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Abstract— Proximity operation can significantly improve the
efficiency of eddy current de-tumbling. However, the tumbling
motion and non-cooperation of space debris make the chaser
execute collision avoidance maneuvers and be influenced by model
uncertainty. In this paper, an inertial-oriented safety corridor is
proposed by taking the debris’ angular momentum as the central
axis, which can avoid the frequent collision maneuvers of the
chaser. Meanwhile, a desired de-tumbling trajectory under this
safety corridor is designed to de-tumble the angular velocity of space
debris. Then, a robust output-feedback controller considering safety
corridor and model uncertainty is proposed by combining moving
horizon estimation and model predictive control. The moving
horizon estimation is employed to estimate the system state and
model uncertainty which is compensated by a feedforward control
law. Furthermore, the model predictive control without terminal
ingredients is designed to realize the optimal performance of fuel
consumption and the robust tracking stability of the system. Finally,
taking the Chinese Sinosat-2 satellite as the simulation case, the
effectiveness of the proposed scheme is verified.
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I. INTRODUCTION

IN the last 60 years, humanity has launched around
12,450 satellites and produced approximately 30,630
pieces of space debris, which the Space Surveillance Net-
works have constantly monitored [1]. The ever-increasing
space debris has been viewed as a severe hazard to future
space missions. It is known that the higher the mass of
debris, the greater the risk of collision with operational
satellites. Large debris, such as defunct satellites and spent
rocket bodies, account for more than 90% of the total
mass of space debris in orbit [2]. Thus, active removal
of these large pieces of debris can substantially minimize
the risk of collision in space.

However, unlike operational satellites, space debris
often tumbles owing to passivation, collisions, environ-
mental moments, etc. Photometric data [3] show that
the defunct satellite with the max angular velocity in
geosynchronous orbit (GEO) is INTELSAT 4-F7 (1973-
058A). The angular velocity of the satellite is 139.1 (◦/s).
The rocket body with the max angular velocity in GEO is
BREEZE-M R/B (2015-075B), while the angular velocity
value is 409.6 (◦/s). This high-speed and even irregular
rotation makes it a complex problem to remove space
debris actively. Therefore, space debris de-tumbling [4] is
proposed to reduce the rotation angular velocity of space
debris before capturing.

In the past few decades, scholars have proposed a
variety of contact or non-contact de-tumbling methods,
including mechanical pulse de-tumbling [5], dual-arm
space robot de-tumbling [6], electrostatic de-tumbling
[7], plume impingement de-tumbling [8], eddy current
de-tumbling [9], and so on. Among them, eddy cur-
rent de-tumbling has attracted much attention due to its
advantages in terms of practicability and sustainability.
The fundamental physical principle of eddy current de-
tumbling is that when space debris containing conductive
components spins in the magnetic field, the induced
current is produced on the conductive parts, resulting in
the generation of de-tumbling force/torque [10].

Eddy current de-tumbling may be actively accom-
plished by utilizing a chaser with a magnetic field gen-
erator. Kadaba et al. [11] first suggested this scheme
in 1995 and investigated the feasibility of generating
eddy current by current loop, bar magnet, or U-shaped
electromagnet, respectively. To improve the magnetic field
strength and shorten the de-tumbling duration, Gómez
et al. [12] employed high temperature superconducting
(HTS) coil to de-tumble space debris, as shown in Fig.1.
They investigated and confirmed the magnetic tensor
theory [12], the design of the navigation and guidance
system [10], and the preliminary scheme of the entire
machine design [4], making this technique one of the
most comprehensive and promising in engineering and
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theory. In addition, Gómez et al. [10] mentioned that the
de-tumbling efficiency could be significantly improved by
adequate relative distance and pointing between the chaser
and the debris. Therefore, the control purpose of eddy
current de-tumbling is to decrease the relative distance as
much as possible and ensure adequate relative pointing.
However, the tumbling motion of the debris and the de-
tumbling force/torque on the chaser make it challenging.

The tumbling motion of the debris dramatically in-
creases the risk of collision between the chaser and the de-
bris. Designing suitable safety corridors is essential. The
primary safety corridor includes cardioid-based surface
[13], convexified ellipsoid [14], and circle/rectangular
cone [15], [16]. When space debris is tumbling, the above
safety corridor will be time-varying, which will lead to the
chaser moving continuously around the debris, increas-
ing the complexity of the de-tumbling process and fuel
consumption. Therefore, this paper proposes an inertial-
oriented safety corridor based on the debris’ angular mo-
mentum vector, ensuring that the safety corridor and the
desired trajectory only need slight changes. The primary
methods for the control problem within the safety corridor
are artificial potential field [17] and model predictive
control (MPC) [18]. The eddy current de-tumbling often
lasts at least several hours. Thus, fuel consumption is an
essential index in designing the de-tumbling controller.
Naturally, MPC is more suitable for eddy current de-
tumbling.

The de-tumbling force/torque, often unknown due to
the non-cooperation of debris, leads to the uncertainty of
the system dynamics model. It is necessary to develop a
robust output-feedback controller for the non-availability
of velocity-level information and control input saturation.
An estimator for feedback control is a feasible scheme,
e.g., output model predictive control [19]. The main
estimators include iterative identification estimation [20],
Kalman filter [21], moving horizon estimation (MHE)
[22], and so on. Due to the safety corridor in the de-
tumbling process, the estimated state that exceeds the
safety corridor may cause the model predictive control
to be infeasible. Considered the infeasible problem and
the requirement for estimation accuracy, moving horizon
estimation, a constrained optimal estimator which obtains
the estimated state by solving a constrained optimization
problem is appropriate for the de-tumbling.

Motivated by the above discussion, this paper pro-
poses a robust output-feedback predictive control scheme
for proximity eddy current de-tumbling with safety corri-
dor constraint, control input constraint, and uncertainty of
de-tumbling force/torque. Unlike the previous study [18],
this paper focuses on inertial-oriented safety corridor,
model uncertainty, and robust output-feedback tracking
control. To the best of our knowledge, these issues have
not been studied in eddy current de-tumbling. Further, the
innovations of this paper are:

1) A novel inertial-oriented safety corridor is pre-
sented for the proximity operations of de-tumbling.

Compared with the maximum safe distance de-
tumbling in [10] and other usual safety corridors
such as [13], [14], [15], [16], [18], the presented
safety corridor can reduce the maneuvering fre-
quency of the chaser and improve the de-tumbling
efficiency by shortening the relative distance;

2) A joint moving horizon estimation (jMHE) is
developed to optimally estimate the system state
and de-tumbling force/torque simultaneously. Un-
like the Extended Kalman Filter (EKF) [21], Un-
scented Kalman Filter (UKF) [23], and Square-
Root Unscented Kalman Filter (SR-UKF) [24],
the proposed estimator not only provides stability
and high accuracy of the estimated value, but also
avoids the over limit of the estimated value and
the nonpositive definite of the covariance;

3) A robust output-feedback controller combining
jMHE and robust tracking model predictive control
(RMPC) is designed for de-tumbling space de-
bris with model uncertainty. Compared with other
model predictive control schemes, such as [21],
[16], [18], [25], the proposed scheme does not
need velocity-level information, and ensures the
system’s robust stability and constraints satisfac-
tion under time-varying model uncertainty.

