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Abstract—A fixed-time adaptive neural network control
scheme is designed for an unknown model manipulator system
with input saturation and external environment disturbance, so
that the system convergence time can be parameterized and not
affected by the initial state of the system. The compensation
control item is introduced to compensate for external disturbance.
The scheme can ensure that the input torque always does not
exceed the actuator saturation value and the transient and steady
state performance will not significantly degrade. Furthermore,
the Incremental Broad Neural Network (IBNN) is used for
approximating unknown models with flexible adjustability and
high computational efficiency, so it can be applied to scenarios
with different control precision requirements. Simulation results
verify the effectiveness of the scheme in the above aspects.

Index Terms—input saturation, manipulator, fixed-time con-
trol, Incremental Broad Neural Network

I. INTRODUCTION

Convergence time is a vital evaluating indicator of the
control system. In nonlinear systems, the finite time control
theory is first proposed, which creatively parameterizes the
upper limit of convergence time of nonlinear systems and can
adjust the convergence time through parameter design [1], [2].
However, it also has some limitations such as the upper bound
of the convergence time that will be affected by the initial state
of the system. Unfortunately, in practical application scenarios,
the initial state of the system is often random and cannot be
adjusted to the ideal state as the designer wished. Therefore,
the convergence time of the scheme based on finite time stable
control is still unknown in many cases. Therefore, for solving
the above limitation, fixed time stability theory [3] was then
proposed with the advantage of making the upper bound of
convergence time independent of the initial state of the system
[4]. Thus, it can get a better convergence time by adjusting
the parameters, making it more suitable for practical system
design. In recent years, this theory has developed rapidly and
many excellent research results have emerged in [5]–[9].

In the field of robot manipulator control, neural network is
an important tool for modeling nonlinear complex systems.
Neural network has a strong nonlinear mapping ability and
can build the model of an unknown system through its
known system input and output signals. The approximation
performance of the neural network depends on if the input
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vector is included in the compact set domain of the neural
network. However, the nodes of the traditional neural network
need to be set up in advance, which requires certain prior
knowledge [10], [11]. Once the nodes are set up improperly,
the performance of NN will deteriorate. In the neural network
controller, when the approximation performance of the neural
network cannot meet the requirements of control accuracy,
the common approach will increase the number of layers and
nodes of the neural network. However, in the traditional neural
network [12], [13], the weights of the network needs to be
retrained, and the computational efficiency will be reduced,
making it difficult to ensure real-time performance.

Due to the limitations of its physical properties, there is
always an upper limit for the input that can be accepted by the
manipulator actuator in the real scene, which is also the max-
imum torque that can be input when we design the controller.
However, the ideal input saturation curve is a big challenge
to controller design, because the curve is not differentiable
at two inflection points, and the control signals do not change
smoothly, which is not feasible. Therefore, in practical design,
the saturation effect function used to assist the design needs
to select smooth function, such as ”tanh(·)” function [9],
[14], [15] and ”arctan(·)” function [16]. Meanwhile, due to
the complexity of the working environment, the manipulator
is usually affected by external disturbances during operation,
and the performance of the control system declines if the
disturbance is not compensated in the controller design.

Inspired by the above situations, we propose a fixed-time
neural network control scheme with the four contributions as
follows:

1) The tracking error of the system converges to a stable
state within the fixed time, and the tangent convergence time
is independent of the initial state.

2) The control law conversion is designed so that the system
can handle saturation effect and the torque in the whole
tracking process is ensured to keep within the saturation value.

3) For the disturbance torque of the external environment,
a compensation term is designed to increase the robustness of
the system.

4) The Incremental Broad Neural Network (IBNN) is de-
signed and used to approximate the unknown system model,
which has flexible adjustability and high computational effi-
ciency under different control performance requirements.



