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Abstract 

In light of recently increased e-commerce, also a result of the COVID-19 pandemic, this study 

examines how additive manufacturing (AM) can contribute to e-commerce supply chain network 

resilience, profitability and competitiveness. With the recent competitive supply chain challenges, 

companies aim to decrease cost performance metrics and increase responsiveness. In this work, we 

aim to establish utilisation policies for AM in a supply chain network so that companies can 

simultaneously improve their total network cost and response time performance metrics. We 

propose three different utilisation policies, i.e. reactive, proactive – both with 3D printing support 

– and a policy excluding AM usage in the system. A simulation optimisation process for 136 

experiments under various input design factors for an (s, S) inventory control policy is carried out. 
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We also completed a statistical analysis to identify significant factors (i.e. AM, holding cost, lead 

time, response time, demand amount, etc.) affecting the performance of the studied retailer supply 

chain. Results show that utilising AM in such a network can prove beneficial, and where the 

reactive policy contributes significantly to the network performance metrics. Practically, this work 

has important managerial implications in defining the most appropriate policies to achieve 

optimisation of supply network operations and resilience with the aid of AM, especially in times 

of turbulence and uncertainty. 

Keywords: Additive manufacturing, 3D printing; inventory optimisation; supply chain; e-

commerce; resilience 

 

1. Introduction 

According to the United Nations Conference on Trade and Development (UNCTAD), the e-

commerce sector witnessed a  substantial rise in its share of all retail sales, from 16 per cent to 19 

per cent in 2020 (UNCTAD, 2021). Furthermore, propelled by the unprecedented circumstances 

of the recent COVID-19 lockdowns, businesses have turned to e-commerce to stay financially 

viable, increasing final consumers’ purchasing via online platforms. In this vein, many companies, 

including retailers, have been enriching or even amending their entire business models via the 

contemporary technologies of the Industry 4.0 era (Grabowska et al., 2020; Jiang and Stylos, 2021).  

AM, also referred as 3D printing technology can provide significant benefits to e-commerce 

retailers in several ways: it speeds up production, reduces costs and inventory waste, and allows 

for custom-made and highly spersonalised product design, etc. For instance, some well-known shoe 
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manufacturers (Adidas, Nike, New Balance, and Under Armour) are already implementing AM 

into their strategies.  

Recent studies (Afshari et al., 2020; Attaran, 2020) posits that AM can significantly alter the roles 

of suppliers and manufacturers. 3D printing technology can transform the prevailing context of 

conventional supply methods – which may involve a high cost of ordering small-sized parcels – as 

companies typically tend to order large sizes in one run for current and expected future demands. 

As previously highlighted, massive production and logistics networks create a physical inventory 

of spare parts that may or may not be used in the future, also causing costly storage and 

management of that inventory (Esmizadeh and Mellat Parast, 2021). Thus, due to its ability to save 

significantly on physical inventory and logistics, the use of 3D printing within supply chains is 

expected to continue to increase (Molcho, 2020). As a result, the global AM market size is 

estimated to reach USD 76.16 billion by 2030, growing at a CAGR of 20.8% (Businesswire, 2022). 

Figure 1 shows the AM market forecasted growth based on sectors. Accordingly, consumer 

products play a major role in AM market trends and are expected to grow. 

 

Figure 1. Global AM market share based on sectors (adopted from Kearney, 2019). 
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It has been reported that the benefits of AM are numerous including accelerated prototyping, 

customisation, energy and environmental savings, inventory stock reduction, and flexible 

production (Mehrpouya et al., 2019). However, it also comes with some disadvantages, such as 

slow processing as well as high production costs. In this study, we focus on the inventory stock 

reduction advantage of AM in the retail supply chain by considering that components are printed 

on-demand, which is cost-efficient compared to ordering from a higher echelon supplier; a 

reduction in inventory stock can be anticipated as well. 

Interestingly, until recently, very little empirical research has existed in this particular field 

of enquiry. For instance, Kunz et al. (2014) examine the potential key contributions of 3D printing 

technology in times of crises and great uncertainty as a medium to address real shortages of vital 

products that cannot be fulfilled with traditional mass-production approaches. Taken together, this 

study examines the following research questions: 

RQ1: Which integration policy would be the most beneficial to utilise AM technology in a two-

echelon supply chain network?  

RQ2: Which input parameters (e.g., unit cost and time-related parameters) would significantly 

influence the performance of that supply chain network? 

Specifically, RQ1 investigates which integration policy would be the most beneficial to utilise a 

3D printer: a reactive or a proactive policy? Here, reactive policy refers to 3D printer response (i.e., 

production) to inventory deficiency after it happen, also known as make-to-order policy in the 

extant literature. Proactive policy refers production of inventory by the 3D printer before demand 

occurs. This policy is also known as the make-to-stock policy in the extant literature. RQ2 
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investigates the input design factors (e.g., unit cost and time-related parameters) significantly 

influencing the performance of the proposed supply network. 

From a theoretical perspective, this study builds upon the work of Rodríguez-Espíndola et al. 

(2020) and Tsai (2017) to extend current knowledge on measuring the influence of certain factors 

on the performance of a supply chain network, which incorporates 3D printing equipment. 

Furthermore, a sensitivity analysis was conducted for this research via three different scenarios 

which represent three different supply chain network policies. Practically, this work has important 

managerial implications for better understanding show AM can be best implemented to optimise 

supply network operations. Thus, the findings of this research could serve as a starting point for 

managers to evaluate the performance of their existing supply chain networks and how these could 

benefit by integrating 3D printing as a cornerstone for increasing system resilience, especially in 

times of turbulence and uncertainty. 

 

2. Theoretical Background 

2.1 Supply chains and system resilience 

Modern organisations rely heavily on global supply chains and lean principles for achieving 

efficiency, though this approach may need to be reconsidered in turbulent times as they become 

more vulnerable, e.g. during the coronavirus outbreak (Ivanov, 2020). Over time, organisations 

have built up resilience by having risk mitigation inventories, subcontracting capacities, backup 

supply and transportation infrastructures, omnichannel distribution systems, flexible production 

technologies, and data-driven, real-time monitoring and visibility systems. However, the COVID-

19 pandemic has shown that these measures were not good enough to deal with the sudden 
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disruption on a global scale (Ivanov and Dolgui, 2020; Hosseini, Ivanov and Dolgui, 2019). This 

has compelled and accelerated organisations globally to explore alternative ways of meeting the 

demand surge and building resiliency in their supply chains. In addition, the ability of flexible and 

advanced manufacturing technologies to provide more adaptable production capabilities that are 

less susceptible to disruption has helped them to develop resilience in their supply chains 

(Zimmerling and Chen, 2021). Thus, the ability to respond rapidly turns out to be more important 

than long-term or planning for foundational changes in reducing the effect of a disruption 

(Shekarian et al., 2020). In this context, Chowdhury et al. (2021) respond to disruptions by quickly 

adapting product development cycle time, lead time, and customer services via an agile approach. 

