
CMS Workflow Execution using Intelligent Job
Scheduling and Data Access Strategies

Khawar Hasham1, 2, Antonio Delgado Peris3, Ashiq Anjum1, Dave Evans4, Dirk Hufnagel2, Eduardo Huedo5, José M. Hernández3,
Richard McClatchey1, Stephen Gowdy2, Simon Metson6

1. Centre for Complex Cooperative Systems, University of the West of England (UWE), Bristol, UK
2. European Centre for Nuclear Research (CERN), Geneva, Switzerland

3. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
4. Fermi National Accelerator Laboratory (Fermilab), Illinois, USA

5. Universidad Complutense de Madrid (UCM), Madrid, Spain
6. University of Bristol, Bristol, UK

{khawar.ahmad, antonio.delgado.peris}@cern.ch

Abstract— Complex scientific workflows can process large
amounts of data using thousands of tasks. The turnaround times
of these workflows are often affected by various latencies such as
the resource discovery, scheduling and data access latencies for
the individual workflow processes or actors. Minimizing these
latencies will improve the overall execution time of a workflow
and thus lead to a more efficient and robust processing
environment. In this paper, we propose a pilot job based
infrastructure that has intelligent data reuse and job execution
strategies to minimize the scheduling, queuing, execution and
data access latencies. The results have shown that significant
improvements in the overall turnaround time of a workflow can
be achieved with this approach. The proposed approach has been
evaluated, first using the CMS Tier0 data processing workflow,
and then simulating the workflows to evaluate its effectiveness in
a controlled environment.

Keywords- workflows, latency, pilot jobs, data cache, Grid

I. INTRODUCTION

Scientific experiments such as the CMS experiment [1] at
CERN, Geneva, produce large amounts of data which are then
consumed by a variety of applications and users around the
world. Various forms of scientific analyses, data
reconstructions and data derivations are performed on the
scientific data. These analyses use workflows to process
thousands of files, to execute tasks and to take care of the
dependencies between these tasks. Examples of such an
analysis include the CMS Tier0 workflows [2] that process the
CMS data at CERN. The turnaround time of these workflows
depends upon the number of files being processed and the
number and nature of the tasks within the workflow.

In a stand-alone environment, the turnaround time of a
workflow, running on a single machine, is simply the sum of
the execution times of individual actors in that workflow.

Using this environment, it would take an enormous amount of
time to execute a complete workflow on a single machine
because all workflow actors would have to run sequentially.
The situation becomes particularly complex and very time
consuming if the workflows also operate on large data sets. The
problem is further compounded if a number of users submit
multiple tasks, each in turn consuming multiple datasets, in
order to achieve desired results. However, independent
available workflow actors, whose requirements have been met
and have no dependencies, can run in parallel in a distributed
environment. Therefore tasks in scientific workflows are
preferably executed on distributed resources to reduce the
overall execution time and to enable users to achieve rapid
throughput.

In the case of a highly distributed environment such as the
Worldwide LHC Computing Grid (WLCG) [3], which has
been deployed for the analysis of data from the Large Hadron
Collider (LHC), each workflow actor would face scheduling
and data access latencies during its lifecycle (see Figure 1). The
WLCG is a global collaboration of more than 170 computing
centres in 34 countries that combines the computing resources
of more than 100,000 processors. The mission of the WLCG
project is to build and maintain data storage and an analysis
infrastructure for the entire high energy physics community
that will use the data from the LHC at CERN. At full operation
intensity, the LHC will produce roughly 15 Petabytes
(15 million Gigabytes) of data annually, which thousands of
scientists around the world will access and analyse.

Grid scheduling latency is the cumulative time spent in
discovering resources in a Grid for scheduling and the waiting
time that is spent in the queues of meta and local schedulers
before a job can start execution on a so-called worker node
(WN). A worker node is an execution resource at a site. Here
the data access latencies are mainly caused by the network

bandwidth limitations, the load on a Storage Element (SE) and
the time spent in accessing a storage media such as a tape drive
[4]. These latencies can affect the turnaround time of the
workflow and in some cases can exceed the overall execution
time of a job. An experimental study [5] has shown that it takes
almost five minutes (on average) for a job, in the EGEE Grid
[6], to start its execution from the time it was submitted. One
can understand the extent of delays if there are thousands of
jobs being submitted and executed in a Grid infrastructure such
as the WLCG. Minimizing these latencies is a major research
challenge in order to offer a high quality of service that users
expect from production Grids.

Figure 1: A Job life cycle in a Grid environment

With the current data storage hierarchy of the WLCG, each
site maintains one or multiple dedicated machines called
storage elements (SE) to store data. Each job can access the
data from a given SE. The jobs in the CMS Tier0 workflow
(detailed in Section III) stream data directly from chunks of the
data available on the SE. These jobs process this data, without
downloading the entire dataset on the local hard disk of a
worker node. This mechanism (see Figure 2) creates an
additional burden on the SE if every CPU-bound job remotely
accesses small chunks of the data periodically leading to a high
frequency of I/O requests. An SE has to keep the files open, as
they are being read, for longer periods of time and this can add
to the latency being faced by the other data requests.

Figure 2: Multiple jobs accessing an SE

Storage systems such as CASTOR [7] can store petabytes
of data, however, such systems are vulnerable to performance
issues in terms of high access latencies and this becomes worse

with increasing loads. This leads to longer data access times
and thus affects the overall execution time of a workflow. In
order to reduce these data access and scheduling latencies and
to improve the workflow turnaround time, this paper proposes
to use a pull-based scheduling system and to establish data
caches on the worker nodes. This can be achieved by managing
the resources of a worker node by using a customized resource
management software component.

To demonstrate this work, the proposed approach makes
use of a global scheduler and the concept of a pilot job. A pilot
job is a job that is responsible for setting up the required
execution environment and for managing the execution of a
real job. A real job is a job that is part of a user workflow and
that waits in the global scheduler queue. Both these jobs follow
different submission and scheduling mechanisms. A pilot job
follows the traditional grid submission mechanism, however, a
real job will bypass it because a pilot job downloads it from a
global scheduler queue for execution. With the help of this
approach, a pilot job can assist the real job in finding all or
some of its required files in the cache maintained on the worker
nodes. A real job can start its execution as soon as it has been
scheduled to a pilot job thus reducing the queuing and
scheduling delays. The real job will first look for its input files
in the cache and will read the data from the local cache,
provided the cache holds the required data, otherwise the real
job will contact the given SE for the data. Once a real job has
completed its execution, a pilot job immediately notifies its
completion status to the scheduling and monitoring
components, thus, minimizing the delays that otherwise exist in
retrieving and notifying the job completion status. This
approach is further explained in Section IV.

