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Abstract— Complex scientific workflows can process large 
amounts of data using thousands of tasks. The turnaround times 
of these workflows are often affected by various latencies such as 
the resource discovery, scheduling and data access latencies for 
the individual workflow processes or actors. Minimizing these 
latencies will improve the overall execution time of a workflow 
and thus lead to a more efficient and robust processing 
environment. In this paper, we propose a pilot job based 
infrastructure that has intelligent data reuse and job execution 
strategies to minimize the scheduling, queuing, execution and 
data access latencies. The results have shown that significant 
improvements in the overall turnaround time of a workflow can 
be achieved with this approach. The proposed approach has been 
evaluated, first using the CMS Tier0 data processing workflow, 
and then simulating the workflows to evaluate its effectiveness in 
a controlled environment. 
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I.  INTRODUCTION 

Scientific experiments such as the CMS experiment [1] at 
CERN, Geneva, produce large amounts of data which are then 
consumed by a variety of applications and users around the 
world. Various forms of scientific analyses, data 
reconstructions and data derivations are performed on the 
scientific data. These analyses use workflows to process 
thousands of files, to execute tasks and to take care of the 
dependencies between these tasks. Examples of such an 
analysis include the CMS Tier0 workflows [2] that process the 
CMS data at CERN. The turnaround time of these workflows 
depends upon the number of files being processed and the 
number and nature of the tasks within the workflow.  

In a stand-alone environment, the turnaround time of a 
workflow, running on a single machine, is simply the sum of 
the execution times of individual actors in that workflow. 

Using this environment, it would take an enormous amount of 
time to execute a complete workflow on a single machine 
because all workflow actors would have to run sequentially. 
The situation becomes particularly complex and very time 
consuming if the workflows also operate on large data sets. The 
problem is further compounded if a number of users submit 
multiple tasks, each in turn consuming multiple datasets, in 
order to achieve desired results. However, independent 
available workflow actors, whose requirements have been met 
and have no dependencies, can run in parallel in a distributed 
environment. Therefore tasks in scientific workflows are 
preferably executed on distributed resources to reduce the 
overall execution time and to enable users to achieve rapid 
throughput. 

In the case of a highly distributed environment such as the 
Worldwide LHC Computing Grid (WLCG) [3], which has 
been deployed for the analysis of data from the Large Hadron 
Collider (LHC), each workflow actor would face scheduling 
and data access latencies during its lifecycle (see Figure 1). The 
WLCG is a global collaboration of more than 170 computing 
centres in 34 countries that combines the computing resources 
of more than 100,000 processors. The mission of the WLCG 
project is to build and maintain data storage and an analysis 
infrastructure for the entire high energy physics community 
that will use the data from the LHC at CERN. At full operation 
intensity, the LHC will produce roughly 15 Petabytes 
(15 million Gigabytes) of data annually, which thousands of 
scientists around the world will access and analyse. 

Grid scheduling latency is the cumulative time spent in 
discovering resources in a Grid for scheduling and the waiting 
time that is spent in the queues of meta and local schedulers 
before a job can start execution on a so-called worker node 
(WN). A worker node is an execution resource at a site. Here 
the data access latencies are mainly caused by the network 



bandwidth limitations, the load on a Storage Element (SE) and 
the time spent in accessing a storage media such as a tape drive 
[4]. These latencies can affect the turnaround time of the 
workflow and in some cases can exceed the overall execution 
time of a job. An experimental study [5] has shown that it takes 
almost five minutes (on average) for a job, in the EGEE Grid 
[6], to start its execution from the time it was submitted. One 
can understand the extent of delays if there are thousands of 
jobs being submitted and executed in a Grid infrastructure such 
as the WLCG. Minimizing these latencies is a major research 
challenge in order to offer a high quality of service that users 
expect from production Grids. 

 

Figure 1: A Job life cycle in a Grid environment 

With the current data storage hierarchy of the WLCG, each 
site maintains one or multiple dedicated machines called 
storage elements (SE) to store data. Each job can access the 
data from a given SE. The jobs in the CMS Tier0 workflow 
(detailed in Section III) stream data directly from chunks of the 
data available on the SE. These jobs process this data, without 
downloading the entire dataset on the local hard disk of a 
worker node. This mechanism (see Figure 2) creates an 
additional burden on the SE if every CPU-bound job remotely 
accesses small chunks of the data periodically leading to a high 
frequency of I/O requests. An SE has to keep the files open, as 
they are being read, for longer periods of time and this can add 
to the latency being faced by the other data requests. 

 

Figure 2: Multiple jobs accessing an SE 

Storage systems such as CASTOR [7] can store petabytes 
of data, however, such systems are vulnerable to performance 
issues in terms of high access latencies and this becomes worse 

with increasing loads. This leads to longer data access times 
and thus affects the overall execution time of a workflow. In 
order to reduce these data access and scheduling latencies and 
to improve the workflow turnaround time, this paper proposes 
to use a pull-based scheduling system and to establish data 
caches on the worker nodes. This can be achieved by managing 
the resources of a worker node by using a customized resource 
management software component.  

To demonstrate this work, the proposed approach makes 
use of a global scheduler and the concept of a pilot job. A pilot 
job is a job that is responsible for setting up the required 
execution environment and for managing the execution of a 
real job. A real job is a job that is part of a user workflow and 
that waits in the global scheduler queue. Both these jobs follow 
different submission and scheduling mechanisms. A pilot job 
follows the traditional grid submission mechanism, however, a 
real job will bypass it because a pilot job downloads it from a 
global scheduler queue for execution. With the help of this 
approach, a pilot job can assist the real job in finding all or 
some of its required files in the cache maintained on the worker 
nodes. A real job can start its execution as soon as it has been 
scheduled to a pilot job thus reducing the queuing and 
scheduling delays. The real job will first look for its input files 
in the cache and will read the data from the local cache, 
provided the cache holds the required data, otherwise the real 
job will contact the given SE for the data. Once a real job has 
completed its execution, a pilot job immediately notifies its 
completion status to the scheduling and monitoring 
components, thus, minimizing the delays that otherwise exist in 
retrieving and notifying the job completion status. This 
approach is further explained in Section IV. 

This paper is organized as follows. Section II discusses the 
state of the art in the research domain. Section III briefly 
outlines the Tier0 workflow specification and execution system 
being used at CMS-CERN. This workflow is being taken as a 
case study to demonstrate that the proposed approach is 
effective in improving the data access, queuing, scheduling and 
execution latencies in real scientific computing environments. 
Section IV provides details of the proposed architecture and 
justifies its selection in solving the problem. Section V 
provides a description of the results which show that the 
proposed solution has been quite effective in reducing the 
turnaround times of large workflows. Section VI concludes this 
paper with possible directions for future work. 