Owing to the global supply chain disruptions and rising demand for essential goods and 

components, 3D printing has emerged as an alternative solution to address some of these 

challenges, where certain physical products can be manufactured locally or on-site (Abbink 2015, 

Durach at al., 2017). 

 

2.2 Additive manufacturing and supply chains 

AM is an important building block of the fourth industrial revolution and has been introducing 

infrastructural transformations in manufacturing, as well as in several service sectors, including the 

respective supply chains, to support these industries (Ivanov et al., 2019). 3D printing creates 

physical objects from a geometrical representation by successive additions of selected materials 

(Shahrubudin et al., 2019). The digital versatility, customisation, ability to deal with complex 

designs and quick prototyping of 3D printing have recently empowered a rapid smobilisation of 

this technology in response to emergencies. 

https://www.sciencedirect.com/science/article/pii/S1366554521000478#b0635
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During severe disruptions in supply chains, as seen during the recent COVID-19 pandemic, 

critical parts can be manufactured on-demand by any sdecentralised 3D printing facility around the 

world by leveraging designs shared online (Choong et al., 2020). Many examples of 3D printing 

applications have been used, particularly addressing the essential healthcare supply woes during 

this pandemic. Since the emergence of the COVID-19 pandemic, there has been widespread media 

coverage of healthcare organisations globally reling on 3D printing communities and companies to 

ease the breakdown in the medical supply chain by 3D printing time-critical parts on demand, such 

as face shields, respirators, and spares for ventilators (Salmi et al., 2020). Recent studies have also 

shown that 3D printing can be used to support the spare parts market (Ballardini et al., 2018; 

Khajavi et al., 2020; Knofius et al., 2021; Heinen and Hoberg, 2019). Liu and Evans (2016) suggest 

that 3D printing presents significant potential to enable companies to think of new methods of 

creating objects and better deal with global manufacturing challenges. Overall, it is clear from these 

discussions that 3D printing may play a significant role during emergencies in addressing supply 

chain issues caused by sudden peaks in demand when supplies from traditional means are difficult. 

2.3 Retail SMEs, supply chains and relevant networks optimisation 

Small and Medium Enterprises (SMEs) play a major role in most economies and represent about 

90% of businesses and more than 50% of employment worldwide (The World Bank, 

2019).However, evidence suggests that SMEs are relatively less prepared than larger organisations 

to cope with disruptions due to the volatile and resource-constrained environment in which SMEs 

operate (Bak et al., 2020). Because of the critical role that SMEs play in the supply chains, 

including those of the retail sector, the preservation of their manufacturing capability and supply 

network capacity is paramount, especially under conditions of uncertainty such as the ongoing 

pandemic and environmental shocks (Devin and Richards, 2018). In line with this, managing the 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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available resources effectively is a critical part of the supply chain networks. For example, useful 

insights on how collaboration in agri-food supply chains impacts firm performance have been 

provided by Zaridis et al. (2020), focusing on the moderating role of scale constraint and firm 

strategy on supply chains under uncertainty. They found that supply chain collaboration positively 

impacts SME performance, and scale constraints moderate the supply chain collaboration-SME 

performance relationship.  

There is also evidence that the SME retail strategy moderates the supply chain 

collaboration-SME performance relationship (Gawankar et al., 2020). Besides, SMEs can 

sstrategise their supply chain collaborations by removing scale constraints, which would make 

offering customised solutions to end-user customers a financially viable solution to retailers while 

successfully meeting or exceeding their customers’ expectations (Bijmolt et al., 2021). Overall, 

SMEs' performance improves when supply chain collaborations help SMEs overcome financial, 

efficiency or innovation constraints. 

 2.4 Resource Capabilities in SMEs 

Resources have been scategorised as physical capital, human capital, and organisational capital 

(Barney, 1991) and are further enhanced by financial, technological, and reputational capital 

(Grant, 1991). They may be tangible, such as infrastructure, or intangible, such as information or 

knowledge sharing (Groebler & Grubner, 2006). For the scope of this study, we focus on 

organisational, technological, and financial capital only.  

Resources are considered to be “something a firm possesses or has access to, not what a firm is 

able to do” (Groebler & Grubner, 2006, p. 460). They may not provide value themselves, but they 

are rather required to be processed or used in bundles to drive performance (Newbert, 2007). 
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Bundling refers to combining resources to allow capability development (Sirmon, Gove & Hitt, 

2008), with SMEs in the retail sector particularly benefitting from this practice (Chinakidzwa & 

Phiri, 2020). A combination of resources is required “to exploit opportunities and/or mitigate 

threats” in particular contexts or industries for organisations to be able to produce or maintain a 

competitive advantage (Sirmon et al., 2008; p. 922). 

Conceptually, the Resource-based view theory posits that firms utilise and sorganise their resources 

in ways to establish and augment their dynamic capabilities (Beltagui et al., 2021). Dynamic 

capabilities are defined as organisations’ capacity to create, extend, or modify their resource base, 

i.e. processes such as product development and making strategic decisions such as determining the 

reallocation of their resources, to build and maintain connections effectively (Barney, 1991; 

Eisenhardt and Martin 2000). These aid firm's ability to reconfigure their resources and respond 

successfully to complex and uncertain business environments, such as the one in which SMEs 

currently operate (Devin and Richards, 2018; Zaridis et al., 2020). Furthermore, SMEs can extend 

their resource stocks (inventories) by utilising resources, assets and skills external to a firm and 

maximising their value (Popli et al. 2017). Supply chain collaboration, considered a higher-level 

dynamic capability, offers a double gain for SMEs: a) lower transaction costs and b) access to 

external resources and capabilities (Hitt, Xu, and Carnes 2016).   

The reduction in transaction costs should benefit SMEs having financial capital strategies, 

while access to external resources enables benefits for SMEs investing in the differentiation of 

quality. However, collaboration with a strategic partner may prove unconstructive as a supply chain 

collaboration may show deficiencies for SMEs in relation to risks stemming from information 

asymmetries, hold-up costs, and resource misuse (Arend and Wisner, 2005). There are times when 

the relationship is helpful and fruitful, but when disruptions are evident in supply chains, then the 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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issue of demand for resources and their allocation is not as harmonious since partners compete for 

the same resources (Bak et al., 2020; Devin and Richards, 2018).  