This paper is organized as follows. Section II discusses the
state of the art in the research domain. Section III briefly
outlines the Tier0 workflow specification and execution system
being used at CMS-CERN. This workflow is being taken as a
case study to demonstrate that the proposed approach is
effective in improving the data access, queuing, scheduling and
execution latencies in real scientific computing environments.
Section IV provides details of the proposed architecture and
justifies its selection in solving the problem. Section V
provides a description of the results which show that the
proposed solution has been quite effective in reducing the
turnaround times of large workflows. Section VI concludes this
paper with possible directions for future work.

II. RELATED WORK

Numerous efforts have been made to reduce data access
latencies in intensive data processing applications. The replica
management service [8] of the Globus toolkit uses data
replication in order to optimize the performance of a data
analysis process. The data replication is done at the site level,
however, it cannot solve the latency issues resulting from a
large number of open file pointers on the SE and a large
number of I/O requests. Intelligent Cache Management (ICM)
[9] uses the concept of a local data cache to optimize query
performance but it replicates and stores the data on a regional
basis. None of these approaches exploits the resources at
worker nodes for the purpose of data caching. Peer-to-peer
(P2P) approaches [10] have been using end node capabilities

for data storage, most notably, BitTorrent [11] and super-peer
approaches such as KaZaa [12] use end node capabilities for
data discovery and data transfer. The BitTorrent approach
works on the so-called fair share basis. Data providers have to
supply data for consumption by consumers in the outside
world, which puts additional burden on the network usage and
could also be against the security policies of the Grid sites.
Taylor in [13] proposes a framework that uses the concept of
super peers to create an application-specific or workflow-
specific data cache overlay. This approach makes use of
AlChemist’s built-in flexibility to support a P2P infrastructure
on top of the WSPeer API for communication with its peers.
However, this approach is dependent upon the AlChemist
framework and the WSPeer API to create data cache overlays
on dedicated data nodes, whereas we have proposed to create
data cache on every worker node inside a cluster to optimally
use the available resources in the Grid infrastructures.

In addition to these efforts, research has been carried out to
minimize job submission and output retrieval latencies by
using the concept of pilot jobs in Grids. Grid projects such as
PanDA [14], DiRAC [15] and AliEn (Alice Environment) [16]
use this approach to schedule and execute real jobs. All these
projects use the pilot jobs to reduce the job submission latency
by pulling a job from a global job queue and thus provide a
fault-tolerant job execution mechanism. However, these
systems do not use a pilot job infrastructure to reduce the data
access latencies. A project in CMS, GlideInWMS [17], makes
use of grid resources as part of its Condor pool. It uses Condor
[18] glidein which acts as a pilot job on a worker node. It takes
the leverage of the Condor infrastructure to enable
communication with different Condor daemons. Since these
glideins are often running behind a firewall, it uses a
workaround called Condor's Generic Connection Brokering
(GCB) [19] which helps the global scheduling daemons to
contact these glideins and to push the actual jobs directly to
them. However, this approach has led to scalability problems
[20]. Moreover, it does not support the data cache mechanism
on worker nodes to reduce data access latencies.

The work done by Shankar et al. [21] is closely related to
the work being reported in this paper. Their approach makes
use of a dedicated cache space on the worker nodes in an
execution cluster for the data caching purpose. They
accomplish this with the help of condor-DAGMan, which
makes it specific to the Condor environment only. Its
scheduling process involves prior planning of the resources for
a given DAG, however, in environments such as CMS, jobs
are generally data driven and are not completely known until
they have been created. Moreover, the scheduling is performed
within a single site and hence is not suitable for heterogeneous
environments like the WLCG Grid.

III. CASE STUDY

The CMS experiment at CERN uses a multi-tier distributed
architecture [22] where CERN is the Tier0. Using a four-tiered
architecture (from CERN's central computer as the Tier0 to
individual scientists' desk/lap/palmtops as Tier3s), CERN
distributes LHC data and computations across resources
worldwide to achieve aggregate computational power
unprecedented in high energy physics data analysis research.

The Tier0 reformats, writes out Primary Datasets, and stores
this raw data, generated from the output of the CMS Detector,
performs an initial data reconstruction and distributes the
processed data to Tier1s. In this paper we concentrate on the
Tier0 workflows and their data access patterns, however, the
approach being discussed in this paper should be of wider
usability, especially for other CMS data intensive workflows
that we intend to demonstrate in future. For the initial data
reconstruction, a Tier0 workflow is used, which is also a
sample workflow to evaluate and benchmark the proposed
system. This workflow has three main steps, namely 1)
Repacker 2) PromptReco and 3) AlcaReco. The Repacker jobs
perform a selection of the raw data and split the output into
different Primary Datasets based on physics information. The
PromptReco jobs take this output as their input and perform an
initial reconstruction into usable sets of physics data such as
the particle trajectories and the properties of the candidate
particles. The AlcaReco jobs perform much higher selectivity
of the data produced by the PromptReco jobs and also carry
out some processing on this small subset. This output is used
to align and calibrate the CMS detector.

In each step, several jobs are created. The number of jobs
in each step depends on the number of physics events (or
filtered particle collisions of interest) in the input files.
Currently each job has to process around 5000 CMS physics
events. Each job produces a relatively smaller output data as
compared to its input data. It is inefficient to store and transfer
smaller files to a tape-based central storage system because the
process encounters delays and latencies in transferring a file to
and from the tape drives. Therefore, each step has a special job
called the Merge job, which gets the output from multiple jobs
and merges them. Only the merged files should, ideally, be
transferred to the central storage system in the first instance.
Figure 3 shows the CMS Tier0 workflow.

Figure 3: Tier0 workflow for CMS at CERN

The creation and execution of all the workflow actors is
data driven. The workflow starts execution whenever a new
file is available that requires some kind of processing. The
unnamed oval process in Figure 3 triggers the first step by
creating the Repacker jobs. The subsequent jobs are created
according to the system policies, workflow rules and data
availability. There are two main characteristics of this
workflow. Multiple jobs are dependent on a single input file,
and a single job, which is the Merge job, is dependent on
multiple smaller files produced by earlier jobs in the
workflow. This workflow is created and executed by a
ProdAgent [23]; a workflow management system used in
CMS. ProdAgent is a component based system driven by an
asynchronous and persistent messaging system for
communication among these components. ProdAgent is
responsible for creating, submitting and then monitoring the
real jobs in a CMS workflow. In the existing setup, all jobs
within a Tier0 workflow are queued up in the global scheduler
of ProdAgent. The global scheduler can schedule the jobs on
the available sites in the Grid using the configured submission
mechanism such as gLite [24] and Condor-G [25]. The Tier0
instance uses local LSF [26] submission.

