given that the application of iterative cross
validation techniques (kFCV and MCCV) results in slightly lower sensitivity compared to
the TVS method. A closer examination of the corresponding Tables 6 and 7 for both voting
and stacking methods of model aggregation indicates that ML training and validation done
by utilising the kFCV has the most sensitivity in distinguishing between the soil categories
but with the 5-fold validation case having the highest overall AUC.

Table 6. AUC metrics for SE model.

Model CV
Method Set No. of Folds

AUC

Micro Macro Weighted

TVS 20 - 0.957 0.869 0.975
TVS 10 - 1.000 1.000 1.000

SE KFCV - 5 0.989 0.982 0.992
KFCV - 10 0.982 0.986 0.992
MCCV 10 5 0.861 0.813 0.833
MCCV 20 5 0.890 0.843 0.911
MCCV 10 10 0.923 0.887 0.904
MCCV 20 10 0.946 0.929 0.946

Table 7. AUC metrics for VE model.

Model CV
Method Set No. of Folds

AUC

Micro Macro Weighted

TVS 20 - 0.986 0.986 0.996
TVS 10 - 1.000 1.000 1.000

VE KFCV - 5 0.992 0.984 0.993
KFCV - 10 0.991 0.996 0.998
MCCV 10 5 0.950 0.964 0.973
MCCV 20 5 0.974 0.969 0.984
MCCV 10 10 0.966 0.976 0.979
MCCV 20 10 0.983 0.982 0.990

Further analysis of sensitivity as given by Table 8 indicates that the kFCV method
has the best accuracy, recall rate and precision. When compared with the TVS method
(with 20% of the dataset) originally used for testing of the algorithm, it could be observed
that when using 5-fold cross validation multiclass predictions are higher by approximately
10–25% in terms of accuracy, rate of recall and precision. It is also interesting to observe that
the kFCV method does also performs slightly better than MCCV on a multiclass problem
such as that considered in this research. In this case, the disadvantage of using MCCV
seems to weigh more heavily on multiclass prediction than on non-linear regression.

Table 8 also indicate that the assignment of uniform weights to cater for any under-
represented class instances does clearly improves the individual multiclass accuracy com-
pared to the overall accuracy metric. Further, it is also worth noting that the averaging
of each class instances (i.e., micro-averaging), presents higher scores compared to the
averaging that considers all equal class instances (i.e., macro-averaging) with respect to
the most frequently occurring labels. Overall, by comparing the precision scores and recall
rates, using micro-averaging does provide a higher sensitivity and thus better performance.
However, it is needful to state that the application of the micro-averaging technique should
be approached with care because unlike macro-averaging, it may not be suitable when
dealing with an imbalanced class distribution given it does not average over larger group
or class instances.
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Table 8. ML multinomial classification performance metrics.

Model CV
Method

Set
(S)

No. of
Folds (F)

Accuracy Recall Precision

Overall Weighted Micro Macro Weighted Micro Macro Weighted

TVS 20 - 0.833 0.938 0.833 0.563 0.833 0.833 0.575 0.775
TVS 10 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SE KFCV - 5 0.924 0.972 0.924 0.758 0.924 0.924 0.787 0.908
KFCV - 10 0.933 0.964 0.933 0.856 0.933 0.933 0.855 0.923
MCCV 10 5 0.817 0.856 0.817 0.756 0.817 0.817 0.734 0.776
MCCV 20 5 0.858 0.911 0.858 0.746 0.858 0.858 0.745 0.809
MCCV 10 10 0.858 0.893 0.858 0.805 0.858 0.858 0.765 0.820
MCCV 20 10 0.908 0.946 0.908 0.806 0.908 0.908 0.803 0.875

TVS 20 - 0.875 0.957 0.875 0.625 0.875 0.875 0.683 0.850
TVS 10 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

