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Abstract 

Gravitropism is required for the appropriate alignment of the plant root and shoot. 

According to the Cholodny-Went hypothesis, gravity induces asymmetric accumulation of 

auxin in the lower side of the root tissue. More recent studies on root gravitropism have 

also shown asymmetric accumulation of nitric oxide (NO) in response to gravity, and 

suggested the involvement of ethylene and NO signalling as well as auxin. Hence, this 

project aimed to investigate how NO, auxin and ethylene signalling interact in root growth, 

development and gravitropism. Arabidopsis mutants with defects in these hormonal signals 

were used in gravistimulation experiments. As expected, Col-0 (WT) plants displayed root 

bending 2 h after gravistimulation, but auxin mutants (aux1, axr2 and axr3) did not exhibit 

any root bending in response to gravistimulation. Roots of ethylene mutants showed 

reduced root bending compared to WT. Nitrate reductase mutants nia1 and nia2 also 

revealed reduced root bending, and nia1 showed slower bending than nia2. Exogenous 

application of the auxin NAA and the NO donor SNAP increased gravitropic bending. The 

application of the ethylene precursor ACC reduced root bending in the presence of NO, but 

increased bending in the absence of NO. 

The localization of NO in response to gravitropism was investigated using confocal 

microscopy. Gravitropism induced asymmetric accumulation of NO in WT in the lower 

side of the bending zone of roots, whereas auxin mutants aux1 and axr2 localised NO 

ubiquitously in the root. NIA1 (nitrate reductase 1) transcript levels in WT root tips were 

measured using qPCR. The NIA1 transcript starts to accumulate after gravistimulation, 

reaching a two fold higher level  after 2 h, before gradually subsiding. The findings 

suggested that functional auxin signalling is a prerequisite for NO signalling, and that NIA1 

mediated NO induces the root bending. 

To ascertain the sub-cellular localization of NIA1 in response to gravity and other 

hormonal interactions, NIA1 transcriptional and translational mGFP4 reporter constructs 

were made and transformed into the WT and auxin, ethylene and NR mutant plants. 

Integration of the reporter construct in the plant genome was confirmed by PCR and 

sequencing. Initial confocal experiments showed the successful expression of NIA1-driven 

mGFP4 fluorescence in roots and stomatal guard cells. Further experiments with these 

transgenic lines will be needed to examine the role of NO in gravitropism and cross-talk 

with other phytohormones.   
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Chapter 1 Introduction 

1.1 Overview  

To date, scientists have focused mainly on shoot biomass and grain yield to increase food 

grain production. The first green revolution used more fertilizer to increase crop yield. 

Root traits are another important factor to increase food grain production. Plant root 

growth and development plays a central role in overall plant growth which could lead to 

better shoot biomass and greater yield. One way to increase the nutrient uptake capacity is 

by improving root system architecture (Den Herder et al., 2010). Simulation studies by 

Hammer et al. (2009) showed that changes in root system architecture are responsible for 

increased biomass accumulation and historical yield of maize in the US corn belt.  

Plant roots respond to many external signals. Gravity is one of the important external 

stimuli responsible for roots to grow downward (Gravitropism) and it’s one of the critical 

processes in root development. Plant signalling molecules like auxin, ethylene and nitric 

oxide (NO) are involved in gravitropism (Hu et al., 2005; Ma and Ren, 2012). This 

introduction will discuss plant roots, gravitropism and hormones involved in gravitropism, 

focussing on NO and its interactions with auxin and ethylene. 

1.2 The plant root 

Plant roots play a vital role in anchorage of the plant to the soil and absorption of water and 

mineral nutrient from it. Root development is therefore a fundamental aspect of plant 

biology with great economic and ecological importance. Plant roots are susceptible to 

abiotic stresses like drought, waterlogging, salinity and heavy metals. A better 

understanding of the signalling pathway and hormone interaction in the root development 

will pave the way to improve the yield of food crops.  
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1.3 Basic root anatomy of Arabidopsis 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: The Arabidopsis root tip (Source: Yvon Jaillais)  
-http://www.ens-lyon.fr/RDP/SiCE/Resources.html 

Arabidopsis roots (from outside to inside) consist of epidermis, cortex, endodermis, 
pericycle and vasculature. Quiescent center (QC) and the columella root cap are located in 
the center of root tip. 
 