Under these conditions, reactive policies are needed to smooth out the supplier constraints 

i.e., external collaborators unable to meet manufacturing demands lead to alternative forms of 

fulfilling supply demands in the production cycle. Under uncertainty and resource constraints, the 

emergence of 3D printing can provide useful alternatives to pick up slack in the production cycle 

and overcome shortfalls of access to external resources (Salmi et al., 2020). In this case, the 

financial capital transaction costs might be greater per unit produced. However, the effect of the 

agility for meeting the demand via fulfilling orders using 3D printers may compensate for the 

shorter term fluctuations of demand and relevant capacity issues, as those small/medium size 

retailers frequently deal with (Mkansi, 2021); though this approach wouldn’t be suitable to be 

implemented under normal conditions such as for larger orders of stock/ resources (Arend and 

Wisner, 2005; Sirmon et al., 2008).  

Dynamic capabilities are needed to develop responsiveness and resilience in the supply 

chain of SMEs, particularly under extreme conditions, with the most recent ones relating to the 

COVID-19 crisis (Rashid and Ratten, 2021). Furthermore, with stock control being an important 

component of SME business, there is a need to control demand under constraints (Devin & 

Richards, 2018). 3D printing provides useful dynamic abilities for SME businesses to use financial 

capital reactively to address higher resource demand (Newbert, 2007). That is, 3D printing can 

absorb external supply difficulties, and while the use of 3D printing might prove to be more costly, 

it still provides an efficient way of dealing with sudden peaks of demand within the shorter 

turnaround timeframes for products to create strategic value (Popli et al., 2017). 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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Technological capital is a resource capability that is useful for meeting demands in the 

supply process through the normal production cycle and extends to the existing supply capabilities 

(Hitt, Xu & Carnes, 2016). For example, 3D printing provides a technological capital resource, an 

extended resource capability providing a proactive use of resources to meet demand internally 

within a quicker response time for relatively small demand requirements (Grant, 1991, Salmi et al., 

2020). The capability of the organisation to reduce stock-outs is by planning and controlling the 

flow of demand in order to protect organisational capital (Bak et al., 2020; Chowdhury et al., 2021). 

The organisational capital includes the intra and inter-organisational resources and 

capabilities to deliver strategic value (Grant, 1991; Barney, 1991). By controlling the supply of 

stock/ inventory, uncertainty is reduced, and the organisation’s capability to meet demand 

dynamically is increased through an additional capability, thus gaining an extension of its current 

resource offering (Eisenhardt and Martin 2000). By sutilising 3D printing, SMEs can reduce the 

holding costs of storing inventory and respond to short-term small supply resource requirements 

(Kunovjanek & Reiner, 2020), thus providing the ability to meet the demand for a proactive policy 

(Devin and Richards, 2018, Salmi et al., 2021). It can absorb smaller scale supplier issues, thus 

reacting more resiliently to uncertainty in the environment and preserving organisational capital.  

Overall, financial capital, technological capital, and organisational capital resources are key factors 

in delivering value and meeting demand fluctuations in retail SMEs (Ding et al., 2020). 

 

3. Methodological approach 

3.1 Case study setting and context 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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This paper studies how 3D printer utilisation may positively affect a retailer supply network 

performance and under which network input parameter values the network performance may be 

optimised. By identifying those, an organisation can decide on whether or not to adopt a 3D printer 

for its network. The most relevant works are related to work by Song and Zhang (2020) and by 

McDermott et al. (2021). The former aims to provide a framework to sminimise long-run average 

system cost by determining which parts to stock and which to print. The latter assesses the preferred 

AM-enabled supply chain configuration for varying intermittent demand patterns and AM 

production capacity levels. As far as the current study is concerned, the effect of AM on supply 

chain cost has been analysed by taking into account several factors: holding cost, lead time, 

response time, demand amount, etc. by ANOVA, by also involving response time constraint in the 

model. As part of our motivation to contribute positively to the extraordinary epidemic situations 

such as COVID-19, which has caused sudden changes in demand for tangible products and 

services, we study a two-echelon supply network for a small-size retailer, utilising a 3D printer as 

in Figure 2. Note that any small-size two-echelon supply network can also utilise the findings 

proposed by this study. This figure show information and product flows by dashed and solid lines, 

respectively. Here, we assume that Supplier 1 represents an e-store (e.g., a small shoe company) 

applying an (s, S) inventory control policy for the replenishment of the supply network from an 

upper echelon (i.e., Supplier 2). The terms s and S represent the reorder and order up-to levels for 

inventory control, respectively. Namely, when the current inventory level (I) at Supplier 1 is 

smaller than or equal to the reorder level s, the Q amount of order is placed from Supplier 2, 

calculated by (1). 

𝑄 =  {
𝑆 − 𝐼, if 𝐼 ≤ 𝑠 

0,        otherwise
 

(1) 
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Figure 2. The shypothesised network system design for this study. 

In the shypothesised network, we seek the best way of utilising a 3D printer by Supplier 1 to 

decrease the network cost. It is well known that, with the recent competitive supply chain targets, 

companies are searching for ways to be more competitive, especially in terms of responsiveness, 

while operating their costs efficiently (Bak et al., 2020; Popli et al., 2017). Towards that concept, 

utilisation of 3D printing technology might be a proper implementation in supply chains in the case 

of lack of inventory, cost-efficient inventory holding, postponing ordering from the upper echelon, 

etc. Identifying when, and “in what capacity it would be suitable to utilise a 3D printer in a supply 

chain” is a key research topic to study. Also, “what type of supply chain structure can mostly benefit 

from 3D printing technology?” is another one. Taken together, we have assumed a two-echelon 

supply chain network of small size in terms of system capacity and respective demand to be served, 

testing for supply production policies that would prove most beneficial. Additionally, input factors 

that may significantly affect the system performance of the supply network have also been 

integrated into our analysis in order to quantify their influence on the total cost of running the 

proposed supply chain network.  

To address the first research question (RQ1), Reactive and Proactive policies are studied to meet 

the demand imposed by the pandemic. Details of those policies are explained in Sections 3.1 and 

3.2, respectively. To examine the second research question (RQ2), we have selected and 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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implemented the Analysis of Variance (ANOVA) as a suitable statistical technique. ANOVA can 

properly support the identification of statistically significant design factors affecting the network 

performance (i.e., total cost). The details of this analysis are explained in the Results section. 

According to the network appearing in Figure 2, it is assumed that demand arrives at a small-size 

e-store company, Supplier 1, and the e-store sends the products to the demand point by mini-

transporters whose capacity is 40 products. Replenishment from Supplier 2 is completed by trucks 

whose capacity is 75 products per truck. A single 3D printer in the network could be utilised under 

two different production policies, reactive and proactive, whose implementation procedures are 

explained in the sub-sections below. 