Once a job has been scheduled from the meta-scheduler, it
comes to a local scheduler such as LSF, PBS [27] or Condor
running on a particular site. A job has to wait in the local
scheduler’s queue before it is scheduled to a worker node.
After arriving on the worker node, the data dependent jobs
undergo a further wait before their required datasets become
online on the given SE for streaming. Once the job can access
the data, it reads data in chunks and performs its processing.
After completing the processing of this data, the job stages
back the output to a given SE. It then faces further delays until
a monitoring component knows that a job has been finished
and it has staged back its output. The latency in retrieving the
job completion information delays the submission of a
dependent job, thus increasing the workflow turnaround time.
In the current execution environment, as shown earlier in
Figure 1, each job has to face the afore-mentioned scheduling,
monitoring and data access latencies. These latencies affect
the execution time of an individual job, which, in turn, affects
the turnaround time of the whole workflow.

The CMS Tier0 is a latency critical system, where disk
buffers fill up if the data coming from the detector are not
processed timely, and calibration constants derived promptly
are used to reconstruct the new data. Therefore, removing
aforementioned latencies is very important to improve the
turnaround time of the workflow.

IV. PROPOSED ARCHITECTURE

In order to optimize the execution of the CMS data
processing workflow, we propose to use a pull-paradigm
driven by pilot jobs and to establish data caches on the
execution resources. This approach will help in avoiding
scheduling, monitoring and data access latencies for the real
jobs. As a result of this approach, there will be a fewer job
failures that may appear due to incorrect job execution
environments. The approach will also be used to create data
caches on the worker nodes.

The pilot job concept provides three main advantages.
Firstly, real jobs do not face scheduling and monitoring
latencies since the pilot jobs will pull them directly from the
global scheduling queue and notify job completion as soon as
a job has been finished. Secondly, the pilot job will manage
the available resources on the worker node for data caching
which will help in avoiding data access latencies. Thirdly, the
pilot jobs will ensure that an execution environment is
appropriate for a real job before executing it. Furthermore, the
pilot jobs act as a layer on top of the local batch system such
as Condor and LSF and therefore it ignores the local
schedulers and makes use of the meta-scheduler policies for
making scheduling decisions. This not only saves the queuing
times that can be quite high in local schedulers, but it will also
reduce the job failures. As a result of this, jobs are only sent to
a site if they are requested by a pilot job running on the site
and it has the required execution environment. Moreover, this
approach makes the decision making process distributed,
cooperative and fault tolerant. With this approach, there will
potentially be a single scheduler in the Grid for the real jobs
since they will bypass the local schedulers running on the
sites. The meta-scheduler in association with the pilot jobs will
make cooperative scheduling decisions to reduce job failures
and minimize queuing and execution latencies. This proposed
approach dynamically matches real jobs to the pilot jobs and
thus makes the scheduling decisions that are required for
efficient cache and resource usage. The overview of the
proposed architecture is shown in Figure 4.

Figure 4: Overview of the proposed architecture

The JobCreator component of the ProdAgent system will
create the real jobs from the workflow and enqueue them in
the TaskQueue (TQ). The TaskQueue, a central job queue, will
hold all the real jobs of the workflow that are waiting to be
scheduled for execution. The TaskQueue will schedule them
upon receiving job requests from the pilot jobs. The
TaskQueue is also responsible for registering new pilot jobs
and maintaining the information about them. An architecture
of the pilot job and the TaskQueue is given in Figure 5.

The number of pilot jobs that should be submitted to a site
is subject to the number of real jobs that are waiting in the
TaskQueue for that particular site. Currently, each pilot job is
capable of running a single real job at any point in time. Since
the Grid sites are shared among multiple Virtual Organizations

(VOs), we cannot load them with pilot jobs which will not
have work to do. Two configurable thresholds are used to
avoid this problem. These thresholds are called minPilots and
maxPilots, which put a limit on the minimum and maximum
number of pilot jobs for a site. Each site has its own values for
these thresholds that are provided by the site policy. The
PilotMonitor component, which is responsible for monitoring
the state of submitted pilots, calculates the required number of
the additional pilot jobs within these thresholds and then
requests the PilotManager component to submit them. Section
IV-A details the algorithm used in the PilotMonitor to
calculate the required number of pilot jobs.

Upon receiving the request from the PilotMonitor, the
PilotManager component prepares the required number of
pilot jobs with configurable parameters and submits them. The
pilot jobs are submitted using the underlying submission
system such as LSF, Condor or gLite for grid submission.
Once a pilot job has been scheduled on a worker node within
an execution cluster, it will perform initial environment checks
and register itself with the TaskQueue. In the registration
phase, the TaskQueue assigns a unique id, PilotID, to each
pilot job to identify it during its subsequent requests. Once the
environment has been setup and the registration process has
been completed, the pilot job is then ready to contact the
TaskQueue to get the real job. However, if there is something
missing in the environment that is required for executing a job,
the pilot job announces the error and terminates itself; hence
no real job would be executed. This helps in having fewer real
job failures that occur due to an improper execution
environment which is one of the major reasons for job failures
in Grids [28]. The pilot job approach being proposed in this
paper will help in reducing such failures.

Figure 5: Detailed architecture of PilotJob and TaskQueue

After the successful environment check, the pilot job contacts
a given TaskQueue URL and requests for a real job. Section V
gives a brief account of the cache-aware scheduling that the
TaskQueue performs upon receiving the pilot job request.
Once a job has started its execution, it looks for the physical
location of its input files. The pilot job maintains a mapping
file called Trivial File Catalog (TFC) to discover the input
files. This is an XML file which maintains the rules to convert
a Logical File Name (LFN) into a Physical File Name (PFN)
to locate a file. The TFC first looks into the pilot job’s cache
area for the required files. It provides a pointer to the input file
residing on an SE if the required file is not available in the
cache. This working is shown in Figure 5.

 The pilot job mechanism using the job pull-paradigm is
quite useful because it does not pose security concerns for the
grid resources. Sites are normally reluctant to open ports to
allow the outside world to make connections with their
internal resources. The pilot jobs act as clients for the
TaskQueue and hence address the site security requirements.