VE KFCV - 5 0.958 0.982 0.958 0.856 0.958 0.958 0.865 0.946
KFCV - 10 0.941 0.975 0.941 0.861 0.941 0.941 0.859 0.928
MCCV 10 5 0.917 0.936 0.917 0.865 0.917 0.917 0.883 0.922
MCCV 20 5 0.925 0.969 0.925 0.796 0.925 0.925 0.803 0.901
MCCV 10 10 0.900 0.935 0.900 0.824 0.900 0.900 0.816 0.877
MCCV 20 10 0.921 0.964 0.921 0.781 0.921 0.921 0.778 0.897

Generally, within the method of model aggregation used, it could also be observed
that the voting method (VE) seems to generally perform better than its stacking counterpart
across the validation methods used.

4.3.2. Comparing between Meta-Heuristic Ensembles and Traditional Classifiers

The superior performance of the meta-ensemble models (VE and SE) on the multi-
class prediction of intrinsic compressibility of soils can be further validated by comparing
them to other traditional ML multinomial classifiers namely, artificial neural networks
(ANN), logistic regressor (LR), boosted decision trees BDT) and random decision forest
(RDF). The sensitivity scores of the multiclass classification given in Table 9 indicates
that both the stand-alone and tree-ensemble traditional ML classifiers do have the ca-
pability of distinguishing between soil plasticity categories just like the meta-heuristic
ensemble models. Notwithstanding, among the traditional classifiers, the tree ensembles
have clearly outperformed the stand-alone algorithms. ML prediction given by ANN is
generally the least accurate as could be observed from Table 9. Some of the elements of
the structure and architectural make-up of neural networks that do sometimes contribute
to its poor performance, especially when applied in ML prediction problems such as
those considered in this study, were stated previously in the regression prediction. Nev-
ertheless, it is quite apt to add that the stand-alone models (ANN and LR) are in many
respects quite similar given their common roots in statistics. However, the functional
form of expression used as indicated in their mathematical equations stated above is
what differentiates these classifiers. That which is used in LR is parametric whereas the
ANN operates semi- or non-parametric functions. This is a very important distinction
because most of the contributions given by parameters of an LR can be sufficiently
interpreted whereas, as stated previously in the discussion of ML regression, those of
ANN whose contributions are from the weights and biases may not be easily interpreted.
On the other hand, the relatively high prediction accuracy of the tree-based classifiers
is partly because their behaviour in learning is often suggested by a prior set of rules
and hence, they are referred to as ‘white-boxes’ as compared to the neural networks.
Hence, they tend to predict outcomes of classifications by continually splitting their
inputs based on a set of criteria which then leads to a maximisation of the separation
between the dataset and a decrease in entropy. The tree-based classifiers do have their
setbacks hence, an aggregation of models into multiple classifiers carried out by stacking
or by voting does further increase the accuracy of prediction as seen in Table 9 with the
dataset trained, tested, and validated by the kFCV method.
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Table 9. Sensitivity metrics for traditional ML algorithms and meta-ensembles with dataset training
and validation done under k-fold CV method.

Model
BDT RDF LR ANN VE SE

10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 10 CV 5 CV 10 CV 5 CV

Accuracy 0.898 0.907 0.898 0.866 0.747 0.731 0.721 0.690 0.941 0.958 0.933 0.924
Precision 0.869 0.805 0.836 0.772 0.531 0.523 0.523 0.455 0.859 0.865 0.856 0.787

