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Abstract 

The two group between subjects design is pervasive with analyses often performed using the Mann 

Whitney Rank Sum test or using the Welch variant of the t-test.  Using simulation it is shown that a 

dummy variable ordinal logistic regression (OLR) model provides an alternative analysis strategy for n 

>= 16 per group retaining Type I error robustness for both continuous and tied data.  OLR is 

demonstrated to have comparable power to the Mann Whitney test under non-normal alternatives 

and with comparable power to the Welch t-test for normal distributed data.  This opens the possibility 

for the ordinal logistic model to be a general analysis technique for higher order designs.   
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1. Introduction 

The comparison of two independent samples comprising scale outcome data is long established.  To 

detect a location shift, common long-established approaches include using either the Mann Whitney 

Wilcoxon Rank sum test referred to as the Mann Whitney test (Mann and Whitney, 1947) or the 

independent samples t-test assuming homogeneity of variances (Fisher, 1925), or the separate 

variances version of the t-test known as the Welch test (Welch, 1947). It is acknowledged that other 

approaches exist, such as the Yuen Welch t-test (Yuen, 1974), or the Brunner and Munzel test (2000) 

test (Brunner and Munzel, 2000), or using permutation tests or the bootstrap, but these approaches 

generally have less uptake.    

The independent samples t-test is the uniformly most powerful test for normally distributed data 

providing distribution variances are identical (Zimmerman, 1987). In application, the population or 

distribution may be approximately Normal, and the assumption of precisely equal population 

variances might be too restrictive. In these cases, the Welch (separate variances) t-test is often 

championed as the preferred analytical approach. When the assumption of normality has not been 

grossly violated, Ruxton (2006), Derrick et al (2016), Delacre et al. (2017), amongst others, have 

recommend using the Welch t-test as the default t-test particularly when sample sizes differ between 

the two groups irrespective of whether variances are equal or not.  For non-normal data it is well 

established that the non-parametric Mann Whitney test will retain Type I error rates and may confer 

power advantages relative to the assumed equal variances t-test or Welch t-test (Fagerland and 

Sandvik, 2009a).    

An analyst may be tempted to assess the data for normality and to assess other assumptions to help 

decide between applying a form of the t-test or the Mann Whitney test.  Formal tests of normality will 

have low power when sample sizes are small, negating their use.  With large sample sizes, formal tests 

of normality will have increased power to detect lack of normality and this is when an assumption of 

normality is typically less critical, again negating their use.  In alignment with the famous quotations 

“Normality is a myth; there never has, and never will be, a normal distribution” (Geary, 1947) and “All 

models are wrong, but some are useful”, the real question is whether deviation from normality is 

sufficiently great to such an extent which would invalidate the use of a t-test.  However, no such formal 

test exists or can exist with point null hypothesis testing.  In the absence of such a test an analyst might 

place reliance on rules of thumb (e.g. with respect to the degree of skew, or kurtosis of residuals) 

and/or through a graphical assessment of distributional properties (e.g. histograms, Quantile-Quantile 

plots, box-and-whisker plots) in deciding upon a valid analytical approach. However, allowing the data 

to select an analysis technique might impact on conclusions obtained (see Pearce and Derrick (2019), 

Derrick et al, 2018).    

The independent samples t-test is a special case of the one-way between subjects ANOVA; the one-

way ANOVA defaults to the independent samples t-test when the number of factor levels is two.  The 

Welch t-test may similarly be generalised to, or be considered a special instance of, the robust one-

way Welch ANOVA (Delacre et al, 2019).  Likewise, the non-parametric equivalent of the one-way 

ANOVA, the Kruskal-Wallis test, is logically equivalent to the Mann Whitney test when there are only 

two factor levels.  The one-way ANOVA may be readily extended to a one-way analysis of covariance 

(ANCOVA) with or without corrections for homogeneity of variances.  For non-parametric analyses, 

the Quade test (Quade, 1967) may be used to undertake a rank-based analysis including a covariate.  



ANOVA and ANCOVA may be used with higher order designs (e.g., two-way between subjects factorial 

designs with or without covariates).  Aligned Rank Transformation ANOVA (ART-ANOVA) permits 

higher order non-parametric analyses (Leys and Schumann, 2010) and the Scheirer-Ray-Hare test 

(SRH-ANOVA, Scheirer, Ray, and Hare, 1976).  However, there has been little uptake of ART-ANOVA, 

or SRH-ANOVA and little uptake of the Quade test in the applied literature.  