II. SYSTEM MODEL

The dynamic equation of manipulators with n degrees of
robot freedom (DOF) can be represented as:

Hθ̈ + Cθ̇ +G+ τdist = τ (1)

where θ ∈ Rn is the joint angle , H ∈ Rn×n is the inertia
matrix, C ∈ Rn×n is the Corianis matrix, G ∈ Rn represents
the gravity, τdist ∈ Rn represents external disturbance, τ ∈ Rn

represents the control moment. The robot manipulator has the
following two commonly used properties:
Propert 1: For any θ,θ̇ ∈ Rn, H , C, G are all bounded and
their first-order can guide.
Propert 2: Ḣ − 2C is an antisymmetric matrix, that is, for
any z ∈ Rn, zT (Ḣ − 2C)z = 0 are established.

III. PRELIMINARIES

A. Incremental Broad Neural Network (IBNN)

Broad Neural Network (BNN) [17] is an optimization
improvement based on the Random Vector Functional-link
Neural Networks(RVFLNN) [18].

Fig. 1: Structure of Incremental Broad Neural Network.

For the purpose of making the node distribution of neural
network more reasonable, we introduce the Incremental Broad
Neural Network (IBNN) into the controller, whose structure
is shown in Figure 1. Its expression is

Yi(x) =WT
i Φ(x) + ϵi(x), i = 1, 2, . . . , n (2)

where ϵi(x) is the approximation error, Φ(x) ∈ R3k is the
generalized feature mapping layer composed of mapping layer
and enhancement layer, i.e

Φ(x) = [S1(x), ..., Snew(x), E1(x), ..., Enew(x)]
T (3)

where each Si(x), i = 1, 2, . . . , k corresponds to a neural
network node, Sk(x) = Snew(x) indicates that the kth node
is latest generated node generated by the incremental learning
[19]. The principle of incremental learning is to intelligently
generate network nodes according to the system input ,ensur-
ing that the input is always in the compact set domain. Si(x)
represents the feature mapping function, which is chosen as a
Gaussian function:

Si(x) = exp[
−(x− µi)

T (x− µi)

σ2
i

], i = 1, . . . , k (4)

where x = [x1, x2, . . . , xm]T is input vector, µi ∈ Rm denotes
the ith node, σi is its corresponding width. Ei(x) ∈ R1×2

in (3) represents the enhancement layer which is generated
by extracting the effective information of the mapping layer.
Here, we use a trigonometric function:

Ei(x) = [sin(Si(x)), cos(Si(x))], i = 1, . . . , k (5)

B. Lemmas and remarks

Lemma 1 [20]: For a positive definite Lyapunov function
V (x), if its initial state V (x0) is bounded, it is first-order
derivable under any value of x, and its deivative satisfies the
inequality:V̇ < −pV + q, p > 0, q > 0, then the system
signals are uniformly ultimately bounded(UUB).
Lemma 2 [10]: For a positive definite Lyapunov function
V (x), if it holds: V̇ < −pV α − qV β + h, p > 0, q > 0,
h > 0, 0 < α < 1, β > 1, then the system ẋ = f(x, t) is fixed-
time stable, and its solution will converges to a compact set
Ω =

{
x|V ≤ min

(
[h/(p(1− γ))]

1/α
, [h/(q(1− γ))]

1/β
)}

,
where 0 < γ < 1. Besides, the convergence time of the system
satisfies: T ≤ Tmax = 1

pγ(1−α) +
1

qγ(β−1) .
Lemma 3 [21]: For any scalar ai, we have

n∑
i=1

|ai|r ≥

(
n∑

i=1

|ai|

)r

, 0 < r ≤ 1 (6)

n∑
i=1

|ai|r ≥ n1−r

(
n∑

a=1

|ai|

)r

, r > 1 (7)

Definition 1 : We define the ”Sigr(·)” and ”Sgn(·)” function

Sigr(x) = [|x1|rsign(x1), ..., |xn|rsign(xn)]T

Sgn(x) = [sign(x1), ..., sign(xn)]
T

(8)

where x = [x1, x2, ..., xn], i = 1, ..., n, r is a positive constant,
while sign(·) is signum function.
Definition 2 : We define the ”⊙” operation as follows:

x⊙ y = [x1y1, ..., xnyn]
T (9)

wher x = [x1, ..., xn]
T , y = [y1, ..., yn]

T .

