
The relationship between equity and bond returns:  

An empirical investigation  

 

Amer Demirovica, Cherif Guermatb and Jon Tuckerb,* 

 

a Sarajevo School of Science and Technology, Hrasnička cesta 3a, Sarajevo, 71 000,  

Bosnia and Herzegovina 

b Centre for Global Finance, Faculty of Business & Law, University of the West of England, 

Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom 

 

 

 

Abstract: The correlation between equity and corporate debt is ambiguous. News affecting the 

value of a firm’s assets induces a positive correlation, whereas an increase in the volatility of a 

firm’s assets induces a negative correlation. We examine the conditional correlation between these 

two securities. While the average correlation is positive, the conditional correlation increases with 

credit risk, and decreases with equity volatility. Our results are consistent with the thesis that the 

equity bond relation is dependent on the potential wealth transfer between stock and debt holders. 

Nevertheless, this relation seems to break down during periods of extreme market uncertainty. 

 

 

Keywords: 

Equity-bond correlation; distance to default; equity volatility 

JEL classification: 

G11; G12; G14 

 

 

* Corresponding author. Tel.: +44(0)1173283754; fax: +44(0)1173282289. 

Email addresses: amer.demirovic@ssst.edu.ba (A. Demirovic), Cherif.Guermat@uwe.ac.uk (C. 

Guermat), Jon.Tucker@uwe.ac.uk (J. Tucker)  

mailto:amer.demirovic@ssst.edu.ba
mailto:Cherif.Guermat@uwe.ac.uk
mailto:Jon.Tucker@uwe.ac.uk


1. Introduction 

The correlation between the equity and bond returns of a firm (henceforth EBR correlation) is 

puzzling. On the one hand, equity and debt securities have different claims on the same assets. As 

noted by Campbell and Taksler (2003), shareholder action can be detrimental to the claim of the 

bondholders, which implies a negative correlation between equity and bond returns. On the other 

hand, the equity and debt instruments issued by a firm are in general exposed to the same market 

risks. Since both classes of securities are exposed to the same risk inherent in the firm’s assets, 

their values should be systematically and positively correlated in complete markets. 

The structural model of Merton (1974) shows that there is a formal relation between the values 

of equity and debt. The former is equal to the value of a call option written on the value of a firm’s 

assets. The value of a corporate bond is equal to that of a risk-free bond less the value of a put 

option written on the firm’s assets. Merton’s model therefore points to drivers of the correlation 

between equity and bond returns. The first driver is a firm’s earnings potential, which is a major 

determinant of the value of its assets. A drop in the firm’s earnings potential negatively impacts 

its equity value. It also has negative implications for the value of the firm’s bonds as the lower 

earnings potential implies potential future problems with bond repayment. As the values of both 

securities should move in the same direction, the contemporaneous correlation is expected to be 

positive and significant. Furthermore, the correlation should be stronger for firms with a greater 

possibility of default.  

A change in the volatility of a firm’s assets does not affect overall firm value but exerts different 

effects on the values of equity and debt. In a zero-sum game, equity holders benefit from an 

increase in volatility while corresponding losses are inflicted on debt holders. Therefore, contrary 

to a change in the value of assets, an increase in the volatility of a firm’s assets induces a negative 



contemporaneous correlation between the values of equity and debt securities (Campbell and 

Taksler, 2003).  

The evidence on firm-level correlation is very limited. The vast majority of studies focus on the 

relation between government or aggregate bond yields and aggregate equity returns. Gulko (2002) 

and Connolly, Stivers, and Sun (2005), for example, provide evidence that the government bond-

equity correlation turns from positive to negative during market crises. Baele, Bekaert, and 

Inghelbrecht (2010) document that the correlation between daily returns on equity and bond 

indices varies significantly over time. These studies in general provide evidence of the flight-to-

safety phenomenon or the investor preference for safe assets during market declines, but tell us 

little about the firm-level links between equity and corporate bonds.  

Baker and Wurgler (2012) take a different approach and look at the relation between 

government bonds and the cross-section of stocks. Their results suggest that government bonds 

covary more with low-risk bonds, which implies that the correlation between the returns on 

corporate bonds and equities depends on the credit risk exposure of firms. However, the bond 

index in Baker and Wurgler (2012) acts as a common factor to all stocks. As a result, the implied 

link between stocks and bonds at the firm level is both limited and indirect. In this paper, we take 

a different perspective by considering the cross-section of both stocks and corporate bonds on a 

peer-to-peer basis. By doing so, we are able to uncover a richer set of links between firm-level 

bonds and stocks compared to those explored in aggregate stock-bond studies.  

Studies that have considered the firm-level stock-bond correlation include Kwan (1996), 

Campbell and Taksler (2003), and Cremers et al. (2008). However, these studies have focused on 

examining the unconditional correlation between the credit spread or the bond yield and the 

variables included in the structural model of Merton (1974). They provide evidence on the sign of 



the correlation between firm-level equity and corporate bonds, but tell us little about its time 

variation and dependence on firm risk. There are just a few studies that examine the conditional 

correlation between firm-level equities and corporate bonds (or credit default swaps). For example, 

Scheicher (2009) and Belke and Gokus (2011) match limited samples of equities and credit default 

swaps.  

We contribute to the literature by examining how changes in firm-level equity volatility and 

credit risk affect the correlation. Unlike previous studies, we estimate the distance to default (DD) 

of Merton (1974) to control for credit risk, which is crucial if the correlation depends on the 

riskiness of firms as implied by the structural model, and is demonstrated by the empirical studies 

given above. We also depart from the firm-level literature by examining how a common aggregate 

factor, namely the VIX index, affects the relation between the firm-level variables and the 

correlation. This market outlook index turns out to be an important moderator for the effects of 

firm-specific risk characteristics. 

Consistent with previous studies, we find that the correlation is on average positive, which 

implies that the price variation of these two securities is more often due to changes in the value of 

the underlying assets rather than management action that causes a wealth transfer between stock 

and debt holders. The correlation strongly depends on credit risk. It is high when credit risk is high 

and rapidly decreases as firms become safer. When we control for credit risk, the relation between 

equity volatility and the correlation is negative, as implied by the structural model. This relation 

between the correlation and the firm-level risk factors dramatically weakens when market risk is 

elevated. The correlation is higher when market risk is high, but it is primarily driven by changes 

in common, rather than firm-level, risk factors. To our knowledge, we are the first to provide a 

link between firm level and aggregate market level risk characteristics, as well as to show how 



aggregate market conditions moderate the implications of the structural model of Merton (1974) 

at the firm level.  

The remainder of this paper is divided into five sections. In the following section, we review 

relevant studies and develop the hypotheses. In Section 3, we describe the data and present the 

methodology for estimating EBR correlation, measures of equity volatility and credit risk, and the 

empirical model specifications. The results are presented in Section 4, and the robustness of the 

results is examined in Section 5. The main conclusions are summarized in Section 6.  

 

2. Literature review and development of hypotheses 

The structural model of Merton (1974) describes the theoretical relation between the value of a 

firm’s assets and the values of the securities issued by the firm. Merton shows that the value of 

equity equals the value of a call option, whereas the value of debt is equal to the value of risk-free 

debt less a put option written on the value of the firm’s assets. The strike price of both options is 

the value of debt. 

The structural model implies that a change in the value of a firm’s assets causes a positive 

correlation between the returns on equity and debt. A change in the value of assets, ceteris paribus, 

affects the value of equity and debt in the same direction. An increase in the value of assets, for 

instance, is beneficial to equity holders as the growth in the underlying stock price is beneficial for 

an investor who purchased a call option. An increase in the value of assets also supports the value 

of debt by lowering the firm’s leverage and, consequently, the probability of default. These two 

mechanisms taken together give rise to a positive correlation between equity and debt returns. 

In contrast, a change in the volatility of a firm’s assets has an opposing effect on the values on 

equity and debt as equity holders stand to benefit from the upside potential of more volatile assets, 



whereas debt holders face an increased default probability as assets with higher volatility are more 

likely to fall to the value of debt and trigger bankruptcy. As a result, an increase in the volatility 

of assets induces a negative correlation between the values of equity and debt. 

Thus, the correlation between equity and bond returns may be either positive or negative, 

depending on whether new information about a firm primarily affects the value of its assets or the 

volatility of those assets. Kwan (1996) examines the bond yields and equity returns of 327 firms 

over the 1986-1990 period. He reports a negative correlation between firm-level equity returns and 

bond yields. Since bond yields and bond returns move in opposite directions, this finding implies 

a positive correlation between equity and bond returns. Hotchkiss and Ronen (2002) examine 

returns on 55 high-yield bonds and corresponding firm equities. They find equity returns to be 

significant in explaining only the returns on the lowest rated bonds (i.e., B- and lower) in their 

sample. Norden and Weber (2007) analyze the intertemporal relation between credit default swaps, 

equities, and bonds. They analyze data for 58 firms over the 2000-2002 period, and report that the 

relation between equity returns and bond spreads (bond returns) is significant and negative 

(positive).  

A negative correlation is generally found to be caused by an agency conflict whereby managers 

take actions that increase equity value at the expense of debt value. An example of such action is 

share repurchases. Maxwell and Stephens (2003) find that around share repurchase 

announcements, equity returns are abnormally positive while bond returns are negative. 

Alexander, Edwards and Ferri (2000) also confirm that the correlation between equity and bond 

returns at times turns negative around events that are beneficial to equity holders (e.g., issuing debt 

or adopting risky projects) or debt holders (paying down debt or diversifying assets). Since 

takeovers, particularly if funded by debt, negatively affect the value of existing debt, Bhanot, 



Mansi, and Wald (2010) find that takeover risk also has a negative effect on the correlation 

between equity and bond returns. 