3.1.1 Retailers and Reactive Policy 

Emerging from its definition, reactive means a response to a problem after it happens, such as a 

disruption to the supply chain. Then, from its immediate responsive attribute, this policy may also 

be referred as a make-to-order policy from the literature (Song and Zhang, 2020). For many 

companies, the reactive response is a viable way of operating (Angkiriwang et al., 2014; Topan 

and van der Heijden, 2020). This is because planning so many possible scenarios and carrying 

stocks to support them might be extremely expensive. In the reactive approach, a 3D printer is 

utilised when the back order is to meet demand unfulfilled within the normal product lifecycle. 

Namely, in this policy, Supplier 1 supplies the remaining amount of demand by the 3D printer that 

cannot be met from its current inventory (resource stocks are low). To detail, after demand arrives 

at Supplier 1, it first checks whether or not there is a required amount of product in its inventory 

(resource availability). If there is not, then Supplier 1 starts to produce the remaining amount of 

demand by the 3D printer that can be met within the desired response time. The mini-transporters 

immediately send the demand amount that can be met from the current inventory to the customer 



 

15 
 

point (see Figure 2). However, products manufactured by the 3D printer are sent later, by a separate 

transporter once all are produced. Since we have a response time constraint in the system design, 

the 3D printing process is stopped if it is estimated that the newly produced product cannot reach 

the demand point in the desired response time target. After the 3D printing process ends, if there is 

still unmet demand, then that amount is assumed to be a lost sale. 

3.1.2 Retailers and Proactive Policy 

The proactive strategy involves the planning of inventory for anticipated sales or demand. 

Forecasting is one of the best ways to take charge of inventory proactively. With real-time data 

gathering and tracking tools, companies can understand the demand pattern and can utilise this data 

to plan the next purchasing round of inventory stock. Against this background, this policy may also 

be referred to as the make-to-stock policy from literature (Song and Zhang, 2020). In this work, 

the proactive policy is regarded as the utilisation of 3D printers proactively sutilised in the supply 

network system.   

Specifically, in the proactive policy, the 3D printer production centre produces more 

outputs in anticipation of demand. For that policy, we treat the 3D printer station as another source 

of product for Supplier 1. In other words, in the proactive policy, some of the products are supplied 

from a 3D printer instead of Supplier 2. Hence, ordering and holding costs might decrease in the 

network.   

By treating the 3D printer centre as a separate product supplier for Supplier 1, we assume that this 

centre has its own sp, Sp inventory control policy. Namely, when the current inventory amount in 

Supplier 1 is less than that reorder point of sp value, then the 3D printer centre prints Qp amount of 

products calculated by (2): 
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𝑄𝑝 =  {
𝑆𝑝 − 𝐼, if 𝐼 ≤ 𝑠𝑝 

0,        otherwise
 

(2) 

where sp < 𝑆𝑝. Here, Sp represents the order up-to level of the 3D printer. The output produced by 

the 3D printer is counted in the inventory of Supplier 1, immediately. Note that the main difference 

between reactive and proactive policies is the following: in reactive policy,, the output is produced 

in response to an unmet demand case; in proactive policy, the output is produced in advance to an 

unmet demand case. The products produced by the 3D printer in proactive policy incur holding 

costs, while the products produced by the 3D printer in reactive policy do not incur any holding 

costs. 

In this study, the performances of reactive and proactive policy scenarios are compared, not only 

with each other but also with a scenario assuming the absence of a 3D printer in the system. It is 

reminded that in RQ1, we aim to explore which policy – i.e. reactive or proactive – works 

well/better in a network utilising a 3D printer. In RQ2, we explore which input factors (e.g., unit 

cost and time parameters related) significantly affect the network's performance. In the following 

section, we give the details of the statistical approach, ANOVA, that we implement for RQ2.   

3.2 Parameterisation of proposed network policies 

In this work, we also aim to find out which input factors significantly affect the performance of 

three separate network policies (i.e., reactive, proactive and no-3D printer case). By that, we aim 

to understand under what supply network structure (i.e., in terms of unit costs and times), it is more 

beneficial to utilise a 3D printer. The experimental design factors and their levels are given in Table 

1.  

 

Table 1: Experimental design factors and their levels.  
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Factors Levels 

3D printing unit cost ($/product) 5, 10 

Unit holding cost ($/product-day) 1, 2 

3D printing time (hour) UNIF (0.5, 1.5), UNIF (1, 5) 

Lead time for 3D printed products (day) 0, UNIF(2, 3) 

Maximum response time, MRT, (day) 3.5, 4 

Daily demand amount distribution  Lognormal (35, 20), Lognormal (70, 40)  

 

According to Table 1, we consider six factors, each of which has two levels: low and high. We 

combine each factor level and simulate each of those combinations to observe their results. As a 

result, a total of 26 = 64 experiments are completed separately for reactive and proactive policies. 

Besides, we also applied an experimental study for the network design where there is a no-3D 

printer in the system. In that system, we did not consider the 3D printing design factors in Table 1. 

We have completed a total of 23 = 8 experiments. Consequently, 64 (for reactive policy) + 64 (for 

proactive policy) + 8 (for no-3D printing case) = 136 system designs are experimented and 

optimized. Note that, in this work, we aim to soptimise the total network costs under those 136 

experiments for their (s, S) decision variables.  

Each design factor considered in Table 1 is explained with their considered levels below: 

3D printing unit cost: This factor considers the cost of a single product produced by the 3D printer. 

By considering the ordering cost per item as $1 from Supplier 2, we set the levels for this input 

factor at 5 and 10 times the ordering cost value, which is $5/item and $10/item, respectively. Here, 

we aim to investigate how 3D printing unit cost affects reactive and proactive policies separately. 
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Holding unit cost: Holding cost takes place due to carrying products on hand in a time interval. 

Supplier 1 carries inventory to respond to customer demand shortly. After replenishment takes 

place, the arriving products to Supplier 1 are counted as inventory incurring holding costs. The 

holding cost is also incurred in the proactive policy when a 3D printer produces the products in 

advance of the supply need. The daily holding cost of a product on hand is the same as the ordering 

cost per item, $1/item for the low-level design and $2 per item for the high-level scenario in the 

experimental design.  

3D printing time: 3D printing time is the time required to produce an item by a 3D printer. Since 

we have a response time constraint in the optimisation process, 3D printing time might significantly 

affect the system performance, so this factor has been included in the experimental analysis. Note 

that the average lead time distribution from Supplier 1 to the demand point takes 2.5 days (See 

Figure 2). Besides, we consider the maximum response time MRT between 3.5 and 4 days to set 

the two levels for the 3D printing times such that it would be feasible to utilise 3D printers under 

those MRT scenarios. Hence, we have set the 3D printing time values based on two distributions: 

UNIF (0.5, 1.5), and UNIF (1, 5) hours.  