II. RELATED WORK 

Numerous efforts have been made to reduce data access 
latencies in intensive data processing applications. The replica 
management service [8] of the Globus toolkit uses data 
replication in order to optimize the performance of a data 
analysis process. The data replication is done at the site level, 
however, it cannot solve the latency issues resulting from a 
large number of open file pointers on the SE and a large 
number of I/O requests. Intelligent Cache Management (ICM) 
[9] uses the concept of a local data cache to optimize query 
performance but it replicates and stores the data on a regional 
basis. None of these approaches exploits the resources at 
worker nodes for the purpose of data caching. Peer-to-peer 
(P2P) approaches [10] have been using end node capabilities 



for data storage, most notably, BitTorrent [11] and super-peer 
approaches such as KaZaa [12] use end node capabilities for 
data discovery and data transfer. The BitTorrent approach 
works on the so-called fair share basis. Data providers have to 
supply data for consumption by consumers in the outside 
world, which puts additional burden on the network usage and 
could also be against the security policies of the Grid sites. 
Taylor in [13] proposes a framework that uses the concept of 
super peers to create an application-specific or workflow-
specific data cache overlay. This approach makes use of 
AlChemist’s built-in flexibility to support a P2P infrastructure 
on top of the WSPeer API for communication with its peers. 
However, this approach is dependent upon the AlChemist 
framework and the WSPeer API to create data cache overlays 
on dedicated data nodes, whereas we have proposed to create 
data cache on every worker node inside a cluster to optimally 
use the available resources in the Grid infrastructures.  

In addition to these efforts, research has been carried out to 
minimize job submission and output retrieval latencies by 
using the concept of pilot jobs in Grids. Grid projects such as 
PanDA [14], DiRAC [15] and AliEn (Alice Environment) [16] 
use this approach to schedule and execute real jobs. All these 
projects use the pilot jobs to reduce the job submission latency 
by pulling a job from a global job queue and thus provide a 
fault-tolerant job execution mechanism. However, these 
systems do not use a pilot job infrastructure to reduce the data 
access latencies. A project in CMS, GlideInWMS [17], makes 
use of grid resources as part of its Condor pool. It uses Condor 
[18] glidein which acts as a pilot job on a worker node. It takes 
the leverage of the Condor infrastructure to enable 
communication with different Condor daemons. Since these 
glideins are often running behind a firewall, it uses a 
workaround called Condor's Generic Connection Brokering 
(GCB) [19] which helps the global scheduling daemons to 
contact these glideins and to push the actual jobs directly to 
them. However, this approach has led to scalability problems 
[20]. Moreover, it does not support the data cache mechanism 
on worker nodes to reduce data access latencies. 

The work done by Shankar et al. [21] is closely related to 
the work being reported in this paper. Their approach makes 
use of a dedicated cache space on the worker nodes in an 
execution cluster for the data caching purpose. They 
accomplish this with the help of condor-DAGMan, which 
makes it specific to the Condor environment only. Its 
scheduling process involves prior planning of the resources for 
a given DAG, however, in environments such as CMS, jobs 
are generally data driven and are not completely known until 
they have been created. Moreover, the scheduling is performed 
within a single site and hence is not suitable for heterogeneous 
environments like the WLCG Grid. 

III. CASE STUDY 

The CMS experiment at CERN uses a multi-tier distributed 
architecture [22] where CERN is the Tier0. Using a four-tiered 
architecture (from CERN's central computer as the Tier0 to 
individual scientists' desk/lap/palmtops as Tier3s), CERN 
distributes LHC data and computations across resources 
worldwide to achieve aggregate computational power 
unprecedented in high energy physics data analysis research. 

The Tier0 reformats, writes out Primary Datasets, and stores 
this raw data, generated from the output of the CMS Detector, 
performs an initial data reconstruction and distributes the 
processed data to Tier1s. In this paper we concentrate on the 
Tier0 workflows and their data access patterns, however, the 
approach being discussed in this paper should be of wider 
usability, especially for other CMS data intensive workflows 
that we intend to demonstrate in future. For the initial data 
reconstruction, a Tier0 workflow is used, which is also a 
sample workflow to evaluate and benchmark the proposed 
system. This workflow has three main steps, namely 1) 
Repacker 2) PromptReco and 3) AlcaReco. The Repacker jobs 
perform a selection of the raw data and split the output into 
different Primary Datasets based on physics information. The 
PromptReco jobs take this output as their input and perform an 
initial reconstruction into usable sets of physics data such as 
the particle trajectories and the properties of the candidate 
particles. The AlcaReco jobs perform much higher selectivity 
of the data produced by the PromptReco jobs and also carry 
out some processing on this small subset. This output is used 
to align and calibrate the CMS detector. 

In each step, several jobs are created. The number of jobs 
in each step depends on the number of physics events (or 
filtered particle collisions of interest) in the input files. 
Currently each job has to process around 5000 CMS physics 
events. Each job produces a relatively smaller output data as 
compared to its input data. It is inefficient to store and transfer 
smaller files to a tape-based central storage system because the 
process encounters delays and latencies in transferring a file to 
and from the tape drives. Therefore, each step has a special job 
called the Merge job, which gets the output from multiple jobs 
and merges them. Only the merged files should, ideally, be 
transferred to the central storage system in the first instance. 
Figure 3 shows the CMS Tier0 workflow. 

 

Figure 3: Tier0 workflow for CMS at CERN 



The creation and execution of all the workflow actors is 
data driven. The workflow starts execution whenever a new 
file is available that requires some kind of processing. The 
unnamed oval process in Figure 3 triggers the first step by 
creating the Repacker jobs. The subsequent jobs are created 
according to the system policies, workflow rules and data 
availability. There are two main characteristics of this 
workflow. Multiple jobs are dependent on a single input file, 
and a single job, which is the Merge job, is dependent on 
multiple smaller files produced by earlier jobs in the 
workflow. This workflow is created and executed by a 
ProdAgent [23]; a workflow management system used in 
CMS. ProdAgent is a component based system driven by an 
asynchronous and persistent messaging system for 
communication among these components. ProdAgent is 
responsible for creating, submitting and then monitoring the 
real jobs in a CMS workflow. In the existing setup, all jobs 
within a Tier0 workflow are queued up in the global scheduler 
of ProdAgent. The global scheduler can schedule the jobs on 
the available sites in the Grid using the configured submission 
mechanism such as gLite [24] and Condor-G [25]. The Tier0 
instance uses local LSF [26] submission. 