Brought to prominence by McCullagh (1980), Ordinal Logistic Regression (OLR) is a regression model 

for ordinal dependent variables. It is typically championed for analysing ordinal categorical data and 

usually used when there are a small number of ordered categorical response options (see e.g. Elamir 

and Sadeq. 2010; Menard 2010).  However, there is no limit to the number of options or ordered 

categories a response variable can take in ordinal logistic regression and categories may consist of a 

single observation. Essentially, data which may be ranked may form ordinal categories with tied data 

occupying the same category.   As such OLR with a two-level factor dummy variable coded may be 

seen as being similar to the Mann Whitney test and similar to the Mann Whitney test, OLR is not 

reliant on an assumption of normality   Inference under OLR relies on asymptotic approximations being 

acceptable and this may be a limiting problem in applying OLR when sample sizes are small.   

The aim of this paper is to determine whether ordinal logistic regression provides an alternative 

analytical strategy for the analysis of ordinal and scale outcome data for the two groups situation. In 

this situation the two-level factor is dummy variable coded and included in the regression model as a 

single predictor.  If such an approach is reasonable, particularly with small sample sizes, then this 

would lead to providing flexible models potentially incorporating covariates, multiple factor levels, 

and multiple factors without an express assumption of normality.    This paper is designed to assess 

how each of OLR, the Welch t-test, and the Mann-Whitney test provide control of Type I error rates 

when a Null Hypothesis is true. Comparison is also made in a non-null situations to ascertain relative 

power advantages.   

 

2. Methodology 

The basic aim is to compare statistical inferences from applying the OLR model, the Mann Whitney 

test and the Welch t-test to the two group between-subjects design (i.e. data stochastically 

independent both within and between two groups). Robustness of statistical techniques is examined 

via Monte-Carlo simulation techniques (see e.g. Derrick et al 2015, Mirtagioğlu 2017, Lyhagen 2021).  

An assessment of the p-values under the tests will be undertaken for all three methods and two-sided 

statistical inferences will be considered at the nominal significance level of 𝛼 = 0.10, 0.05, and 0.01.   

The normal approximation often used in the Mann Whitney test is known to work well when sample 

sizes are 16 or larger (Fagerland and Sandvik, 2009b).  For this reason, the simulation design will be 

restricted to equal sample sizes between groups (i.e. 𝑛1 =  𝑛2 = 𝑛 ) with 𝑛 = 16, 32, 64, 128.   

The focus is on a location shift and therefore the simulation will be restricted to simple location shift 

models preserving equality of variance (i.e.  𝜎1
2 =  𝜎2

2 =  𝜎2). Both symmetric and skewed distributions 

will be considered.   

Simulation using sampling from inherently continuous distributions uses full machine precision.  

However, real world data is not perfectly normal and has finite precision (e.g., see Stahl, 2006).  We 

will therefore additionally consider rounded data as the dependent variable. For instance, data 

sampled from the standard normal distribution when rounded to the nearest integer (0 decimal 



places) will have a reduced support typically -3, -2, -1, 0, +1, +2, +3 (i.e., the majority of the time within 

+/- 3.5 standard deviations).   Rounding will increase the probability of tied rank positions in the data.      

For each cell of the design, a total of 10,000 instances is considered.  A summary of the simulation 

design parameters under both 𝐻0 (to investigate type I error rates) and under 𝐻1(to investigate power 

for Type I error robust procedures) is given in Table 1.   

Table 1. Simulation design parameters 

Distribution Under 𝐻0 Under 𝐻1 
      Normal 𝜇1=𝜇2=0, 𝜎1=𝜎2=1 𝜇1= 0.5, 𝜇2= 0,  𝜎1=𝜎2=1 

      Chi-square 𝜒2
2 𝜇1=𝜇2=2, 𝜎1=𝜎2=2 𝜇1=3,  𝜇2=2,  𝜎1=𝜎2=2 

   
Rounding None, 2 d.p., 1 d.p., 0 d.p.  
Sample size 16, 32, 64, 128  
𝛼  0.10, 0.05, 0.01   
Number of iterations  10,000 per cell   
Programming language  R version 4.1 (seed=2642)  

 

Using R version 4.1, the polr command from the ‘MASS’ package is used to estimate the ordinal logistic 

regression model. The t.test command and the wilcox.test command from the ‘STATS’ package are 

used to calculate the Welch t-test and the Mann Whitney test corrected for ties. 