A. PilotMonitor algorithm

The PilotMonitor component keeps track of the submitted
pilot jobs and the real jobs enqueued in the TaskQueue. The
pilot jobs that are submitted to a site can be in one of three
states (inactive, idle, busy) during their lifecycles. The inactive
state is applied to those pilot jobs which are not running and
have been waiting in the site scheduler. A pilot job will be
monitored as idle if it is running on a WN but could not get a
real job from the TaskQueue. A busy pilot job means that it
has acquired a real job and this is in execution.

The PilotMonitor algorithm uses three important
thresholds to calculate the required number of pilot jobs for a
site. These thresholds are the maximum and minimum number
of pilots to be submitted to a site and the minimum number of
idle pilots. These thresholds are represented as minPilots,
maxPilots, and minIdlePilots respectively. This algorithm
makes sure that the required number of the pilot jobs should
not exceed the maxPilots threshold and also they should not be
less than minPilots. The last threshold, minIdlePilots, may be
useful for sites like Tier0, where it may be desirable to always
keep some idle pilots that are ready to accept a real job. This
minimizes the delay caused by the pilot job submission and
also reduces the submission time for the real jobs that are
submitted for the first time. All these thresholds are
configurable, according to the site policy.

The PilotMonitor runs this algorithm periodically for every
known site in its list. The algorithm is summarized as follows.

PilotMonitor algorithm

1. Recall thresholds and previously submitted pilots for site

2. Set: available slots = maxPilots threshold ‐ submitted pilots

3. If (available slots <= 0)

4. Then: Do not continue (do not submit more pilots)

5. Query TaskQueue about tasks that can run on this site

6. For each group of enqueued tasks:

7. If (enqueued tasks < inactive pilots)

8. Then: mark inactive pilots as active, mark tasks as covered

9. Else: If (available slots > number of tasks)

10. Then: send more pilots, mark tasks as covered

11. if (idle pilots < minIdlePilots):

12. Then: send more pilots

13. if (submitted pilots < minPilots):

14. Then: send more pilots

This calculation is then passed to the PilotManager
component which submits the pilot jobs to a given site.

B. Cache replacement algorithms

On a worker node, each pilot job will have limited space
available for caching so an efficient caching replacement
algorithm is required for managing the cache on worker nodes.
There are many caching algorithms [29] that can perform this
task including the traditional algorithms such as First-In-First-
Out (FIFO), Least Recently Used (LRU), and Least Frequently
Used (LFU). The traditional algorithms offer low overhead as
they need minimal information, such as reference count and
last access time, for their cache replacement policies. Here
reference count means the number of times a file has been
accessed in the past and the last access time means the time at
which a file was last accessed. Some improvements have been
made in these classical algorithms namely LFU-*, LFU-again,
LRU-K [30], and LCB-K [31]. These improved algorithms
such as LFU-* remove the cache pollution problem faced by
LFU. The LCB-K and other cost sensitive cache algorithms
[29] consider the cost of data removal from the cache.
However, these improved algorithms store extra information
to deal with issues that occur with the traditional algorithms.

The nature of the CMS Tier0 workflow favours the LRU
algorithm because once a step has been completed and its
output has been merged, the smaller files are no longer
required in the following steps. These smaller files are only
required by the jobs that were generated at the same level in
the workflow hierarchy. The jobs in the following steps use
the data from the merged output that has been produced from
the smaller files in a previous step. Moreover, the jobs in the
CMS workflow do not directly interact with the pilot job’s
caching component for a cache lookup because they use the
TFC to locate the physical location of a file. For these reasons,
it is somewhat difficult for the cache component to maintain a
reference time history or the reference count, used by the LFU,
for each file in its cache. Consequently, for our prototype
implementation, we have used LRU because of its simplicity
and its compatibility with the CMS workflows.

C. Data Caching policy

A pilot job running on a worker node can control resources
for the time it is allowed to run. Each real job, running within
the pilot job, will consume some input files and generate some
output files. Apart from executing a real job, the other
important task of a pilot job is to maintain these data files in its
cache. The caching policy must adhere to the requirements and
constraints detailed in the following paragraphs.

Each running pilot job will be given a certain amount of
disk space. The pilot job uses this space to download real jobs
and maintain output files. This space will become the pilot
job’s cache area. This space is configurable at the site level and
this is decided by the site administrator. In CMS, each job is
given a 10 GB space on the disk. Each pilot job will also get at
least 10 GB space that acts as the maximum allowed space for
the data storage. Since the jobs are executed within the pilot job
space, as shown in Figure 5, we will always need a minimum
space available at any given time. This minimum space is used
by the real job to temporarily store its output that has been
produced from the job execution. Let us call this required
minimum space a MinThreshold. The total space that can be
utilized for caching data can be given as:

ThresholdSpaceSize MinMax=Cache 

This ensures that we always use the maximum allowed
space for caching purpose by always keeping the minimum
available space for the job execution.

Let us say we have a set F of ‘n’ cache files {f1, f2, f3…fn}
each having the sizes {S1, S2, S3… Sn} respectively such that
their collective sum is less than or equal to Cache_Size

∑
i=1

n

Si≤ CacheSize

For example, a job produces a new file X which is required
to be placed in the data cache. The file X would become part of
the cache if the required space is available. If the remaining
space in the cache is insufficient to accommodate this new file,
then we need to remove some files from the cache. The LRU
algorithm should remove files from the cache such that the sum
of the removed files matches the following criterion.

∑
i=1

m

Si≥ RequiredSize

Where RequiredSize is the size of the new file for which the
cache replacement algorithm will create space in the cache.

D. Cache sharing among pilots on same Worker Node

On execution if resources are available at Tier0 at CERN,
multiple jobs can run in parallel on a single WorkerNode
(WN). Therefore, it is possible that multiple pilot jobs may land
on the same WN. The usage of the cached data will become
more effective if these pilot jobs can share their cached data.
Since the cached data is available and accessible locally, there
will be low data access latencies if the jobs can access the
shared cache. The cache sharing concept becomes even more
helpful in the scenario when Pilot1 is running a job which
needs a file available in the cache of Pilot2 that is running on
the same WN. A real job does not need to access an SE if pilots
can locate and then share this cached data. This will also
increase the cache hit rate.