IV. CONTROLLER DESIGN

A. Fixed-time controller

Fig. 2: Fixed-time IBNN Tracking Control Scheme.



We set z1 = θ, z2 = θ̇ as the state variables. According to
(1), the state space equation of the manipulator can be sorted
out as: {

ż1 = z2
ż2 = H−1(τ − Cz2 −G− τdist)

(10)

The error signal can be obtained as:{
z̃1 = z1 − θd
z̃2 = z2 − z2d

(11)

where θd ∈ Rn is the desired value, and z2d ∈ Rn is the
virtual control law that is designed in subsequent process.

The error dynamic equation can be obtained as:

H ˙̃z2 + Cz̃2 = τ −Hż2d − Cz2d −G− τdist (12)

According to the backstepping control method, the virtual
control law z2d is designed as:

z2d = −K11z̃1 −K12Sig
α(z̃1)−K13Sig

β(z̃1) + θ̇d (13)

where K11, K12, K13 ∈ Rn×n are diagonal matrices with
positive elements, 0 < α < 1, β > 1.

In order to make the network have flexibility of adjustment
and high computational efficiency under different approxi-
mation performance requirements, we adopt the Incremental
Broad Neural Network mentioned above to estimate the un-
certain model of the system, i.e.,

Y (x) = −Hż2d − Cz2d −G =WTΦ(x) + ϵ(x) (14)

where x = [zT1 , z
T
2 , z

T
2d, ż

T
2d], ϵ(x) is the approximation error

of the network.
In order to address the input saturation problem, we need

to introduce an auxiliary diagonal matrix Υ:

Υ = diag[
τ̄i
ūi

] , i = 1, 2, . . . , n (15)

where τ̄i denotes the ith joint actuator saturation value, which
means|τi| ≤ τ̄i, ūi is related to the expected maximum control
law in the design of controller parameters.

The derivative of z̃2 with respect to time is

˙̃z2 = ż2− ˙z2d = H−1(ΥΥ−1τ+Y (x)−τdist)−H−1Cz̃ (16)

The relation between the real control torque τ and the
designed control law u is as follows:

τ = s(u) + ∆τ (17)

where ∆τ represents the difference between the reakl value
and the desired value of the input saturatione. s(u) ∈ Rn

represents the conversion value of the control law u ∈ Rn

after saturation effect, which is also the actual input to the
controller. Here we use the ”arctan(·)” function to handle
the input saturation, i.e

si(u) =
τ̄i
ωi
arctan(

ωiui
ūi

) , i = 1, 2, . . . , n (18)

where ωi = π/2. According to [16], the following equation
holds

Υ−1s(u) = χ(u)u (19)

χ(u) = diag[
1

1 + (ηiωiui/ūi)2
] , i = 1, 2, . . . , n (20)

where 0 < ηi < 1. Thus (16) can be rewritten as:

˙̃z2 = H−1(Υχ(u)u+∆τ +WTΦ(x) + ϵ− τdist)−H−1Cz̃
(21)

Due to the uncertain deviation terms such as torque dis-
turbance τdist and error ∆τ + ϵ in (21), it is necessary to
compensate these bounded error terms in real systems, and
we assume its upper bound as

∆τi+ϵi−τdist,i ≤
n∑

i=1

(sup(|∆τi|+|ϵi|+|τdist,i|)) = di (22)

where sup(·) indicates the upper bound.d̂ represents the esti-
mated value of d, and the estimated error d̃ is defined as:

d̃ = d− d̂ (23)

Meanwhile, the update law of d̂ is

˙̂
d = Sgn(z̃2)⊙ z̃2 − υd̂ (24)

According to the saturation effect and fixed time stability
theory, we designed the original control law u as follows:

u = Υ−1ua (25)

ua =− z1 −K21z̃2 −K22Sig
α(z̃2)−K23Sig

β(z̃2)

− ŴTΦ(x)− Sgn(z̃2)⊙ d̂
(26)

where K21, K22, K23 are all diagonal matrices, and Ŵ is
the estimate of the weight W of the neural network. Here we
define the estimation error W̃ = W − Ŵ . Finally, we design
a new law for the weights of neural networks

˙̂
W = Γ(Φ(x)z̃T2 − λŴ ) (27)

where Γ ∈ Rk×k,λ ∈ Rk×k are both diagonal matrices, whose
elements are positive constants.