The remainder of this paper is arranged as follows.
Section II defines the reference frames and the relative
translational and rotational dynamics of the eddy cur-
rent de-tumbling. Section III depicts the inertial-oriented
safety corridor design procedure and the desired trajec-
tory. The moving horizon estimation and feedforward
control low utilized in this paper are presented in Section
IV. Section V elaborates on the robust tracking model
predictive control, including parameter design and system
stability. Section VI presents numerical simulation results
applying the designed controller to de-tumble the Chinese
Sinosat-2 satellite. At last, Section VII summarizes the
paper.

II. Dynamics Model

This paper employs a chaser with HTS coil to de-
tumble the space debris (also called ‘target’), similar to
the scenario mentioned in [12]. There are four refer-
ence frames involved in this scenario, shown in Fig.1.
The Earth-centered inertial (ECI) reference frame N =
{O, n̂x, n̂y, n̂z} is located at the center of Earth, n̂x

points toward the vernal equinox, n̂z is aligned with the
North Pole, and n̂y completes the triad. The body refer-
ence frame of chaser B = {Ob, b̂x, b̂y, b̂z} with its origin
is located at the mass center of the chaser. b̂y is aligned
with the coil’s magnetic moment mBc as shown in (9);
b̂x and b̂z are vertical with b̂y and complete the triad.
The body reference frame of debris T = {Oo, t̂x, t̂y, t̂z}
is fixed at the mass center of the debris. t̂x, t̂y and t̂z
are aligned with the principal body axes of the debris
[26]. The desired reference frame D = {Ob, d̂x, d̂y, d̂z}
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is located at the mass center of the chaser, and the basic
vectors [d̂x, d̂y, d̂z] of frame D are given by (23) and (25).
Furthermore, for any given vector X , XN indicates that
X is written in N frame; B, T , and D frames are the
same.

Debris' Orbit

Chaser
Magnetic 

Field  

HTS coil

O

ˆxn

ˆzn

ˆyn

oO

ẑt

ŷt

x̂t

ˆ
yb

ˆ
zb

ˆ
xb

ˆ
yd

ˆ
zd

ˆ
xd

Fig. 1: Definitions of reference frames1.

A. Relative translational dynamics

The first step to establishing the relative translational
dynamics of the de-tumbling problem is to determine
the reference frame. The reference frame commonly
used to establish the relative translational dynamics of
spacecraft include the Local-Vertical- Local-Horizontal
(LVLH) frame [28], the line-of-sight (LOS) frame [29],
the chaser’s body frame [30] and the target’s body frame
[17]. However, the electromagnetic model is not straight-
forward in these frames [10], and the safety corridor
designed in the following content is fixed in the N frame.
For this reason, the relative translational dynamics is
expressed in the N frame as follows:

R̈N = − GM

∥RN ∥3
RN , (1)

r̈N = − GM

∥RN ∥3
PRr

N +
FN

Bt

mred
− FN

c

mc
, (2)

where RN =
mtr

N
t +mcr

N
c

mc+mt
is the position vector of the

chaser-target system centroid, mc and mt are the mass
of the chaser and the target respectively, mred = mtmc

mt+mc

is the reduced mass of the chaser-target system, rc and
rt are the position vector of the chaser and the target
respectively, PR = I3−3uN

R (uN
R )⊤, uN

R = RN

∥RN ∥ , ∥RN ∥
denotes 2-norm for RN .

In addition, rN = rNt − rNc denotes the relative
position between the chaser and the target, GM =
398, 600.44 (km3 · s−2) represents the standard Earth’s
gravitational parameter, FN

Bt is the de-tumbling force
given in [18], FN

c is the control force.

1The space debris is shown as a rocket upper stage body, as illustrated
in [27].

REMARK 1. To avoid ambiguity, some notations (such as
the vector R) and definitions (such as the chaser-target
system) used in this paper are consistent with the 3-D
dynamical equations in [10]. Compared with [10], the
reference frame of each vector is pointed out.

B. Rotational dynamics

Since the target is tumbling, its attitude changes in
a wide range. To avoid attitude singularity, the unit
quaternion is used to describe the attitude of the target
and the chaser. The rotational dynamics of the target is

β̇t0 = −1

2
(βT

tv)
⊤ωT

t , β̇
T
tv =

1

2
((βT

tv)
× + βt0I3)ω

T
t , (3)

J tω̇
T
t + ωT

t × J tω
T
t = T T

Bt. (4)

And the rotational dynamics of the chaser is

β̇c0 = −1

2
(βB

cv)
⊤ωB

c , β̇
B
cv =

1

2
((βB

cv)
× + βc0I3)ω

B
c , (5)

Jcω̇
B
c + ωB

c × Jcω
B
c = T B

c + T B
Bc, (6)

where βt = [βt0, (β
T
tv)

⊤]⊤ and βc = [βc0, (β
T
cv)

⊤] are
the unit quaternion, ωT

t and ωB
c are the angular velocity

vector, J t and Jc are the inertia tensor of the target
and the chaser, respectively. TBt denotes the de-tumbling
torque on the target, and its expression in frame N is [10],
[12]:

TN
Bt = (M eff (ω

N ×BN
Gt))×BN

Gt, (7)

in which M eff is ‘Effective Magnetic Tensor’ depending
on the geometry and conductivity of the target and the
inhomogeneity of the magnetic field, and ωN = ωN

t −ωN
c

is the relative angular velocity. BN
Gt is the magnetic field

at the center of gravity (COG) of the target described by

BN
Gt = −µ0

4π

Å
3(mN

Bc · rN )rN

∥rN ∥5
− mN

Bc

∥rN ∥3

ã
, (8)

in which µ0 = 4π×10−7N ·A−2 denotes the permeability
of vacuum, mN

Bc is the magnetic moment of the coil given
by

mN
Bc = πR2

hNhIhb̂
N
y , (9)

where Rh is the radius of electromagnetic coil, Nh is the
turn of electromagnetic coil, Ih is the electrical intensity,
and b̂

N
y is the y axis base vectors of frame B expressed

in frame N . In addition, TN
Bc = −TN

Bt − (rN × FN
Bt)

denotes the de-tumbling torque on the chaser, and T B
c is

the control torque.
Let x = [(rN )⊤, (ṙN )⊤, (βB

cv)
⊤, (ωB

c )
⊤]⊤, and then

the state-space model can be given by

ẋ = f(x) +Bu+Gp, (10)
y = Cx, (11)

where

f(x)=


ṙN

− GM

∥RN ∥3PRr
N

1
2 ((β

B
cv)

× + βc0I3)ω
B
c

−J−1
c ωB

c
×
Jcω

B
c

,B=


0 0

− I3×3

mc
0

0 0

0 J−1
c

,
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G =


0 0

I3×3/mred 0
0 0

0 J−1
c

 ,C =

ï
I3×3 0 0 0
0 0 I3×3 0

ò
,

and u =

ï
FN

c

T B
c

ò
, p =

ï
FN

Bt

T B
Bc

ò
.