The firm-level analysis differs in many ways from the aggregate level analysis. A flight to safety 

at an aggregate level indicates movement from one market to another, but it does not inform us 

whether such a movement is uniform across all firms, or whether some firms experience more 

movement than others. Similarly, the so-called decoupling of stock and bond markets might not 

translate into the decoupling between stocks and bonds at the firm level. The more interesting 

disaggregation to the cross-section of stocks by Baker and Wurgler (2012) does tell us something 

about the connection between individual stocks and government bonds, and implies a strong 

connection between bond-like stocks and bonds (relative to speculative stocks). However, while 

the cross-section analysis of stocks does provide some insight into the pricing of stocks, it is not 

directly relevant for the pricing of individual bonds. Moreover, there is more to pricing individual 

bonds than can be drawn from the government bond versus individual stocks relation. More 

formally, both stocks and bonds should be priced as the expected present value of their future cash 

flows. Baker and Wurgler (2012, p. 59) state that “bonds and bond-like stocks are clearly exposed 

to common shocks to real cash flows.” This, however, ignores the option features of both assets, 

as well as the potential conflict between bond holders and equity holders. Our results show that 

the expected cash flows of bonds and stocks (regardless of their grade) might not be necessarily 

linked at all, and may even be negatively linked. Thus, we argue that the aggregate stock-bond 

analysis does not filter down to the firm level.  

 

  



2.1 The average correlation 

Most of the empirical evidence suggests that the correlation between equity and bond returns is 

positive, but turns negative around wealth-transferring events such as leveraged buyouts. Since the 

wealth-transferring events are relatively infrequent, their effect on the correlation between equity 

and bond returns should not be dominant over the medium to long term. Therefore, the following 

hypothesis is stated: 

H1: The average correlation between equity and bond returns is positive.  

In contrast to previous studies that typically conduct the empirical testing by regressing bond 

yields on equity returns, this study proceeds with empirical testing in two steps. First, the 

conditional correlation between equity and bond returns is estimated in a bivariate GARCH model. 

Second, the statistical significance of the coefficients in the covariance equations is examined, and 

the hypothesis is formally tested that the mean of the conditional correlation series is positive and 

significantly different from zero. 

 

2.2 Credit risk and correlation 

The structural model implies that the level of credit risk is the most important determinant of 

the strength of correlation between equity and bond returns. As previously discussed, a small 

change in the value of the equity or equity volatility of high-quality firms has a limited impact on 

the firm’s default probability. However, as the default probability increases, its sensitivity to 

changes in any fundamental variable increases too. This is generally confirmed by the empirical 

studies that commonly use credit ratings to control for credit risk. Kwan (1996) finds that the 

returns on AAA-bonds approach the risk-free rate, while the returns on non-investment grade 

bonds are highly correlated with the returns of the corresponding firm equities. Hotchkiss and 



Ronen (2002) find that the correlation between equity and bond returns is only statistically 

significant when they control for credit risk. Similarly, Cheyette and Tomaich (2003) report that 

the bond yields of high-quality issuers are primarily explained by changes in the risk-free rate, 

while the bond yields of firms with lower credit quality are determined by equity returns. 

Surprisingly, the bond yields of firms with intermediate credit quality are not related to either 

interest rate factors or equity returns.  

Scheicher (2009) finds leverage (as measured by balance sheet total debt to total assets) to be 

an insignificant determinant of conditional correlations between equity returns and changes in the 

credit default swap premium. Campbell and Taksler (2003) also use accounting leverage ratios to 

control for credit risk in their analysis of the determinants of credit spreads. They could not confirm 

the prediction of the structural model that the importance of equity volatility in determining credit 

spreads increases with credit risk. Similarly, Cremers et al. (2008) obtain inconsistent results with 

the prediction of the structural model when using credit ratings to control for credit risk. Thus, 

both theoretical and empirical results point to the following hypothesis: 

H2: The strength of correlation between equity and bond returns depends on the level of a 

firm’s credit risk. More specifically, the greater the firm’s risk, the higher the correlation. 

Moreover, low-risk firms should evidence low or no correlation. 

 

2.3 The impact of equity volatility on EBR correlation  

As noted above, the structural model of Merton (1974) predicts that an increase in the volatility 

of a firm’s asset induces a negative correlation, which leads to the following hypothesis: 

H3: Equity volatility has a negative impact on the correlation between equity and bond 

returns. 



There is little empirical evidence to support this hypothesis. Scheicher (2009) analyzes the 

determinants of conditional correlations between stock returns and changes in credit default swap 

(CDS) premia for a sample of 129 U.S. firms. He reports that equity volatility has a negative impact 

on the correlation between equity returns and CDS premia. Since CDS premia and bond returns 

are negatively related, his finding implies that equity volatility has a positive effect on the 

correlation. This result, which is inconsistent with the predictions of the structural model, is 

probably caused by a weak control for the level of credit risk, which we address in Hypotheses 2 

and 4. 

 

2.4 The interaction between equity volatility and the distance to default 

Hypothesis 3 states that equity volatility impacts negatively on the correlation between equity 

and bond returns. Rather than being linear, this relation is expected to strengthen as credit risk 

increases. Therefore, there should be a significant interaction effect between equity volatility and 

the distance to default. A change in equity volatility should exert a disproportionately strong effect 

on the correlation for firms on the brink of bankruptcy, and almost no impact on the correlation of 

returns of very safe firms. Campbell and Taksler (2003) and Cremers et al. (2008) provide some 

evidence of this effect, but do not obtain a monotonic relation between the level of credit risk and 

the effect of equity volatility on the credit spread. These inconclusive results are likely to be caused 

by weak proxies for credit risk (they use an accounting-based ratio and firm credit ratings) and 

data samples populated mainly by investment-grade firms.  

Consistent with theory, prior empirical results generally show that the economic impact of 

equity volatility on the credit spread increases as the distance to default falls (Campbell and 



Taksler, 2003; Cremers et al., 2008). Therefore, we hypothesize that the same effect holds for the 

correlation between equity and bond returns: 

H4: The economic impact of equity volatility on the correlation between equity and bond 

returns increases as the distance to default falls. 

 

3. Methodology 

In this section we provide a brief account on various definitions and approaches used to 

compute returns, conditional correlation, the distance to default, and bond issue characteristics. 

We then describe the empirical model. 

3.1 Equity and bond returns  

Equity returns are calculated in the usual manner. Define 𝑃𝑖,𝑡
𝐸  as the share price of firm 𝑖 at time 

𝑡, and 𝐷𝑖,𝑡 as dividends paid from time 𝑡 − 1 to time 𝑡. The rate of return is defined as:  

 

 
𝑅𝑖,𝑡

𝐸 = 𝑙𝑛
𝑃𝑖,𝑡

𝐸 +𝐷𝑖,𝑡

𝑃𝑖,𝑡−1
𝐸 . (1) 

The holding-period returns for bonds are calculated in a similar manner. Define 𝑃𝑖,𝑡
𝐵  as the bond 

price of firm 𝑖 at time 𝑡, 𝐶𝑖,𝑡 
as the coupon payments, and 𝐴𝐶𝑖,𝑡 as the accrued interest on bond 𝑖 

from time 𝑡 − 1 to time 𝑡. The rate of return is defined as:  

 

 

 

𝑅𝑖,𝑡
𝐵 = 𝑙𝑛

𝑃𝑖,𝑡
𝐵 +𝐶𝑖,𝑡+𝐴𝐶𝑖,𝑡

𝑃𝑖,𝑡−1
𝐵 +𝐴𝐶𝑖,𝑡−1

. (2) 

 



3.2 Conditional correlation between equity and bond returns  

The conditional correlation between equity and bond returns is obtained from a bivariate 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) process. The mean 

equations are given by: 

 

 𝑅𝑡
𝐸 = 𝑐1 + 𝜀𝐸,𝑡  and  𝑅𝑡

𝐵 = 𝑐2 + 𝜀𝐵,𝑡, (3) 

 

where 𝑅𝑡
𝐸, 𝑅𝑡

𝐵, 𝜀𝐸,𝑡, and 𝜀𝐵,𝑡 are equity and bond returns, and the disturbance terms, respectively. 

One of the most popular models for estimating the conditional covariance is Bollerslev, Engle, and 

Wooldridge (1988). We use the parsimonious version referred to as the diagonal VECH (1,1). In 

order to guarantee that the conditional covariance matrix is positive semi-definite, we follow Engle 

and Kroner (1995) and Ding and Engle (2001), and restrict the coefficient matrices to rank 1 

matrices. This gives the following variance/covariance equations: 

 

 

ℎ𝐸,𝑡 = 𝑐1 + 𝑎1𝜀𝐸,𝑡−1
2 + 𝑏1ℎ𝐸,𝑡−1 

ℎ𝐵,𝑡 = 𝑐2 + 𝑎2𝜀𝐵,𝑡−1
2 + 𝑏2ℎ𝐵,𝑡−1 

ℎ𝐸𝐵,𝑡 = 𝑐1𝑐2 + 𝑎1𝑎2𝜀𝐸,𝑡−1
2 𝜀𝐵,𝑡−1

2 + 𝑏1𝑏2ℎ𝐸𝐵,𝑡−1,

 

(4) 

where ℎ𝐸,𝑡, ℎ𝐵,𝑡, and ℎ𝐸𝐵,𝑡 are, respectively, the equity variance, the bond variance, and the equity-

bond covariance. This specification is widely utilized in empirical studies (e.g., Bekaert and Wu, 

2000; Ang and Chen, 2002; Belke and Gokus, 2011). In the above specification, we assume that 

the variances and the covariance respond symmetrically to positive and negative news. This 

assumption can be relaxed by extending the variance and covariance equations with an additional 

asymmetric term. Thus, the asymmetric model is given by:  

 



 

 

ℎ𝐸,𝑡 = 𝑐1 + 𝑎1𝜀𝐸,𝑡−1
2 + 𝑏1ℎ𝐸,𝑡−1 + 𝑑1𝜀𝐸,𝑡−1

2 𝐼𝐸,𝑡−1 

ℎ𝐵,𝑡 = 𝑐2 + 𝑎2𝜀𝐵,𝑡−1
2 + 𝑏2ℎ𝐵,𝑡−1 + 𝑑1𝜀𝐵,𝑡−1

2 𝐼𝐵,𝑡−1 

 ℎ𝐸𝐵,𝑡 =  𝑐1𝑐2 + 𝑎1𝑎2𝜀𝐸,𝑡−1
2 𝜀𝐵,𝑡−1

2 +

𝑏1𝑏2ℎ𝐸𝐵,𝑡−1 + 𝑑1𝑑2𝜀𝐸,𝑡−1
2 𝐼𝐸,𝑡−1𝜀𝐵,𝑡−1

2 𝐼𝐵,𝑡−1,                                 

 

(5) 

 

where 𝐼𝑡−1 = 1 if 𝜀𝑡−1 < 0 and zero otherwise. 