A valid statistical test with a true null hypothesis will generate p-values which are uniformly distributed 

over the interval [0,1] (Hung et al. 1997).  Bradley (1978) suggested a stringent, moderate and liberal 

criterion fort test robustness.  Specifically, for a given nominal 𝛼, stringent robustness criteria are met 

if the empirical Type I error rate is between 𝛼 ± 0.1 𝛼,  moderate robustness criteria are met if the 

empirical Type I error rate is between 𝛼 ± 0.2 𝛼 , and liberal robustness criteria are met if the empirical 

Type I error rate is between 𝛼 ± 0.5 𝛼.  For instance, if the nominal 𝛼 = 0.05 is considered and the 

empirical Type I error rate is below 0.025 then the test is said to be conservative, and if above 0.075 

the test is considered to be liberal (Bradley, 1978).  

When the alternative hypothesis is true, the distribution of the p-values is a function of sample size 

and effect size and is typically positively skewed reflecting the power of the test (Hung et al, 1997).  

Power of the OLR approach is compared to that of the Mann-Whitney test and the Werlch t-test under 

identical sample size and effect size conditions. Under 𝐻1, parameters are chosen to represent a 

simple location shift.   

3. Results  

Results under the null hypothesis are considered to obtain Type I error rates for each of Ordinal 

Logistic Regression (OLR), the Mann-Whitney test (M-W) and Welch’s form of the independent 

samples t-test (t-test). This is followed by results under the alternative hypothesis to obtain a power 

comparison between the three methods. 

Type I error rates 

When the null hypothesis is true, p-values would be expected to observe characteristics of the uniform 

distribution with domain [0, 1]. When Ho is true and the outcome data is normally distributed then it 

is well known that both the Mann-Whitney test and the Welch t-test are valid tests with uniformity of 

p-values.  Figure 1 graphically depicts the distribution of the p-values under the simulation for the OLR 

model for normal deviates under a true null hypothesis.  Visually, the simulated derived p-values 



appear compatible with a claim of uniformly distributed data although for n = 16 a critical reviewer 

may argue that there is some unevenness across some histogram bins.    

 

 

 

Figure 1. OLS p-values, Normal distribution (no rounding).  

 

The scatterplot of p-values for the three methods when the null hypothesis is true (independent 

normal random variables, no rounding) given in Figure 2 (OLR and Welch’s test) and in Figure 3 (OLR 

and the Mann-Whitney test) shows a strong linear correlation between OLR and the two other 

methods with respect to observed p-values  These data relate to the normal distribution without tied 

values, and it is noticeable that in these situations the OLR procedure and the Mann Whitney test 

become practically indistinguishable with respect to the p-values with increasing sample size.     

 



 

Figure 2. OLR and t-test p-values, Normal distribution (no rounding).  Reference lines at the 5% 

significance level. Pearson’s correlation coefficient calculated. 

 

 

Figure 3. OLR and Mann-Whitney test p-values, Normal distribution (no rounding). Reference lines at 

the 5% significance level. Pearson’s correlation coefficient calculated. 



 

Table 2 provides simulation observed Type I error rates for the three methods (OLR, Welch t-test, 

Mann Whitney test) when the outcome variable has the standard normal distribution without 

rounding and with rounding to the nearest integer. Across all significance levels the null hypothesis 

rejection rate is approximately equal to the nominal 𝛼 value, indicating Type I error robustness under 

the normality condition for n >= 16 per group.  This Type I error robustness is observed across the 

simulation design including the extreme most case of rounding to 0 d.p.  

 

Table 2. Type I error rates, Normal distribution (mean zero, standard deviation 1) 

 No rounding Rounded to 0 decimal places 

  OLR t-test M-W OLR t-test M-W 

α=0.10, n=16 0.1077 0.0994 0.0907 0.1025 0.0986 0.0947 

α=0.10, n=32 0.0998 0.0976 0.0934 0.0960 0.0958 0.0928 

α=0.10, n=64 0.1057 0.1023 0.1027 0.1042 0.1004 0.1028 

α=0.10, n=128 0.1009 0.1000 0.0993 0.1006 0.0993 0.1000 

α=0.05, n=16 0.0543 0.0481 0.0468 0.0482 0.0469 0.0432 

α=0.05, n=32 0.0514 0.0490 0.0470 0.0486 0.0485 0.0466 

α=0.05, n=64 0.0526 0.0515 0.0502 0.0507 0.0500 0.0500 

α=0.05, n=128 0.0507 0.0496 0.0497 0.0482 0.0500 0.0479 

α=0.01, n=16 0.0095 0.0082 0.0088 0.0073 0.0091 0.0075 

α=0.01, n=32 0.0104 0.0091 0.0100 0.0097 0.0102 0.0091 

α=0.01, n=64 0.0087 0.0077 0.0081 0.0069 0.0075 0.0068 

α=0.01, n=128 0.0100 0.0100 0.0099 0.0081 0.0085 0.0078 

 