B. Stability Analysis

This part will be performed in two steps. The first step is to
prove that the whole system is Lyapunov stable, thus that some
error signals are bounded for the convenience of the second
part of the proof. The second step is to prove that the position
tracking error of the manipulator converges in fixed time on
the premise of the first step.

We first build three regularization equations using the error
terms z̃1, z̃2,d̃, W̃ :

V1 =
1

2
z̃T1 z̃1

V2 =
1

2
z̃T2 Hz̃2

V3 =
1

2
d̃T d̃+

1

2
tr(W̃TΓ−1W̃ )

(28)



Combining (10), (12) and (13), we can acquire V̇1 as

V̇1 =z̃T1 ˙̃z1

=z̃T1 (z̃2 −K11z̃1 −K12Sig
α(z̃1)−K13Sig

β(z̃1))

=z̃T1 z̃2 −
n∑

i=1

(k11,iz̃
2
1,i)−

n∑
i=1

(k12,i|z̃1,i|α+1)

−
n∑

i=1

(k13,i|z̃1,i|β+1)

(29)

Combining (20), (21) and (22) and Properties 1, 2, we can
acquire V̇2 as

V̇2 =z̃T2 ((χ(u))ua +∆τ +WTΦ(x) + ϵ− τdist)

≤z̃T2 (−z1 −K21z̃2 −K22Sig
α(z̃2)−K23Sig

β(z̃2)

− W̃TΦ(x) +WTΦ(x) + d− Sgn(z̃2)⊙ d̂)

≤−
n∑

i=1

(k21,iz̃
2
2,i)−

n∑
i=1

(k22,i|z̃2,i|α+1)−
n∑

i=1

(k23,i|z̃2,i|β+1)

+
n∑

i=1

(|z̃2,i|di)−
n∑

i=1

(|z̃2,i|d̂i)− z̃T2 z̃1 + z̃T2 W̃
TΦ(x)

≤−
n∑

i=1

(k21,iz̃
2
2,i)−

n∑
i=1

(k22,i|z̃2,i|α+1)−
n∑

i=1

(k23,i|z̃2,i|β+1)

+

n∑
i=1

(|z̃i|d̃i)− z̃T2 z̃1 + z̃T2 W̃
TΦ(x)

(30)
Combining (23),(24), (27) and Young’s inequality, we can

acquire V̇3 as

V̇3 =−
n∑

i=1

(|z̃i|d̃i)− d̃Tυd̂− tr(W̃T (Φ(x)z̃T2 − λŴ ))

≤−
n∑

i=1

(|z̃i|d̃i)−
n∑

i=1

(
υi
2
|d̃i|2) +

n∑
i=1

(
υi
2
|di|2)

− z̃T2 W̃
TΦ(x)−

n∑
i=1

(
λi
2
|W̃i|2) +

n∑
i=1

(
λi
2
|Wi|2)

(31)
Step 1: A candidate Lyapunov function VI is built as:

VI = V1 + V2 + V3 (32)

The derivative of VI is:

V̇I =V̇1 + V̇2 + V̇3

≤−
n∑

i=1

(k11,iz̃
2
1,i)−

n∑
i=1

(k21,iz̃
2
2,i)−

n∑
i=1

(
υi
2
|d̃i|2)

−
n∑

i=1

(
λi
2
|W̃i|2) +

n∑
i=1

(
υi
2
|di|2) +

n∑
i=1

(
λi
2
|Wi|2)

=− aVI + b

(33)

where b =
∑n

i=1(
υi

2 |di|
2)+

∑n
i=1(

λi

2 |Wi|2) > 0 and a is also
positive constant, which satisfy:

a = min(2λmin(K11),
2λmin(K21)

λmax(H)
,
2λmin(λ)

λmax(Γ−1)
, 2λmin(υ))

(34)

where λmin(·) and λmax(·) denotes the maximum value and
the minimum value of diagonal matrix elements.