III. Safety corridor and desired trajectory

For the eddy current de-tumbling process, safety is
realized by safety corridor constraint, and de-tumbling
effect is guaranteed by desired trajectory. In the following,
the design process of safety corridor and desired trajec-
tory is elaborated according to the requirements of eddy
current de-tumbling.

A. Safety corridor constraint

The safety corridor, also known as the approach
corridor, is usually defined as a cone-shaped area [31].
The cone-shaped area consists of origin, central axis, and
half cone angle. In autonomous rendezvous and docking
(AR&D), the origin of the cone-shaped area is located at
the docking interface of the target, and the central axis
is parallel to the docking axis [32]. This kind of safety
corridor, called ‘Natural Safety Corridor’ in this paper,
is fixed with the target and will rotate with the rotation
of the target. However, since the target is tumbling, the
natural safety corridor of the target will also tumble. It
increases the complexity of the controller and the fuel
consumption of the chaser. Therefore, a safety corridor,
called ‘Inertial-oriented Safety Corridor’ invariant in the
inertial reference frame N , is designed.

The inertial-oriented safety corridor takes the origin
of the target’s body reference frame as the origin, and the
angular momentum axis of the target as the central axis.
It is noted that the angular momentum axis of the target is
invariant without external torque. In this case, the safety
corridor established in this way is inertial. However, due
to the tumbling of the target, the half cone angle of the
inertial-oriented safety corridor is not equal to that of the
natural safety corridor. Fig.2(a) briefly illustrates three
types of motion of the tumbling target, i.e., rotation (R),
precession (P), and nutation (N) [15].

Let the half cone angle of the natural safety corridor
be η. The nutation angle, the angle between the x-axis of
frame T and angular momentum axis Ht of the target,
is defined as:

θ = acrcos

Ç
t̂x ·Ht

∥t̂x∥∥Ht∥

å
. (12)

Let θm be the maximum value of θ. Then, as shown
in Fig.2(b), the half cone angle of the inertial-oriented
safety corridor α is not equal to that of the natural safety
corridor η. The equation between them is

α = η − θm. (13)

x̂t x̂t
Natural 
Safety 

Corridor
R

P

N

tH

η

x̂t x̂t

m
θ

Inertial-fixed 
Safety Corridor

α

tH

η

(a)

x̂t x̂t
Natural 
Safety 

Corridor
R

P

N

tH

η

x̂t x̂t

m
θ

Inertial-oriented 
Safety Corridor

α

tH

η

(b)

Fig. 2: (a) illustrates the tumbling motion and natural
safety corridor of the target, (b) illustrates the
inertial-oriented safety corridor of the target.

In addition, a linear constraint can be generated by
using the rectangular cone area [16], which could reduce
the computational complexity of constrained optimization
problems. In this paper, the largest inscribed rectangular
cone of the circular cone is taken as the safety corridor.

Define a new coordinate system, called angular mo-
mentum reference frame, as H = {Oo, ĥx, ĥy, ĥz}. The
origin of H is at the COG of the target, and ĥx, ĥy, ĥz

define as

ĥx = Ht, (14)

ĥy = ĥx × n̂x, (15)

ĥz = ĥx × ĥy. (16)

Therefore, the inertial-oriented safety corridor con-
straint is

Asr
H ≤ 0, (17)

where

As =

−tan(αr) −1 0
−tan(αr) 1 0
−tan(αr) 0 −1
−tan(αr) 0 1

 , αr = acrtan

Å
tan(α)√

2

ã
.

(18)
Then, the safety corridor constraint for rN can be

given by
Xs := {rN |AsCHNrN ≤ 0}. (19)

Simultaneously, the upper and lower bound constraints
of the system state x are marked as

Xb := {x|xmin ≤ x ≤ xmax}. (20)

Combining the above conditions, all the constraints of
the system state are

X := {x|rN ∈ Xs and x ∈ Xb}. (21)

REMARK 2. It can be seen from (13) that to ensure the
existence of the inertial-oriented safety corridor, η > θm
must be satisfied. It is satisfied for defunct satellites, e.g.,
Sinosat-2 [15]. For another case, e.g., Ariane-4 Upper
Stage [4], the equation is not happy. If it is not satisfied,
one can use the strategy of [4] or [18] to reduce the
nutation angle of the target first. In addition, because
the target is not free from external torque, the angular
momentum reference frame proposed in this paper is not
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inertial invariant. However, due to the external torque
being usually small, the angular momentum of the target
changes slowly. Thus, for the control and maneuver of
the chaser, the target’s angular momentum could be
considered constant.

B. Desired trajectory

To ensure the safety of the de-tumbling process, the
desired relative position is defined as follows:

rNd = ra
HN

t

∥HN
t ∥

, (22)

where ra is the radius of the spherical obstacle around
center body of the target [33]. For the desired quater-
nion βd, two limiting extreme configurations, parallel
configuration (∥) and perpendicular configuration (⊥), are
proposed in [4]. The parallel configuration means that the
magnetic moment of the coil mBc should be parallel to
the relative position vector rd, that is mBc ∥ rd, while
the perpendicular configuration means mBc ⊥ rd.

This paper designs the desired trajectory based on the
perpendicular configuration. Combined with (9), it means
d̂y should be perpendicular to rd. Then, the following
desired attitude is given:

d̂
N
x =

HN
t

∥HN
t ∥

, (23)

d̂
N
y = d̂

N
x × n̂N

x , (24)

d̂
N
z = d̂

N
x × d̂

N
y . (25)

Thereby, the direction cosine matrix from D frame to
N frame is

CND =
[
d̂
N
x , d̂

N
y , d̂

N
z

]
, (26)

and the desired quaternions βd can be derived by the
inverse transformations in [26].

For the continuity of the controller tracking trajectory
below, the higher-order derivative of the desired trajectory
is calculated by the following second-order dynamics
system [34]:

ÿd + k1ẏd + k2yd = k2ya(t), (27)

where k1 and k2 are chosen positive constants, ya indi-
cates the trajectory to be tracked, yd represents the desired
trajectory, ẏd and ÿd represent the first-order and second-
order differential of the desired trajectory, respectively.

IV. Estimator and feedforward controller

A. Joint moving horizon estimator

The physical parameters of space debris, such as
conductivity and conductor component distribution, are
often unknown due to non-cooperation, collision, sec-
ondary explosion, etc. It makes that the ‘Effective Mag-
netic Tensor’ M eff cannot be obtained by theoretical
calculation. This further results in that the de-tumbling
force/torque p cannot be calculated by (7). Thus, the de-
tumbling force/torque needs to be estimated to guarantee

the control performance for the de-tumbling. In addition,
state estimation is also necessary since there are model
uncertainty and unmeasured state in the eddy current de-
tumbling system [4].