The small size and simple anatomy of Arabidopsis is useful to study root traits. 

Arabidopsis cell layers (from outside to inside) consist of epidermis, cortex, endodermis, 

pericycle and vasculature (Figure. 1-1). The Quiescent center (QC) is present in the center 

of root tip. QC and initials forms the stem cell niche in the Arabidopsis root (Stahl and 

Simon, 2004). All the root cells such as epidermis, cortex, endodermis, pericycle, 

vasculature and columella are generated from the stem cells around the QC. The QC is 

mitotically inactive in Arabidopsis under optimal condition (Aichinger et al., 2012), but 

stress-related phytohormones and DNA damage activate QC cell division (Heyman et al., 

2014). The root can be divided into four distinct zones, namely the meristematic zone, 

transition zone, elongation zone and growth terminating zone. The meristematic zone 

spreads up to 200 µm from the root cap. All cells in this zone are very active. The 

transition zone stretches from 200 µm to 520 µm away from the root cap and cells in this 
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zone grow slowly. Most of the cells in the distal portion of the transition zone participate in 

cell division. Proximal cells differentiate to enter the cell elongation zone. This zone is 

easily identifiable because of the presence of nuclei in the centre of the cell, small 

vacuoles, and the approximately equal length and width of the cells. The elongation zone 

covers the region from 520 µm to 850 µm. Cells in this zone elongate very fast; vacuoles 

become very large and push the nuclei to the side of the cell wall. Root hairs develop in 

this zone from the outer apical portion of the tricoblast (epidermal cells of roots which 

produces root hairs). The growth terminating zone spreads from 850 µm to 1500 µm from 

the root cap. Cells in the transition zone are the most sensitive towards external signals 

such as gravity, humidity, light and oxygen (Verbelen et al., 2006). 

1.3.1 Gravitropism 

Plants respond to an array of environmental and developmental stimuli such as light, 

temperature and gravity. Gravity is one of the most significant cues to which plants must 

adapt to survive. Gravitropism is a process that dictates the growth of plant organs along a 

specific vector relative to gravity. It ensures that roots will grow down into the soil, where 

they take up water and nutrients whereas shoots will grow upwards, into the air, where 

they can photosynthesize, reproduce and disperse seed. In crop plants, gravitropism 

contributes to the optimal utilization of available resources and permits plants prostrated by 

wind and rain to straighten up. 

1.3.2 Steps involved in gravitropism 

Gravitropism involves several steps organized in a specific response pathway. These 

include the perception of a gravistimulus, the transduction of this mechanical stimulus into 

a physiological signal, the transmission of this signal from the site of sensing to the site of 

response, and a curvature-response which allows the organ tip to resume growth at a 

predefined set angle from the gravity vector. The primary sites for gravity sensing are 
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located in the cap for roots, and in the endodermis for shoots. The curvature response 

occurs in the elongation zones for each organ. Upon gravistimulation, a gradient of auxin 

appears to be generated across the stimulated organ, and be transmitted to the site of 

response where it promotes a differential growth response. Therefore, while the gravity-

induced auxin gradient has to be transmitted from the cap to the elongation zones in roots, 

there is no need for a longitudinal transport in shoots, as sites for gravity sensing and 

response overlap in this organ (Masson et al., 2002). A combination of molecular genetics, 

physiology, biochemistry and cell biology, coupled with the utilization of Arabidopsis 

thaliana as a model system, have recently allowed the identification of a number of 

molecules involved in the regulation of each phase of gravitropism in shoots and roots of 

higher plants.  

1.3.3 Hormones involved in gravitropism  

Plant hormones are small organic molecules which influence many physiological functions  

at low concentrations. Hormones can be synthesized locally or transported over large  

distances to trigger an appropriate response. The hormones auxin, ethylene and nitric oxide 

have been shown to be involved in gravitropism. The synthesis, perception and 

physiological roles of these hormones and the interactions between them are discussed in 

the following sections. 