Lead time for 3D printed products: Note that lead time distribution from Supplier 1 to the demand 

point follows a UNIFORM distribution with parameters: UNIF(2, 3) days (see Figure 2). Namely, 

on average, it takes 2.5 days to deliver a product to the demand point. Therefore, by assuming that 

the 3D printer is established at the Supplier 1 location, we consider the same lead time for 3D 

printed products as Supplier 1’s for delivery of customers, in the high level of this factor. However, 

in the low level of this factor, we assume that the 3D printer is located at the periphery of the 

demand point so that the lead time for the 3D produced products is ignored (e.g. near zero). By 
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those two levels, we also aim to decide where to locate the 3D printer centre: at the supplier's 

location or a separate location closer to the customer point. 

Maximum response time: Maximum response time is the maximum time limit that the organisation 

targets to deliver the demanded products to customer points. Not only is the cost performance 

metric important for a supply network performance, but also responsiveness is another significant 

performance metric in the supply network performance. With the recent competitive supply chain 

targets, companies tend to increase their responsiveness. There is a trade-off between these two 

performance metrics: cost and responsiveness. When responsiveness (i.e. delivery time) decreases, 

network cost increases too. To deal with this multi-objective optimisation problem, we applied the 

responsiveness objective function as a constraint in the problem. Note that from Figure 2, we 

understand that the maximum lead time for product delivery from Supplier 1 is 3 days from the 

UNIF (2, 3) days distribution. Then, the minimum MRT could be 3 days according to that 

distribution assumption. To be able to implement the reactive policy effectively, which applies 3D 

printing of products in response to unmet demand cases, we consider higher, although nearby, 

values compared to MRT. Therefore, in the experimental design application, we have set the 

experimental values as 3.5 days and 4 days for this factor.  

Daily demand amount distribution: In the supply network system, demand is assumed to arrive at 

the end of each day. By assuming a small to medium size company in this system, demand amounts 

are assumed to be random, and they follow a lognormal distribution with these parameters: 

Lognormal (35, 20), Lognormal (70, 40). It should be noted that the lognormal distribution that is 

skewed to the right might fit well for demand distributions due to not creating negative random 

variates and its ability to create highly variable data (Gholami and Mirzazadeh, 2018).  

3.3 Data analysis 
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3.3.1 Simulation Network Model 

We have run simulation optimisation for various experimented combinations. ARENA 16.0, a 

commercial software developed by Rockwell Automation, has been employed to simulate the 

shypothesised design structures appearing in Table 1 (Kelton, 2002).  

A simulation optimisation process is applied to find out the optimal cost for the decision variables 

of (s, S) values with respect to the policies assumed. The appropriate (s, S) levels are determined 

by the OptQuest soptimiser provided in the ARENA 16.0 (OptTek Systems Inc., 2021). The 

simulation model assumptions are ssummarised below (see Figure 2): 

• A continuous (s, S) inventory control policy is applied to the inventory review policy. 

• The mean inter-arrival time for demand is constant and one day. The mean amount of 

demand follows a lognormal distribution with mean and standard deviation as (35, 20) and 

(70, 40), depending on the experimental scenario.  

• The capacity of a truck carrying products from Supplier 2 to Supplier 1 and the capacity of 

mini transporter carrying products from Supplier 1 to the demand point is assumed to be 75 

and 40 units, respectively. 

• Lead time from Supplier 2 to Supplier 1 follows a UNIFORM distribution with parameters 

(5, 10) days. 

• Lead time from Supplier 1 to the demand point follows a UNIFORM distribution with 

parameters (2, 3) days. 

• The investment cost of a 3D printer is assumed to be $50/printer. 

• Truck fixed cost is assumed to be $100/truck. 

• The ordering cost is assumed to be $1/item. 
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• Holding cost is assumed to be $1/item and $2/item depending on the scenario. 

• 3D printing cost is assumed to be $5/item and $10/item depending on the scenario. 

• Total network cost is computed by considering holding, ordering, 3D printing, fixed truck 

and investment cost on 3D printer costs. 

• It is aimed to achieve at least a 95% fill rate level in the optimisation process. 

The simulation model is set to run for one year. The length of the warm-up period is 

determined by the eyeball approach, which in this case is one month. Ten independent replications 

are performed in the simulation experiments which are determined by the desired half-width values 

of the random outputs of the experiments. In an effort to decrease variance between replications, a 

common random variance reduction technique is utilised while running the simulations. In an effort 

to decrease variance between replications, a common random variance reduction technique is 

utilised while running the simulations. That variance reduction technique is used in the simulation 

model when we compare two or more alternative configurations. The same random number stream 

is used for all other configurations in that approach. Thus, the variance reduction is ensured. The 

simulation models are verified and validated by debugging the codes and animating the system. 

The simulation pseudo-codes are shown in Figures 3-6. Firstly, in Figure 3, the pseudo-

codes for the procedure of meeting demand in Supplier 1 are provided. Figure 4 shows the codes 

for how the 3D printing procedure works in a reactive policy. In Figure 5, the pseudo-codes for the 

(s, S) replenishment procedure of Supplier 1 from Supplier 2 are presented. Lastly, in Figure 6, we 

provide the pseudo-codes for the 3D printing working procedure in the proactive policy. Depending 

on the considered policy (i.e., reactive, proactive, or no-3D printing), some combinations of these 

algorithms work in parallel. Figure 7 shows which algorithm combinations work in parallel based 

on the policy under consideration. For instance, in the reactive policy, algorithms 1-3 work together 
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in parallel. In proactive policy, algorithms 1, 3 and 4 run in parallel and, in no-3D printing policy 

algorithms 1 and 3 runs in parallel. 

Start

i = 1  //day

While i <= 360

Di  = DA  //incoming demand at the i
th

 day

If Di  > 0

TD = TD + Di

If It  >= Di then

   It  = It - Di

   Delay with UNIF (2, 3) days //lead time from Supplier 1

   Di  = 0

Else

   If It  > 0 then

       Di  = Di  - It

       It  = 0

       Delay with UNIF (2, 3) day //lead time considered from Supplier 1

   End If

End If

LS = LS + Di

End If

i = i+ 1

End While

FL= (TD - LS) / TD

End

 

Figure 3. Algorithm 1 - Meeting demand procedure by Supplier 1. 