Following Lemma 1, we can know that if the initial state
VI(0) is guaranteed to be bounded, the related error signals
ψs = (ξ̃1, z̃2, W̃ , d̃) that constitute the Lyapunov function
VI are uniformly ultimately bounded(UUB). Therefore,there’s
some positive constant z̃1b, z̃2b, W̃b, d̃b, that makes these
inequality ||z̃1|| < z̃1b, ||z̃2|| < z̃2b, ||W̃ || < W̃b, ||d̃|| < d̃b
always true.

Step 2: We choose another candidate Lyapunov function
VII :

VII = V1 + V2 (35)

Taking the derivative of VII :

V̇II =V̇1 + V̇2

≤−
n∑

i=1

(k12,i|z̃1,i|α+1)−
n∑

i=1

(k13,i|z̃1,i|β+1)

−
n∑

i=1

(k22,i|z̃2,i|α+1) +
n∑

i=1

(k23,i|z̃2,i|β+1)

+

n∑
i=1

(
υi
2
|di|2) + z̃T2 W̃

TΦ(x)

≤− κ1V
α+1
2

II − κ2V
β+1
2

II + h

(36)

According to the conclusion of the previous step,we have
|z̃T2 W̃TΦ(x)| ≤ c̄, where c̄ is a positive constant.Then we set
h as h = c̄+

∑n
i=1(

υi

2 |di|
2) .Besides, κ1, κ2 satisfy

κ1 = min(2λmin(K12, 2λmin(K22) (37)

κ2 = min(
2λmin(K13)n

1−β
2

λmax(H)
,
2λmin(K23)n

1−β
2

λmax(H)
) (38)

We can know from Lemma 2 that the correla-
tion signals ϑ = (z̃1, z̃2) of the Lyapunov func-
tion VII will finally converge to the compact set
Ω =

{
ϑ|VII ≤ min

(
ν

κ1(1−γ)

2
α+1 , ν

κ2(1−γ)

2
β+1

)}
fixed time,

where 0 < γ < 1 and the convergence time of the system
satisfies: T ≤ Tmax = 2

κ1γ(1−α) +
2

κ2γ(β−1) .

V. SIMULATION AND RESULTS

A. Simulation model

In order to verify the feasibility and effectiveness of the
proposed control scheme, a simulation experiment is carried
out on the 2-DOF manipulator model [22] . The mass and
length parameters of the connecting rod manipulator are m1 =
5kg, m2 = 2.5kg, g = 9.81N/kg, l1 = 0.6m, l2 = 0.4m.

During the experiment, the desired trajectory is set as:

θd(t) =

[
θd1
θd2

]
=

[
−0.5 + 0.8sin(0.8πt)
−0.3 + 0.8cos(0.8πt)

]
(39)

The parameters related to input saturation are τ̄ =
[100, 50]T , ū = [300, 300]T , υ = diag[1, 1]. The original state
is θ(0) = [0.5;−0.5]T . The gain parameters in the virtual
control quantity and control law are K11 = diag[30, 10],
K12 = diag[5, 3], K13 = diag[4, 2], K21 = diag[30, 10],



K22 = diag[5, 3], K23 = diag[4, 2]. The parameters of
Incremental Broad Neural Network are σ = 50, δ = 0.9,
m = 3,ε = 12, Γ = diag[2, 2], λ = diag[1, 1].

In order to display the performance of the proposed con-
troller more intuitively, we create a comparison experiment.
The comparison controller adopts PD+ controll as

u =−Kpz̃1 −Kd
˙̃z1 +G

τi =

{
τ̄i ⊙ sign(ui) , |ui| > τ̄i

ui , |ui| ≤ τ̄i

(40)

where Kp = diag[150, 50], Kd = diag[150, 50] and gravity
G will be compensated completely.