 

1.4  Nitric oxide as a signalling molecule  

Nitric oxide (NO) is a small, free radical, gaseous, multifunctional lipophilic signalling 

molecule easily able to diffuse through the plasma membrane. NO reacts rapidly with 

species containing unpaired electrons such as molecular oxygen, superoxide anions and 

metals (Mayer and Hemmens, 1997; Crawford, 2006). It was first described in mammals as 

an endothelium-derived relaxing factor and later shown to be an important signalling 
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molecule controlling many biological functions in humans. The biological importance of 

NO was widely recognized by the scientific community and to honour this NO was 

announced as a “Molecule of the year in 1992”. In 1998, the Nobel Prize for Physiology 

and Medicine was awarded to three scientists, Robert F. Furchgott, Louis J. Ignarro, and 

Ferid Murad for their contribution to the “discovery of NO signalling role in the 

cardiovascular and nervous systems.” Later it was found to be an important signalling 

molecule in plants (Arasimowicz and Floryszak-Wieczorek, 2007). It participates in all 

physiological, growth and developmental functions of plants, including seed dormancy, 

germination, root development, lateral root growth, root gravitropism, stomatal movement, 

leaf senescence, flowering, pollen tube growth, and fruit ripening. It is also involved in 

response to biotic and abiotic stress, such as viral and bacterial infections, drought and salt 

stress (Delledone et al., 1998; Qiao and Fan, 2008). 

1.4.1 NO in plants 

NO was the second gaseous signalling molecule discovered in plants after ethylene. The 

presence of NO in plants was reported much earlier than the discovery of NO as a 

signalling molecule in humans. The release of NO from herbicide-treated soybean leaves 

was first recorded by Klepper (1979). Once NO was identified as an important signalling 

molecule in an animal system it attracted more attention from plant scientists. The action 

of NO as a defence signalling molecule in response to bacterial and viral exposure in a 

plant was first reported by Delledone et al. (1998)  and Durner et al. (1998). During the 

last two decades, NO biology in plants has been the subject of much research, but much of 

its signalling pathway remains unclear. Basic questions about how NO is synthesized and 

used in plants remain to be answered (Wilson et al., 2008), and how NO interacts with 

other plant hormones needs to be established. 
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1.4.2 Roles of NO signalling in plants 

It is clear that NO is an important signalling molecule in plants (Freschi, 2013), controlling 

almost all physiological and developmental functions, either alone or by interacting with 

other plant hormones such as auxin, ethylene and abscisic acid. It plays a significant role in 

root growth and leaf expansion, photomorphogenesis and senescence (Beligni and 

Lamattina, 2001; Neill et al., 2003), as well as in rapid physiological reactions such as 

stomatal closure (Desikan et al., 2002, 2004). The involvement of NO in promoting root 

growth has been observed by Gouvea et al. (1997), who found that NO induces cell 

elongation in a similar way to auxin. A transient increase in NO concentration was shown 

to be involved in adventitious root development induced by indole acetic acid (Pagnussat 

et al., 2002). The authors suggest that NO could mediate the auxin response in this process. 

The participation of NO in gravitropic bending in soybean roots has been described by Hu 

et al. (2005). They found an asymmetric accumulation of NO in the primary root in 

response to gravistimulation. Similarly Pagnussat et al. (2002) observed that NO acts 

downstream of auxin leading to the accumulation of cGMP. 

1.4.3 NO biosynthesis in plants. 

The sources of NO in animal systems was well characterised, but the sources of NO in 

plants is not clearly understood; this needs to be investigated by further research. Two 

major enzymatic pathways have been proposed to be involved in NO synthesis in plants, 

the oxidative and reductive pathways (Moreau et al., 2010). In addition, non-enzymatic 

pathways are also involved in NO synthesis. The oxidative pathway consists of oxidation 

of L-arginine, polyamine and hydroxylamine, whereas in the reductive pathway nitrate is 

reduced by nitrate reductase (NR), plasma membrane bound Ni-NOR (nitrite:NO 

oxidoreductase) and organelles such as mitochondria and chloroplasts (Figure 1-2).  
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Figure 1-2: Various routes of nitric oxide production in plants (re-drawn from Wilson et al., 

2008). Copyright permission License Number-4237640475433. 

In plants NO is synthesized by different pathways in accordance with specific condition 
and cell type. NO can be produced from nitrite in the cytoplasm, stomatal guard cells and 
in roots by NR enzyme and also in mitochondria and chloroplasts, by NI-NOR (nitrite: NO 
reductase) in root the exact mechanism of this pathway is not clearly understood.              
L-arginine-dependent NOSs (nitric oxide synthases)- mediated NO synthesis has been 
reported in plants but Atnos1 is not a NOSs. Alternative candidates for this role have not 
yet been found in plants. NO can also be synthesized from hydroxylamine and polyamine. 