 

3.3 Distance to default  

The distance to default (DD) is the difference between the market value of the assets and the 

book value of debt relative to the volatility of the market value of the assets (Merton, 1974). DD 

follows directly from the Black and Scholes (1973) call option pricing equation:  

 

 𝐸 = 𝐴 𝑁(𝑑1) − 𝐷 𝑒−𝑟𝑇𝑁(𝑑2), (6) 

 

where  

 

𝑑1 =
ln(

A

𝐷
)+(𝑟+

𝜎𝐴
2

2
)𝑇

𝜎𝐴√𝑇
, 

 

 

𝑑2 = 𝑑1 − 𝜎𝐴√𝑇, 𝐸, and 𝐴 are the market values of the firm’s equity and assets, 𝜎𝐴 
is the volatility 

of the market value of the firm’s assets, 𝐷 is the book value of the firm’s debt, 𝑟 is the risk-free 

rate, 𝑇 is the time horizon in years, and 𝑁(. ) is the cumulative density of the standard normal 

distribution.  



The market value of the firm’s assets is assumed to follow a geometric Brownian motion 

process. Assuming that the firm’s equity value follows the same process, its dynamics under the 

risk-neutral probability measure can be described by:  

 

 𝑑𝐸  =  𝑟𝐸 𝑑𝑡  +  𝜎𝐸𝐸𝑑𝑋, (7) 

 

where 𝜎𝐸 
is the volatility of the market value of the firm’s equity and 𝑑𝑋𝑡 is the standard Wiener 

process. Since the equity value is a function of the asset value and time, Itô’s lemma can be applied 

to give: 

 
𝑑𝐸 = [

𝜕𝐸

𝜕𝑡
+ 𝑟𝐴

𝜕𝐸

𝜕𝐴
+

1

2
(𝜎𝐴𝐴)2

𝜕2𝐸

𝜕𝐴2
] 𝑑𝑡 +

𝜕𝐸

𝜕𝐴
𝜎𝐴𝐴𝑑𝑋. (8) 

A comparison of the coefficient multiplying the stochastic components in the two preceding 

equations gives the following identity: 

 

 𝜎𝐸𝐸 =
𝜕𝐸

𝜕𝐴
𝐴𝜎𝐴. (9) 

 

The unobservable market value and volatility of the firm’s assets are estimated by 

simultaneously solving equations (6) and (9). This approach is widely used in empirical studies 

(e.g., Ronn and Verma, 1986; Hillegeist et al., 2004; Campbell, Hilscher, and Szilagyi, 2008). The 

equity volatility is estimated using a GARCH(1,1) model (Bollerslev, 1986). Once the asset value 

and volatility are estimated, the distance to default is calculated as follows:  

 

𝐷𝐷 =
ln(

A

𝐷
)+(𝑟−

𝜎𝐴
2

2
)𝑇

𝜎𝐴√𝑇
. 

(10) 

 



3.4 Bond issue characteristics  

To control for the maturity of bonds, daily duration is calculated according to the following 

formula: 

 𝑑 =
1

𝐵𝑑
∑

𝐶𝐹𝑡

(1+𝑌)𝑡
𝑡 𝑁

𝑡=1 , (11) 

 

where 𝐵𝑑 is the dirty bond price (clean price + accrued interest), 𝐶𝐹𝑡 is the cash flow in period t, 

𝑁 is the number of periods to maturity, and 𝑌 is the per-period yield to maturity. The control 

variable for the size of the bond issue is the natural logarithm of the bond’s market price multiplied 

by the number of outstanding bonds.  

 

3.5 Panel data analysis  

The data set consists of the conditional correlation between equity and bond returns, and a set 

of independent variables for n firms over T consecutive time periods. Because of the possible 

common factors influencing the correlation, we use a panel data model with period fixed effects:  

 

 𝐶𝑖𝑡 = 𝛼𝑡 + 𝛽𝑥𝑖𝑡 + 𝜀𝑖𝑡 ,   𝜀𝑖𝑡~𝑖. 𝑖. 𝑑. (0, 𝜎2), (12) 

 

where 𝐶𝑖𝑡 is the conditional correlation between the equity and bond returns of firm i at time t, 𝛼𝑡 

is the period effect,  is a k × 1 parameter vector, 𝑥𝑖𝑡 is a vector of k explanatory variables, and 𝜀𝑖𝑡 

is a disturbance term.  

Our hypotheses are tested by regressing the conditional correlation between equity and bond 

returns, 𝐶𝑖𝑡, on specific regressors. For Hypothesis 3, we use the firm’s (conditional) equity 



volatility, 𝑉𝑖𝑡, obtained from a GARCH process. Since the structural model implies that the effect 

of volatility is not monotonic, we include a quadratic term to account for potential non-linearity.  

Hypotheses 2 and 4 concern the distance to default, 𝐷𝐷𝑖𝑡, of Merton (1974). As discussed 

above, it is expected that the impact of a change in DD strongly depends on the level of credit risk. 

In other words, a small change in a large DD should have only a limited impact on the correlation 

between equity and bond returns, while the magnitude of impact should grow as DD falls. Our 

model accounts for this non-linearity with the squared DD variable. Moreover, there might also be 

a discrete form of non-linearity in the impact of changes in DD. Investors might not think of the 

riskiness of a firm as a continuous variable. Rather, they might perceive a firm as being on a scale 

containing a limited number of risk classes, say ranging from very safe to highly risky. It may be 

the case that investors follow the popular discrete approach used by credit rating agencies. It could 

also be the case that investors make use of simple rules of thumb to make decisions (Gigerenzer 

and Goldstein, 1996). To account for this possibility, we employ DD dummies, 𝐷𝐷𝑖𝑡
𝑠 = 𝐼(𝜏𝑠 ≤

𝐷𝐷𝑖𝑡 < 𝜏𝑠+1), where 𝐼(. ) is the indicator function and 𝜏𝑠 are thresholds.  

Determining the number of dummies and the threshold values is not straightforward. Dealing 

with a single threshold is already quite complex (Hansen, 2000), and we are not aware of a 

methodology that can consistently and simultaneously estimate the optimal number of dummies 

and their associated thresholds. In this paper, we take a simple approach. The dummies and 

thresholds are determined by estimating models with different sets of dummies and threshold 

values and selecting the model on the basis of a minimum Akaike information criterion (AIC). 

Specifically, for each number of dummies (𝑠 = 1, … , 𝑛), we estimate models for all threshold 

combinations (with discrete increment steps). For the DD variable, we estimated 4,753 models. 

The lowest AIC is achieved with 15 dummies, but 94% of the improvement in AIC is achieved by 



a set of four dummies. Therefore, in order to have as parsimonious a model as possible, we use the 

optimal set of four dummy variables: 0.8, 1.8, 2.8, and 3.8. In the Appendix, we provide a more 

detailed explanation of the selection procedure.  

The coefficient of 𝐷𝐷𝑖𝑡 then captures the average effect of the DD, while the dummy 

coefficients capture the additional effect of the DD for predefined risk classes. If Hypothesis 2 

holds, the dummy coefficients should be statistically significant and monotonically increasing in 

size as the predefined thresholds of DD decrease (i.e., as the level of credit risk increases).  

Hypothesis 4 is examined by including an interaction term between volatility and the 

DD, 𝑉𝑖𝑡𝐷𝐷𝑖𝑡, in the regression. To capture possible non-linearity in the DD effect, the product of 

volatility with a discrete version of DD is added to the regression. Specifically, we add the product 

𝑉𝑖𝑡𝐷𝐷𝑖𝑡
𝑠  for 𝑠 = 1, … ,4, where 𝐷𝐷𝑖𝑡

𝑠  is defined as before. 

It is well known that aggregate stocks and bonds are driven by common factors (Fama and 

French, 1989; Shiller and Beltratti, 1992; Campbell and Ammer, 1993). We control for common 

market conditions using the VIX index, which is a widely used measure of the implied volatility 

of the S&P 500 Index options.1 The VIX has been considered an important indicator of market 

expectations, investor sentiment, and market volatility (Whaley, 2000, 2008). Because it is directly 

related to the market values of calls and puts, the VIX reflects what the option traders think of 

future market volatility. This forward-looking nature of the VIX makes it a particularly powerful 

state variable. The importance of this control lies in the potential role of common shocks to real 

cash flow, market risk and investor sentiment in the time variation in stock-bond co-movement. 

                                                      

1 We thank the referee for drawing our attention to this important point. 



As pointed out by Baker and Wurgler (2012), common factors help separate firm-level correlation 

from aggregate correlation.  