The optimization-based state estimator Moving Hori-
zon Estimation [19] is considered in the de-tumbling pro-
cess. The estimator is suitable for multivariable nonlinear
systems and can ensure that the estimated value meets the
given constraints. With the improvement of computing
power, this method has been applied increasingly [35].
Given this, the jMHE is developed for simultaneous
state and de-tumbling force/torque estimation of eddy
current de-tumbling. The joint state at time t is defined as
z(t) = [x(t)⊤,p(t)⊤]⊤ [36], and the corresponding joint
dynamics model can be given as

z(t) =

ï
x(t)
p(t)

ò
=

ï
fd(x(t− 1),u(t− 1),p(t− 1))

p(t− 1) +w(t− 1)

ò
,

= F d(z(t− 1),u(t− 1)) +Gzw(t− 1) (28)
y(t) = Czz(t), (29)

where fd(x(t − 1),u(t − 1),p(t − 1)) is the discretiza-
tion model of (10) by the Runge Kutta method, and
x(t),u(t),p(t) are the discrete variable of x,u,p at
time t. w(t) is the ”parameter noise” for time-varying
parameters, and Gz = [0⊤, I⊤

6×6]
⊤, Cz = [C,0].

Naturally, the MHE optimization problem Pmhe
t at

time t can be formularized as

min
Z,W

ΦM =

t−1∑
i=t−M

Ä
∥yi −Czzi∥2Rinv

+ ∥wi∥2Qinv

ä
+ Γ(zt−M , z̄t−M ), (30)

subject to

zi+1 = F d (zi,U i) +Gzwi, i = t−M, ..., t− 1, (31)
wi ∈ W, i = t−M, ..., t− 1, (32)
zi ∈ Z, i = t−M, . . . , t, (33)

where ΦM is the objective function of Pmhe
t , and M ∈

N+ denotes the length of horizon window. Note that
if the data horizon is not full, i.e., t ≤ M , the full
information estimator [19] is employed to estimate the
joint state. Γ(zt−M , z̄t−M ) = ∥zt−M − z̄t−M∥2P̄ t−M

is
the arrive cost where z̄t−M denotes the prior estimate
of the joint state with a prior weighting P̄ t−M . Z =
[zt−M , ..., zt] is the decision variable corresponding to the
joint state z, and the estimated value ẑt is equal to the
optimal solution of decision variable zt, i.e., ẑt = z∗t .
Similarly, W = [wt−M , ...,wt−1] is the decision variable
corresponding to parameter noise. Y = [yt−M , ...,yt−1]
is the measurement output from t − M to t − 1, while
U = [ut−M , ...,ut−1] is the control input from t−M to
t−1. W and Z are the constraint sets for parameter noise
and joint state, respectively. Rinv and Qinv are weighting
matrices for parameter and measure, respectively.

REMARK 3. The time series notation of MHE usually is
Xt−i|t, i = 1, ...,M . To simplify the notation, the notation
t− i is directly adopted in Pmhe

t . Thus, z̄t−M means the
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prior estimate at time t, which is equal to the estimated
value ẑt−M . Meanwhile, the prior weighting P̄ t−M is
updated by Kalman Filter which is given by

P̄
−
t−M = At−M P̄ t−M−1A

⊤
t−M +GzQ

−1
invG

⊤
z , (34)

St−M = CzP̄
−
t−MC⊤

z +Rinv, (35)

Kt−M = P̄
−
t−MC⊤

z S
−1
t−M , (36)

P̄ t−M = (I −Kt−MCz)P̄
−
t−M , (37)

where
At−M =

∂F d

∂z

∣∣∣∣
z=ẑt−M ,u=ut−M

.

REMARK 4. The Robust Asymptotic Stability (RAS) of
MHE with bounded disturbances is given by [37]. How-
ever, the systems in [37] do not involve the control inputs.
To deal with the combined estimation/control problem,
[19] concludes that the combined MHE/MPC is RAS for
nonlinear model predictive control and moving horizon
estimation.

B. Feedforward control

Let x̂ be the estimated state and p̂ be the estimated
de-tumbling force/torque, and then the system dynamics
model can be formulated as

x̂(t+ 1) = fd(x̂(t),u(t), p̂(t)) + δ(t), (38)

where δ = fd(x̂+ex,u, p̂+ep)−fd(x̂,u, p̂)−e+x . The
superscript + indicates the value of ex at the next time.
ex = x − x̂ and ep = p − p̂ are the estimate error for
state and de-tumbling forces/torque, respectively.

Then, the estimate of de-tumbling force/torque can be
compensated by a feedforward control law given as

u(t) = uc(t)−Binvp̂(t), (39)

where uc(t) denotes the feedback control provided by the
robust tracking MPC in Section V, and

Binv =

ï
−mc/mredI3×3 0

0 I3×3

ò
.

Substituted (39) to the system dynamics model (38)

x̂(t+ 1) = fd(x̂(t),uc(t)) + δ(t). (40)

And the control constraint for the feedback control
uc(t) is

Uc(t) = {uc|uc,min ≤ uc ≤ uc,max}, (41)

where uc,min = umin + Binvp̂(t), uc,max = umax +
Binvp̂(t). umin and umax are the upper and lower bounds
of the control input u.

V. Robust tracking model predictive controller

The estimator inevitably introduces an estimate error
in the controller. And the controlled variable is no longer
the actual state but the estimated state. In addition, unlike
the setpoint problem, the controller needs to track the de-
sired trajectory during the de-tumbling process. Therefore,
we develop a robust tracking model predictive controller

(RMPC) with state-of-art methods [38], [39], [40], [41] to
track the desired de-tumbling trajectory and ensure robust
stability.

The optimization problem Pmpc
t is different from the

general nonlinear tracking MPC problem [38], where the
predicted state x(0|t) is the actual state x(t) instead of
the estimated state x̂(t). The optimization problem Pmpc

t

is expressed as:

VN (x̂(t), zd(·|t)) = min
uc(·|t)

JN (x̂(t),uc(·|t), zd(·|t))

= min
uc(·|t)

N−1∑
i=0

l(x̂(i|t),uc(i|t), zd(i|t)), (42)

subject to

x̂(0|t) = x̂(t), (43)
x̂(i+ 1|t) = fd(x̂(t),uc(t)), i = 0, ..., N−1, (44)

x̂(i|t) ∈ X̂, i = 0, ..., N, (45)

uc(i|t) ∈ Ûc, i = 0, ..., N−1. (46)

Note that the symbol (̂·) is added only to illustrate that
the controller’s purpose is to force the estimated state x̂ to
be robustly asymptotically stable to the desired trajectory
xd. In problem Pmpc

t , N is the prediction horizon length.
And the stage cost l(x,u, zd) is defined as

l(x,u, zd) = ∥x− xd∥2Q + ∥u− ud∥2R , (47)

where Q and R are the positive definite weighting matri-
ces for state and input error, respectively. zd = (xd,ud)
is the desired trajectory and zd(i|t) = zd(t+ i). uc(·|t) =
{uc(0|t), ...,uc(N − 1|t)} denotes the decision variable
of control input. X̂ and Ûc are the state constraint and in-
put constraint for the estimated state, respectively. Proper
selection of X̂ and Ûc can ensure that the actual state x
and control input uc meet the actual state constraint X
and input constraint Uc.

