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Abstract

This paper considers on a number of issues that arise
when a trainable machine vision system learns directly from
humans, rather than from a “cleaned” data set, i.e. data
which is perfectly labelled with complete accuracy. This
is done within the context of a generic system for the vi-
sual surface inspection of manufactured parts, however, the
issues treated are relevant not only to wider computer vi-
sion applications, but also to classification more generally.
Some of these issues arise from the nature of humans them-
selves: they will be not only internally inconsistent, but will
often not be completely confident about their decisions, es-
pecially if they are making decisions rapidly. People will
also often differ systematically from each other in the de-
cisions they make. Other issues may arise from the na-
ture of the process, which may require the machine learn-
ing to have the capacity for real-time, online adaptation in
response to users’ input. It may be that the users cannot
always provide input to a consistent level of detail. We de-
scribe how all of these issues may be tackled within a co-
herent methodology. Using a range of classifiers trained on
real data sets from a CD imprint production process, we will
present results which show that most of these issues may ac-
tually lead to improved performance.

∗ This work was funded by the EC under grant no. 016429, project
DynaVis and the Upper Austrian Technology and Research Promotion. It
reflects only the authors’ views.

1 Introduction

In many machine vision applications, such as inspection
tasks for quality control, an automatic system tries to re-
produce human cognitive abilities. The most efficient and
flexible way to achieve this is to learn the task from a hu-
man expert [5], either by supervised data or by knowledge
acquisition from the human operators in form of rule bases.
Typically, Machine Learning systems are trained in super-
vised batch mode from a set of example data items each
of which has a unique label. However, as Machine Learn-
ing technology moves from research laboratories to practi-
cal applications such as Machine Vision, a range of issues
arise concerning how humans relate to, and interact with
such systems [9] [6]. Not only does this question the feasi-
bility, or even relevance of considering “cleaned” data sets,
there is an increasing demand for systems to operate in sit-
uations where off-line batch-mode processing is not appro-
priate [7]. This can occur if data is hard, time-consuming or
costly to obtain, or if the underlying processes change fairly
rapidly, requiring re-configuration. Both of these cases lead
to the need for an element of incremental on-line training
[10], which prompts a renewed interest in the nature of the
human interaction with adaptive ML systems [3] [1].

In this paper we focus on a number of issues relating to
human-machine interaction in the context of a generic sys-
tem for the visual surface inspection of manufactured parts.
Section 2 describes the basic architecture of our generic sys-
tem, the data sets used in this work and the experimental
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framework. Section 3 deals with the issues arising when the
nature of the application demands real-time on-line learning
after an initial batch-mode phase. Section 4 deals with the
fact that different users will often differ systematically from
each other, and considers how best to incorporate this diver-
sity of information. Other issues may arise from the fact that
humans cannot always work as fast as the underlying appli-
cations. For example, Section 5 considers how demand for
rapid user responses may reduce the level of detail in the
feedback they can produce, and suggests some alternative
ways for dealing with this. In Section 6 we consider that
for a number of reasons, the operator(s) may not be com-
pletely confident in their decisions and show how a suitable
change in the human-machine interface used for online la-
belling can be exploited to capture this information and lead
to performance improvements. We end by drawing some
conclusions from this work, and highlighting areas that re-
quire further research attention (Section 7).

2 Architecture and Data Sets

The whole framework is shown in Figure 1. Starting
from the original image (left) a so-called “contrast image”
is calculated, where the gray value of each pixel correlates
to the degree of deviation from the normal appearance of
the surface. This contrast image just serves as an inter-
face to the subsequent processing steps in order to remove
the application-dependent elements. From the contrast im-
age regions of interest (ROI) are extracted, each of which
contains a single object which may or may not be a fault.
From the segmented ROIs a large number of object fea-
tures are calculated such as area, brightness, homogeneity
or roundness of objects characterizing their shape, size etc.
These are complemented by aggregate features characteriz-
ing images as a whole. The feature vectors are then pro-
cessed by a trained classifier system that generates a final
good/bad decision for the whole image. For off-line training
the classifiers we exploited basically four different methods,
namely: the decision tree-based classifiers CART [2], and
C4.5 [14]; k-Nearest Neighbours (kNN) [8]; and two incre-
mental learning algorithms eVQ-Class [12] and FLEXFIS-
Class [13]. When applying these classification algorithms
on the standard aggregated feature sets (containing 17 pre-
defined features) to real-world data from an on-line CD im-
print production process, we achieved accuracies between
87% and 93% as estimated by 10-fold cross-validation [16].
Even though the accuracies lie in a reasonable range, they
fall short of the original goals for a very high-performance
and robust system.