At the aggregate level, the dominant argument is flight-to-quality. Kim, Moshirian, and Wu 

(2006) and Connolly, Stivers, and Sun (2007) find that market uncertainty reduces the stock-bond 

correlation. Some authors argue that the cash flow effect is more important during contractions, 

leading to lower or negative stock-bond correlations during recessions. In contrast, during 

expansions the discount rate is more important, thus leading to positively correlated stock and 

bond returns during such periods (Ilmanen, 2003; Boyd, Jagannathan, and Hu, 2005; Andersen et 

al., 2007). However, d’Addona and Kind (2006), in their study of the G7 countries, find evidence 

that only inflation uncertainty reduces stock-bond correlation, whereas real interest rate 

uncertainty actually increases the correlation. Moreover, for small capitalization stocks, Jensen 

and Mercer (2003) find evidence that the stock-bond correlation is lower (rather than higher) 

during an expansion than during a contraction. Thus, the empirical evidence is not conclusively in 

favor of the flight-to-quality argument. 

Although aggregate risk (VIX) can influence the general level of stock-bond correlation, it may 

also have different effects for different firms. Bhamra, Kuehn, and Strebulaev (2010) propose a 

model whereby both stocks and bonds are sensitive to aggregate consumption and the firm’s 

earnings, and find a positive relation between consumption growth and firms’ earnings growth. 

This implies that the VIX might moderate the impact of firm risk. We thus account for this potential 

moderating effect by including an interaction between aggregate risk and firm risk (asset volatility 

and DD). Overall, the full regression is expressed as follows: 

𝐶𝑖𝑡 = 𝛼t + 𝛼1𝐷𝐷𝑖𝑡 + 𝛼2𝐷𝐷𝑖𝑡
2 +  ∑ 𝛾𝑠𝐷𝐷𝑖𝑡

𝑠4
𝑠=1 + 𝛼3𝑉𝑖𝑡+𝛼4𝑉𝑖𝑡

2 + 𝛼5 𝑉𝑖𝑡𝐷𝐷𝑖𝑡  +

                         ∑ 𝛿𝑠𝑉𝑖𝑡
4
𝑠=1 𝐷𝐷𝑖𝑡

𝑠 + 𝛼6𝑉𝐼𝑋𝑖𝑡 + 𝛼7𝑉𝐼𝑋𝑖𝑡𝐷𝐷𝑖𝑡 + 𝛼8𝑉𝐼𝑋𝑖𝑡𝑉𝑖𝑡 + 𝜀𝑖𝑡.  



(13) 

  As emphasized by Petersen (2009), the OLS standard errors in equation (13) may be biased and 

underestimate the true variability in the estimated coefficients due to the correlation of the residuals 

across time for a given firm (time series dependence) and/or across different firms (cross-sectional 

dependence). The standard errors are corrected to account for the time series dependence, while 

the cross-sectional dependence is addressed by adding dummy variables. This approach takes into 

account potential error correlation across both dimensions. An alternative way to correct for errors 

across both dimensions is to correct them for the cross-sectional dependence and add firm 

dummies to address the time series dependence. However, the firm dummies partially capture the 

effect of credit risk on the correlation, which is a main point of interest of this paper, and thus the 

use of a model with period dummies is preferred. Further, the period dummy variables fully capture 

common time variations in the correlation, which makes them an alternative to common variables 

such as VIX.   

 

3.4 Data 

Following Scruggs and Glabadanidis (2003), the correlation is estimated at the monthly level 

as noise in the returns at higher frequencies makes it difficult to determine the true relation between 

the returns. We use firm-level equity and bond data. Since bond data are relatively scarce compared 

to equity data, we start our sample selection with all straight corporate bonds issued by non-

financial companies in the U.S. market available in the Thompsons Reuters Datastream database. 

When multiple bonds are available from the same issuer, the bond with the maximum number of 

observations is used. This is preferred to averaging the data of different bonds with a common 

issuer as bonds have different characteristics, such as duration and issue size. Bonds with less than 



36 monthly observations, asset-backed bonds, bonds with any sort of collateral, or with an average 

market value of less than $10 million are excluded from the sample. Once the bond data are 

collected, they are matched with the equity data, also obtained from the Datastream database. The 

matched sample consists of 351 firms and 33,870 firm-month observations.  

All other variables (distance to default, equity volatility, firm asset value, bond duration, and 

bond issue value) are estimated at the daily level and then converted into monthly series by 

averaging daily observations. The accounting data required for the estimation of DD are obtained 

from Compustat, and the risk-free interest rate data are obtained from the Datastream database. 

Finally, daily VIX Index data are obtained from the Chicago Board Options Exchange. The 

descriptive statistics for the variables used in the empirical model are presented in Table 1, while 

the time series of cross-sectional average equity and bond returns are shown in Figure 1.  

[Insert Table 1 about here] 

[Insert Figure 1 about here] 

The sample covers the period from August 1996 to February 2011. Not all series cover the 

entire sample period, so our panel is unbalanced. It should be noted that the number of observations 

available at the beginning of the sample period (1996-2000) is much lower than that later in the 

sample period (2001-2011). However, the earlier dataset is still large (1,519 observations for 33 

firms) compared to other studies dealing with bond data. 

 

4. Results 

4.1 The conditional correlation between equity and bond returns  

The conditional correlation between equity and bond returns is estimated initially by means of 

both symmetric and asymmetric bivariate diagonal VECH/diagonal BEKK models, as described 



in Bollerslev, Engle, and Wooldridge (1988). Following Scruggs and Glabadanidis (2003), the 

correlation is estimated at the monthly level, as noise in the returns at higher frequencies makes it 

difficult to determine the true relation between the returns. The statistical characteristics of the 

estimated correlations are similar across both types of model, except for a slight increase in 

skewness in the asymmetric model. We find no clear evidence that the asymmetric model performs 

better. For example, while the AIC favors the asymmetric model 53% of the time, the Schwartz 

criterion indicates that the symmetrical model is preferred in 66% of cases. We therefore use the 

EBR correlation estimated by the symmetric version of the diagonal VECH model as a proxy for 

the unobserved correlation. The descriptive statistics of the correlation series are presented in 

Table 2, while the cross-sectional averages of the series are shown in Figure 2. 

 

[Insert Table 2 about here] 

[Insert Figure 2 about here] 

 

The mean of both correlation series is around 0.089, which provides support for Hypothesis 1 

(EBR correlation is positive on average). The two models used in estimating the conditional 

correlations give virtually identical means, as shown in Table 2. Hypothesis 1 is also confirmed 

by the results of an autoregressive model presented in Table 3. As expected, these conditional 

correlations are highly correlated but stationary. The long-run correlation implied by this 

autoregressive model is 0.089 (=0.028/[1-0.403-0.284]) for the symmetric model, which is 

virtually identical to that for the sample mean. 

[Insert Table 3 about here] 

 



The remaining three hypotheses, H2 to H4, are addressed by the full model. We estimate both 

the Period Fixed Effects Model and the Constant Coefficient Model (i.e., the model without 

effects). As noted above, the standard errors may be correlated cross-sectionally and/or serially. 

The standard errors shown in Table 4 are corrected for serial correlation, while the potential cross-

sectional correlation is addressed by adding period dummies (Period Fixed Effects Model) or the 

VIX Index (Constant Coefficient Model). The period fixed effects and VIX Index capture common 

effects affecting all firms. Consequently, the fixed effects and VIX cannot be included in the model 

simultaneously because of perfect multicollinearity. Therefore, the VIX Index is omitted from the 

Period Effects Model and included only in the Constant Coefficient Model. A higher explanatory 

power and a lower AIC value of the Period Effects Model imply that the period dummies 

outperform VIX in capturing systematic effects. The probabilities from the uncorrected standard 

errors are also shown and confirm that the uncorrected standard errors are generally less 

conservative. This approach to addressing two sources of error correlation is suggested by Petersen 

(2009).  

 

[Insert Table 4 about here] 

 

Before proceeding with the analysis, we conducted formal redundancy tests of the fixed and 

random effects. The chi-square statistic for the redundancy of the fixed effects (Baltagi, 2005, pp. 

34-35) is 1,647.93 with 174 degrees of freedom. This statistic is highly significant and rejects the 

null that the fixed effects are redundant. On the other hand, the chi-square statistic for the validity 

of the random effects model (Hausman, 1978) is also very high at 723.35 with 15 degrees of 

freedom, which is also highly significant and thus rejects the null that the effects are random.  



4.2 The relation between credit risk and the EBR correlation  

The structural model implies that the strength of the EBR correlation depends on the level of 

credit risk. High-quality firms are very unlikely to default, so new information from equity markets 

has limited importance for the debt holders of such firms. Therefore, the returns on high-quality 

bonds behave like those of government bonds. However, a change in the value of equity becomes 

increasingly relevant for bond pricing as the level of credit risk increases. When a firm is on the 

brink of bankruptcy, bond returns are expected to be highly and positively correlated with equity 

returns. The level of credit risk is proxied by the DD of Merton (1974). A higher DD implies lower 

credit risk. Therefore, it is expected that DD has a negative impact on the correlation between 

equity and bond returns.  

The results presented in Table 4 appear to provide some support for Hypothesis 2. The impact 

of credit risk on the correlation is captured by the continuous DD measure and a set of dummy 

variables, which take the value of one depending on the distance value. As expected, the 

coefficients of the dummy variables decrease monotonically as firms move further away from the 

default point. All four dummy variables are highly significant. This result indicates that the 

correlation diminishes as credit quality improves. The coefficient of the continuous distance 

variable is negative, implying decreasing correlation as firm credit quality increases. However, 

this coefficient is not significant when we correct for serial correlation. The quadratic term is 

clearly insignificant, suggesting that non-linearity takes a discrete form only.  

 

4.3 The relation between equity volatility and EBR correlation 

As mentioned previously, the effect of equity volatility on the correlation that we might expect 

is not obvious. The structural model predicts a negative relation since equity holders (as holders 



of a call option on the firm’s assets) stand to benefit from the upside potential associated with 

higher volatility, whereas debt holders face only a higher default probability caused by an increase 

in volatility. On the other hand, a stronger correlation is associated with a higher credit risk. Since 

volatility has a positive impact on credit risk, the relation between equity volatility and the 

correlation may be positive. In order to understand the role of equity volatility, it is therefore 

essential to control for the level of credit risk.  