Start

j = 1 //j
th

 remaining product to meet the demand

While j <= Di //utilize 3D printer for the unmet demand

3DLTij  = 3DLT                                //create random variate from 3DLT distribution

3DPTij  = 3DPT                               //create random variate from 3DPT distribution

TPT = TPT+ 3DPT //total printing time by the 3D printer

If TPT < (MRT - 3DLTij) × 24

    Delay with 3DPTij hour //printing time by 3D printer

    TPC = TPC + PC

Else

    j = BigM

End If

TPT = TPT- 3DPT

j = j + 1

End While

End

 

Figure 4. Algorithm 2 - 3D printing procedure in the reactive policy. 
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Start

If It <= s

   Qt = S - It

   NTt = NTt + round down ((Qt / 75 //Truck Capacity) + 1)

   Delay with UNIF (5, 10) day //lead time from Supplier 2 to Supplier 1

    It  = It + Qt

End If

TOC = TOC + OC

TTC = TTC + NTt × TrC

End

 

Figure 5. Algorithm 3 - Continuous (s, S) replenishment policy from Supplier 2. 

If It <= sp

    Qp = Sp - It

       j = 1

     While j <= Qp

         3DPTj = 3DPT                   //create random variate from 3DPT distribution

     Delay with 3DPTj hour     //printing time by 3D printer

   j = j + 1

     End While

     Delay with 3DLT day //lead time from 3D Printing Center to demand point

     It  = It + Qp

End If

End

 

Figure 6. Algorithm 4. 3D Printing procedure in proactive policy 

Reactive Policy

Algorithm 1 Algorithm 2 Algorithm 3

Proactive Policy

Algorithm 1 Algorithm 3 Algorithm 4

Algorithm 1 Algorithm 3

No-3D printing policy

 

Figure 7. Algorithm combinations running in parallel based on the policies. 
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Time-based average inventory IAVG, and yearly average inventory IAVGY are calculated by (3) and 

(4), respectively. Here time period T is 365 days. 

𝐼𝐴𝑉𝐺 = ∫ 𝐼𝑡

𝑇

0

𝑑𝑡 (3) 

𝐼𝐴𝑉𝐺𝑌 = 𝐼𝐴𝑉𝐺  × T (4) 

(For other notations included in this subsection, please check Appendix B.) 

The total holding cost during the simulation run, THC, is calculated by (5).  

THC = 𝐼𝐴𝑉𝐺𝑌 × 𝐻𝐶 (5) 

 

TOC is calculated by (6). 

TOC = ∑ 𝑄𝑡 × 𝑂𝐶𝑇
𝑡=1  (6) 

 

TPC is calculated by (7). 

TPC = ∑ 𝑄𝑃 × 𝑃𝐶𝑇
𝑝=1  (7) 

 

TTC is calculated by (8). 

TTC = ∑ 𝑁𝑇𝑡 × 𝑇𝑟𝐶𝑇
𝑡=1  (8) 

 

Consequently, total network cost TC is calculated by (9). 
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TC = THC + TOC + TPC + TPIC + TTC (9) 

 

FL is calculated by (10). 

FL= 1 −
∑ 𝐿𝑆𝑡

𝑇
𝑡=1

𝑇𝐷
 (10) 

Note that fill rate FL represents the ratio of products that the network can meet during the 

simulation run. Hence, 1 – FL would be the ratio of the unmet demand in the network. The details 

of the simulation optimisation are explained in the following section. 

3.4.2 Simulation Optimisation 

When dealing with the optimisation of complex systems within a stochastic environment, it is often 

difficult to develop a mathematical representation of the problem. In that case, heuristic solution 

procedures are common approaches for the solution to those problems. Genetic Algorithms (GAs), 

Tabu search (TA), Simulated Annealing (SA) and Scatter Search (SS) are some examples of 

metaheuristics in the OptQuest soptimiser tool also utilises some of them in its engine. SS is the 

main approach applied in OptQuest, which combines with the Tabu search strategies' powerful 

features and neural networks to obtain high-quality solutions (Laguna, 2011).  

The usefulness of OptQuest tool in inventory optimisation has been established in several 

publications, including Kleijnen and Wan (2007) and Ekren et al. (2021). For the current study, 

three main policies, i.e. the reactive, proactive and no-3D printer utilisation ones, are modelled 

with ARENA 16.0 software package, and the OptQuest tool soptimiser soptimises the (s, S) 

decision variables for replenishment. The optimisation model is entered in the OptQuest tool 

according to (11)-(14). 
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With respect to this set of equations, the objective function is given by (11) considering the 

sminimisation of the total cost of the supply network. Moreover, the constraints are shown by  (12)-

(14). In (12), the desired FL is defined as at least 95% level, meaning that customer demand is 

guaranteed to be met at least 95% of the time. (13) shows that the reorder level should be smaller 

than the order up-to inventory level. Since a large customer response time would be undesirable, 

MRT is limited to 3.5 or 4 days, as defined in the experimental design table.  

Minimise TC  (11) 

subject to  FL  ≥ 0.95 FL∈𝑅+ (12) 

 s ≤ S - 1 (s, S) ∈𝑍+ (13) 

 MRT  ≤ 3.5 or 4  MRT ∈𝑅+ (14) 

 

In the OptQuest optimiser, the user is allowed to enter an initial value, lower and upper values for 

the range definition of the search procedure for the decision variables. The optimisation process 

would conclude when further improvement in the sminimisation of TC could not occur for a large 

period of time. Later, to obtain better results, that optimal result is utilised as the initial solution for 

the next run by decreasing the range of the decision variables. The details of simulation modelling 

are demonstrated in the Results section. 

 

4. Results 

4.1 Simulation Optimisation Outputs 
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The simulation optimisation results of the experiments conducted are demonstrated in Figures 8 

and 9, covering low and high-demand profiles, respectively. The following subsections provide the 

findings according to the shypothesised policies. 
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Figure 8. The experimental results when the demand distribution is Lognormal (35, 20) 

4.1.1 Discussion of the Reactive Policy scenario 

The reactive policy works better among all shypothesised scenarios, as demonstrated in Figures 7 

and 8. This is probably because the reactive policy does not involve a holding cost in the network. 

It also contributes to a decrease in ordering costs from Supplier 2. When the demand profile 

increases (i.e., increased mean and variance), the reactive policy’s performance (i.e., total network 

cost) approaches the other two policies. This means that, in a low-demand profile, utilisation of a 

3D printer is better than a high-demand profile. This is probably due to the response time 

restriction. However, if there is a high demand, the supply chain designer may choose to increase 

the number of 3D printers in the network. In this case, if more than one 3D printer were assumed 
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as part of shypothesised network system, then the system performance could improve via parallel 

production of multiple 3D printers. Overall, the application of 3D printing provides useful dynamic 

abilities for retailer businesses to act in a reactive fashion and address unexpected resource demand 

peaks (Newbert, 2007). 
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Figure 9. The experimental results when the demand distribution is Lognormal (70, 40) 

Both Figures 8 and 9 suggest that when 3D printing time per product increases, the reactive policy’s 

performance deteriorates. This is probably because of the response time constraint. Therefore, since 

the reactive policy cannot reach the required amount of products within the response time constraint 

in higher levels of 3D printing time (3DPT), the network tends to carry more inventory instead of 

3D printing all units demanded. In this case, the network cost increases, and the result approaches 

parity with the other policies. 