Hence, one goal of the enhanced human-machine inter-
action issues discussed in this paper is to guide the classi-
fiers towards 98% accuracy. Another goal is to widen the
applicability and usability of the whole system. The spe-

cific issues for human-machine interaction are highlighted
in Figure 1, where the labels HMI 1-4 refer to the issues
dealt with in sections 3,4,5 and 6 respectively.

3 Incremental Classifiers based on Opera-
tors’ Feedback

On-line incremental training comes with adaptation of
parameters and evolving structures (e.g. evolving neurons,
rules etc.) and is required whenever the operator gives a
feedback upon the classifier(s) decisions during on-line pro-
duction mode. This is because a periodic rebuilding of the
classifier using all the samples seen so far is impractical as
it slows down the training process too much. On the other
hand, if the classifier(s) would not be updated at all during
the on-line production mode the classifier could not refine
its parameters, react on changing operating conditions or
system behaviors and hence end up in not satisfying per-
formance. From a Human-Machine-Interface perspective,
on-line learning highlights some interesting points. In a
batch-mode model the user is asked to perform repeated
interactions for image labelling without and feedback or
reward. This can make the process seem time-consuming
and possibly pointless. In contrast to this, on-line train-
ing means that the user can “see” the system learning from
their input, building a progressively more accurate model,
which can help to motivate them and increase their focus
and attention. For dealing with the on-line learning prob-
lem based on operator’s feedback we exploited an evolving
clustering-based classifier (eVQ-Class [12]) and an evolv-
ing fuzzy rule-based classifier (FLEXFIS-Class [13]). The
first one is based on vector quantization and incorporates
an on-line split-and-merge strategy for adapting the cluster
partitions. The second one evolves multiple Takagi-Sugeno
fuzzy (regression) models. Both take into account the class
labels supplied during the incremental clustering process
for forming the classifiers and are sufficiently flexible to in-
tegrate new operating conditions (such as new image types)
and newly arising fault classes into the structure of the clas-
sifier.

N-fold cross-validation assumes a fixed data set, and so
is not an appropriate measure here. Instead the CD imprint
data set was split into three. The first third of the images is
used for initial off-line training. The middle third is used to
simulate incremental on-line training of the classifier, and
is sent sample per sample into eVQ-Class and FLEXFIS-
Class. The final third is used as a test set for evaluating
the trained classifiers. This is an appropriate way of esti-
mating the true on-line accuracy as the whole CD imprint
data was stored in the same order as recorded on-line. Ta-
ble 1 shows the performance of the incremental classifiers
vs. their corresponding batch versions, i.e. trained in initial
off-line mode with the first batch of data and not further up-



Figure 1. Classification framework for classifying images into good and bad, the four major HMI issues marked with red ellip-
soids.

Table 1. Performance of incremental on-line vs. static (an re-trained) batch classifiers
Dataset Operator01 Operator02 Operator03 Operator04
CART static 70.94 78.82 80.00 76.08
CART re-trained 82.74 90.59 90.39 88.24
eVQ-Class static 68.82 76.67 76.27 74.71
eVQ-Class inc. 83.33 88.82 88.43 88.43
FLEXFIS-Class static 68.63 85.29 85.68 78.24
FLEXFIS-Class inc. 84.12 88.06 89.92 84.90

dated (kept static): it can be seen that by doing an adaptation
during on-line mode the performance on new unseen sam-
ples significantly increase by 10 to 15% over all operators.
Furthermore, the third row shows us that, when re-training
a batch classifier (the well known CART algorithm) on all
training samples, the accuracy on the new unseen samples
is not really better than for the incrementally trained ap-
proaches.