As can be seen from Table 4, the equity volatility and squared volatility coefficients are 

statistically significant and their size and sign implies a hump-shaped effect. Ignoring the 

interaction of volatility with other risk factors, the coefficients imply that volatility has a positive 

impact (given the volatility values in our sample), which diminishes as volatility increases. 

However, the coefficients of equity volatility and the DD interaction variables are all negative. 

This implies that the equity volatility impact lowers as the credit quality of firms improves. This 

result highlights the importance of carefully controlling for credit risk in the analysis of the relation 

between equity volatility and the EBR correlation. This may also explain why Scheicher (2009) 

finds that equity volatility has a negative impact on the correlation between equity returns and 

CDS premia (implying a positive impact on equity and bond returns correlation). His use of a 

simple leverage ratio to control for credit risk may have affected his empirical conclusions.  

 

4.4 The interaction between equity volatility and credit risk in explaining EBR correlation  

The structural model implies that the importance of equity volatility, as a determinant of the 

value of corporate debt, increases with credit risk. Campbell and Taksler (2003) and Cremers et 

al. (2008) show that the economic and the statistical significance of equity volatility in determining 

the credit spread increases as the DD shrinks (i.e. credit risk increases).  



The next part of Table 4 shows this effect through the interaction between volatility and the 

distance to default. The continuous interaction variable and all four dummy interaction variables 

are significant and have negative coefficients, implying that the equity volatility effect decreases 

as firms’ credit quality improves. 

 

4.5 The predicted correlation  

The results of Table 4 are not easy to interpret as the regressions involve many interaction terms. 

To help visualize the combined effect of changes in equity volatility and the DD on the correlation, 

we use the coefficients in Table 4 to estimate the correlations for the values of equity volatility 

from 1% to 70% and the DD from zero to seven in the three market regimes as characterized by 

the minimum, average and maximum value of the VIX Index.  

The results in Table 5 show that the average correlation for the values of equity volatility of 1% 

to 70% monotonically decreases as firms move away from the default point. Starting with the value 

of 71% for firms on the brink of bankruptcy, the average correlation monotonically decreases to -

5% in the Period Fixed Effects Model and -8% in the Constant Coefficient Model as DD increases. 

This is consistent with Hypothesis 2.  

 

[Insert Table 5 about here] 

 

Holding DD constant, we examine how an increase in equity volatility from 1% to 70% impacts 

the correlation. As shown in Table 5, the coefficients for both models generally imply that an 

increase in equity volatility lowers the correlation. The volatility impact, which we define as a 

change in the correlation as equity volatility increases from 1% to 70%, is just 1.5% in the Period 



Fixed Effect Model (-8.3% in the Constant Coefficient Model) for the riskiest firms and -47% for 

the safest firms in both models. This is consistent with Hypothesis 3, which states that equity 

volatility has a negative impact on the correlation, but provides little support for Hypothesis 4, 

which states that the economic impact of equity volatility on the correlation increases as DD falls.  

It should be noted that this result is derived under the assumption that equity volatility increases 

while DD remains constant. Since DD and equity volatility are correlated, the distance to default 

can only remain constant if its other determinants, mainly leverage, change. In other words, an 

increase in equity volatility from 1% to 70% will lower the DD for most firms. This effect is 

stronger for riskier firms. Bearing in mind this limitation, the volatility impact analysis shows a 

positive impact of a change in equity volatility on the EBR correlation, which is similar to the 

impact reported by earlier studies (e.g., Campbell and Taksler, 2003). 

Finally, we examine whether the relation between the firm-level risk factors and the correlation 

is the same in different market regimes. As mentioned before, in the Period Fixed Effects Models, 

we control for the common effects with the period effects (i.e., 174 dummy variables) while in the 

Constant Coefficient Model, we use the VIX Index instead of the period effects. Further, we use 

controls for the interaction between VIX and firm-level risk factors in both models (i.e., equity 

volatility and DD). As illustrated in Figure 3, the relation described above between the EBR 

correlation and firm-level risk factors holds for the minimum VIX regime (i.e., VIX = 10.8, the 

sample minimum) and the average VIX regime (i.e., VIX=22.4, the sample mean). However, the 

relation breaks down for the maximum VIX regime (i.e., VIX = 62.6, the sample maximum). 

 

[Insert Figure 3 about here] 

 



In the maximum VIX regime, the relation between the correlation and the firm-level risk factors 

is essentially flat. Both models consistently predict a flat relation but provide different values for 

the level of the correlation, with the Period Fixed Effects Model predicting a higher expected 

correlation relative to the Constant Coefficient Model. The difference in the predicted level of the 

EBR correlation can be ascribed to the difference in the power of the period effects and the VIX 

in capturing the common effects.  

The models’ adjusted R-squared and AIC suggest that the period effects (i.e., 174 dummy 

variables) outperform the VIX Index in capturing the common effects. Therefore, an unexpected 

low correlation in the maximum VIX regime can be attributed to weaknesses of VIX in capturing 

the common effects. However, both models consistently imply a flat relation between the 

correlation and the firm-level factors in the maximum VIX regime.   

Figure 4 illustrates the time behavior of monthly EBR correlation, annualized equity volatility, 

and DD over the cycle for the lowest DD (risky) firm and the highest average DD (safe) firm in 

our sample. These two extreme examples might help further illuminate the interaction of firm-

level (DD and equity volatility) and aggregate (VIX) influences on EBR correlation. On average, 

the risky (safe) firm's EBR correlation is 73% (1%), annualized equity volatility is 71% (18%), 

and DD is 1.4 (15.6).  

Consistent with our results, Figure 4 clearly shows that the EBR correlation of the risky firm is 

consistently stronger than the correlation of the safe firm. Both equity risk and credit risk are 

positively associated with aggregate risk (VIX), but the association is stronger between equity 

volatility and VIX.  

Despite the strong link between the firm level and aggregate factors, their influence on the EBR 

correlation of the two firms is quite distinct. For the safe firm, the correlation is low (mostly under 



0.10) and even negative for low VIX and equity volatility. However, although the safe firm’s EBR 

correlation increases during periods of turmoil, it never exceeds 20%. The story is quite different 

from the lowest average DD firm. The EBR correlation is generally very high (mostly around 

0.80). Interestingly, EBR correlation appears negatively related to both equity volatility and VIX, 

although the EBR correlation level remains above 0.60 in most cases.  

When the VIX peaked at the end of 2008, the safe firm's EBR correlation increased to around 

0.20, while the risky firm's EBR correlation decreased (to around 0.25) despite the increase in its 

equity and credit risks. Consequently, the difference between the two EBR correlations almost 

vanished. This is also in line with our result that the common factor is a major determinant of EBR 

correlation when the market risk is elevated.  

Although we cannot generalize the two EBR correlation patterns to other firms, these two 

extreme examples serve to demonstrate that the combined influence of firm-specific and aggregate 

factors is dependent on the risk profile of the firm in question.  

 

[Insert Figure 4 about here] 

 

5. Robustness checks  

5.1 The correlation between equity and bond returns modeled as an asymmetric diagonal VECH 

process 

To examine whether the results of Table 4 are influenced by the choice of method for estimating 

the conditional correlation between equity and bond returns, we estimate bond and equity return 

correlation using an asymmetric bivariate diagonal VECH (1,1) model. The basic model for Table 

4 (equation 13) is then re-estimated. The results are summarized in Panel A of Table 6.  



 [Insert Table 6 about here] 

 

The variables in the re-estimated model retain the same level of statistical significance and the 

parameter estimates have nearly identical values. Consequently, the empirical correlations 

(unreported for the sake of space) implied by the asymmetric model are nearly identical. Thus, 

changing the process generating the EBR correlation does not change our conclusions in the 

preceding section. Our results are therefore robust to the method used to estimate the EBR 

correlation.  

 

5.2 Estimating equity volatility as a simple moving average instead of a GARCH (1,1) process  

To examine whether the empirical results presented in Table 4 are influenced by the equity 

volatility estimation method, we estimated equity volatility as the volatility of returns in excess of 

the return on the S&P 500 Index. The equity volatility for a month is estimated as the standard 

deviation of excess daily returns within a month, which is then annualized. As shown in Figure 5, 

the GARCH (1,1) and the moving average equity volatility series are highly correlated (ρ = 85%), 

which explains the similarity between the results based on the GARCH volatility (Table 4) and the 

results based on the moving average volatility shown in Panel B of Table 6. However, the GARCH 

estimates are generally higher than the moving average estimates and the difference is largest in 

2008 during the financial crisis. It is thus not surprising to see the estimates based on the moving 

average volatility having lower magnitude than those based on the GARCH volatilities. 

Nevertheless, all coefficients retain their sign and most retain their significance. One notable 

exception is the quadratic terms of DD and equity volatility, which have swapped their 

significance. The empirical correlations (available upon request) based on the moving average 



equity volatility have a very similar pattern, although they are marginally lower than those seen in 

Figure 3 and Table 5. 

[Insert Figure 5 about here] 

 

5.3 Firm size and bond characteristics 

Firm size, bond duration, and bond issue size are important characteristics that can potentially 

influence EBR correlation. Credit risk exposure may be related to firm size. Likewise, bond 

duration and bond issue size are important characteristics that can potentially influence the EBR 

correlation. The relation between the duration and the risk inherent in a bond is straightforward: a 

longer duration indicates higher risk, ceteris paribus. Therefore, the returns on long-term bonds 

should behave more like equity returns than the returns on short-term bonds. The size of a bond 

issue may affect the EBR correlation through the liquidity mechanism. Large bond issues are more 

liquid, and therefore their values should react more quickly to shocks in the value of the issuing 

firm’s equity. 