 

1.4.3.1 Do plants contain nitric oxide synthase? 

In animals, NO is generated primarily by three homologous nitric oxide synthases (NOSs), 

namely neuronal NOS (nNOS), inducible NOS (iNOS) endothelial NOS (eNOS). NOSs  

are heme-containing proteins belonging to the cytochrome P450 family which oxidize L-

arginine to L-citrulline and NO using NADPH as an electron donor and molecular oxygen 

(Mayer and Hemmens, 1997; Lamotte et al., 2005; Crawford, 2006). The existence of NOS 

in plants is a topic of debate. NOS-like activity in plants has been inferred from studies 

using NOS inhibitors (L-arginine analogues) to inhibit NO-dependent processes in plant 
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extracts (Baudouin, 2011; Fancy et al.,2016). Guo et al. (2003) isolated AtNOS1             

(A. thaliana NITRIC OXIDE SYNTHASE 1) which  has 16% homology to a protein from 

snail (Helix pomatia); this group reported arginine-dependent NO synthesis in plant’s, and 

proposed that AtNOS be considered as a plant’s NOS, behaves like mammalian eNOS and 

nNOS. Atnos1 T-DNA insertion mutants showed reduced NO accumulation and 

phenotypic defects (low fumarate, pale green leaves, slow growth and reduced chlorophyll 

content).  In contrast, experiments carried out by Moreau et al. (2008) showed AtNOS1 did 

not bind arginine and failed to reproduce the earlier result of NO generation via oxidising 

arginine. They also failed to produce radiolabelled citrulline from [3H] arginine. Based on 

these results, the protein AtNOS1 is no longer considered to be a NOS; it has been 

renamed to AtNOA1 (A. thaliana NITRIC OXIDE associated 1). AtNOA1 contains a 

GTPase domain suggesting that it may participate in mitochondrial biogenesis and 

translation (Zemojtel et al., 2006). So far no genetic evidence for the presence of NOS has 

been reported in Arabidopsis or in higher plants.  

Recently Foresi et al. (2010) characterized two NOS sequence from a recently published 

genome of two photosynthetic green algae Ostreococcus tauri and O. lucimarinus. They 

found a sequence in O. tauri 45% similar to the mammalian NOS. They also expressed the 

recombinant O. tauri NOS in E. coli and found a 2.5 fold higher level of NO than in 

controls following application of L-Arginine. Cell viability was also increased. Frohilch 

and Durner (2011) have suggested that higher plants lost NOS during evolution. An 

intensive genome search in 1000 land plants carried out by Jeandroz et al. (2016) did not 

find any NOS-like enzyme and they concluded plants evolved to synthesize NO by a 

different mechanism. Arginine-dependent NO production takes place in peroxisomes, 

mitochondria and plastids (Baudouin, 2011), but the mechanism is unknown. 
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In animals, hydroxylamine also serves as a substrate for oxidative NO synthesis. Based on 

this Rumer et al. (2009) reported that, the external application of hydroxylamine (HA) to 

nia double mutant tobacco (nia 30)  cell culture increased NO emission, but questioned the 

natural availability of HA in plants. Tun et al. (2006) reported polyamine-induced NO 

synthesis in specific tissues (elongation zone of Arabidopsis root tip and vein and 

trichomes of primary leaves) in Arabidopsis seedlings. 

1.4.3.2 Nitrate reductase (NR) 

NR (EC 1.6.6.1) is a flavoprotein, and a homodimer containing two identical subunits of 

approximately 100 kDa. Each subunit contains flavin adenine dinucleotide (FAD),     

heme-Fe, and Mo-molybdopterin (Mo-MPT). NR is a cytosolic enzyme primarily involved 

in nitrogen assimilation, which catalyzes nitrate (NO3
-
) into nitrite (NO2

-
) by NAD(P)H-

dependent manner. NR can also further catalyse nitrite into NO by the following reaction: 

NAD(P)H +3H2O
+
+2NO2

-
      NAD

+
+2NO+5H2O (Yamasaki and Sakihama, 2000; Wilson 

et al., 2008; Gupta et al.2011). This reaction has been demonstrated in vivo using soybean 

leaflets by Dean and Harper. (1986), and in vitro using purified NR from different plant 

species by Rockel et al. (2002). Both genetic (using nia1, nia2 mutants in ABA induced 

stomatal closure) and pharmacological (using NR inhibitor tungstate) studies support the 

role of NR in NO generation in plants. Nitrite is used as the main substrate to generate NO 

by NR (Desikan et al., 2002; Bright et al., 2006).    