4 Handling Input from Multiple Users

The idea of classifier ensembles is to train a whole set
(ensemble) of classifiers. Most research has considered the
case where there is a single data set. Here these ensemble
methods are used in a different context: the different opera-
tors train their individual classifiers as they think would be
best and the contradictions among these operators are then
resolved using an ensemble method. There are generally
two ways to combine the decisions of classifiers in ensem-
bles: classifier selection and classifier fusion [17]. The as-
sumption in classifier selection is that each classifier is “an
expert” in some local area of the feature space. Classifier
fusion assumes that all classifiers are trained over the whole
feature space. For our application the latter is appropriate
since the operators train the system with the data which is
provided by the vision system. The fusion of the outputs of
the different classifiers (trained by the different operators)

can be done using fixed or, if a “supervisor” has labelled
the data, trainable classifier fusion methods. Note that this
scenario is relevant in many companies: typically different
operators work on the inspection systems in different shifts,
while a supervisor, which is not working on the system,
still somehow wants to be in control and have the opera-
tors make decisions similar to what he would do. Classifier
fusion methods (for a detailed survey see e.g. [11]) include
1.) Voting; 2.) Algebraic connectives such as maximum,
minimum, product, mean and median; 3.) Fuzzy Integral;
4.) Decision Templates; 5.) Dempster-Shafer combination;
and 6.) Discounted Dempster-Shafer combination (an ex-
tension of 5.) recently proposed in [15]). Also the Oracle, a
hypothetical ensemble scheme that outputs the correct clas-
sification if at least one of the classifiers in the ensemble
outputs the correct classification, was considered. The ac-
curacy of the Oracle can be seen as a “soft bound” on the
accuracy which can be achieved by the classifiers and clas-
sifier fusion methods.

The CD data with 17 aggregate features described in
Section 2 was labelled by 5 different operators. In the ex-
periments described in this section each of these operators
is considered as the “supervisor” in turn. Classifiers are
trained for the other operators and these classifiers are then
combined by the ensembles in order to better model the de-
cisions of the supervisor. In Table 2 the first five rows show
the effect of training a classifier with the input from one op-
erator (row) then evaluating using the input from another



Table 2. Mean accuracy (in %) of classifiers when predicting labels provided by different users (columns). First five rows show
single classifier trained by one operator. Last four rows show different methods for combining four classifiers trained by different
operators to predict labels provided by fifth (column).

Test Data Operator01 Operator02 Operator03 Operator04 Operator05
Operator01 90.57 89.27 85.33 88.94 71.42
Operator02 88.83 95.38 91.88 93.10 69.42
Operator03 86.50 93.42 93.90 92.68 70.59
Operator04 88.82 93.67 92.08 94.38 71.91
Operator05 72.42 71.64 71.73 73.58 91.25

Fuzzy Integral 88.50 94.42 91.61 93.69 71.25
Decision Templates 88.19 94.42 89.16 91.59 74.75

Disc. Dempster-Shafer 88.31 94.42 92.24 93.54 71.75
Hypothetical Oracle 95.83 98.89 97.07 98.60 78.90

(column). We can see that three operators make very sim-
ilar decisions (Operators 02, 03 and 04), one operator dif-
fers slightly from these three operators (Operator01), and
one operator makes decisions which are very different from
all the other operators (Operator05). Note that the results
of about 90% to 95% on the diagonal of this table denote
the evaluation of the classifiers on the same data they were
trained on. The last set of rows show the effect of train-
ing classifier using four different operators, and then com-
bining them to predict the labels provided by a fifth. For
reasons of space, only the best performing methods are
shown, which are the trainable methods Fuzzy Integral (FI),
Decision Templates (DT)and Discounted Dempster-Shafer
(DDS) together with hypothetical Oracle. From these re-
sults we can see that the ensembles are able to represent
the “supervisor” better than the individual classifiers in all
cases, except when Operator01 is considered to be the su-
pervisor. These improvements go up to close to 3% when
Operator05 is considered as the supervisor. In general, FI
and DDS are the best combination methods when several of
the operators make decisions similar to the the supervisor;
DT is the best combination method when none of the oper-
ators agree well with the supervisor (this is the case when
Operator05 is considered as the supervisor). In every case,
except when Operator01 is the supervisor, the performance
of the ensembles are also relatively close to the hypothet-
ical Oracle. Note that if the operators do not agree very
well with the supervisor a drop in the accuracy is recorded
- e.g. approximately 20% of the decisions of Operator05
do not agree with any of the other operators. In this case
hypothetical Oracle bounds the achievable accuracy below
80%. From these results we can conclude that the ensemble
methods can be effectively used to combine the decisions of
different users to model the decisions of a supervisor, with
improvements of up to 3%.