Relatedly, Figure 4 shows the proportion of times where a correctly specified null hypothesis is 

rejected at the 5% significance level under four scenarios (standard normal, standard normal rounded 

to 2 decimal places, 1 decimal place and 0 decimal places).   It can be seen that there is negligible 

difference in the robustness of OLR going from no rounding to 2 d.p. or 1 d.p. This is true for the other 

two methods too. However, all three methods under consideration reject the null hypothesis less 

frequently when the normally distributed values are rounded to 0 d.p. Nevertheless, across all 

conditions simulated under normality, all three methods satisfy stringent Type I error robustness 

criteria stipulated by Bradley (1978), apart from the Mann Whitney test for n = 16 per group with 

rounding to 0 decimal places but which satisfies moderate Type I error robustness.    

 



 

Figure 4. Type I error rates, Normal distribution with various levels of rounding. 

Having confirmed Type I error robustness for OLR under the condition of normality, the Type I error 

robustness for skewed data is assessed. Figure 5 displays the distribution of p-values when performing 

OLR on two samples taken from the Chi-square distribution 𝜒2
2. 

 

Figure 5. OLR p-values, Chi-square distribution (no rounding). 



 

Figure 5 suggests that the proposed OLR approach can be extended to this non-normal condition. For 

n=16 there is perhaps some apparent deviation from uniformity in the upper region of the distribution 

but otherwise approximate uniformity is observed.   Further detail for typical levels of 𝛼 are given in 

Table 3. Across all significance levels the null hypothesis rejection rate is approximately equal to the 

nominal  𝛼 value, indicating Type I error robustness is retained for skewed distributions. 

 

Table 3. Type I error rates, outcome sampled from the chi-square distribution on 2 degrees of 

freedom. 

 No rounding 0 decimal places 

  OLR t-test M-W OLR t-test M-W 

α=0.10, n=16 0.1114 0.0988 0.0951 0.1072 0.0985 0.0993 

α=0.10, n=32 0.1063 0.0939 0.0996 0.1041 0.0935 0.0990 

α=0.10, n=64 0.1064 0.0990 0.1033 0.1045 0.1007 0.1022 

α=0.10, n=128 0.0988 0.1028 0.0977 0.0988 0.1021 0.0978 

α=0.05, n=16 0.0570 0.0465 0.0493 0.0558 0.0472 0.0502 

α=0.05, n=32 0.0525 0.0476 0.0500 0.0494 0.0461 0.0478 

α=0.05, n=64 0.0554 0.0486 0.0537 0.0527 0.0491 0.0520 

α=0.05, n=128 0.0511 0.0472 0.0509 0.0501 0.0499 0.0499 

α=0.01, n=16 0.0123 0.0077 0.0119 0.0114 0.0083 0.0102 

α=0.01, n=32 0.0102 0.0077 0.0097 0.0091 0.0071 0.0086 

α=0.01, n=64 0.0116 0.0104 0.0111 0.0103 0.0102 0.0101 

α=0.01, n=128 0.0090 0.0086 0.0088 0.0084 0.0084 0.0084 

 

 

Figure 6 shows the proportion of iterations where the null hypothesis is rejected at the 5% significance 

level for sample data from the Chi-square distribution discretised to the specified number of decimal 

places. There is an apparent trend for OLR to result in the rejection of the null hypothesis more 

frequently than the other two methods, which is less apparent with increasing sample size.  

Nevertheless, across all conditions simulated, all three methods satisfy liberal Type I error robustness 

criteria stipulated by Bradley (1978).  

 



 

Figure 6. Type I error rates, Chi-square distribution with various levels of rounding.  

 

Power 

The Type I error robustness of all three methods determines that all are suitable providing n >= 16 per 

group and hence decisions on the best approach can be made in terms of power. 