By solving the optimization problem Pmpc
t at each

sampling time t and only executing the first optimized
control input u∗

c(0|t), we can get the MPC feedback law
κ(x̂(t)) as follows:

κ(x̂(t)) = u∗
c(0|t). (48)

Then, the closed-loop system under control law
κ(x̂(t)) is

x̂(t+ 1) = fd(x̂(t), κ(x̂(t))) + δ(t)

= x̂∗(1|t) + δ(t). (49)

REMARK 5. From the definition of stage cost, we can
know that the optimization problem Pmpc

t is to minimize
the sum of ∥x− xd∥2Q + ∥u− ud∥2R in the whole pre-
diction horizon. Since Q and R are positive definite, the
optimal objective value function VN (x̂(t), zd(·|t)) is also
positive definite. Therefore, if the descent property for
VN (x̂(t), zd(·|t)) can be determined, we can conclude
that VN (x̂(t), zd(·|t)) is a Lyapunov function for the
system. It also means that the distance between the actual
trajectory (x,u) and the desired trajectory (xd,ud) de-
creases, that is, the realization of trajectory tracking. In
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Section B, Theorem 1 gives the theoretical expression of
the above statement (due to the uncertainty, the descent
property is robust).

A. Parameter design

In the above controller, the parameters to be designed
include X̂ and Ûc. These parameters must be carefully de-
signed to ensure the system’s iterative feasibility, stability,
and constraint satisfaction.

For simplicity, the compact notation of polyhedron
is used to describe the actual state constraint and input
constraint as:

X = {x|Axx ≤ bx},Uc = {uc|Auuc ≤ bu}, (50)

where

Ax =

AsCHN | 04×9

I12×12

−I12×12

 , bx =

 0
xmax

−xmin

 ,

Au =

ï
I6×6

−I6×6

ò
, bu =

ï
uc,max

−uc,min

ò
.

(51)

To adopt the constraint tightening method proposed
in [39], the constraint set is needed to rewrite into
the normalized form, that is, {x|Ax ≤ 1q} where 1q

represents a column vector of one with dimension q. This
form requires the polytope to contain the origin [40].
However, the origin is not the inner point of the safety
constraint set (19). Therefore, the set needs to be shifted
to contain the origin.

Let as is the shifted vector that must be contained in
the safety constraint set. Then, the shifted constraint set
Xs is

Xs = {x|Ax(x+ as) ≤ bx}
= {x|Axx ≤ bx −Axas} = {x|Axx ≤ bxs}. (52)

Thus, we know that if x− as ∈ Xs, then x ∈ X.
Let the shifted and normalized constraint set be

Xs = {x|Hxx ≤ 1q},Us = {u|Luu ≤ 1p}, (53)

where Hx = Ax./repmat(bxs, 1, 12),Lu =
Au./repmat(bu, 1, 6). The operator A./B denotes
that each element of A is divided by the corresponding
element of B, and repmat(b, i, j) denotes the repeat
copies of b into an i-by-j block arrangement.

Then, the tightened constraints can be expressed as

X̂ = (1− ϵ∞)Xs = {x|Hxx ≤ (1− ϵ∞)1q}, (54)

Ûc = (1− ϵ∞)Us = {u|Luu ≤ (1− ϵ∞)1p}, (55)

where ϵ∞ = ϵ
1−√

ρc
, ϵ ∈ R>0 is a scalar tunable factor

and ρc ∈ (0, 1) is the exponential decay rate [39]. On the
other hand, according to [41], the exponential decay rate
ρc can be calculated by

ρc = 1− cq,l
cu

, (56)

where cq,l = λmin(Q), cu = maxzd∈Ẑd
λmax(P f ).

P f denotes the terminal weighting matrices obtained by

solving the discrete-time Lyapunov equation:

P f − (Ad +BdKd)
⊤
P f (Ad +BdKd) = Q∗ + ηcIn,

(57)

with some positive constant ηc, and

Ad =
∂fd

∂x

∣∣∣∣
(x,u)=(xd,ud)

,Bd =
∂fd

∂u

∣∣∣∣
(x,u)=(xd,ud)

.

(58)

In addition, Q∗ = Q + K⊤
d RKd where Kd is usually

obtained by solving discrete-time linear-quadratic regula-
tor.

REMARK 6. From [39], the value of ϵ∞ is equal to
ϵk = ϵ

1−√
ρc

k

1−√
ρc

as k approaches infinity, and the tightened
constraints vary with k. To simplify the controller, ϵ∞
is used to design tightening constraints. It ensures that
the tightening constraints remain constant throughout the
prediction.

B. System stability

For the stability guarantee of MPC, [39] gives the
robust stability of MPC without terminal ingredients when
stabilizing the origin, [41] gives the nominal stability
of MPC without terminal ingredients when tracking the
reference trajectory, and [42] gives the robust tracking
stability of MPC when considering the terminal ingredi-
ents. In this paper, we consolidate the research mentioned
above and provide the robust tracking stability theorem of
RMPC without terminal ingredients, which is used in the
de-tumbling process.

LEMMA 1. Suppose that fd(x̂(t),u(t)) is twice contin-
uously differentiable and Ẑd := X̂ × Ûc is a compact
set. Assume that there exists a positive definite matrix
P f (t) and some positive constants η0, such that for any
zd(t) ∈ Ẑd, the following matrix inequality is satisfied

(Ad +BdKd)
⊤
P+

f (Ad +BdKd) ≤ P f −Q∗ − η0In,

(59)

and define

cl = min
zd∈Ẑd

λmin(P f ), cq,u = λmax(Q),

cu,2 = max
zd∈Ẑd

λmax(P f −Q∗ − η0In),

ku = max
zd∈Ẑd

∥Kd∥, cr,u = λmax(R).

The following conclusion hold as

1) The system x̂(t + 1) = fd(x̂(t),uc(t)) is Locally
Incrementally Stabilizable [39].

2) Given terminal cost Vf (x̂(t),xd(t)) = ∥x̂(t) −
xd(t)∥2P f

. There exists a terminal set Xf (t) =
{x̂(t)|Vf (x̂(t), zd(t)) ≤ αf}, such that for any
x̂(t) ∈ Xf (t), and zd(t) = (xd,ud) ∈ Ẑd, the
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following properties hold :

Vf (x̂(t+ 1), zd(t+ 1)) ≤ Vf (x̂(t), zd(t))

− l(x̂(t), kf (x̂(t), zd(t)), zd(t)),
(60)

∞∑
k=0

l(x̂(t+ k), kf (x̂(t+ k), zd(t+ k)), zd(t+ k))

≤ Vf (x̂(t), zd(t)) ≤ γ∥x̂(t)− xd(t)∥2Q,
(61)

x̂(t+ 1) ∈ Xf (t+ 1), (62)

where x̂(t + 1) = fd(x̂(t),uc(t)), and
kf (x̂(t), zd(t)) = ud(t) +Kd(t)(x̂(t)− xd(t)).