Once a job has been scheduled from the meta-scheduler, it 
comes to a local scheduler such as LSF, PBS [27] or Condor 
running on a particular site. A job has to wait in the local 
scheduler’s queue before it is scheduled to a worker node. 
After arriving on the worker node, the data dependent jobs 
undergo a further wait before their required datasets become 
online on the given SE for streaming. Once the job can access 
the data, it reads data in chunks and performs its processing. 
After completing the processing of this data, the job stages 
back the output to a given SE. It then faces further delays until 
a monitoring component knows that a job has been finished 
and it has staged back its output. The latency in retrieving the 
job completion information delays the submission of a 
dependent job, thus increasing the workflow turnaround time. 
In the current execution environment, as shown earlier in 
Figure 1, each job has to face the afore-mentioned scheduling, 
monitoring and data access latencies. These latencies affect 
the execution time of an individual job, which, in turn, affects 
the turnaround time of the whole workflow.  

The CMS Tier0 is a latency critical system, where disk 
buffers fill up if the data coming from the detector are not 
processed timely, and calibration constants derived promptly 
are used to reconstruct the new data. Therefore, removing 
aforementioned latencies is very important to improve the 
turnaround time of the workflow. 

IV. PROPOSED ARCHITECTURE 

In order to optimize the execution of the CMS data 
processing workflow, we propose to use a pull-paradigm 
driven by pilot jobs and to establish data caches on the 
execution resources. This approach will help in avoiding 
scheduling, monitoring and data access latencies for the real 
jobs. As a result of this approach, there will be a fewer job 
failures that may appear due to incorrect job execution 
environments. The approach will also be used to create data 
caches on the worker nodes.  

The pilot job concept provides three main advantages. 
Firstly, real jobs do not face scheduling and monitoring 
latencies since the pilot jobs will pull them directly from the 
global scheduling queue and notify job completion as soon as 
a job has been finished. Secondly, the pilot job will manage 
the available resources on the worker node for data caching 
which will help in avoiding data access latencies. Thirdly, the 
pilot jobs will ensure that an execution environment is 
appropriate for a real job before executing it. Furthermore, the 
pilot jobs act as a layer on top of the local batch system such 
as Condor and LSF and therefore it ignores the local 
schedulers and makes use of the meta-scheduler policies for 
making scheduling decisions. This not only saves the queuing 
times that can be quite high in local schedulers, but it will also 
reduce the job failures. As a result of this, jobs are only sent to 
a site if they are requested by a pilot job running on the site 
and it has the required execution environment. Moreover, this 
approach makes the decision making process distributed, 
cooperative and fault tolerant. With this approach, there will 
potentially be a single scheduler in the Grid for the real jobs 
since they will bypass the local schedulers running on the 
sites. The meta-scheduler in association with the pilot jobs will 
make cooperative scheduling decisions to reduce job failures 
and minimize queuing and execution latencies. This proposed 
approach dynamically matches real jobs to the pilot jobs and 
thus makes the scheduling decisions that are required for 
efficient cache and resource usage. The overview of the 
proposed architecture is shown in Figure 4. 

 

Figure 4: Overview of the proposed architecture 

The JobCreator component of the ProdAgent system will 
create the real jobs from the workflow and enqueue them in 
the TaskQueue (TQ). The TaskQueue, a central job queue, will 
hold all the real jobs of the workflow that are waiting to be 
scheduled for execution. The TaskQueue will schedule them 
upon receiving job requests from the pilot jobs. The 
TaskQueue is also responsible for registering new pilot jobs 
and maintaining the information about them. An architecture 
of the pilot job and the TaskQueue is given in Figure 5. 

The number of pilot jobs that should be submitted to a site 
is subject to the number of real jobs that are waiting in the 
TaskQueue for that particular site. Currently, each pilot job is 
capable of running a single real job at any point in time. Since 
the Grid sites are shared among multiple Virtual Organizations 



(VOs), we cannot load them with pilot jobs which will not 
have work to do. Two configurable thresholds are used to 
avoid this problem. These thresholds are called minPilots and 
maxPilots, which put a limit on the minimum and maximum 
number of pilot jobs for a site. Each site has its own values for 
these thresholds that are provided by the site policy. The 
PilotMonitor component, which is responsible for monitoring 
the state of submitted pilots, calculates the required number of 
the additional pilot jobs within these thresholds and then 
requests the PilotManager component to submit them. Section 
IV-A details the algorithm used in the PilotMonitor to 
calculate the required number of pilot jobs. 

Upon receiving the request from the PilotMonitor, the 
PilotManager component prepares the required number of 
pilot jobs with configurable parameters and submits them. The 
pilot jobs are submitted using the underlying submission 
system such as LSF, Condor or gLite for grid submission. 
Once a pilot job has been scheduled on a worker node within 
an execution cluster, it will perform initial environment checks 
and register itself with the TaskQueue. In the registration 
phase, the TaskQueue assigns a unique id, PilotID, to each 
pilot job to identify it during its subsequent requests. Once the 
environment has been setup and the registration process has 
been completed, the pilot job is then ready to contact the 
TaskQueue to get the real job. However, if there is something 
missing in the environment that is required for executing a job, 
the pilot job announces the error and terminates itself; hence 
no real job would be executed. This helps in having fewer real 
job failures that occur due to an improper execution 
environment which is one of the major reasons for job failures 
in Grids [28]. The pilot job approach being proposed in this 
paper will help in reducing such failures. 

 

Figure 5: Detailed architecture of PilotJob and TaskQueue 

After the successful environment check, the pilot job contacts 
a given TaskQueue URL and requests for a real job. Section V 
gives a brief account of the cache-aware scheduling that the 
TaskQueue performs upon receiving the pilot job request. 
Once a job has started its execution, it looks for the physical 
location of its input files. The pilot job maintains a mapping 
file called Trivial File Catalog (TFC) to discover the input 
files. This is an XML file which maintains the rules to convert 
a Logical File Name (LFN) into a Physical File Name (PFN) 
to locate a file. The TFC first looks into the pilot job’s cache 
area for the required files. It provides a pointer to the input file 
residing on an SE if the required file is not available in the 
cache. This working is shown in Figure 5. 

 The pilot job mechanism using the job pull-paradigm is 
quite useful because it does not pose security concerns for the 
grid resources. Sites are normally reluctant to open ports to 
allow the outside world to make connections with their 
internal resources. The pilot jobs act as clients for the 
TaskQueue and hence address the site security requirements. 

A. PilotMonitor algorithm 

The PilotMonitor component keeps track of the submitted 
pilot jobs and the real jobs enqueued in the TaskQueue. The 
pilot jobs that are submitted to a site can be in one of three 
states (inactive, idle, busy) during their lifecycles. The inactive 
state is applied to those pilot jobs which are not running and 
have been waiting in the site scheduler. A pilot job will be 
monitored as idle if it is running on a WN but could not get a 
real job from the TaskQueue. A busy pilot job means that it 
has acquired a real job and this is in execution.  