5 Handling Variable Levels of Detail in User
Inputs

A major problem of image classification problems is the
fact that it is not known in advance how many regions of in-
terests may be segmented from images occurring in the fu-
ture, and yet most classification algorithms assume a fixed-
size input data space. The most straightforward way to
tackle this is to preprocess the object feature vectors through
a learning system, and then present the outputs of that sys-
tem as an additional image-level information. For exam-
ple, if the data is labelled at the object-level, then super-
vised object-level classifiers can be built [4] or alternatively
if object labels are not available, unsupervised clustering
methods can be used to reduce the dimensionality [3]. Su-
pervised learning methods are highly useful if the training
images contain labels for each object, but obtaining this in-
formation requires significant operator input which may not
be available off-line, or may simply be infeasible on-line
due to the speed of production.

In this case a Grapical User Interface (GUI) was de-
signed to permit rapid annotation of images so that each op-
erators could label all of the ROIs (regions of interest). Af-
ter a series of interviews it was found that the users discrim-
inated between 7 different types of “pseudo-defect” and six
types of defect. From the 1534 images used, a total of
4500 objects were segmented and labelled by operators 1-4.
Based on these operators-assigned labels supervised object
level classifiers were constructed. Their outputs –i.e. the
number of each type of object present on an image– were
added to the aggregate image data features and classifiers
trained and tested in a n-fold cross-validation regime. This
was repeated for each operator independently. The moti-
vation of this approach was to include information about
the distribution of regions of interests among the different



Table 3. Classification accuracy using two-level approach

Dataset Op01 Op02 Op03 Op04
CART 93.9 96.7 96.1 96.4
C4.5 93.7 96.1 97.2 95.6
1NN 93.7 96.2 95.0 95.9
9NN 92.6 96.0 94.7 95.0
eVQ-Class 92.3 95.2 92.6 92.7
C4.5-C12 94.5 97.4 96.2 96.8

defect classes for a better characterization of the whole im-
ages. We also used an unsupervised approach, whereby we
applied a clustering algorithm to find C clusters in our ob-
ject training data, and then objects in the test data were each
assigned to the nearest cluster centroid - creating an image
level data set with 17 + C features from which supervised
classifiers could be trained. This approach has a similar mo-
tivation as the one before, but has the advantage that it can
be also used when no labels on the single objects are pro-
vided (which is often the case because of workload saving
reasons). Table 3 shows the classification accuracy obtained
for different operators. The first four rows show the results
using the supervised approach with different types of clas-
sifier. The final row shows the result of taking the unsuper-
vised cluster based to create extra features to be used by a
C4.5 classifier trained at the image level. Experimentation
showed that a value of C = 12 gave the best results - which
interestingly is almost the same as the number of classes
defined by the users. Here, training an object classifier is a
complex multi-classification approach, where just an accu-
racy of about 80% can be achieved. However, the accuracy
as well as the miss-detection rates on the whole images can
be again improved when taking the outputs from the object
classifiers as inputs to the aggregated features (leading to 30
features in sum). More importantly, the results demonstrate
that the unsupervised approach actually does as well, if not
better, than the supervised approaches.