Proof:
Part I. The local incremental stability can be guaranteed
by Lyapunov incremental stability, i.e., Assumption 1 of
[41]. Assumption 1 of [41] can be satisfied with

Vδ(x, z, v) = ∥x− z∥2P f
, κ(x, z, v) = v +Kd(x− z).

(63)

Let ∆x = x̂ − xd, ∆u = κ(x̂,xd,ud) = Kd∆x. The
first-order Taylor-approximation of fd around any point
zd is

fd(xd +∆x,ud +∆u)

= fd(zd) + (Ad +BdKd)∆x+Φd(∆x,∆u),

where Φd denotes the remainder term. Twice continuous
differentiability of fd in combination with the compact-
ness of Ẑ implies that there exists TΦ with [38]

∥Φd(∆x,∆u)∥ ≤ TΦ(∥∆x∥2 + ∥∆u∥2)
≤ TΦ(1 + k2u)∥∆x∥2.

And let the upper bound of Vδ(x̂,xd,ud) be given as

Vδ(x̂,xd,ud) = ∥∆x∥2P f
≤ δloc = cl

Å
LΦ

TΦ(1 + k2u)

ã2
,

where LΦ =
»

cu,2+η0

cu
−
»

cu,2

cu
.

Thus, it can be implied that

∥Φr(∆x,∆u)∥ ≤ LΦ∥∆x∥. (64)

Then the incremental Lyapunov function satisfies

Vδ(x̂
+,x+

d ,u
+
d ) = ∥x̂+ − x+

d ∥
2
P+

f

= ∥fd(xd +∆x,ud +∆u)− fd(xd,ud)∥2P+
f

= ∥(Ad +BdKd)∆x+Φd(∆x,∆u)∥2
P+

f

≤ ∥(Ad +BdKd)∆x∥2
P+

f

+ ∥Φd(∆x,∆u)∥2
P+

f

+ 2∥Φd(∆x,∆u)∥P+
f
∥(Ad +BdKd)∆x∥P+

f
. (65)

From (59), we get

∥(Ad +BdKd)(x̂− xd)∥2P+
f

≤ ∥x̂− xd∥2P f
− η0∥x̂− xd∥2 − ∥x̂− xd∥2Q∗

= Vδ(x̂,xd,ud)− η0∥∆x∥2 − l(x̂, κ(x̂,xd,ud), zd).
(66)

Combining with (64), the following inequation can be
given as

∥Φd(∆x,∆u)∥2
P+

f

+ 2∥Φd(∆x,∆u)∥P+
f
∥(Ad +BdKd)∆x∥P+

f

≤
(
L2
Φcu + 2LΦ

√
cu
√
cu,2

)
∥∆x∥2

=

Ç
cu

Å
LΦ +

…
cu,2
cu

ã2
− cu,2

å
∥∆x∥2 ≤ η0∥∆x∥2.

(67)

Substitute (66) and (67) to (65):

Vδ(x̂
+,x+

d ,u
+
d ) ≤ Vδ(x̂,xd,ud)− l(x̂, κ(x̂,xd,ud), zd)

≤ Vδ(x̂,xd,ud)−
cq,l
cu

∥∆x∥2P f
= ρVδ(x̂,xd,ud),

where ρ = 1− cq,l
cu

∈ (0, 1).
Part II. Let αf = δloc, the (60) is set up immediately.
Let γ = cu

cq,l
, then Vf (x̂(t), zd(t)) ≤ γ∥x̂(t) −

xd(t)∥2Q.
Equation (61) can immediately get by γ = cu

cq,l
and superposition the (61) for k = 0, ...,∞. Since
l(x̂(t), kf (x̂(t), zd(t)), zd(t)) ≥ 0, then Vf (x̂(t +
1), zd(t + 1)) ≤ Vf (x̂(t), zd(t)) ≤ αf . Thus x̂(t + 1) ∈
Xf (t+ 1).

REMARK 7. For the de-tumbling process, fd(x̂(t),u(t))
and Ẑd obviously satisfy the assumptions in lemma 1.
Furthermore, since the desired trajectory designed in
Sec.B is almost constant over a long time interval, it can
be considered that P+

f is equal to P f . Thus, by making
ηc ≥ η0, (59) is satisfied.

THEOREM 1. Let lemma 1 hold. For a given bound
Vmax ∈ R>0, there are constants N0, ŵ, γVmax

,
αw,N ∈ R>0. For all initial estimated state x̂(0) sat-
isfies VN (x̂(0), zd(·|0)) ≤ Vmax, and all disturbances
∥w(t)∥ ≤ ŵ, if the prediction horizon length N > N0,
the perturbed closed-loop system (49) for t ≥ 0 satisfies

∥∆x(t)∥2Q ≤ VN (x̂(t), zd(·|t)) ≤ γVmax
∥∆x(t)∥2Q, (68)

VN (x̂(t+ 1), z(·|t+ 1))− VN (x̂(t), zd(·|t))
≤ 2αw,Vmax(∥w(t)∥)− αw,N l(x̂(t),uc(t), zd(t)).

(69)

with αw,Vmax , a class K function given in [39]. In ad-
dition, the set ZRPI := {x̂(t)|VN (x̂(t), zd(·|t)) ≤ VRPI}
with VRPI := 2αw,Vmax(ŵ)

γVmax

αw,N
is robustly stabilized.

The proof of Theorem 1 is consistent with Theorem
8 in [39], which will not be restated here. Theorem
1 is intended for trajectory tracking, and Theorem 8
is stable to zero, which makes the proof process of
the two theorems slightly different. Readers interested
in proving Theorem 1 should keep this in mind. In
addition, as discussed in [41], the theoretical proof is still
quite conservative, and the prediction horizon length N
required is too long. However, Theorem 1 provides an
indication of system stability, which is helpful for control
system analysis and parameter adjustment.
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VI. Simulation and discussion

This paper takes the Chinese Sinosat-2 satellite for
simulation analysis. The satellite was launched in 2006
and failed due to a system fault. At present, it has
become typical space debris. In the simulation, it is
assumed that the angular velocity and attitude of Chinese
Sinosat-2 are measurable. Still, its physical parameters
are unknown due to long-term failure, so it is necessary
to estimate the de-tumbling force/torque. The following
simulation parameters are selected as Table I and Table
II to demonstrate the strategy’s effectiveness and conduct
system simulation analysis.