We propose an approach that is called cache-per-host to
establish cache sharing among the pilot jobs running on the
same WN. Here we assume that the pilot jobs share the same
file system on a WN. In the case of CMS, all the pilot jobs run
under the same user id or the users belong to the same group,

therefore they can access each other's directories. When a pilot
job arrives on a WN and registers itself with the TaskQueue,
the TaskQueue sends back the list of other available pilot jobs
on that WN and their cache locations in response to this
register request. The pilot job will then save this list and poll
the given locations for new cache files. A Unix hard link to a
newly found file is created into the pilot's own cache area and
the file is placed into the cache by using the LRU algorithm
that has been discussed previously. In this way, the file remains
in the system even if the original owner of that file deletes it. A
file is removed from the system only if its last link is deleted.
At this point, a pilot job that prompted the file delete operation
will notify the TaskQueue about this. In cache-per-host, the
total space available to a pilot job on a worker node for data
caching is dynamic. It is calculated as a function of the number
of pilot jobs on that worker node, the maximum space allowed
to each pilot job and the MinThreshold. The following equation
shows this model where num_pilotjobs is the number of pilot
jobs on that worker node.

ThresholdSpaceSize MinpilotjobsnumMax=Cache  _

Since the pilots can shut themselves down or new pilots can
arrive on the same WN at random, a mechanism is required to
update the running pilot jobs about the other available pilot
jobs on a particular WN. This is achieved by making use of the
'Heartbeat' message, which a pilot job regularly exchanges with
the TaskQueue. This message informs the TaskQueue that a
pilot job is alive. In response, the TaskQueue provides the pilot
with an updated list of other pilot jobs on the same WN. In this
way, each pilot job updates itself about every other pilot job
running on the same WN. When a pilot job polls the given pilot
jobs' locations if that location is not accessible, then the pilot
job removes that entry from its list and that particular pilot job
is assumed to be dead. Each pilot job will update its list of the
pilot jobs after each 'Heartbeat' message.

E. Cache-Aware Task Scheduling

Each job placed in the TaskQueue provides its
requirements, such as its preferred site and input files. When a
pilot job submitted to a worker node starts execution, it will
contact the TaskQueue to get a job that meets its requirements.
The request to the TaskQueue includes its PilotID, Host, SE,
Time-to-Live (TTL) and cached files. In this request, PilotID is
the id assigned to each pilot job during its registration with the
TaskQueue, Host is the name of the worker node where the
pilot job is running, SE is the name of the storage element
accessible to the pilot job in that particular site and the cached
files are the files available in the pilot job’s cache. The TTL is
the remaining life of a pilot job. In the current implementation
for the Tier0, the pilot jobs can run forever because resources
are dedicated to Tier0 operations. But this information will be
configurable in future implementations and will be added into
the job scheduling process.

The TaskQueue performs the job scheduling by comparing
job requirements against the pilot job information. The
scheduling algorithm must schedule a job to a pilot job whose
maximum requirements meet the information provided by the
pilot job. The caching information is used to match job data
dependencies against the files maintained by the pilot job. The

TaskQueue schedules a job to a pilot job that has the maximum
number of jobs required files in its cache. A job, arriving on a
pilot job that holds some of the required files in its cache, will
face less data latency since it can find some or all of its
required files in the pilot job’s cache. The job without any
specific requirement can be scheduled onto any pilot job.

In order to provide improved job scheduling and to use
cache more effectively, we implemented a waitForData policy
alongside the above mentioned scheduling model. According to
this policy, when a pilot requests a job but cannot match the
data dependencies of a job, the TaskQueue would not schedule
the job to the pilot if there are other idle pilots holding the
required data. The TaskQueue would wait for these idle pilots
to eventually request a job. In this way, the scheduling process
encourages the maximum number of reads from the cache.
However, if there are no other pilots that hold the required data
or they are not idle, the TaskQueue will schedule the job to a
pilot that does not have the required files instead of keeping the
job for an unknown period of time, because, as a last resort, a
job can always access data from an SE.

Figure 6: Effect of pilot-based system on the Tier0
workflow turnaround time

V. EXPERIMENTAL RESULTS

A series of experiments have been conducted at CERN’s
Tier0 infrastructure. For these experiments, a test bed has been
used that comprises a cluster of 10 machines, each of which is
capable of running four jobs in parallel. We used a dedicated
resource in Tier0 as an SE to avoid any external influence on
the SE. The CMS Tier0 reconstruction workflow is used as a
sample workflow in these experiments. This workflow
generates a total of 172 jobs, requires 83.41 Giga bytes (GB)
of input data, and produces 112 GB of output data. Several
iterations of the complete Tier0 workflow have been executed
with the existing system i.e. ProdAgent and with the new
developed prototype based on pilot jobs and cache. These
experiments have been repeated several times. The figures
show the measured average values and the error bars represent
the standard deviation. The results in Figure 6 show that the
workflow turnaround time has been significantly reduced by
using the proposed system.

This reduction in the turnaround time is mainly due to the
reduction in job submission and job status notification times

since the pilot-based approach reduces the job scheduling
latencies (explained in the discussion of Figure 7). In these
tests, it was not possible to measure the behaviour of the
proposed system against different parameters such as job
failure rates, queuing times and data access latencies. This is
mainly due to the fact that there was no additional load on the
SE as it is only being used for data access operations in these
experiments. It was not practically feasible to artificially alter
the access conditions on the SE that has been used in these
experiments. Therefore, a variety of simulation experiments
were conducted at CIEMAT (in Madrid, Spain), which is a
CMS Tier2 site, to evaluate the impact of the pilot jobs and
their data caching patterns.

For the simulated experiments, a simulation engine has
been implemented to emulate the ProdAgent and the data
driven behaviour of CMS workflows by using a concept called
‘steps’. A workflow is divided in such a way that jobs in the
next step depend on the output produced in a previous step.
Three types of workflows, generating the jobs in two steps i.e.
step0 and step1, have been used in these experiments. These
three types of workflows display three different characteristics
of data intensive scientific workflows in general and the CMS
Tier0 workflow in particular. As mentioned in Section IV, the
jobs can display various types of data dependencies. It can be a
one-to-one (serial chain) dependency, or many-to-one
dependency where one job (the merge job) consumes the files
produced by two or more jobs in the previous step, or one-to-
many dependency where multiple jobs (splitting jobs) can
consume the files produced by a single job.