To examine whether our results are sensitive to changes in firm size, as well as the maturity and 

liquidity of bonds in the sample, the models are augmented with three sets of dummy variables to 

control for firm size, bond duration, and issue size. The largest firms, the largest issue size, and 

the longest duration are the benchmarks for which we have no dummies in order to avoid the 

dummy variable trap. In each case, the number of dummies and their associated thresholds were 

selected using the approach detailed in Appendix 1. The results for the extended model are 

presented in Table 7. 

 

[Insert Table 7 about here] 



We find that controlling for firm size, bond issue size, and duration does not alter the effect 

(and the interaction) of credit risk and equity volatility on EBR correlation. In Table 4, the 

coefficients of all variables in the unextended model retain their statistical significance, magnitude, 

and sign, while the coefficients of the vast majority of the 17 added variables are highly 

insignificant. The only variables significant at the 5% level are the dummy capturing bonds with 

the shortest maturity, and one of the asset value dummies. The negative coefficient here leads to 

the sensible implication that the EBR correlation is negatively related to bond duration. More 

specifically, the returns on bonds with durations of less than 3.7 years have correlations that are 

lower than those for longer duration bonds by 6.03 percentage points. The asset value and bond 

value are unrelated to the correlation. One possible exception is that the median value firm (log 

asset value between 8 and 9) might have a correlation that is lower (by 7.4 percentage points) than 

either bigger or small firms. However, we should not read too much into this result as it may simply 

be the result of data mining or Type I error. 

 

6. Discussion and conclusions 

We examine how changes in firm-level risk factors and the systematic risk impact the 

correlation between equity and bond returns. Unlike most of the empirical studies that examine 

aggregate data, this study is based on a sample consisting of 351 firms and over 33,000 monthly 

observations at the firm level. 

The theoretical framework for analysis of EBR correlation is laid down by Merton (1974). He 

shows that the values of both equity and debt depend primarily on the value and the volatility of 

the underlying firm’s assets. Factors affecting the value of the assets push the values of equity and 

bonds in the same direction and therefore induce a positive correlation between the returns of these 



two asset classes. On the other hand, an increase in the volatility of a firm’s assets augments the 

value of equity and depresses the value of debt, which clearly induces a negative correlation 

between the returns from these two asset classes.  

In line with existing empirical evidence, we find that, on average, bond and equity returns are 

positively correlated. This implies that the prices of securities are in general driven by changes in 

the value of underlying firm assets rather than by any management actions causing a wealth 

transfer between stock and debt holders.  

Credit risk is found to be a major determinant of the correlation. The returns of equity and debt 

securities become more correlated as firms approach the default point. After controlling for credit 

risk, we find that equity volatility has a negative effect on the correlation. This is in line with the 

structural model, which predicts that a change in equity volatility has an opposing effect on the 

values of equity and debt, but it contrasts to Scheicher (2009), who finds that the relation between 

equity volatility and the EBR correlation is positive, although his result is probably caused by 

weak control for the level of credit risk, which allows equity volatility to capture the credit risk 

effect. An increase in equity volatility has a negative impact on the EBR correlation, and the 

magnitude increases as firm credit quality improves. This implies that an increase in the equity 

volatility of high-credit quality firms benefits equity holders and hurts bondholders. 

The abovementioned relation between the firm-level risk factors and the EBR correlation 

weakens as market risk increases. When market risk, as measured by the VIX Index, is highest, 

the predicted impact of credit risk and equity volatility on EBR correlation is essentially flat. The 

correlation is positive and high but it seems to be driven by market-wide risk factors rather than 

firm-level risk factors.  



Whereas the potential diversification benefits of bonds are well recognized, researchers have 

focused on evaluating bonds and stocks that are not necessarily from the same firm. Because they 

share claims on the same firm’s assets, the bonds and stocks of the same firm have different 

diversification opportunities from the bonds and stocks of different firms. Thus, investors who 

seek to benefit from the within-firm diversification opportunities might find our results of interest. 

Generally, investment strategies based on predictions of the structural model and hedging 

strategies involving firm-level risk factors will be less effective as the market risk increases. The 

EBR correlation of a high credit quality firm, for example, is typically low so its equity and debt 

behave as distinct asset classes. Further, an increase in this firm's equity volatility supports the 

equity value while depressing the debt value. As the market risk increases, the EBR correlation 

strengthens, so investors with long positions in both asset classes will see their portfolios less 

diversified.  

Our findings have implications for volatility and index investing strategies, as well as the fine 

tuning of weight in portfolios consisting of equities and corporate bonds. Volatility strategies, 

which have gained popularity over the past decade, can provide effective diversification because 

of the difference in asset cash flows relative to the asset’s price movements. One potential 

implication of our findings, therefore, relates to firm-level volatility-based investment strategies. 

However, firm-level volatility strategies will not yield diversification benefits during market 

turmoil, because a high market risk flattens the relation between EBR correlation and other firm-

level volatility.  

Similarly, our results are relevant to index investing. This type of investment typically focuses 

on a single asset class and is generally passive. Our results show that each stock index constituent 

has a matching investment opportunity that can have low or even negative correlation. Thus, even 



passively, index investors have a sub-optimal portfolio because they ignore the potential 

diversification benefits of bonds. More importantly, EBR correlations are time varying, which 

implies that investment opportunities are also time varying. Nevertheless, whether the risk-return 

benefits will justify greater management fees and expenses remains an empirical question. 

Our results are also of interest to investors who are interested in varying their portfolio weights 

based on more accurate correlation estimates. Because the EBR correlation between a stock and a 

bond of the same firm is a function of both firm-specific and aggregate predictors, we contend that 

correlation estimates will be more accurate. The benefits of such accuracy materialize during times 

of extreme market volatility where the benefits from diversification are most needed. Therefore, 

using accurate correlation estimates is crucial for those who do not wish to see the benefits of 

diversification being eroded by poor correlation estimates when such diversifications are needed 

most. 

Finally, investors need to understand the implications of the time variation in the stock-bond 

relation and its sensitivity to macroeconomic factors (in the case of aggregate correlation) and firm 

asset volatility and risk (in the case of correlation at the firm level). Applications that rely on 

unconditional estimates of the stock-bond correlation can thus be misleading because they ignore 

potential shifts in the factors that drive conditional EBR correlations. A firm’s risk characteristics 

will change over time, and investors should therefore consider the change in the stock-bond 

correlation and its potential consequences for portfolio rebalancing. 
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Appendix  

The threshold values for the dummy variables are determined in the spirit of Hansen (2000). 

We basically fit all potential combinations of models using predetermined threshold increments 

and select the optimal model based on the Akaike information criterion (AIC). 

We assign 𝐷𝑖𝑡
k = 𝐼(𝜏k−1 ≤ 𝑋𝑖𝑡 < 𝜏k) as the dummy variables, where 𝑋𝑖𝑡  is the value of a 

variable for firm i at time t, 𝜏k are thresholds, and 𝐼(. ) is the indicator function. 𝜏0 is equal to the 

variable’s sample minimum, the first threshold, 𝜏1, is equal to the lower limit 𝐾L, and the last 

threshold, 𝜏n, is equal to the upper limit 𝐾U. The difference between the lower and upper limits 

covers the large majority of observations. The first threshold, 𝜏1, increases by an increment of 0.1, 

and the difference between two thresholds, 𝑠, starts at 0.5 and increases by an increment of 0.5, 

i.e. 𝛿= 0.5, 1.0, 1.5,…. The threshold selection procedure involves estimation of models with all 

possible combinations of the number or thresholds (n), the starting value of 𝜏1, and the differences 

between two thresholds (𝛿), which covers the range from 𝐾L to 𝐾U. 

In the case of one threshold, the procedure simplifies to estimating the models with one dummy 

variable 𝐷𝑖𝑡
1 = 𝐼(𝑋𝑖𝑡 < 𝜏1) with 𝜏1 = 𝐾L, 𝐾L + 0.1, 𝐾L + 0.2, … . , 𝐾U.  

In the case of two thresholds, 𝐷𝑖𝑡
1 = 𝐼(𝑋𝑖𝑡 < 𝜏1) and 𝐷𝑖𝑡

2 = 𝐼(𝜏1 ≤ 𝑋𝑖𝑡 < 𝜏2), where 𝜏1 =

𝐾L, 𝐾L + 0.1, 𝐾L + 0.2, … . , 𝐾U − 𝛿, and 𝜏2 = 𝜏1 + 𝛿. 

In the case of n thresholds, 𝐷𝑖𝑡
1 = 𝐼(𝑋𝑖𝑡 < 𝜏1) and 𝐷𝑖𝑡

k = 𝐼(𝜏k−1 ≤ 𝑋𝑖𝑡 < 𝜏k), where 𝜏1 =

𝐾L, 𝐾L + 0.1, 𝐾L + 0.2, … . , 𝐾U − (n − 1)𝛿, and 𝜏k = 𝜏1 + (k − 1)𝛿. 

 

The distance to default thresholds 

We perform the procedure described above, and estimate models with all combinations of the 

number of dummies (1 to 26), the starting value of 𝜏1 = 0.5, and the differences between two 



thresholds 𝛿= 0.5, 1, 1.5…, which cover the range from 𝐾L = 0.5 to 𝐾U = 13. The values between 

these limits cover 98% of the observations. 

We estimate 4,753 models and examine their AIC and sum of squared errors (SSE). The lowest 

AIC gives a model with 15 dummy variables or thresholds, and the lowest SSE gives a model with 

26 dummy variables. The greatest improvement in AIC (94%) and SSE (90%) is achieved by the 

best performing model with four dummies. Therefore, we use the best performing four-dummy 

model in order to present a model that is as parsimonious as possible. Thus, the optimal thresholds 

for the distance to default dummies are 0.8, 1.8, 2.8, and 3.8.  

 

The robustness variable thresholds 

For the robustness check, we augmented the model depicted in equation (13) (with four DD 

dummies) with dummy variables for firm asset value, bond issue value and bond time to maturity. 