The PilotMonitor algorithm uses three important 
thresholds to calculate the required number of pilot jobs for a 
site. These thresholds are the maximum and minimum number 
of pilots to be submitted to a site and the minimum number of 
idle pilots. These thresholds are represented as minPilots, 
maxPilots, and minIdlePilots respectively. This algorithm 
makes sure that the required number of the pilot jobs should 
not exceed the maxPilots threshold and also they should not be 
less than minPilots. The last threshold, minIdlePilots, may be 
useful for sites like Tier0, where it may be desirable to always 
keep some idle pilots that are ready to accept a real job. This 
minimizes the delay caused by the pilot job submission and 
also reduces the submission time for the real jobs that are 
submitted for the first time. All these thresholds are 
configurable, according to the site policy. 

The PilotMonitor runs this algorithm periodically for every 
known site in its list. The algorithm is summarized as follows. 

PilotMonitor algorithm 
--------------------------------------------------------------------------- 

1. Recall thresholds and previously submitted pilots for site 

2. Set: available slots = maxPilots threshold ‐ submitted pilots 

3. If (available slots <= 0) 

4.     Then: Do not continue (do not submit more pilots) 

5. Query TaskQueue about tasks that can run on this site 

6. For each group of enqueued tasks: 



7.     If (enqueued tasks < inactive pilots) 

8.         Then: mark inactive pilots as active, mark tasks as covered 

9.         Else:  If (available slots > number of tasks) 

10.                       Then: send more pilots, mark tasks as covered 

11.  if (idle pilots < minIdlePilots): 

12.     Then: send more pilots 

13.  if (submitted pilots < minPilots): 

14.     Then: send more pilots 

------------------------------------------------------------------------- 

This calculation is then passed to the PilotManager 
component which submits the pilot jobs to a given site. 

B. Cache replacement algorithms 

On a worker node, each pilot job will have limited space 
available for caching so an efficient caching replacement 
algorithm is required for managing the cache on worker nodes. 
There are many caching algorithms [29] that can perform this 
task including the traditional algorithms such as First-In-First-
Out (FIFO), Least Recently Used (LRU), and Least Frequently 
Used (LFU). The traditional algorithms offer low overhead as 
they need minimal information, such as reference count and 
last access time, for their cache replacement policies. Here 
reference count means the number of times a file has been 
accessed in the past and the last access time means the time at 
which a file was last accessed. Some improvements have been 
made in these classical algorithms namely LFU-*, LFU-again, 
LRU-K [30], and LCB-K [31]. These improved algorithms 
such as LFU-* remove the cache pollution problem faced by 
LFU. The LCB-K and other cost sensitive cache algorithms 
[29] consider the cost of data removal from the cache. 
However, these improved algorithms store extra information 
to deal with issues that occur with the traditional algorithms.  

The nature of the CMS Tier0 workflow favours the LRU 
algorithm because once a step has been completed and its 
output has been merged, the smaller files are no longer 
required in the following steps. These smaller files are only 
required by the jobs that were generated at the same level in 
the workflow hierarchy. The jobs in the following steps use 
the data from the merged output that has been produced from 
the smaller files in a previous step. Moreover, the jobs in the 
CMS workflow do not directly interact with the pilot job’s 
caching component for a cache lookup because they use the 
TFC to locate the physical location of a file. For these reasons, 
it is somewhat difficult for the cache component to maintain a 
reference time history or the reference count, used by the LFU, 
for each file in its cache. Consequently, for our prototype 
implementation, we have used LRU because of its simplicity 
and its compatibility with the CMS workflows. 

C. Data Caching policy 

A pilot job running on a worker node can control resources 
for the time it is allowed to run. Each real job, running within 
the pilot job, will consume some input files and generate some 
output files. Apart from executing a real job, the other 
important task of a pilot job is to maintain these data files in its 
cache. The caching policy must adhere to the requirements and 
constraints detailed in the following paragraphs. 

Each running pilot job will be given a certain amount of 
disk space. The pilot job uses this space to download real jobs 
and maintain output files. This space will become the pilot 
job’s cache area. This space is configurable at the site level and 
this is decided by the site administrator. In CMS, each job is 
given a 10 GB space on the disk. Each pilot job will also get at 
least 10 GB space that acts as the maximum allowed space for 
the data storage. Since the jobs are executed within the pilot job 
space, as shown in Figure 5, we will always need a minimum 
space available at any given time. This minimum space is used 
by the real job to temporarily store its output that has been 
produced from the job execution. Let us call this required 
minimum space a MinThreshold. The total space that can be 
utilized for caching data can be given as: 

ThresholdSpaceSize MinMax=Cache   

This ensures that we always use the maximum allowed 
space for caching purpose by always keeping the minimum 
available space for the job execution. 

Let us say we have a set F of ‘n’ cache files {f1, f2, f3…fn} 
each having the sizes {S1, S2, S3… Sn}  respectively such that 
their collective sum is less than or equal to Cache_Size 

∑
i=1

n

Si≤ CacheSize
 

For example, a job produces a new file X which is required 
to be placed in the data cache. The file X would become part of 
the cache if the required space is available. If the remaining 
space in the cache is insufficient to accommodate this new file, 
then we need to remove some files from the cache. The LRU 
algorithm should remove files from the cache such that the sum 
of the removed files matches the following criterion. 

∑
i=1

m

Si≥ RequiredSize  

Where RequiredSize is the size of the new file for which the 
cache replacement algorithm will create space in the cache. 

D. Cache sharing among pilots on same Worker Node 

On execution if resources are available at Tier0 at CERN, 
multiple jobs can run in parallel on a single WorkerNode 
(WN). Therefore, it is possible that multiple pilot jobs may land 
on the same WN. The usage of the cached data will become 
more effective if these pilot jobs can share their cached data. 
Since the cached data is available and accessible locally, there 
will be low data access latencies if the jobs can access the 
shared cache. The cache sharing concept becomes even more 
helpful in the scenario when Pilot1 is running a job which 
needs a file available in the cache of Pilot2 that is running on 
the same WN. A real job does not need to access an SE if pilots 
can locate and then share this cached data. This will also 
increase the cache hit rate.  

We propose an approach that is called cache-per-host to 
establish cache sharing among the pilot jobs running on the 
same WN. Here we assume that the pilot jobs share the same 
file system on a WN. In the case of CMS, all the pilot jobs run 
under the same user id or the users belong to the same group, 



therefore they can access each other's directories. When a pilot 
job arrives on a WN and registers itself with the TaskQueue, 
the TaskQueue sends back the list of other available pilot jobs 
on that WN and their cache locations in response to this 
register request. The pilot job will then save this list and poll 
the given locations for new cache files. A Unix hard link to a 
newly found file is created into the pilot's own cache area and 
the file is placed into the cache by using the LRU algorithm 
that has been discussed previously. In this way, the file remains 
in the system even if the original owner of that file deletes it. A 
file is removed from the system only if its last link is deleted. 
At this point, a pilot job that prompted the file delete operation 
will notify the TaskQueue about this. In cache-per-host, the 
total space available to a pilot job on a worker node for data 
caching is dynamic. It is calculated as a function of the number 
of pilot jobs on that worker node, the maximum space allowed 
to each pilot job and the MinThreshold. The following equation 
shows this model where num_pilotjobs is the number of pilot 
jobs on that worker node. 