Recall 0.878 0.836 0.842 0.715 0.634 0.570 0.585 0.520 0.861 0.856 0.856 0.758

4.3.3. Feature Importance

Indicators of the importance of independent features in ML prediction can also give
an insight into the data used in the modelling as well as allow for an improvement of
the efficacies of the models adopted. The relative significance and usefulness of the
input variables used in the predictions of target features are depicted in Figure 15 for
both the regression and multiclass classification ML predictions. The effect of each
individual independent variables is herein assessed using the best prediction models. In
terms of ML modelling and prediction of the intrinsic compressibility index of soils, it
is clearly observed from Figure 15a that the feature of importance in this regard is the
ratio of voids at 100 kPa of applied pressure. This is hardly surprising given the direct
bearing of this measure quantity on C*c as previously demonstrated in the void index
relationship. Among the other variables of indirect importance, the liquid limit including
its corresponding void ratio prove to be the next most useful features in the forecast of
C*c. It is very imperative to bear in mind that several strong linear relationships exist
between the Atterberg limits and C*c as suggested by previously mentioned studies.
On the other hand, when used for the first time in the prediction of C*c, the specific
gravity or the texture element seems to bear the least influence at least within the remit
of this research.
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In terms of multiclass classification and when the average of the absolute class weights
of the variables are considered, Figure 15b indicates that the Atterberg limits of the soils
are the most significant factors in the determination of soil classes with the plasticity
index wielding or having the highest numerical importance. This is a confirmation of the
established research and theory that uses mostly the soil plasticity index for the direct and
indirect determination of soil classes especially if the classification is carried out based on a
standard provided by the unified soil classification system (USCS). By virtue of individual
class vectors, the Atterberg limits features of the soils do generally seem to carry the most
influence on the multiclass prediction of the soil categories as observed in Figure 15c. It is
also interesting to note the individual importance of the ratio of voids at PI on the prediction
of the relatively least plastic soils when compared to the actual Atterberg limits (both PI
and LL). Again, as could be observed, the soil textural characteristics does not seem to be a
lot useful in the prediction of the soil classes not to mention the derived features C*c.

5. Study Significance and Implementation

The significance of machine learning to geotechnical engineering design cannot be
over- emphasized. The concept of artificial intelligence as applied in this study to predict
the intrinsic compressibility of soils can save time and cost during the initial planning and
design stages of soil investigation. For example, various tedious laboratory experimentation
and time consuming trials that also involve the determination of influencial factors on soil
instrinsic compressibility can be circumvented by adopting the methods carrried out in
this reserach. However, in order to practically apply the best performing algorithms from
this study, it is recommended that the background coding and scripting be persisted and
deployed on any organisation’s computing resource and training or testing performed on
new datasets of intrinsic compressibility of soils.

6. Conclusions

This study has used the machine learning (ML) approach to intelligently model the
intrinsic compressibility index of soils by adopting non-parametric tree-based ensemble
learners and meta-heuristic ensembles. Predictions using traditional stand-alone algorithms
were also performed and compared with those of the ensemble learners. ML multiclass
or multinomial classification was also applied to examine the ability of the classifiers to
adequately learn between the soil types and by so doing distinguish between positive and
negative classes. The following are the main conclusions from this study:

1. Among the traditional stand-alone ML regression models, BLR did produce the least
accuracy of prediction of intrinsic compressibility index of soil when compared to
REG and ANN. Although, a general consideration of the stand-alone ensembles such
as REG and BLR would suggest their inability to implicitly detect the complexities of
variable combinations due to their basic underlying assumption of linearity.

2. The tree ensembles (RDF and BDT) did generally outperform the stand-alone models
with the RDF model having an R2 of 0.86 and RMSE of 0.48 and the BDT model
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producing and an R2 of 0.822 and RMSE of 0.53. The techniques of ‘bagging’ or
‘bootstrapping’ inherent in these tree-ensembles certainly enhanced their accuracy in
that respect.

3. The technique of ensemble averaging with a meta-heuristic combination of models’
hyperparameters through voting and stacking gave the best overall performance in
the prediction of the intrinsic compressibility index of soils with an average R2 of 0.9
and RMSE of 0.34.

4. Sensitive analysis and diagnostic tests used to examine the procedure and outcome
of dataset training, testing and validation showed the Monte Carlo method of cross
validation as giving the best results for ML prediction.

5. An analysis of the features with direct influence on the ML prediction revealed that
the void ratio determined at effective stress of 100 kPa had the most significance
followed by soil’s Atterberg limits while specific gravity was the variable of least
importance in the forecast of intrinsic compressibility index of soils C*c.
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