6 Accomodating Partial Confidence of Oper-
ators

During the setup phase of an image classification frame-
work, the labelling of several images can be a difficult task
for the operators, especially in cases where real faults are
hard to distinguish among themselves or between so-called
pseudo-errors This problem can become even worse when
the operators are not working in the relative calm of an
off-line setting, but are providing real-time decisions at a
speed driven by other factors. In this sense, it is promis-

ing, sometimes even necessary for the operator(s) to pro-
vide information how confident they were when assigning
the labels to certain images or objects. Here, only the con-
fidences in the whole image labels are taken into account.
The simplest way is to represent the users’s confidence as
a value in range 0.0 (very unconfident) to 1.0 (very confi-
dent). This raises two issues: with what precision should
the confidence be used, and how should this information
be obtained from the users? Thankfully there is a body of
work related to how opinions can best be gathered, which
favors the so-called “Likert” scale used in questionnaires
{strongly agree,. . .,strongly disagree} . Similarly here,
rather than asking users to spend time thinking of an exact
value to assign, we ask them for one of five distinct values,
i.e. {20%, 40%, 80%, 100%} confidence, partially driven
by the needs of the GUI, resulting from an intensive round
of discussion and design iteration with the industrial users.
The next question is how to incorporate this extra informa-
tion into the learning system. We evaluated two principle
approaches. The first approach treats the task as a regression
problem rather than a classification one. User’s decisions
are transformed as score = 0.5 · (1.0 + / − confidence),
with + or − for ok and deceptive decisions respectively.
However, results showed that this approach did not signif-
icantly improve over the two-level approaches from earlier
sections. One reason for this could be that regression mod-
elling more or less just washes up the quite crisp decision
boundaries achieved by classifiers on the good/bad labels,
where in the end a threshold value of 0.5 again ends up in
a crisp decision boundary, which does not generalize better
as one which is directly learned on the class labels. It is also
only applicable to two-class problems, and so is not suitable
for more generic learning problems.

The second approach test is based on duplicating the
(extended) aggregated feature vectors according to the as-
signed confidence values. Thus a feature vector correspond-
ing to an image which is labelled with 1.0 confidence is
duplicated five times, another one labelled with 0.8 confi-
dence is duplicated four times etc. In this sense, feature vec-
tors which are labelled with a higher confidence are higher
weighted in the training process than those labelled with a
lower confidence. Applying this approach on the two-level
CD feature data set gives the results shown in Table 4. As
can be seen, the results improve for all classifiers except
1NN. This latter is to be expected as of course duplication
has no effect when only one instance is considered to make
each decision. In contrast, when a larger groups of neigh-
bors are used (9NN - column 5) the increase can be dra-
matic as “confident” images outvote others. Not only does
this technique give improvements for all the different types
of classifiers, it does so for all operators: towards 98% for
operator #2 and operator #3 and to 97% for operator #8.
This was the original goal in as outlined in Section 2.



Table 4. Classification accuracy using two-level approach and duplicating feature vectors according to confidence levels of oper-
ators. Results in bracket show improvement in percentage by each classifier over two-level approach.

Method CART C4.5 1NN 9NN eVQ-Class
Operator01 Acc. 94.4 (+0.5) 94.0 (+0.3) 93.7 (+0.0) 94.2 (+1.6) 93.4 (+1.2)
Operator02 Acc. 97.7 (+1.0) 96.9 (+0.8) 96.2 (+0.0) 96.2 (+0.2) 96.7 (+1.5)
Operator03 Acc. 98.0 (+1.1) 97.3 (+0.1) 95.0 (+0.0) 95.2 (+0.5) 96.5 (+3.9)
Operator04 Acc. 97.0 (+0.6) 96.7 (+1.1) 95.9 (+0.0) 95.9 (+0.9) 95.6 (+2.9)

7 Conclusion and Outlook

As machine learning systems move out of the laboratory
and into real-world applications such as vision and image
processing, it is valuable to reconsider some of the assump-
tions that have been made about how such systems can best
learn from users. In this paper we have discussed some of
the more important human-machine interaction problems,
and suggested how they might be handled. Experiments
conducted with ’real’ data within the context of a generic
image processing system show that when properly handled,
the human factors can represent an additional form of in-
formation to these systems for improving performance and
may widen the applicability and usability, rather than to be
a disagreeable source of noise. Key issues of these factors
include on-line guidance and feedback, a diversity of user
skills, uncertainties as well as different levels of know-how
and detail in users’ input. The improvements are made pos-
sible by recent advances in the speed with which GUIs can
operate. The next generation of user-interaction devices of-
fers the potential to build on this research, creating much
richer human-machine learning interaction.
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