The serial chain workflow (abbreviated as W1)
demonstrates a one-to-one dependency. In this workflow (W1),
80 jobs that produce 80 files as their outputs are created in
step0. This is followed by another 80 jobs in step1 that are
dependent on the output produced in step0. This workflow
represents a one-to-one dependency between the jobs in the
workflow. In the second workflow (W2), 40 jobs are created in
step0 that produce 40 files and are followed by 80 jobs in
step1. In the second workflow, two jobs in step1 are dependent
on a single file produced by a job in step0. This workflow
represents a splitting workflow where more jobs consume the
data that has been produced by fewer jobs in the previous steps.
In the third workflow (W3), 80 jobs in step0 produce 80 files
and are followed by 40 jobs in step1. This is an example of a
merging workflow where two or more than two jobs are
merged in the subsequent steps of a workflow. Each job in
these workflows produces a file of size 700 Mega bytes (MB).
In each workflow, the jobs in step0 are first generated and
scheduled, and then the jobs in step1, which depend on the data
produced by the jobs in step0, are generated and enqueued in
the TaskQueue.

In order to study the effect of the proposed approach on
different type of workflows under different SE conditions
(given in Table 1), two different parameters, the delay factor
and the failure rate, are used for these experiments. The delay
factor is a delay that a job bears in accessing an SE. It is used
to simulate the delays, which occur due to the load on an SE, in
reading and writing processes. A higher delay factor means
longer times are being taken in reading and writing to the SE.
The values for delay factor used for these simulations are 0.01,

0.15, and 0.50 and are represented as d1, d2, and d3
respectively. Since the CMS jobs keep on reading the data
during their entire execution time, we used a Gaussian
distribution to measure and represent the data access times at
different stages in the job execution process. The other factor,
failure rate, is used to simulate the probability of failure in
reading or writing data to an SE which eventually means failure
of a job, hence, it may have a negative effect on the workflow
execution. The values for failure rate used are 0, 0.03, and 0.1
and are represented as f1, f2 and f3 respectively. A higher
failure rate means higher chances of failure in reading and
writing data from and to a data source. Different combinations
of these two factors give us different load conditions on an SE.
The d1f1, d2f2, and d3f3 combinations represent Low,
Moderate, and High loads on an SE respectively. The Low load
on an SE means that there are not too many read and write
requests to the SE; therefore, jobs would not face long data
access delays. The Moderate load on an SE means that there
are a reasonable number of read and write requests to the SE
and jobs might face slight delays in reading or writing files.
The High load means that there are a huge number of requests
pending for reading and writing the data to the SE,
consequently, the jobs will face longer delays and a higher
probability of failure. Table 1 summarizes these combinations.

Table 1: Combinations of delay and failure factors
Combination Delay

factor
Failure
factor

Load on SE / SE
condition

d1f1 d1=0.01 f1=0 Low/Normal

d2f2 d2=0.15 f2=0.03 Moderate/Medium

d3f3 d3=0.50 f3=0.1 High/Worse

A third factor that can influence the experiments is the
caching scheme used in an experiment. The effect of the data
caching on such environments (such as in CMS) is more
prominent since this can significantly influence the overall
execution time. Different cache schemes such as cache-per-
host (C1), single-pilot-cache (C2) and cache-per-host with
waitForData logic (as discussed in Section IV-E) (C3) have
been used in these experiments. In the single-pilot-cache, the
pilot jobs running on a WN do not share their cache data with
each other. In the cache-per-host, the pilot jobs on a WN can
discover and share cache data with each other. For C3,
waitForData logic is active in task scheduling process.

In order to study the effect in workflow latency in job
submission and scheduling, three different job submission
mechanisms have been used in these experiments which are 1)
direct submission (noTQ), 2) job submission with already
running pilot jobs and 3) job submission by submitting the pilot
jobs on demand using the PilotMonitor. In the first submission
mechanism, the TaskQueue and the pilot jobs are not used. The
jobs are submitted directly to the Grid using the gLite software.
In the second submission mechanism, 120 predefined pilot jobs
are already running before the new jobs are enqueued into the
TaskQueue. In this case, the pilot jobs are ready to acquire new
jobs and execute them. In the third submission mechanism, the
pilot jobs are submitted on demand using the PilotMonitor
algorithm explained in section IV-A.

The following paragraphs detail the results of the
experiments that have been performed using the experimental
setup discussed in the previous paragraphs. In order to measure
these results, simulated experiments have been repeated several
times and the figures present the measured average values and
standard deviation is shown as error bars. The plot in Figure 7
shows the number of running jobs over time for a W3
workflow where the jobs were submitted using the three
submission mechanisms. There is an initial job submission
delay for the direct (without the pilot jobs and the TaskQueue)
and PilotMonitor-based job submission. This delay is due to
the scheduling latencies introduced by gLite, and pilot jobs
have to wait in a local scheduler’s queue before they can run
and request the real jobs. However, this is not the case when
the pilot jobs are already running, and thus there are no
submission delays as the pilots are already waiting for the real
jobs. There are no queuing delays for the real jobs since the
pilots pull them as far as they can to meet the jobs’
requirements.

The results show a decrease in queuing times for the jobs
and scheduling latencies when a pilot-based system is used in
comparison to the direct submission. In the direct submission
mechanism, there is also a huge delay between the time step0
jobs complete their execution and the jobs in step1 are
submitted (group of running jobs as shown on the right side of
the plot). This is due to the latency introduced by gLite in
notifying the job completion. On the contrary, there are almost
no such delays between these steps with the pilot-based
approach. The knees in Figure 7, for the pilot-based approach,
are due to the delays in the submission of step1 jobs after the
jobs in step0 have been completed. Figure 7 shows how job
submission, scheduling and job notification delays can be
reduced using the pilot-based approach.

Figure 7: Number of running jobs over time

Figure 8 shows the effect of stage-in delays on job
execution times. The stage-in time in these experiments is the
time a job spends in accessing and reading a file from an SE for
processing. In CMS, files are read and processed directly from
the SE and these files are not downloaded to a worker node.

The plot shows that the system with the pilot cache provides
much better data access times especially under worse SE
conditions (d3f3) as a smaller number of requests are sent to
the SE, with an increasing number of datasets being available
in the local caches. In the normal SE condition (d1f1), the
cache does not offer significant advantage over the no-cache
approach as the SE has low latencies and can serve the data
requests almost as fast as is expected from the pilot cache.
There is a minimal effect of higher delays and higher failure
rates i.e. d2f2, d3f1, d3f3 on the stage-in time for the cache
based system because only a few files are read from the SE. On
the contrary, with an increase in the delay and the failure rate,
the stage-in time significantly increases for the no-cache
approach because all the files are read from the SE. It is
important to note here that by using the cache, I/O requests to
SE are decreased; therefore, its use may also minimize the
deterioration of the SE conditions in the first place.