ThresholdSpaceSize MinpilotjobsnumMax=Cache  _  

Since the pilots can shut themselves down or new pilots can 
arrive on the same WN at random, a mechanism is required to 
update the running pilot jobs about the other available pilot 
jobs on a particular WN. This is achieved by making use of the 
'Heartbeat' message, which a pilot job regularly exchanges with 
the TaskQueue. This message informs the TaskQueue that a 
pilot job is alive. In response, the TaskQueue provides the pilot 
with an updated list of other pilot jobs on the same WN. In this 
way, each pilot job updates itself about every other pilot job 
running on the same WN. When a pilot job polls the given pilot 
jobs' locations if that location is not accessible, then the pilot 
job removes that entry from its list and that particular pilot job 
is assumed to be dead. Each pilot job will update its list of the 
pilot jobs after each 'Heartbeat' message. 

E. Cache-Aware Task Scheduling 

Each job placed in the TaskQueue provides its 
requirements, such as its preferred site and input files. When a 
pilot job submitted to a worker node starts execution, it will 
contact the TaskQueue to get a job that meets its requirements. 
The request to the TaskQueue includes its PilotID, Host, SE, 
Time-to-Live (TTL) and cached files. In this request, PilotID is 
the id assigned to each pilot job during its registration with the 
TaskQueue, Host is the name of the worker node where the 
pilot job is running, SE is the name of the storage element 
accessible to the pilot job in that particular site and the cached 
files are the files available in the pilot job’s cache. The TTL is 
the remaining life of a pilot job. In the current implementation 
for the Tier0, the pilot jobs can run forever because resources 
are dedicated to Tier0 operations. But this information will be 
configurable in future implementations and will be added into 
the job scheduling process. 

The TaskQueue performs the job scheduling by comparing 
job requirements against the pilot job information. The 
scheduling algorithm must schedule a job to a pilot job whose 
maximum requirements meet the information provided by the 
pilot job. The caching information is used to match job data 
dependencies against the files maintained by the pilot job. The 

TaskQueue schedules a job to a pilot job that has the maximum 
number of jobs required files in its cache. A job, arriving on a 
pilot job that holds some of the required files in its cache, will 
face less data latency since it can find some or all of its 
required files in the pilot job’s cache. The job without any 
specific requirement can be scheduled onto any pilot job. 

In order to provide improved job scheduling and to use 
cache more effectively, we implemented a waitForData policy 
alongside the above mentioned scheduling model. According to 
this policy, when a pilot requests a job but cannot match the 
data dependencies of a job, the TaskQueue would not schedule 
the job to the pilot if there are other idle pilots holding the 
required data. The TaskQueue would wait for these idle pilots 
to eventually request a job. In this way, the scheduling process 
encourages the maximum number of reads from the cache. 
However, if there are no other pilots that hold the required data 
or they are not idle, the TaskQueue will schedule the job to a 
pilot that does not have the required files instead of keeping the 
job for an unknown period of time, because, as a last resort, a 
job can always access data from an SE. 

 

Figure 6: Effect of pilot-based system on the Tier0 
workflow turnaround time 

V. EXPERIMENTAL RESULTS 

A series of experiments have been conducted at CERN’s 
Tier0 infrastructure. For these experiments, a test bed has been 
used that comprises a cluster of 10 machines, each of which is 
capable of running four jobs in parallel. We used a dedicated 
resource in Tier0 as an SE to avoid any external influence on 
the SE. The CMS Tier0 reconstruction workflow is used as a 
sample workflow in these experiments. This workflow 
generates a total of 172 jobs, requires 83.41 Giga bytes (GB) 
of input data, and produces 112 GB of output data. Several 
iterations of the complete Tier0 workflow have been executed 
with the existing system i.e. ProdAgent and with the new 
developed prototype based on pilot jobs and cache. These 
experiments have been repeated several times. The figures 
show the measured average values and the error bars represent 
the standard deviation. The results in Figure 6 show that the 
workflow turnaround time has been significantly reduced by 
using the proposed system.  

This reduction in the turnaround time is mainly due to the 
reduction in job submission and job status notification times 



since the pilot-based approach reduces the job scheduling 
latencies (explained in the discussion of Figure 7). In these 
tests, it was not possible to measure the behaviour of the 
proposed system against different parameters such as job 
failure rates, queuing times and data access latencies. This is 
mainly due to the fact that there was no additional load on the 
SE as it is only being used for data access operations in these 
experiments. It was not practically feasible to artificially alter 
the access conditions on the SE that has been used in these 
experiments. Therefore, a variety of simulation experiments 
were conducted at CIEMAT (in Madrid, Spain), which is a 
CMS Tier2 site, to evaluate the impact of the pilot jobs and 
their data caching patterns.   

For the simulated experiments, a simulation engine has 
been implemented to emulate the ProdAgent and the data 
driven behaviour of CMS workflows by using a concept called 
‘steps’. A workflow is divided in such a way that jobs in the 
next step depend on the output produced in a previous step. 
Three types of workflows, generating the jobs in two steps i.e. 
step0 and step1, have been used in these experiments. These 
three types of workflows display three different characteristics 
of data intensive scientific workflows in general and the CMS 
Tier0 workflow in particular. As mentioned in Section IV, the 
jobs can display various types of data dependencies. It can be a 
one-to-one (serial chain) dependency, or many-to-one 
dependency where one job (the merge job) consumes the files 
produced by two or more jobs in the previous step, or one-to-
many dependency where multiple jobs (splitting jobs) can 
consume the files produced by a single job.  

The serial chain workflow (abbreviated as W1) 
demonstrates a one-to-one dependency. In this workflow (W1), 
80 jobs that produce 80 files as their outputs are created in 
step0. This is followed by another 80 jobs in step1 that are 
dependent on the output produced in step0. This workflow 
represents a one-to-one dependency between the jobs in the 
workflow. In the second workflow (W2), 40 jobs are created in 
step0 that produce 40 files and are followed by 80 jobs in 
step1. In the second workflow, two jobs in step1 are dependent 
on a single file produced by a job in step0. This workflow 
represents a splitting workflow where more jobs consume the 
data that has been produced by fewer jobs in the previous steps. 
In the third workflow (W3), 80 jobs in step0 produce 80 files 
and are followed by 40 jobs in step1. This is an example of a 
merging workflow where two or more than two jobs are 
merged in the subsequent steps of a workflow. Each job in 
these workflows produces a file of size 700 Mega bytes (MB). 
In each workflow, the jobs in step0 are first generated and 
scheduled, and then the jobs in step1, which depend on the data 
produced by the jobs in step0, are generated and enqueued in 
the TaskQueue. 