TABLE I: The Physical Parameters of the Chaser and
Target

Parameter Value Unit
mt 2086.3 kg

Jt diag(4513.2, 4138.1, 3282.5) kg ·m2

Meff 0.89 · diag(5.908, 5.908, 1.951) · 106 S ·m4

Rh 1 m

Nh 500 −
Ih 80 A

mc 175 kg
Jc diag(14.3, 17.3, 20.3) kg ·m2

η 75 ◦

θm 10 ◦

ra 3 m

TABLE II: The Initial Value of the De-tumbling Phase
Parameter Initial Value Unit
r [2.5; 0; 0] m

v [0; 0; 0] m/s
βc [0.3; 0.9; 0.1; 0.3] −
ωc [0; 0; 0] ◦/s
βt [1; 0; 0; 0] −
ωt [14.364; 1.224; 3.4195] ◦/s

The sample time Ts is set to 0.1s. The parameter value
about the constraints is given as: the upper and lower
bounds of the system state are xmax = [1⊤

9 , 0.21
⊤
3 ]

⊤

and xmin = −xmax; the constraint set for parameter
noise w is W = {w|wmin ≤ w ≤ wmax} where
wmax = [10−21⊤

3 , 10
−11⊤

3 ]
⊤ and wmin = −wmax; the

constraint set for joint state z is Z = X × P and the
constraint set for p is P = {p|pmin ≤ p ≤ pmax} where
pmax = [0.61⊤

3 ,1
⊤
3 ]

⊤ and pmin = −pmax. The horizon
length of MHE is M = 20, and the covariance matrix
Rmhe = 10−8I12, Qmhe = 10−6I12. Thus, the weighting
matrices Rinv = R−1

mhe = 108I12, Qinv = Q−1
mhe =

106I12. The bound of input are umax = [21⊤
3 , 0.21

⊤
3 ]

⊤

and umin = −umax. The prediction horizon length
of MPC is N = 10, and weighting matrices Q =
108diag(1⊤

6 , 20, 5, 5,1
⊤
3 ) and R = I6, the shifted vector

as = 10−3112. The CasADi helper classes Opti stack
[43] is applied to encode the optimization problem Pmhe

t

and Pmpc
t , and the solver is chosen as ipopt [44]. The

simulation results and discussion are given below.
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Fig. 3: Time response of target’s angular velocity and
angular momentum direction

Firstly, we show the de-tumbling effect of target an-
gular velocity and angular momentum’s direction angular.
The angular momentum direction angle is defined as
the included angle θH,i between the angular momentum
axis Ht and the N frame’s axes n̂i, and its calculation
equation is:

θH,i = acrcos

Å
n̂i ·Ht

∥n̂i∥∥Ht∥

ã
, (70)

where i = x, y, z. It can be seen from the first three
subgraphs in Fig.3 that the angular velocity in each axis
of the target attenuated to less than 1 (◦/s) within 8
hours. In contrast, it takes several days to achieve the
same effect in [10]. Fig.3(b)(c) also shows that the angular
velocity of the target ωt is oscillatory decreasing. At the
same time, Fig.3(d)(e)(f) demonstrates that the direction
of the angular momentum of the target is monotonically
changing, and the average change rate of θH,i is less
than 12

3600∗8 = 4.167 × 10−4 (◦/s). It also implies that
the natural safety corridor will oscillate continuously
with ωt as the central axis. In contrast, the inertial-
oriented safety corridor will change monotonically with
the target’s angular momentum as the central axis. The
inertial-oriented safety corridor can be deemed constant
in the control horizon since the rate of change of this
angular momentum is relatively low.

From Fig.4(a), the component of desired relative
position rd is less than 3 (m), which could improve
the de-tumbling effect. The desired trajectory in Fig.4
has no oscillation, and the overall change is tiny. The
maximum change of the desired position rd within 4
hours is less than 0.5 (m), that is, the average change
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Fig. 4: Time response of desired position and attitude

rate is less than 0.5
4×3600 = 3.4722×10−5 (m/s). Similarly,

the average change rate of the desired attitude is less than
0.2

4×3600 = 1.3889×10−5. Thus, the assumption P+
f = P f

on Remark.7 is acceptable.
Next, we investigate the fuel consumption of the

chaser. The equation of fuel consumption is defined as:

JF =

∫ t

0
∥F ∥2dτ
Isp

, (71)

where JF is the mass of fuel consumption, F is the force
vector of the chaser’s thrusters, ∥F ∥2 denotes the 2-norm
of F , and Isp = 2000 (m/s) denotes the specific impulse
of thruster. Consistent with (24) in [45], the equation from
the force vector F to the control input u is

u = HF (72)

where the matrix H indicates the reconfiguration matrix
of the thrusters relative to the chaser’s body reference
frame. The thruster parameters selected in this simulation
are consistent with the target spacecraft parameters in
[45]. The force vector F is calculated directly by the
pseudo-inverse scheme, i.e., F = H†u, where H†

denotes the pseudo-inverse of H . The fuel consumption
of the chaser is shown in Fig.5(a).

As shown in Fig.5(a), the fuel consumption of the
whole de-tumbling does not exceed 3.5 (kg), which is
acceptable for space missions. In addition, since the
pseudo-inverse scheme used in this simulation is not
optimal, the fuel consumption can be further reduced by
adopting the scheme [46].

In addition, Fig.5(b) shows the CPU time used to
solve the optimization problem of RMPC Pmpc

t at each
sampling time in the first 40 (s). The simulation runs on
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0.3
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Fig. 5: Time response of fuel consumption and CPU
time

a Dell laptop of Windows 10 with Intel(R) Core(TM)
i7-8750H CPU @2.20GHz @2.21GHz. Due to the error
between the actual trajectory and the desired trajectory,
the solver needs to spend more time looking for an
optimal solution in the early stage (between 0 (s) and
20 (s)), which results in longer CPU time. However, as
the trajectory gradually approaches the desired trajectory,
the CPU time gradually decreases and remains below 0.04
(s).

Fig. 6: Time response of position and attitude error

Next, the performance of the proposed scheme and
its comparison with the state-of-art schemes will be dis-
cussed in detail. To illustrate the effectiveness of the com-
parison, we mainly investigate the other model predictive
control and nonlinear Bayesian estimation schemes, such
as nonlinear nominal model predictive control (NMPC)
[21] and Square-Root Unscented Kalman Filter (SR-
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UKF) [24]2. These schemes can choose the same tunable
parameters as the scheme proposed in this paper.

Fig.6 shows the time response of the position error and
the attitude error in the first 40 (s) by jMHE-RMPC and
SRUKF-NMPC. Since the subsequent processes are stable
tracking processes and do not indicate the controller’s per-
formance, they are not fully displayed. As shown in Fig.6,
the chaser’s position and attitude converge to the desired
value within tracking errors of 1× 10−4× [−112,112] for
position and 2× 10−4 × [−112,112] for attitude.