The robustness of the manipulator under disturbance torque
needs to be further investigated. A random disturbance torque
within the range of [−5, 5] and [−2.5, 2.5] is set for the first
joint and the second respectively.

B. Result analysis

(a) (b)

Fig. 3: Tracking errors of θ.

The position tracking errors of the controller is shown in
Figure 3, where the solid blue line represents the results of
proposed fixed-time controller (FT), and the dotted red line
represents the results of PD+ controller. In the transient ad-
justment process, the joints of the FT controller can converge
to the stable state faster than the PD+ controller, and the
convergence time is shorter. During the steady-state tracking
process, the proposed controller has a stronger tracking ability
to the desired trajectory with a smaller steady-state errors.
Therefore, it can be concluded that the proposed controller has
a good performance in transient regulation and steady state.

Fig. 4: Estimate of disturbance term d.

A control item d̂ is designed to compensate for the error
item composed of τdist, ∆τ and ϵ. Figure 4 shows the
update of d̂ in the tracking process, where the solid blue
line corresponds to the first joint and the dotted red line
corresponds to the second one. It is not obvious that d̂ for both

joints can finally converge to constant values, so the designed
error compensation control is effective.

(a)

(b)

Fig. 5: Weight estimation of IBNN.

Figure 5 shows the weight estimation corresponding to the
two joints. The weights of the two joints can converge to the
constant values quickly, and the number of activated weights is
close to the number of nodes, indicating that the nodes of the
neural network are set reasonably and have a good estimation
effect of the system uncertainties.

(a) (b)

Fig. 6: Actual Control Torque

Figure 6 shows the actual input torque of the controller
to the manipulator during the tracking process, where the
solid blue line is the result of the proposed controller and the
dashed red line is the result of the PD+ controller, and the
dotted yellow and purple lines indicate the actuator saturation
values. During the whole process, the actual input of both
controllers can be within the saturation value range. However,
the proposed controller can make full use of the saturation
effect, adjust the range of control torque flexibly between
the upper and lower saturation values. Although the contrast
controller triggered the saturation effect at the beginning, it is
attenuated on the whole, leading to the failure that makes full
use of the torque range within the saturation interval, which



results in a long adjustment time of the system and a large
steady-state error.

TABLE I: Relationship between threshold and precision

parameter number of nodes z̃1,1[rad] z̃1,2[rad]
76 25 0.02780 0.0231
117 18 0.02768 0.0226
191 12 0.02752 0.0222

In order to verify the designed Incremental Broad Neu-
ral Network under different approximation performance and
control accuracy requirements whether has the characteristics
of the flexible adjustment, we set up the horizontal contrast
experiment, the experimental results are shown in Table I.
In Table I, the 1st column is a distance threshold parameter,
the 2nd column is the number of nodes in the network, the
3th and the 4th column is the steady-state error of the two
joints. It should be noted that the distance threshold parameter
determines the number of nodes in the neural network [19].
The smaller the threshold parameter is, the more nodes there
are in the network. It is obvious from the table that the
threshold parameter is smaller and the steady-state tracking
error of the system is lower. Meanwhile, the convergence time
does not increase significantly, indicating that the increase of
nodes will not significantly increase the amount of calculation.
That is to say, for the higher control accuracy, we only need to
simply adjust the distance threshold to ensure the performance
requirements and not significantly reduce the computational
efficiency.

VI. CONCLUSION

Aiming at the saturation effect of actuator input and the
disturbance of external operating environment of unknown ma-
nipulator, we propose an Incremental Broad Neural Network
control scheme. By introducing a arctangent function to handle
input saturation effect, the control torque input to the actuator
can be kept within the saturation value range, and the position
tracking errors of the system can converge to stable values
in a fixed time. For disturbance torques and uncertainties we
build a feedforward control item to compensate the errors.
The Incremental Broad Neural Network used to estimate the
unknown model of the system has the flexibility of adjustment.
For acquring a higher approximation performance and a better
tracking effect of the control system , distance threshold
parameters need to be simply adjusted, which can guarantee
the performance requirements and will not significantly reduce
the computational efficiency.
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