In order to study the effect of the proposed approach on 
different type of workflows under different SE conditions 
(given in Table 1), two different parameters, the delay factor 
and the failure rate, are used for these experiments. The delay 
factor is a delay that a job bears in accessing an SE. It is used 
to simulate the delays, which occur due to the load on an SE, in 
reading and writing processes. A higher delay factor means 
longer times are being taken in reading and writing to the SE. 
The values for delay factor used for these simulations are 0.01, 

0.15, and 0.50 and are represented as d1, d2, and d3 
respectively. Since the CMS jobs keep on reading the data 
during their entire execution time, we used a Gaussian 
distribution to measure and represent the data access times at 
different stages in the job execution process. The other factor, 
failure rate, is used to simulate the probability of failure in 
reading or writing data to an SE which eventually means failure 
of a job, hence, it may have a negative effect on the workflow 
execution. The values for failure rate used are 0, 0.03, and 0.1 
and are represented as f1, f2 and f3 respectively. A higher 
failure rate means higher chances of failure in reading and 
writing data from and to a data source. Different combinations 
of these two factors give us different load conditions on an SE. 
The d1f1, d2f2, and d3f3 combinations represent Low, 
Moderate, and High loads on an SE respectively. The Low load 
on an SE means that there are not too many read and write 
requests to the SE; therefore, jobs would not face long data 
access delays. The Moderate load on an SE means that there 
are a reasonable number of read and write requests to the SE 
and jobs might face slight delays in reading or writing files. 
The High load means that there are a huge number of requests 
pending for reading and writing the data to the SE, 
consequently, the jobs will face longer delays and a higher 
probability of failure. Table 1 summarizes these combinations. 

Table 1: Combinations of delay and failure factors 
Combination Delay 

factor 
Failure 
factor 

Load on SE / SE 
condition 

d1f1 d1=0.01 f1=0 Low/Normal

d2f2 d2=0.15 f2=0.03 Moderate/Medium

d3f3 d3=0.50 f3=0.1 High/Worse

A third factor that can influence the experiments is the 
caching scheme used in an experiment. The effect of the data 
caching on such environments (such as in CMS) is more 
prominent since this can significantly influence the overall 
execution time. Different cache schemes such as cache-per-
host (C1), single-pilot-cache (C2) and cache-per-host with 
waitForData logic (as discussed in Section IV-E) (C3) have 
been used in these experiments. In the single-pilot-cache, the 
pilot jobs running on a WN do not share their cache data with 
each other. In the cache-per-host, the pilot jobs on a WN can 
discover and share cache data with each other. For C3, 
waitForData logic is active in task scheduling process. 

In order to study the effect in workflow latency in job 
submission and scheduling, three different job submission 
mechanisms have been used in these experiments which are 1) 
direct submission (noTQ), 2) job submission with already 
running pilot jobs and 3) job submission by submitting the pilot 
jobs on demand using the PilotMonitor. In the first submission 
mechanism, the TaskQueue and the pilot jobs are not used. The 
jobs are submitted directly to the Grid using the gLite software. 
In the second submission mechanism, 120 predefined pilot jobs 
are already running before the new jobs are enqueued into the 
TaskQueue. In this case, the pilot jobs are ready to acquire new 
jobs and execute them. In the third submission mechanism, the 
pilot jobs are submitted on demand using the PilotMonitor 
algorithm explained in section IV-A.  



The following paragraphs detail the results of the 
experiments that have been performed using the experimental 
setup discussed in the previous paragraphs. In order to measure 
these results, simulated experiments have been repeated several 
times and the figures present the measured average values and 
standard deviation is shown as error bars. The plot in Figure 7 
shows the number of running jobs over time for a W3 
workflow where the jobs were submitted using the three 
submission mechanisms. There is an initial job submission 
delay for the direct (without the pilot jobs and the TaskQueue) 
and PilotMonitor-based job submission. This delay is due to 
the scheduling latencies introduced by gLite, and pilot jobs 
have to wait in a local scheduler’s queue before they can run 
and request the real jobs. However, this is not the case when 
the pilot jobs are already running, and thus there are no 
submission delays as the pilots are already waiting for the real 
jobs. There are no queuing delays for the real jobs since the 
pilots pull them as far as they can to meet the jobs’ 
requirements.   

The results show a decrease in queuing times for the jobs 
and scheduling latencies when a pilot-based system is used in 
comparison to the direct submission. In the direct submission 
mechanism, there is also a huge delay between the time step0 
jobs complete their execution and the jobs in step1 are 
submitted (group of running jobs as shown on the right side of 
the plot). This is due to the latency introduced by gLite in 
notifying the job completion. On the contrary, there are almost 
no such delays between these steps with the pilot-based 
approach. The knees in Figure 7, for the pilot-based approach, 
are due to the delays in the submission of step1 jobs after the 
jobs in step0 have been completed. Figure 7 shows how job 
submission, scheduling and job notification delays can be 
reduced using the pilot-based approach.  

 

Figure 7: Number of running jobs over time  

Figure 8 shows the effect of stage-in delays on job 
execution times. The stage-in time in these experiments is the 
time a job spends in accessing and reading a file from an SE for 
processing. In CMS, files are read and processed directly from 
the SE and these files are not downloaded to a worker node. 

The plot shows that the system with the pilot cache provides 
much better data access times especially under worse SE 
conditions (d3f3) as a smaller number of requests are sent to 
the SE, with an increasing number of datasets being available 
in the local caches. In the normal SE condition (d1f1), the 
cache does not offer significant advantage over the no-cache 
approach as the SE has low latencies and can serve the data 
requests almost as fast as is expected from the pilot cache. 
There is a minimal effect of higher delays and higher failure 
rates i.e. d2f2, d3f1, d3f3 on the stage-in time for the cache 
based system because only a few files are read from the SE. On 
the contrary, with an increase in the delay and the failure rate, 
the stage-in time significantly increases for the no-cache 
approach because all the files are read from the SE. It is 
important to note here that by using the cache, I/O requests to 
SE are decreased; therefore, its use may also minimize the 
deterioration of the SE conditions in the first place.  