TABLE III: The stability parameters and their values of
jMHE-RMPC and SRUKF-NMPC

Scheme State
Rise
Time (s)

Peak
Time (s)

Settling
Time (s)

Percent
Overshoot

jMHE-
RMPC

rex 15.5 20.4 5.3 0.025%
rey 17.2 20.5 8.9 0.018%
rez 10.8 14.3 17.6 14.135%
βex 28.5 / 18.1 /
βey 24.1 28.3 7.3 0.597%
βez 2.7 5.4 18.6 37.05%

SRUKF-
NMPC

rex 2.3 2.6 1.9 2.458%
rey 4.7 7.5 12.5 44.188%
rez 6.9 11.7 22.8 55.106%
βex 3.5 7.0 10.2 42.732%
βey 3.6 6.9 9.9 47.642%
βez 1.6 2.1 8.0 18.145%

Table III shows the stability parameters and their
values of jMHE-RMPC and SRUKF-NMPC. Note that
there is an infeasible solution to the optimization problem
of SRUKF-NMPC under the current control constraint
U := {u|umin ≤ u ≤ umax}. Therefore, we have to
relax the control constraint of SRUKF-NMPC to 2U, also
obtained from the control input comparison curves in
Fig.7. Table III indicates that SRUKF-NMPC has a better
rapid response than jMHE-MPC, i.e., shorter rise time
and peak time, but worse response matching similarity in
most cases, i.e., greater overshoot. However, as mentioned
above, SRUKF-NMPC needs relaxed control constraint to
ensure the scheme’s implementation.

Meanwhile, Fig.7 indicates the time response of con-
trol input of RMPC(u), RMPC(uc), and NMPC. Due to
the existence of feedforward control, the upper bound of
uc changes in the whole control process. Still, the actual
control input u strictly meets the control constraint. After
the chaser reaches the desired trajectory, uc becomes very
small, and the subsequent value of u is mainly used to
compensate for de-tumbling force and torque. In addition,
Fig.7 also shows that the control constraints of NMPC are
relaxed.

2In fact, Feedback Linearization Model Predictive Control (FL-MPC)
[18], Contractive Model Predictive Control (CNTMPC) [25], EKF and
UKF [23] have also been considered. However, they all have some
disastrous problems with the same parameters of this paper, such
as infeasible optimization problem (FL-MPC, CNTMPC), excessive
estimation error (EKF), and non-positive definite covariance matrix
(UKF).
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Fig. 7: Time response of control force and torque

Fig. 8: Time response of true value and estimated value

Fig.8 shows the true and estimated value of de-
tumbling force/torque. The initial estimation guess of
unknown de-tumbling force and torque is 0, which means
no prior information is used in the estimator. It also
leads to a substantial estimation error at the initial time.
However, the estimator quickly converges to the true value
and continuously tracks it, although the true value is
time-varying. For comparison, UKF can also converge
near the true value, but with slower convergence and
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greater oscillation, that is, SRUKF is more sensitive and
unstable than jMHE under the same initial covariance.
Fig.9 points out that the final estimation error of estimated
force is 0.01 × [−13,13] (N), and the final estimation
error of estimated torque is 0.01 × [−13,13] (N ·m) for
both estimators. In addition, there is no overshoot in the
estimated value, which ensures the feasibility of the model
predictive controller.
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Fig. 9: Time response of the estimation error

VII. Conclusion

Robust output-feedback tracking control for proximity
eddy current de-tumbling is studied with safety corridor
constraint, input saturation, and model uncertainty. Con-
sidering the tumbling motion of the debris and the colli-
sion avoidance requirements of the chaser, we propose an
inertial-oriented safety corridor, which essentially avoids
the time-varying problem of the natural safety corridor
and reduces the complexity of eddy current de-tumbling.
For the problem of robust output-feedback control un-
der safety constraint and input saturation, we propose a
jMHE-RMPC scheme to estimate and compensate for the
model uncertainty and realize tracking control of the eddy
current de-tumbling without velocity and angular velocity
measurement. Finally, the effectiveness of the proposed
schemes is illustrated by taking the Chinese Sinosat-2
satellite as an example. By comparing with the state-of-art
methods, we draw the following conclusions:

1) The safety corridor and desired trajectory designed
in this paper realize the eddy current de-tumbling
within the acceptable fuel consumption and reduce
the chaser’s maneuvering frequency;

2) The developed estimator can estimate the state and
de-tumbling force/torque at the same time, and the
estimate values are stable and high accurate;

3) The proposed jMHE-RMPC scheme has robust
stability and constraint satisfaction under time-
varying model uncertainty and without velocity-
level information.

Due to the inevitability of sensor noise, future research
will focus on de-tumbling trajectory planning with the
target’s angular velocity measurement noise and robust
stability estimation and control with output measurement
noise.
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[12] N. O. Gómez and S. J. Walker
Eddy currents applied to de-tumbling of space debris: Analysis
and validation of approximate proposed methods
Acta Astronautica, vol. 114, pp. 34–53, Sept. 2015.

[13] Q. Li, S. Song, C. Sun, Q. Gou, and Z. Niu
Robust output-feedback control for spacecraft proximity
operations with forbidden zone
IEEE Transactions on Aerospace and Electronic Systems,
vol. 58, no. 1, pp. 96–107, Feb 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9525151/

[14] C. Zagaris, H. Park, J. Virgili-Llop, R. Zappulla, M. Romano, and
I. Kolmanovsky
Model predictive control of spacecraft relative motion with con-
vexified keep-out-zone constraints
Journal of Guidance, Control, and Dynamics, vol. 41, no. 9, pp.
2054–2062, 2018.

[15] W. Xu, L. Yan, Z. Hu, and B. Liang
Area-oriented coordinated trajectory planning of dual-arm space
robot for capturing a tumbling target
Chinese Journal of Aeronautics, vol. 32, no. 9, pp. 2151–2163,
2019.

[16] P. Li and Z. H. Zhu
Model predictive control for spacecraft rendezvous in elliptical
orbit
Acta Astronautica, vol. 146, pp. 339–348, 2018.

[17] X. Shao and Q. Hu
Immersion and invariance adaptive pose control for spacecraft
proximity operations under kinematic and dynamic constraints
IEEE Transactions on Aerospace and Electronic Systems,
vol. 57, no. 4, pp. 2183–2200, Aug 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9329140/

[18] X. Liu, H. Chang, and P. Huang
Eddy current de-tumbling large geostationary debris based on
feedback linearization model predictive control
Aerospace Science and Technology, vol. 112, p. 106641, 2021.

[19] J. B. Rawlings, D. Q. Mayne, and M. Diehl
Model predictive control: theory, computation, and design. Nob
Hill Publishing Madison, WI, 2017, vol. 2.

[20] Z. Lu, N. Wang, and C. Yang
A novel iterative identification based on the optimised topology
for common state monitoring in wireless sensor networks
International Journal of Systems Science, vol. 0, no. 0, pp. 1–15,
2021.

[21] B. Wang, Z. Meng, C. Jia, and P. Huang
Reel-based tension control of tethered space robots
IEEE transactions on aerospace and electronic systems, vol. 56,
no. 4, pp. 3028–3043, 2019.
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A nonlinear model predictive control framework using reference
generic terminal ingredients – extended version
arXiv preprint arXiv:1909.12765, 2019.

[43] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl
CasADi – A software framework for nonlinear optimization and
optimal control
Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36,
2019.
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