When the holding network costs are high, the advantage of reactive policy increases. This can be 

observed from both demand profile graphs, where the difference compared to the other policies 
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increase in the reactive policy. Although 3D printing contributes to relatively costly solutions, it 

provides efficiency in dealing with higher levels of demand within the shorter turnaround 

timeframes for products to create strategic value (Popli et al., 2017). Hence, we conclude that a 

network structure exhibiting a high holding cost can utilise 3D printing more effectively than a 

network structure having a low holding cost. 

In fact, both Figures 8 and 9 suggest that building a 3D printing facility at the periphery of the 

customer point where the lead time is near zero could be a really useful approach in supporting the 

reactive policy. However, this can work well when the network design has a low printing time in 

the 3D printing centre. This, in reactive policy, a 3D printer can produce more products within the 

response time constraint leading to a decreased holding cost in the network.  

Consequently, the reactive policy works better compared to the other production policies 

under a high FL target (i.e., 95%), especially when demand surges under unexpected conditions 

such as sudden pandemic diseases (e.g. COVID-19), natural disasters, etc. Organisations may 

consider investing in 3D printers by implementing a reactive production policy to improve their 

operations' ability to provide dynamic capabilities, thus extending their current resource offerings 

(Eisenhardt and Martin 2000). However, to decide at what level 3DPs should be utilised in their 

inventory policies, then optimisation should be sought to reduce stock-outs and control resources; 

these could prove valuable for making an optimal decision on (s, S) levels,  as well as for 

determining the number of 3D printers to employ as part of the supply network system. 

 

4.1.2 Discussion of the Proactive Policy scenario 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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The proactive policy seems more costly than the reactive policy scenario, according to Figures 7 

and 8. The main reason seems to be that proactive policy involves a holding cost in the network. 

Here are some additional discussion points on the optimisation outputs, as these appear in Figures 

8 and 9: 

• It is observed that proactive policy results do not change with the response time constraint. 

This is probably because the proactive policy produces products in advance and are 

available before demand arrives. Hence, this policy is not sensitive to the response time 

restriction. This result can also be observed in the ANOVA result that the MRT factor 

does not affect the proactive policy network cost significantly. 

• Both figures 7 and 8 indicate that the proactive policy performance is not affected by the 

3D printer lead time (3DLT), which can also be observed in the ANOVA results following 

next. This is also probably due to the same reason as mentioned above. Namely, it is due 

to the production in advance by the 3D printer. 

• An increase in 3D printing time negatively affects the system's performance (i.e., total 

cost); this is not only a reactive policy characteristic but also a proactive policy one. This 

might be interpreted as when 3D printing time increases, the centre tends to start 

production earlier, resulting in increased holding costs compared to the low printing time 

scenario. However, note that there is also a 3D printing cost involved in implementing 

this option. Hence, instead of proactively producing, the system orders from the upper 

echelon, which is more beneficial than the holding cost and 3D printing cost involved in 

proactive production. 

• When the demand profile increases, the proactive policy approaches no-3D printing case. 

Namely, proactive production tends to decrease. However, when the holding cost is high, 
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proactive policy still renders better results than the case where the unit holding cost is 

low. This is, again, probably because that proactive policy incurs holding costs when the 

production is completed.  

According to the overall observations, the proactive policy may work better, especially under very 

high holding costs and tight fill rate, where response time to customer point is tight so that reactive 

policy cannot reach the products within the tight response time.  

Note that our base comparison is the no-3D printing scenario. It is observed that when there is no 

3D printer in the network, this results in the worst performance across all scenarios. However, as 

the results suggest, the 3D printing unit cost (PC), 3DPT, and holding cost (HC) affect the system 

performance significantly; hence, a decision on which policy to utilise in the network effectively 

depends on those parametric values. If those parametric values do not provide good network cost 

results, a no-3D printer scenario could also be followed instead of investing in a 3D printer. As a 

result, we suggest that industry practitioners would need to decide on whether or not to employ a 

3D printer by conducting an optimisation analysis. 

 

4.2 Analysis of Variance (ANOVA) for statistically significant network model factors 

To better understand the role of inputs and cost performance in the network design of Figure 2,  

ANOVA analysis was performed via the Minitab 17.0 statistical software. We aim to identify the 

most statistically significant input factors affecting the system performance. Analyses have been 

undertaken for the reactive, proactive and no-3D printing network scenarios.  

The ANOVA is a statistical technique relying on sanalysing differences among two or more 

means (Pallant, 2016). The ANOVA starts via developing a proper experimental design. Then, the 
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ANOVA is implemented to determine the influence of independent variables (i.e. input design 

factors) on the dependent variables (i.e. performance measure; in this case, the total cost). In this 

study, the ANOVA has been used separately for the reactive, proactive and no-3D printing network 

scenarios, investigating how the network model factors affect network cost. The ANOVA results 

are shown in Figures 10, 11 and 12 (and in Appendices A1, A2 and A3, in detail), for the reactive, 

proactive and no-3D printing policy scenarios, respectively.  

 

 

Figure 10a: Residual plots for reactive policy. 

 

Figure 10b: Main effects plot for reactive 

policy. 

 

The interpretation of the ANOVA results relies on the model adequacy, which requires that 

a) the ANOVA residuals should be normally distributed, b) they should have a mean of zero and 

c) they should have a constant variance. Suppose one of these assumptions is not met. In that case, 

a suitable transformation such as inverse, logarithm, natural logarithm, square root, inverse square 

root, etc. can be applied to the performance measures to achieve model adequacy. In the current 

model of reactive policy, since the ANOVA residuals requirement is not met, an inverse 

transformation on the total cost values has been applied. As a result, all ANOVA assumptions are 

met (see Figure 10a). According to the detailed ANOVA results in Appendix A1, all input factors 
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are statistically significant for the total network cost (p < 0.05). Additionally, Figure 10b indicates 

that the most significant factors are: DA, HC, 3DPT, 3DLT, PC and MRT in descending order. 

The ANOVA results for the proactive policy scenario are presented in Figure 11. Drawing 

on the detailed ANOVA results provided in Appendix A2, all factors are statistically significant on 

total network cost, except for MRT and 3DLT. Figure 11b indicates that the most significant factors 

affecting the proactive policy are: DA, HC, 3DPT and PC in descending order. 

 

Figure 11a: Residual plots for proactive 

policy. 

 

Figure 11b: Main effects plot for proactive 

policy. 

 

Lastly, Figure 12 provides the ANOVA outputs for the no-3D printing policy scenario based on a 

1/square root transformation. Also, from Appendix A3, it can be observed that factors HC and DA 

influence the network cost significantly. As expected, the MRT factor does not significantly affect 

the network system.  
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Figure 12a: Residual plots for no-3D printing 

policy. 