 

Figure 8: Effect of data cache on stage-in time under 
different SE conditions 

From Figure 8, it is clear that the pilot cache mechanism 
positively affects the execution time of a real job by reducing 
the data access latencies. Since the jobs are inter-dependent in a 
workflow, this result should also reduce the turnaround time of 
a complete workflow as shown in Figure 9. From this figure, it 
is clear that the cache approach provides better workflow 
turnaround time than the no-cache approach. An interesting 
fact to note here is that an increase in the failure rate has a more 
prominent effect on the turnaround time compared to an 
increase in the delay factor. This is due to the fact that a failure 
in reading or writing data to an SE causes a job to fail which 
triggers the resubmission of a job, and causes an additional 
delay of resubmission and re-execution of a job. We know that 
a job, in a workflow, cannot be ready for execution until its 
predecessor job has been completed. Since the failure of one 
job delays the start of its dependent job, it increases the 
turnaround time of a workflow.  

In the case of the cache based approach for W1, jobs mostly 
read the required files from the cache which reduces the data 
access latencies and the failures during the stage-in time. 
However, the failures at stage-out (writing data back to an SE) 
can lead to long workflow turnaround times. As a result, the 



turnaround time of W1 under d3f1 (highest delay, low failure 
rate) condition for both the approaches, the cache and the no-
cache, is less than d2f2 (high delay, high failure rate) and d3f3 
(highest delay, highest failure rate).  

 

Figure 9: Workflow turnaround time under different SE 
conditions 

Figures 10 and 11 show the same behaviour as discussed in 
Figures 8 and 9 but with different workflows under worse SE 
conditions (d3f3). We can see that the cache mechanism 
performs much better for a workflow where the jobs show one-
to-one dependency, i.e. the W1 workflow, because the jobs 
from step1 can be efficiently scheduled to the pilot jobs that 
hold the results of the jobs from step0.  

 

Figure 10: Effect of cache on job execution for different 
workflow types 

For the workflows W2 and W3, the cache hit rate is less 
than the one in W1 because the jobs from step1 may be forced 
to read from two different pilots (in case of W3) or two jobs in 
different pilots may read from a single pilot that is holding the 
data (in case of W2). On average, for all the three workflows, 

the system with the pilot cache behaves better than the one 
without it. However, the cache hits can be further increased in 
case of W2 and W3 if a system with a global cache is used. The 
global cache means that the pilot jobs can share their data 
across WNs in a site. 

Figure 11 depicts the cache impact on the turnaround times 
of different workflows under worse SE conditions. It is clear 
that the pilots with data cache help in improving the workflow 
execution time when the storage resources are in the stressed 
conditions. 

 

Figure 11: Workflow turnaround times for different 
workflow types 

In this paper, we have discussed the single pilot cache (per-
pilot cache) and the cache sharing (cache-per-host) among the 
pilot jobs on a worker node. A caching scheme is measured on 
the basis of its responsiveness to the data access needs, mostly 
measured in terms of the cache hit ratio and the byte ratio. The 
cache hit ratio is the percentage of the data accesses that were 
found in the cache.  

 

Figure 12: Cache hit ratio 

Figure 12 illustrates the cache hit ratio for different caching 
combinations and different types of workflows. For the serial 



chain workflow (W1), the single pilot cache and the share 
cache with the waitForData policy, as explained in Section IV-
E, yield equal hit rates because the jobs have a one-to-one data 
dependency and they are scheduled to those pilot jobs that are 
holding the required files in their caches. When the 
waitForData policy is not in use, the cache hit rate is severally 
reduced because the TaskQueue does not wait for the pilot jobs 
with the required data to request the real job. Consequently, a 
real job is scheduled to a pilot job that may not be holding the 
required files in its cache, thus, it may reduce the cache hit 
ratio. In the absence of a global cache, the waitForData 
approach appears to be fundamental to achieve a good cache hit 
ratio because it emphasises more on data availability in the job 
scheduling process to increase the probability of cache hit.  

In Figure 12, we can see that the efficacy of the cache-per-
host (C1) is more prominent for the splitting workflow (W2) 
and exhibits a marginally better cache hit ratio than the single 
pilot cache (C2) for the merging workflow (W3). As we know 
the step0 jobs can be scheduled to any pilot job because they do 
not have any data dependencies. Therefore, the outputs 
produced by these jobs are available randomly among all the 
pilot jobs. For W2, each step0 job produces two output files 
and each step1 job requires a single file as its input. In case of 
the single-pilot-cache, we may achieve 50% cache hits at the 
most. However, in case of the cache-per-host, the reason for a 
better cache hit ratio is due to the possibility that two jobs 
might be scheduled to two pilot jobs on the same WN where 
the required data was produced by a step0 job. Due to the cache 
sharing, the jobs can discover files available in some other 
pilot’s cache, thus increasing the cache hit ratio. 

In the case of W3, each job in step1 requires at least two 
input files produced by two different step0 jobs, which were 
executed by two different pilot jobs. It may be possible that 
those pilot jobs are running either on two different WNs or on 
the same WN. In any case, with the single-pilot-cache, 50% 
cache hits might be achievable. Since the pilots cannot share 
caches, each merge job can find at least one file from the 
pilot’s cache. However, in the case of the cache-per-host, it 
might be possible that multiple required files are held by 
multiple pilot jobs running on the same WN (if the 
corresponding step0 jobs were executed on this WN). In this 
case, the scheduling mechanism may schedule the merge job 
to a pilot running on this WN. However, since the files 
produced by the step0 jobs are available randomly among the 
pilot jobs, the probability of finding two required files on the 
same WN is very low and therefore the cache hits ratio for the 
cache-per-host is only slightly higher than the single-pilot-
cache for W3. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we have proposed a pilot job with data cache 
approach to improving workflow scheduling and execution 
times for the CMS Tier 0 analysis workflows. This approach 
makes use of caching techniques to reduce data access latencies 
which have a major impact on the overall workflow turn-
around time. We also discussed the impact of the proposed 
approach on the lifecycle of an individual workflow actor and 
also on an entire workflow. The results have shown that the 

proposed approach can significantly reduce the overall 
execution time of a workflow by reducing the scheduling and 
data access latencies. The reduction in these latencies is very 
important for latency critical systems such as the CMS Tier0. 

Currently we have tested this framework using the Tier0 
workflow at the CMS Tier0 infrastructure and at CIEMAT 
through simulated experiments. In future, we intend to test this 
at the CERN Tier0 site at full scale and then expand its 
deployment and will study its feasibility on a wider scale, 
ideally across the whole WLCG. In future, we aim to extend 
the pilot jobs based approach to address the job priorities, 
which are assigned by the users, in the scheduling process. We 
also aim to implement an intelligent approach that can 
cooperatively and efficiently distribute the jobs over multiple 
sites with minimum latencies. In the current implementation, 
the pilot jobs can share their caches on the same WN. 
However, it will be quite invaluable for the improved Grid 
operations to investigate the effects of the cache sharing among 
the pilot jobs running on different WNs within a site and even 
across the sites.  