Figure 8: Effect of data cache on stage-in time under
different SE conditions

From Figure 8, it is clear that the pilot cache mechanism
positively affects the execution time of a real job by reducing
the data access latencies. Since the jobs are inter-dependent in a
workflow, this result should also reduce the turnaround time of
a complete workflow as shown in Figure 9. From this figure, it
is clear that the cache approach provides better workflow
turnaround time than the no-cache approach. An interesting
fact to note here is that an increase in the failure rate has a more
prominent effect on the turnaround time compared to an
increase in the delay factor. This is due to the fact that a failure
in reading or writing data to an SE causes a job to fail which
triggers the resubmission of a job, and causes an additional
delay of resubmission and re-execution of a job. We know that
a job, in a workflow, cannot be ready for execution until its
predecessor job has been completed. Since the failure of one
job delays the start of its dependent job, it increases the
turnaround time of a workflow.

In the case of the cache based approach for W1, jobs mostly
read the required files from the cache which reduces the data
access latencies and the failures during the stage-in time.
However, the failures at stage-out (writing data back to an SE)
can lead to long workflow turnaround times. As a result, the

turnaround time of W1 under d3f1 (highest delay, low failure
rate) condition for both the approaches, the cache and the no-
cache, is less than d2f2 (high delay, high failure rate) and d3f3
(highest delay, highest failure rate).

Figure 9: Workflow turnaround time under different SE
conditions

Figures 10 and 11 show the same behaviour as discussed in
Figures 8 and 9 but with different workflows under worse SE
conditions (d3f3). We can see that the cache mechanism
performs much better for a workflow where the jobs show one-
to-one dependency, i.e. the W1 workflow, because the jobs
from step1 can be efficiently scheduled to the pilot jobs that
hold the results of the jobs from step0.

Figure 10: Effect of cache on job execution for different
workflow types

For the workflows W2 and W3, the cache hit rate is less
than the one in W1 because the jobs from step1 may be forced
to read from two different pilots (in case of W3) or two jobs in
different pilots may read from a single pilot that is holding the
data (in case of W2). On average, for all the three workflows,

the system with the pilot cache behaves better than the one
without it. However, the cache hits can be further increased in
case of W2 and W3 if a system with a global cache is used. The
global cache means that the pilot jobs can share their data
across WNs in a site.

Figure 11 depicts the cache impact on the turnaround times
of different workflows under worse SE conditions. It is clear
that the pilots with data cache help in improving the workflow
execution time when the storage resources are in the stressed
conditions.

Figure 11: Workflow turnaround times for different
workflow types

In this paper, we have discussed the single pilot cache (per-
pilot cache) and the cache sharing (cache-per-host) among the
pilot jobs on a worker node. A caching scheme is measured on
the basis of its responsiveness to the data access needs, mostly
measured in terms of the cache hit ratio and the byte ratio. The
cache hit ratio is the percentage of the data accesses that were
found in the cache.

Figure 12: Cache hit ratio

Figure 12 illustrates the cache hit ratio for different caching
combinations and different types of workflows. For the serial

chain workflow (W1), the single pilot cache and the share
cache with the waitForData policy, as explained in Section IV-
E, yield equal hit rates because the jobs have a one-to-one data
dependency and they are scheduled to those pilot jobs that are
holding the required files in their caches. When the
waitForData policy is not in use, the cache hit rate is severally
reduced because the TaskQueue does not wait for the pilot jobs
with the required data to request the real job. Consequently, a
real job is scheduled to a pilot job that may not be holding the
required files in its cache, thus, it may reduce the cache hit
ratio. In the absence of a global cache, the waitForData
approach appears to be fundamental to achieve a good cache hit
ratio because it emphasises more on data availability in the job
scheduling process to increase the probability of cache hit.

In Figure 12, we can see that the efficacy of the cache-per-
host (C1) is more prominent for the splitting workflow (W2)
and exhibits a marginally better cache hit ratio than the single
pilot cache (C2) for the merging workflow (W3). As we know
the step0 jobs can be scheduled to any pilot job because they do
not have any data dependencies. Therefore, the outputs
produced by these jobs are available randomly among all the
pilot jobs. For W2, each step0 job produces two output files
and each step1 job requires a single file as its input. In case of
the single-pilot-cache, we may achieve 50% cache hits at the
most. However, in case of the cache-per-host, the reason for a
better cache hit ratio is due to the possibility that two jobs
might be scheduled to two pilot jobs on the same WN where
the required data was produced by a step0 job. Due to the cache
sharing, the jobs can discover files available in some other
pilot’s cache, thus increasing the cache hit ratio.

In the case of W3, each job in step1 requires at least two
input files produced by two different step0 jobs, which were
executed by two different pilot jobs. It may be possible that
those pilot jobs are running either on two different WNs or on
the same WN. In any case, with the single-pilot-cache, 50%
cache hits might be achievable. Since the pilots cannot share
caches, each merge job can find at least one file from the
pilot’s cache. However, in the case of the cache-per-host, it
might be possible that multiple required files are held by
multiple pilot jobs running on the same WN (if the
corresponding step0 jobs were executed on this WN). In this
case, the scheduling mechanism may schedule the merge job
to a pilot running on this WN. However, since the files
produced by the step0 jobs are available randomly among the
pilot jobs, the probability of finding two required files on the
same WN is very low and therefore the cache hits ratio for the
cache-per-host is only slightly higher than the single-pilot-
cache for W3.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have proposed a pilot job with data cache
approach to improving workflow scheduling and execution
times for the CMS Tier 0 analysis workflows. This approach
makes use of caching techniques to reduce data access latencies
which have a major impact on the overall workflow turn-
around time. We also discussed the impact of the proposed
approach on the lifecycle of an individual workflow actor and
also on an entire workflow. The results have shown that the

proposed approach can significantly reduce the overall
execution time of a workflow by reducing the scheduling and
data access latencies. The reduction in these latencies is very
important for latency critical systems such as the CMS Tier0.

Currently we have tested this framework using the Tier0
workflow at the CMS Tier0 infrastructure and at CIEMAT
through simulated experiments. In future, we intend to test this
at the CERN Tier0 site at full scale and then expand its
deployment and will study its feasibility on a wider scale,
ideally across the whole WLCG. In future, we aim to extend
the pilot jobs based approach to address the job priorities,
which are assigned by the users, in the scheduling process. We
also aim to implement an intelligent approach that can
cooperatively and efficiently distribute the jobs over multiple
sites with minimum latencies. In the current implementation,
the pilot jobs can share their caches on the same WN.
However, it will be quite invaluable for the improved Grid
operations to investigate the effects of the cache sharing among
the pilot jobs running on different WNs within a site and even
across the sites.