 

Figure 12b: Main effects plot for no-3D 

printing policy. 

 

5. Conclusion 

This paper studies a two-echelon supply network system within an e-commerce retailer context, 

and with a low demand to be served, by incorporating a 3D printer into this network system. We 

have investigated when, and at what amount the supply network should 3D-print products to meet 

customer satisfaction and decrease total network cost by implementing a simulation technique. This 

study examined two research questions. The first one sought to find under which production policy 

would it be most beneficial to utilise a 3D printer: a reactive or a proactive policy? The second 

research question sought to investigate the input factors (e.g., unit cost and time-related parameters) 

that significantly influences the proposed supply network's performance.  

In regard to the first research question, we have run a simulation optimisation process for a total of 

136 conducted experiments under a variety of input design factors, such as 3D printing unit cost, 

holding cost, 3D printing time, lead time for 3D printed products, maximum response time, and 

daily demand distribution. The results show that the reactive policy is more efficient in terms of 

the total cost spent to serve the demand, compared to proactive /no-3D printing ones. The proactive 
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policy can be considered to perform better under very high holding costs and tight fill rate cases, 

and also where response time to customer constraint is tight, so the reactive policy cannot meet the 

products within that tight response time.  

In response to the second research question, a statistical analysis applying the ANOVA was 

performed to identify which input factors significantly affect the system's performance. The  

ANOVA was implemented for the three policies (i.e. reactive, proactive and no-3D printing), and 

the results have shown that demand amount distribution affects all system performance 

significantly. Apart from  the reactive policy, the factors that exert significant effects are 3DPT, 

3DLT, PC and, MRT. Otherwise, for the proactive policy, these are HC, 3DPT and PC, as ordered 

according to the size of the effects, exerted. Accordingly, in the proactive one, MRT and 3DLT do 

not affect the system performance significantly.  

Theoretically, the simulation of the shypothesised supply chain network contributes greatly to 

determinsing the influencing factors for optimizsing inventory control policy for replenishment of 

the supply network from an upper-echelon. The simulation experiments have indicated that 

depending on the 3D printing time, the maximum response time to meet the demand and the 

restrictions of the supply chain network, either a reactive or a proactive policy would soptimise the 

whole supply network. The outcomes of the simulations' can help retailers identify the best 

approach in dealing with complex problems and identify the best approach in dealing with complex 

problems and uncertainties such as COVID-19 and meet unexpected demand. Theoretically, having 

a 3DP implementation strategy shows how retailer industries can improve their resource 

capabilities (Grant, 1991, Salmi et al., 2020) under a reactive strategy and thus, depending on the 

supply issues, a viable option is to have another resource option. We have shown in the simulations 

different policies where this is useful, and as a result, an extension of the theory of resource-based 
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view is shown where there is a higher cost of using 3DP under conditions of high demand with 

limited supply options (Hitt et al., 2016) and, there are benefits in extending this capability (Barney, 

1991; Eisenhardt and Martin 2000). By sutilising 3DP, a reduction in the cost of holding or storing 

inventory can be anticipated because less items would need to be held, and there would be increased 

flexibility provided with agile responses to short-term small supply resource requirements in a 

proactive policy (Devin and Richards, 2018, Salmi et al., 2021). We have shown that 3DP provides 

a more resilient option to respond to environmental uncertainty, such as the current COVID-19 

environment, and preserve organisational capital (Grant, 1991, Salmi et al., 2020). Thus, extending 

our understanding of when to use the capability and what financial and technological capital 

decisions are needed based on resource dependency to address the business performance when 

there are supply shocks in the supply chain, such as the COVID-19 pandemic (Bak et al., 2020; 

Chowdhury et al., 2021). 

Implementing these policies to fit the given circumstances and parameters can significantly 

help retailers develop dynamic capabilities to improve their response to increase their capacity and 

meet timely sudden peaks of demand. Additionally, managers should consider conducting 

simulation experiments to respond to this dynamic type of problem – as time is a key parameter – 

rather than static solutions, as the latter ones may not reach realistic solutions under sudden demand 

fluctuations. 

As with all studies, this one has certain limitations too. Since 3D printing-related (e.g., time and 

cost) parameters depend on what the company produces, in the experimental work, more parameter 

values would provide better insights into the problem. However, the ANOVA have provided robust 

findings on the significance tests. Besides, the number of 3D printers considered in the network 

(i.e., a single one) is another constraint that might be limiting the problem. Therefore, a model also 

https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1796136?needAccess=true
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involving a number of 3DPs as a decision variable in the system would be desirable work to extend 

the current study in the future.         

In future research studies, more input factor design scenarios may be considered at various levels 

to build on our work. Additionally, factors such as fill rate, ordering cost, etc., could potentially be 

included in the sensitivity analysis. Finally, multiple 3D printers (farms) would be another option 

to examine how the 3D printers’ capacity would influence the inventory optimisation of a given 

supply chain network. The development of analytical models producing important performance 

metrics from the system immediately depending on numerous input factor levels could be another 

significant work to consider in the future. 
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Appendix A2: ANOVA results for proactive policy. 
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Appendix A3: ANOVA results for no-3D printing policy. 
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Appendix B: Memorandum of the acronyms used in the model and formulas. 
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3DLT 3D printed item’s lead time to customer point (day). 

3DPT 3D printing time (hour/product). 

DA daily demand amount distribution (Lognormal). 

FL fill rate. 

HC daily holding cost per product ($/product-day). 

IAVG time-based average inventory (i.e., daily). 

IAVGY yearly average inventory. 

It the total amount of inventory in the network at time t. 

LSt the total amount of unmet demand (i.e., lost sales) by Supplier 1 at time t. 

MRT maximum response time to meet the demand of a customer (days). 

NTt the total number of truck sent from Supplier 1 to Supplier 2 at time t. 

OC unit ordering cost. 

PC 3D printing unit cost ($/product). 

QP the total amount of item produced by the 3D printer at time p. 

Qt  replenishment amount sent from Supplier 1 to Supplier 2 at time t. 

s reorder point for replenishment 

S order up to level for replenishment 

sp re-production point for 3D printer  

Sp up to level for 3D printing 

T time period of the simulation run. 

TC total cost of the network during the simulation run. 

TD the total amount of demand arrived at Supplier 1 at the end of the simulation. 

THC total holding cost during the simulation run. 
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TOC total ordering cost during the simulation run. 

TPC total cost of producing items by the 3D printer during the simulation run. 

TPIC 3D printer purchasing cost. 

TrC truck fixed cost. 

TTC total truck cost during the simulation run. 

U utilisation of 3D printer. 

 