For a better cache replacement policy, we will investigate 
the effects of variants of LRU and LFU and will explore how 
in-memory databases can play a role in improving the cache 
access times when the number of read requests are scaled up to 
thousands as is the case in the Grid infrastructures such as 
WLCG. In this paper, we have assumed that a pilot job can run 
for an unlimited time but this might not be the case in the 
production Grid infrastructures. Therefore, in future, 
investigations will also be made to study the impact of the pilot 
lifetime on workflow execution.  

REFERENCES 
 

[1] CMS Collaboration, “The Compact Muon Solenoid Computing 
Technical Proposal”, CERN/LHCC 1996-045, 1996  

[2] AlcaReco workflow : 
https://twiki.cern.ch/twiki/bin/view/CMS/T0ASTDiscussAlcaW
orkflows , visited 24-03-2010 

[3] Flavia Donno, Maarten Litmaath, “Data Management in WLCG 
and EGEE”, CERN-IT-Note-2008-002, February, 2008. 
http://cdsweb.cern.ch/record/1083660 

[4] Milton Halem, Randy Schauer, “A Mass Storage System 
Administrator Autonomic Assistant”, 2nd International 
Conference on Autonomic Computing (ICAC), pp. 300-301, 
2005 

[5] Diane Lingrand, Johan Montagnat, Tristan Glatard, “Modeling 
the Latency on Production Grids with Respect to the Execution 
Context”, Proceedings of the 8th IEEE International Symposium 
on Cluster computing and Grid ( CCGRID), pp. 753-758, 2008 

[6] EGEE: http://www.eu-egee.org 
[7] Giuseppe Lo Presti, Olof Barring et. al., “CASTOR: A 

Distributed Storage Resource Facility for High Performance 
Data Processing at CERN”, 24th IEEE Conference on Mass 
Storage Systems and Technologies (MSST), pp. 275-280, 2007 

[8] William Allcock, Ian Foster et. al., “Globus Toolkit Support for 
Distributed Data-Intensive Science”, Proceedings of Computing 
in High Energy Physics (CHEP), September 2001 

[9] Mobin Uddin Ahmed, Raja Asad Zaheer, M.Abdul Qadir, 
“Intelligent Cache Management for Data Grid”, Proceedings of 
the 2005 Australasian workshop on Grid computing and e-
research, pp. 5-12, 2005 



[10] Fernando Costa, Luis Silva, Ian Kelley,Ian Taylor,  “Peer-to-
Peer Techniques For Data Distribution in Desktop Grid 
Computing Platforms”, CoreGRID Workshop on Grid 
Programming Model, Grid & P2P Systems Architecture, Grid 
Systems, Tools and Environment, June 2007 

[11] Bram Cohen, “Incentives build robustness in BitTorrent”, 
Proceedings of the First Workshop on Economics of Peer-to-
Peer Systems, June 2003. 

[12] Nathaniel S. Good, Aaron Krekelberg, “Usability and privacy: a 
study of Kazaa P2P file-sharing”, Proceedings of the SIGCHI 
conference on Human factors in computing systems, p137-144, 
2002 

[13] Ian Taylor, Andrew Harrison, Carlo Mastroianni, Matthew 
Shields, “Cache for workflows”, Proceedings of the 2nd 
workshop on Workflows in support of large-scale science, pp. 
13-20, June 2007 

[14] Tadashi Maeno et. al., “Experience from a pilot based System 
for ATLAS”, International Conference on Computing in High 
Energy and Nuclear Physics (CHEP), 2007 

[15] Stuart K. Paterson1, Andrei Tsaregorodtsev et. al., “DIRAC 
Optimized Workload Management”, International Conference 
on Computing in High Energy and Nuclear Physics (CHEP), 
2007 

[16] Saiz Pablo.et. al., “AliEn: ALICE environment on the GRID”, 
Nuclear. Instruments and. Methods in Physics, vol. 502, pp. 
437-440, 2003 

[17] Igor Sfiligoi, ”glideinWMS - A generic pilot-based Workload 
Management System”, Internation conference on Computing in 
High Energy and Nuclear Physics (CHEP07), 2007 

[18] Michael Litzkow, Miron Livny, Mattew Mutka, “Condor – A 
hunter of Idle workstations”, Proceedings of 8th Intl. Conf. on 
Distributed Computing systems. June 1988  

[19] Condor’s Generic Connection Brokering 
http://www.cs.wisc.edu/condor/gcb/ , visited 24-03-2010 

[20] http://www.cs.wisc.edu/condor/manual/v7.4/3_7Networking_inc
ludes.html  

[21] Srinath Shankar, David Dewitt, “Data driven Work-flow 
Planning in Cluster Management Systems”, Proceedings of the 

16th international symposium on High performance distributed 
computing (HPDC), pp. 127-136, 2007 

[22] CMS Collaboration “The Computing project Technical Design 
Report”, CERN/LHCC-2005-023, 2005 

[23] Jose Hernández et. al., “CMS Monte Carlo Production in the 
WLCG computing grid”, Journal of Physics, conference series, 
vol. 119, 2008. 

[24] Erwin Laura .et. al. Glite:EGEE “Middleware for the Next 
Generation Grid Infrastructure” 

[25] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, Steve 
Tuecke, “Condor-G: A Computation Management Agent for 
Multi-Institutional Grids”, Proceedings of the Tenth IEEE 
Symposium on High Performance Distributed Computing 
(HPDC10), 2001 

[26] Songnian Zhou, “LSF: Load Sharing in Large-Scale 
Heterogeneous Distributed Systems”, Proceedings. of the 
Cluster Computing, December, 1992 

[27] Mary Papakhian, “Comparing Job Management Systems: The 
User's Perspective”, IEEE Computational Science & 
Engineering, (April-June), 1998  

[28] Hui Li, David Groep, Lex Wolters, Jeff Templon, “Job Failure 
Analysis and Its Implications in a Large-scale Production 
Grid”,Proceedings of the 2nd IEEE International Conference on 
eScience and Grid Computing, 2006 

[29] Martin Arlitt, Carey Williamson, “Trace-Driven Simulation of 
Document Caching Strategies for Internet Web Servers”, in 
Simulation Journal., vol. 68, pp. 23-33, 1996 

[30] Elizabeth O'Neil, Patrick O'Neil, Garhard. Weikum, “The LRU-
K Page Replacement Algorithm for Database Disk Buffering”, 
Proceedings of the. 1993 ACM SIGMOD International 
Conferernce on. Management of Data, pp. 297-306, May 1993 

[31] Jaeheon Jeong, Michel Dubois, “Cost-sensitive cache 
replacement algorithms”, Proceedings of the 9th International 
Symposium on High-Performance Computer Architecture 
(HPCA), pp. 327-337, 2003 
 

 