For a better cache replacement policy, we will investigate
the effects of variants of LRU and LFU and will explore how
in-memory databases can play a role in improving the cache
access times when the number of read requests are scaled up to
thousands as is the case in the Grid infrastructures such as
WLCG. In this paper, we have assumed that a pilot job can run
for an unlimited time but this might not be the case in the
production Grid infrastructures. Therefore, in future,
investigations will also be made to study the impact of the pilot
lifetime on workflow execution.

REFERENCES

[1] CMS Collaboration, “The Compact Muon Solenoid Computing
Technical Proposal”, CERN/LHCC 1996-045, 1996

[2] AlcaReco workflow :
https://twiki.cern.ch/twiki/bin/view/CMS/T0ASTDiscussAlcaW
orkflows , visited 24-03-2010

[3] Flavia Donno, Maarten Litmaath, “Data Management in WLCG
and EGEE”, CERN-IT-Note-2008-002, February, 2008.
http://cdsweb.cern.ch/record/1083660

[4] Milton Halem, Randy Schauer, “A Mass Storage System
Administrator Autonomic Assistant”, 2nd International
Conference on Autonomic Computing (ICAC), pp. 300-301,
2005

[5] Diane Lingrand, Johan Montagnat, Tristan Glatard, “Modeling
the Latency on Production Grids with Respect to the Execution
Context”, Proceedings of the 8th IEEE International Symposium
on Cluster computing and Grid (CCGRID), pp. 753-758, 2008

[6] EGEE: http://www.eu-egee.org
[7] Giuseppe Lo Presti, Olof Barring et. al., “CASTOR: A

Distributed Storage Resource Facility for High Performance
Data Processing at CERN”, 24th IEEE Conference on Mass
Storage Systems and Technologies (MSST), pp. 275-280, 2007

[8] William Allcock, Ian Foster et. al., “Globus Toolkit Support for
Distributed Data-Intensive Science”, Proceedings of Computing
in High Energy Physics (CHEP), September 2001

[9] Mobin Uddin Ahmed, Raja Asad Zaheer, M.Abdul Qadir,
“Intelligent Cache Management for Data Grid”, Proceedings of
the 2005 Australasian workshop on Grid computing and e-
research, pp. 5-12, 2005

[10] Fernando Costa, Luis Silva, Ian Kelley,Ian Taylor, “Peer-to-
Peer Techniques For Data Distribution in Desktop Grid
Computing Platforms”, CoreGRID Workshop on Grid
Programming Model, Grid & P2P Systems Architecture, Grid
Systems, Tools and Environment, June 2007

[11] Bram Cohen, “Incentives build robustness in BitTorrent”,
Proceedings of the First Workshop on Economics of Peer-to-
Peer Systems, June 2003.

[12] Nathaniel S. Good, Aaron Krekelberg, “Usability and privacy: a
study of Kazaa P2P file-sharing”, Proceedings of the SIGCHI
conference on Human factors in computing systems, p137-144,
2002

[13] Ian Taylor, Andrew Harrison, Carlo Mastroianni, Matthew
Shields, “Cache for workflows”, Proceedings of the 2nd
workshop on Workflows in support of large-scale science, pp.
13-20, June 2007

[14] Tadashi Maeno et. al., “Experience from a pilot based System
for ATLAS”, International Conference on Computing in High
Energy and Nuclear Physics (CHEP), 2007

[15] Stuart K. Paterson1, Andrei Tsaregorodtsev et. al., “DIRAC
Optimized Workload Management”, International Conference
on Computing in High Energy and Nuclear Physics (CHEP),
2007

[16] Saiz Pablo.et. al., “AliEn: ALICE environment on the GRID”,
Nuclear. Instruments and. Methods in Physics, vol. 502, pp.
437-440, 2003

[17] Igor Sfiligoi, ”glideinWMS - A generic pilot-based Workload
Management System”, Internation conference on Computing in
High Energy and Nuclear Physics (CHEP07), 2007

[18] Michael Litzkow, Miron Livny, Mattew Mutka, “Condor – A
hunter of Idle workstations”, Proceedings of 8th Intl. Conf. on
Distributed Computing systems. June 1988

[19] Condor’s Generic Connection Brokering
http://www.cs.wisc.edu/condor/gcb/ , visited 24-03-2010

[20] http://www.cs.wisc.edu/condor/manual/v7.4/3_7Networking_inc
ludes.html

[21] Srinath Shankar, David Dewitt, “Data driven Work-flow
Planning in Cluster Management Systems”, Proceedings of the

16th international symposium on High performance distributed
computing (HPDC), pp. 127-136, 2007

[22] CMS Collaboration “The Computing project Technical Design
Report”, CERN/LHCC-2005-023, 2005

[23] Jose Hernández et. al., “CMS Monte Carlo Production in the
WLCG computing grid”, Journal of Physics, conference series,
vol. 119, 2008.

[24] Erwin Laura .et. al. Glite:EGEE “Middleware for the Next
Generation Grid Infrastructure”

[25] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, Steve
Tuecke, “Condor-G: A Computation Management Agent for
Multi-Institutional Grids”, Proceedings of the Tenth IEEE
Symposium on High Performance Distributed Computing
(HPDC10), 2001

[26] Songnian Zhou, “LSF: Load Sharing in Large-Scale
Heterogeneous Distributed Systems”, Proceedings. of the
Cluster Computing, December, 1992

[27] Mary Papakhian, “Comparing Job Management Systems: The
User's Perspective”, IEEE Computational Science &
Engineering, (April-June), 1998

[28] Hui Li, David Groep, Lex Wolters, Jeff Templon, “Job Failure
Analysis and Its Implications in a Large-scale Production
Grid”,Proceedings of the 2nd IEEE International Conference on
eScience and Grid Computing, 2006

[29] Martin Arlitt, Carey Williamson, “Trace-Driven Simulation of
Document Caching Strategies for Internet Web Servers”, in
Simulation Journal., vol. 68, pp. 23-33, 1996

[30] Elizabeth O'Neil, Patrick O'Neil, Garhard. Weikum, “The LRU-
K Page Replacement Algorithm for Database Disk Buffering”,
Proceedings of the. 1993 ACM SIGMOD International
Conferernce on. Management of Data, pp. 297-306, May 1993

[31] Jaeheon Jeong, Michel Dubois, “Cost-sensitive cache
replacement algorithms”, Proceedings of the 9th International
Symposium on High-Performance Computer Architecture
(HPCA), pp. 327-337, 2003