 

The firm asset value thresholds  

The procedure described above is performed to estimate models with all combinations of the 

number of dummies (1 to 14), the starting log of asset value of 𝜏1 = 5.5, and the differences 

between the two thresholds 𝛿 = 0.5, 1, 1.5…, which cover the range from 𝐾L = 5.5 (i.e., $245 

million) to 𝐾U = 12.5 ($268,337 million). The values between the limits cover 99% of the 

observations. 

We estimate 1,251 models and examine their AIC and SSE. The lowest AIC and SSE give a 

model with 14 dummy variables or thresholds. However, for parsimony we chose the model with 

six thresholds that captures 89% (88%) of the improvement in AIC (SSE). The selected thresholds 

are: 6, 7, 8, 9, 10, and 11. 



The bond issue value thresholds  

The models are estimated with all combinations of the number of dummies (1 to 10), the starting 

log of bond issue value of 𝜏1 = 2, and the differences between two thresholds 𝛿 = 0.5, 1, 1.5…, 

which cover the range from 𝐾L = 2 (i.e., $7.4 million) to 𝐾U = 7 ($1,097 million). The values 

between the limits cover 98% of the observations. 

We estimate 577 models and examine their AIC and SSE. The following set of eight thresholds, 

which produces the lowest AIC, is selected: 3.1, 3.6, 4.1, 4.6, 5.1, 5.6, 6.1, and 6.6.  

 

The bond duration thresholds  

The models are estimated with all combinations of the number of dummies (1 to 29), the starting 

value of 𝜏1 = 0.5, and the differences between the two thresholds 𝛿 = 0.5, 1, 1.5…, which cover 

the range from 𝐾L = 0.5 to 𝐾U = 14.5. The values between the limits cover 98% of the 

observations. 

We estimate 6,126 models and examine their AIC and SSE. The lowest AIC (SSE) gives a 

model with 25 (28) thresholds. However, for parsimony we chose the model with three thresholds, 

which captures 97% (92%) of the improvement in the AIC (SSE). The selected thresholds are: 3.7, 

7.2, and 10.7.  

  



Table 1 

Descriptive statistics 

 

  
VIX 

Equity 

Return 

Bond 

Period 

Return 

Distance to 

Default 
Equity 

Volatility 
Asset 

Value 
Bond 

Duration 
Bond Issue 

Value 

 Mean 22.37 0.00 0.01 5.43 0.36 25,449.62 6.91 238.06 

 Median 21.54 0.01 0.01 5.11 0.30 10,737.94 6.33 184.93 

 Maximum 62.64 1.64 1.19 28.05 4.03 832,438.00 18.24 4,567.08 

 Minimum 10.82 -1.00 -0.75 -2.42 0.09 66.69 0.00 2.12 

 Std. Dev. 8.45 0.11 0.04 2.73 0.21 46,157.04 3.61 268.30 

 Skewness 1.73 -0.73 -0.03 0.87 3.38 5.73 0.19 5.10 

 Kurtosis 8.17 16.62 83.62 4.87 23.71 61.39 2.08 54.30 

Observations 175 33,855 33,855 33,855 33,855 33,855 33,855 33,855 

 

Notes: Asset Value and Bond Issue Value are in USD millions. Equity and bond returns are logarithmic as specified 

in equations (1) and (2); the Distance to default (DD) is the difference between the market value of the assets and the 

book value of debt relative to the volatility of the market value of the assets; the duration is in years (equation (11)). 

Equity and bond returns are monthly, while other variables are calculated at the daily frequency and are converted 

into monthly series as the average of daily observations within the given months. 

  



Table 2 

Descriptive statistics for the correlation series 

 

  

Symmetric 

DVECH (1,1) 

Asymmetric 

DVECH (1,1) 

 Mean 0.089 0.088 

 Median 0.065 0.068 

 Maximum 1.000 0.991 

 Minimum -0.928 -0.801 

 Std. Dev. 0.276 0.262 

 Skewness 0.245 0.382 

 Kurtosis 3.196 3.172 

Notes: The table provides summary statistics for equity-bond conditional 

correlations estimated by the diagonal VECH models given in equations (4) and 

(5). The statistics are based on 32,817 empirical correlations at the monthly level. 

  



Table 3 

Test of the mean of the correlation series 

 
Panel A: Test of Hypothesis: Mean = 0   

 

Symmetric 

DVECH (1,1) 

Asymmetric 

DVECH (1,1) 

Sample mean 0.089 0.088 

Sample Std. Dev. 0.280 0.260 

t-statistics 59.620 61.880 

p-value 0.000 0.000 

Panel B: Correlation series autoregressive model  

Cit-1 0.403*** 0.544*** 

Cit-2 0.284*** 0.204*** 

Cit-3 0.003^^^ 0.021^^^ 

Intercept 0.028*** 0.020*** 

Notes: This table provides the results of two tests of the mean of the correlation series 

estimated from equations (4) and (5). Panel A shows the results for a simple t-test on 

the sample mean of the two correlation series. Panel B shows the results of an 

autoregressive model using estimated conditional correlations: 

Cit = α1 + α2Cit-1 + α3Cit-2 + α4Cit-3 + εit. 

*** indicates significance at the 1% level. The calculations are based on a panel of 

32,817 estimated correlations. 

 

  



Table 4 

Determinants of the correlation between equity and bond returns  

 
  Panel A: Fixed Effects Model Panel B: Constant Coefficient Model 

  
Corrected for Serial 

Dependence 
No 

Correction 
Corrected for Serial 

Dependence 
No 

Correction 

  Coefficient p-value p-value Coefficient p-value p-value 

Distance to Default (DDit) (H2) -0.016 0.518 0.022 -0.009 0.704 0.194 

Distance to Default Squared (DDit
2) (H2) 0.000 0.718 0.205 0.000 0.821 0.444 

I(DD < 0.8) (H2) 0.797 0.000 0.000 0.863 0.000 0.000 

I(0.8 ≤ DDit < 1.8) (H2) 0.673 0.000 0.000 0.693 0.000 0.000 

I(1.8 ≤ DDit < 2.8) (H2) 0.480 0.000 0.000 0.461 0.000 0.000 

I(2.8 ≤ DDit < 3.8) (H2) 0.244 0.001 0.000 0.234 0.002 0.000 

Equity Volatility (Vit) (H3) 1.131 0.001 0.000 0.855 0.008 0.000 

Equity Volatility Squared (Vit
2) (H4) -0.205 0.000 0.000 -0.230 0.000 0.000 

Equity Volatility × DDit (H4) -0.269 0.000 0.000 -0.256 0.000 0.000 

Equity Volatility × I (DDit < 0.8) (H4) -1.069 0.001 0.000 -1.146 0.001 0.000 

Equity Volatility × I (0.8 ≤ DDit < 1.8) (H4) -0.985 0.000 0.000 -0.989 0.001 0.000 

Equity Volatility × I (1.8 ≤ DDit < 2.8) (H4) -0.823 0.001 0.000 -0.767 0.002 0.000 

Equity Volatility × I (2.8 ≤ DDit < 3.8) (H4) -0.483 0.006 0.000 -0.457 0.012 0.000 

VIX (vt)  
   -0.021 0.000 0.000 

VIX x Distance to Default (vt DDit)  
0.003 0.000 0.000 0.002 0.000 0.000 

VIX x Equity Volatility (vtVit)  
0.006 0.010 0.000 0.015 0.000 0.000 

Intercept  
-0.118 0.382 0.002 0.353 0.013 0.000 

 

Notes: This table reports the results of tests of three hypotheses. The models are estimated using fixed period effects 

(VIX is dropped because of the perfect multicollinearity) and the constant coefficient (i.e., no effects), with and 

without correction for serial dependence. The estimated model is equation (13). The dependent variable, Cit, is the 

conditional correlation estimated from the symmetric VECH (1,1) equation (4). Equity volatility, 𝑉it, is estimated 

using a GARCH (1,1) model. Distance to default, 𝐷𝐷𝑖𝑡 , is obtained from equation (10), and I(.) is an indicator function 

that equals 1 if the argument is true and zero otherwise. The selection of dummy variable sets is described in detail in 

the Appendix.  

  



Table 5 

Predicted correlation between equity and bond returns 

 

 Panel A: Correlations based on the Fixed Effects Model 

 Distance to Default 

Equity Volatility 0.01 1 2 3 4 5 6 7 

0.01 0.681 0.599 0.450 0.259 0.063 0.106 0.151 0.195 

0.10 0.696 0.598 0.439 0.254 0.077 0.097 0.117 0.137 

0.20 0.709 0.593 0.422 0.245 0.090 0.082 0.075 0.069 

0.30 0.717 0.583 0.402 0.232 0.098 0.063 0.029 -0.004 

0.40 0.722 0.569 0.378 0.214 0.102 0.041 -0.020 -0.080 

0.50 0.722 0.551 0.349 0.193 0.102 0.014 -0.074 -0.161 

0.60 0.719 0.530 0.316 0.167 0.098 -0.017 -0.132 -0.246 

0.70 0.711 0.504 0.280 0.138 0.089 -0.053 -0.194 -0.335 

Average Correlation 0.710 0.566 0.379 0.213 0.090 0.042 -0.006 -0.053 

Volatility Impact 

ρ70% - ρ10% 
0.015 -0.094 -0.159 -0.116 0.012 -0.149 -0.311 -0.472 

 Panel B: Results Based on the Constant Coefficient Model 

Average Correlation 0.715 0.552 0.350 0.185 0.064 0.018 -0.029 -0.075 

Volatility Impact 

ρ70% - ρ10%  
-0.083 -0.141 -0.162 -0.129 -0.009 -0.163 -0.317 -0.470 

Notes: This table shows the numerical values of predicted correlations based on the estimated Fixed Effects Model and Constant 

Coefficient Model of Table 3 with the average VIX value of 22.37. Volatility and the distance to default are defined in Table 4. 