Figure 7 shows the proportions of occasions where the null hypothesis is rejected at the 𝛼=0.05 

significance level with effect size d=0.5, thus representing the power of the competing tests. Under 

conditions of normality, there is little to separate the three competing methods and all three exhibit 

similar power properties. When the normality assumption is violated, OLR and M-W have superior 

power to the t-test, with OLR marginally outperforming M-W in the case where samples are taken 

from 𝜒2
2. Further detail can be seen in Table 4 and Table 5. 



 

Figure 7. Power of the alternative methods for Normal distribution and Chi-square distribution. 

 

Table 4. Null hypothesis rejection rates for the Normal distribution under  𝐻1 

 No rounding 0 decimal places 

  OLR t-test M-W OLR t-test M-W 

α=0.10, n=16 0.4011 0.3950 0.3740 0.3807 0.3766 0.3642 

α=0.10, n=32 0.6248 0.6387 0.6122 0.5979 0.6065 0.5910 

α=0.10, n=64 0.8618 0.8747 0.8593 0.8405 0.8497 0.8385 

α=0.10, n=128 0.9886 0.9899 0.9886 0.9837 0.9861 0.9834 

α=0.05, n=16 0.2810 0.2789 0.2579 0.2571 0.2590 0.2449 

α=0.05, n=32 0.5007 0.5092 0.4865 0.4672 0.4768 0.4606 

α=0.05, n=64 0.7763 0.7947 0.7731 0.7510 0.7652 0.7484 

α=0.05, n=128 0.9726 0.9780 0.9725 0.9647 0.9691 0.9643 

α=0.01, n=16 0.0996 0.1047 0.0948 0.0823 0.0958 0.0816 

α=0.01, n=32 0.2567 0.2661 0.2527 0.2317 0.2439 0.2280 

α=0.01, n=64 0.5536 0.5758 0.5464 0.5105 0.5289 0.5088 

α=0.01, n=128 0.9024 0.9161 0.9010 0.8781 0.8925 0.8772 

 

  



 

Table 5. Null hypothesis rejection rates for the Chi-square distribution under  𝐻1 

 No rounding 0 decimal places 

  OLR t-test M-W OLR t-test M-W 

α=0.10, n=16 0.6440 0.4287 0.6092 0.5721 0.4185 0.5529 

α=0.10, n=32 0.8791 0.6428 0.8692 0.8279 0.6273 0.8199 

α=0.10, n=64 0.9883 0.8766 0.9876 0.9770 0.8664 0.9761 

α=0.10, n=128 0.9999 0.9881 0.9999 0.9997 0.9849 0.9997 

α=0.05, n=16 0.5132 0.3149 0.4817 0.4415 0.3006 0.4184 

α=0.05, n=32 0.8061 0.5199 0.7917 0.7257 0.5018 0.7161 

α=0.05, n=64 0.9770 0.8008 0.9757 0.9542 0.7862 0.9517 

α=0.05, n=128 0.9999 0.9746 0.9999 0.9993 0.9694 0.9992 

α=0.01, n=16 0.2628 0.1283 0.2516 0.2014 0.1196 0.1883 

α=0.01, n=32 0.5790 0.2892 0.5654 0.4790 0.2766 0.4653 

α=0.01, n=64 0.9179 0.5942 0.9099 0.8549 0.5754 0.8505 

α=0.01, n=128 0.9991 0.9123 0.9990 0.9957 0.9011 0.9955 

 

Table 4 and Table 5 indicate that the relative power advantage is irrespective of the significance level 

reported.   

Conclusion 

The OLR approach maintains Type I error robustness for all of the scenarios within the simulation 

design, and hence it may be considered to be a valid a competitor to existing approaches particularly 

where the normality assumption is violated. Moreover, using the OLR approach as default means that 

there may be no requirement for researchers to test the normality assumption. 

When the alternative hypothesis is true, and data is skewed, OLR is not inferior in power compared to 

the Mann Whitney test and superior in power compared to the Welch t-test.  When data is normally 

distributed, any relative loss in power is minor when comparing OLR to the Welch t-test (subject to 

equal sample sizes >= 16 per group).   

In general, OLR is capable of incorporating covariates.  In general, OLR is capable of including more 

than one factor in modelling and can be extended to include interaction terms.  This research paves 

the way to further research comparing the three methods in higher order designs and therefore 

opening the possibility of researchers having an extended toolkit.   
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