Volatility impact, (ρ70% - ρ10%), is obtained as the difference between predicted correlations given the distance to default. 
 

  



Table 6 

Determinants of the Correlation (Asymmetric Correlation and Moving Average Equity 

Volatility) 

 
  Panel A: 

Asymmetric VECH Correlations 

Panel B:  

Moving Average Equity Volatility 

  
Corrected for Serial 

Dependence 

No 

Correction 

Corrected for Serial 

Dependence 

No 

Correction 

  Coefficient p-value p-value Coefficient p-value p-value 

Distance to Default (DDit) (H2) -0.019 0.461 0.004 -0.076 0.000 0.000 

Distance to Default Squared (DDit
2) (H2) 0.000 0.567 0.031 0.002 0.017 0.000 

I(DD < 0.8) (H2) 0.829 0.000 0.000 0.555 0.000 0.000 

I(0.8 ≤ DDit < 1.8) (H2) 0.733 0.000 0.000 0.416 0.000 0.000 

I(1.8 ≤ DDit < 2.8) (H2) 0.533 0.000 0.000 0.306 0.000 0.000 

I(2.8 ≤ DDit < 3.8) (H2) 0.273 0.000 0.000 0.168 0.000 0.000 

Equity Volatility (Vit) (H3) 1.155 0.001 0.000 0.287 0.067 0.000 

Equity Volatility Squared (Vit
2) (H4) -0.197 0.001 0.000 -0.015 0.656 0.438 

Equity Volatility × DDit (H4) -0.250 0.000 0.000 -0.068 0.003 0.000 

Equity Volatility × I (DDit < 0.8) (H4) -1.132 0.001 0.000 -0.494 0.002 0.000 

Equity Volatility × I (0.8 ≤ DDit < 1.8) (H4) -1.097 0.000 0.000 -0.411 0.001 0.000 

Equity Volatility × I (1.8 ≤ DDit < 2.8) (H4) -0.938 0.000 0.000 -0.394 0.001 0.000 

Equity Volatility × I (2.8 ≤ DDit < 3.8) (H4) -0.549 0.002 0.000 -0.277 0.002 0.000 

VIX (vt)  
       

VIX x Distance to Default (vt DDit)  
0.003 0.000 0.000 0.002 0.000 0.000 

VIX x Equity Volatility (vtVit)  
0.007 0.004 0.000 0.006 0.000 0.000 

Intercept  
-0.166 0.237 0.000 0.098 0.219 0.000 

 

Notes: This table reports the results relating to hypotheses H2 to H4. The models are estimated using fixed period 

effects (VIX is dropped because of the perfect multicollinearity) and the constant coefficient (i.e., no effects), with 

and without correction for serial dependence. The estimated model is equation (13). In Panel A, the dependent variable, 

Cit, is the conditional correlation estimated from the asymmetric VECH (1,1) from equation (5), and equity volatility, 

𝑉it, is estimated using a GARCH (1,1) model. In Panel B, the EBR conditional correlation estimated from the 

symmetric VECH (1,1) from equation (4), and equity volatility, 𝑉it, are based on a moving average estimate. The 

Distance to Default, 𝐷𝐷it, is obtained from equation (10), and I(.) is an indicator function that equals 1 if the argument 

is true and zero otherwise. The selection of dummy variable sets is described in the Appendix.  

  



Table 7 

Determinants of the Correlation with Controls for Asset Value, Bond Issue Value and 

Bond Duration 

 
  Panel A: Fixed Effects Model Panel B: Constant Coefficient Model 

  
Corrected for Serial 

Dependence 
No 

Correction 
Corrected for Serial 

Dependence 
No 

Correction 

  Coefficient p-value p-value Coefficient p-value p-value 

Distance to Default (DDit) (H2) -0.011 0.630 0.103 -0.006 0.794 0.397 

Distance to Default Squared (DDit
2) (H2) 0.000 0.865 0.571 0.000 0.959 0.869 

I(DD < 0.8) (H2) 0.806 0.000 0.000 0.874 0.000 0.000 

I(0.8 ≤ DDit < 1.8) (H2) 0.670 0.000 0.000 0.685 0.000 0.000 

I(1.8 ≤ DDit < 2.8) (H2) 0.462 0.000 0.000 0.441 0.000 0.000 

I(2.8 ≤ DDit < 3.8) (H2) 0.251 0.000 0.000 0.240 0.001 0.000 

Equity Volatility (Vit) (H3) 1.145 0.000 0.000 0.869 0.004 0.000 

Equity Volatility Squared (Vit
2) (H4) -0.206 0.000 0.000 -0.230 0.000 0.000 

Equity Volatility × DDit (H4) -0.282 0.000 0.000 -0.268 0.000 0.000 

Equity Volatility × I (DDit < 0.8) (H4) -1.097 0.000 0.000 -1.180 0.000 0.000 

Equity Volatility × I (0.8 ≤ DDit < 1.8) (H4) -0.999 0.000 0.000 -1.003 0.000 0.000 

Equity Volatility × I (1.8 ≤ DDit < 2.8) (H4) -0.803 0.000 0.000 -0.752 0.001 0.000 

Equity Volatility × I (2.8 ≤ DDit < 3.8) (H4) -0.509 0.002 0.000 -0.481 0.005 0.000 

VIX (vt)  
   -0.020 0.000 0.000 

VIX x Distance to Default (vt DDit)  0.002 0.000 0.000 0.002 0.000 0.000 

VIX x Equity Volatility (vtVit)  0.005 0.012 0.000 0.015 0.000 0.000 

Intercept  -0.013 0.924 0.734 0.431 0.003 0.000 

Asset Value Dummy 1 (smallest)  -0.120 0.133 0.000 -0.103 0.206 0.000 

Asset Value Dummy 2  0.022 0.674 0.030 0.035 0.509 0.001 

Asset Value Dummy 3  -0.056 0.157 0.000 -0.059 0.133 0.000 

Asset Value Dummy 4  -0.074 0.035 0.000 -0.078 0.024 0.000 

Asset Value Dummy 5  -0.056 0.097 0.000 -0.059 0.077 0.000 

Asset Value Dummy 6  -0.036 0.264 0.000 -0.035 0.280 0.000 

Bond Value Dummy 1 (smallest)  -0.063 0.207 0.000 -0.067 0.183 0.000 

Bond Value Dummy 2  0.062 0.286 0.000 0.059 0.312 0.000 

Bond Value Dummy 3  -0.045 0.464 0.000 -0.049 0.438 0.000 

Bond Value Dummy 4  -0.004 0.941 0.639 -0.014 0.804 0.122 

Bond Value Dummy 5  -0.024 0.620 0.003 -0.028 0.562 0.001 

Bond Value Dummy 6  -0.005 0.922 0.539 -0.010 0.832 0.187 

Bond Value Dummy 7  -0.020 0.670 0.008 -0.023 0.625 0.003 

Bond Value Dummy 8  0.038 0.455 0.000 0.031 0.548 0.000 

Bond Duration Dummy 1 (shortest)  -0.060 0.028 0.000 -0.029 0.218 0.000 

Bond Duration Dummy 2  -0.001 0.961 0.783 0.003 0.898 0.477 

Bond Duration Dummy 3   -0.031 0.133 0.000 -0.022 0.282 0.000 

 

Notes: The table reports the results of an extended version of equation (13). The models are estimated using period 

fixed effects (VIX is dropped because of perfect multicollinearity) and a constant coefficient (i.e., no effects), with 

and without correction for serial dependence. The dependent variable, Cit, is the conditional correlation estimated 

from the symmetric VECH (1,1) from equation (4). Equity volatility, 𝑉it, is estimated using a GARCH (1,1) model. 

Distance to default, 𝐷𝐷it, is obtained from equation (10), and I(.) is an indicator function that equals 1 if the argument 

is true and zero otherwise. The Asset Value Dummies 1 to 6 take the value of 1 if the log of firm’s asset value in 

millions of US dollars is less than 6 or between the two thresholds of 6, 7, 8, 9, 10, 11 (i.e., 403, 1097, 2981, 8103, 

22026, 59874 million). The Bond Value Dummies 1 to 8 take the value of 1 if the log of bond issue value in millions 

of US dollars is less than 3.1 or between the two thresholds of 3.1, 3.6, 4.1, 4.6, 5.1, 5.6, 6.1, and 6.6 (i.e. 22, 37, 60, 

99, 164, 270, 446 and 735 million). The Bond Duration Dummies 1 to 3 take the value of 1 if the bond duration is less 

than 3.7 or between the two thresholds od 3.7, 7.2, and 10.5 years. The selection of dummy variable sets is described 

in in the Appendix. 
  



 
 

-.3

-.2

-.1

.0

.1

.2

.3

96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

Equity Returns

Bond Returns

 
 

Figure 1. Time series of the cross sectional average of equity and bond returns 

 

  



 

 

 

Figure 2. Time series of the cross sectional average of conditional correlation 

Notes: The figure shows time series plots of monthly cross section averages of equity-bond conditional correlations 

estimated by the diagonal VECH models (4) and (5).  

 

  



 

(a) Minimum VIX = 10.8  

 

(b) Average VIX = 22.4  

 

(c) Maximum VIX = 62.6 

Figure 3. The implied impact of equity volatility and credit risk on EBR correlation  



Notes: The figure shows EBR correlation for various volatility and distance to default combinations. The left hand 

side figures are based on the Fixed Effects Model and the right hand side figures are based on the Constant Coefficient 

Model (Table 4). 

 

  



 

Note: The EV value (lowest DD/risky firm) for March 2003 was 2.16. It was set to the preceding month’s value (1.45) to improve the visual impact of EV. The data are from January 2001 to 

December 2011. The VIX scale is on the right-hand side. The shaded area indicates the highest level of the VIX. 

Figure 4. Monthly time series plots for the lowest (risky firm) and highest (safe firm) average DD firms  
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Figure 5. Time series of the cross-sectional average of equity volatility 

 

 