1.4.3.3  Other sources of NO in plants  

Apart from NR and NOS, other enzymatic NO synthesis pathways are also present in 

plants.  The nitrite:NO reductase (ni:NOR) is a 310 kDa, plasma membrane-bound, nitrite-

reducing enzyme converting nitrite into NO using cytochrome C as an electron donor in 

tobacco roots (Stohr and Stremlau, 2006). Studies in tobacco, pea and barley found that 

mitochondria are one of the major NO producing organelles, by nitrite reduction in the 
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presence of NADH under anoxic conditions in roots. (Gupta et al., 2005; Gupta et al., 

2010). Soybean chloroplasts also synthesise NO via arginine or nitrite (Jasid et al., 2006). 

Non-enzymatic synthesis of NO has also been reported by Bethke et al. (2004)  in barley 

aleurone layer under low pH conditions. 

1.4.3.4 NR is the most important source of NO in plants 

As discussed in the previous section 1.4.3, many NO synthesis mechanisms function in 

plants, but recent studies support NR-mediated NO synthesis as one of the important 

mechanism in plants (Mur et al., 2013). The NR-mediated reductive pathway is one of the 

best characterised enzymatic sources of NO in plants (Gupta et al., 2011). Pharmacological 

studies using the NOS inhibitor L-NMMA, and genetic studies, using Atnos1 and the NR 

double mutant nia1 nia2 showed that Indole-3-butyric acid (IBA)-induced NO synthesis 

solely depends on NR activity. NO synthesis induced by auxin, ethylene, ABA, cytokinin, 

H2O2 and hypoxia is NR-mediated. Arabidopsis thaliana contains two NR genes, namely 

NIA1 and NIA2, both located on chromosome 1. They have 83.5% amino acid sequence 

homology with sequence divergence in the N-terminal region. Both NIA1 and NIA2 genes 

are expressed in roots and leaves, but the expression is tissue specific and responds 

differently to signals (Cheng et al., 1991). In guard cells, NO synthesis mediated by the 

NR isoform NIA1 plays a significant role in stomatal closure (Wilson et al., 2008). 

Cytokinin-mediated increased NR activity in Arabidopsis seedlings is only due to the 

increased NIA1 transcript level (Yu et al., 1998). NO-mediated lateral root development in 

Arabidopsis is based on modulation of NIA2 activity by H2O2 induced mitogen- activated 

protein kinase 6 (Wang et al., 2010).  

1.4.4 NO removal in plants 

Once NO has triggered the initial signalling event, it is removed or scavenged by a number 

of different mechanisms. Increased NO accumulation can be due to reduced rate of 
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removal rather than a higher rate of synthesis  (Misra et al., 2010; Wilson et al., 2008). 

There are four different NO removal mechanism functions in plants (Figure 1-3). First, NO 

is an unstable and reactive molecule, readily reacting with oxygen to form nitrite and 

nitrate. Second, NO reacts with reactive oxygen species (ROS) such as superoxide to 

produce peroxynitrite (ONOO
-
). Another NO removal mechanism is via haemoglobin. 

Haemoglobins (Hb) have been identified in legumes, non-legumes, and actinorhizal plants. 

Four subfamilies of Hb are found in plants; symbiotic Hb, mainly found in legumes and a 

few nitrogen fixing species, and three types of non-symbiotic Hb (nsHb). The  

physiological functions of nsHb are not fully understood, but in maize and alfalfa classI 

nsHb (nsHbI) has been shown to convert NO to nitrate by an O2 and NAD(P)H-dependent 

reaction. Removal of NO by nsHbI depends on signal specific NO synthesis (Gupta et al., 

2011). Finally, NO reacts with the tripeptide glutathione (GSH) to produce S-nitrosylated 

glutathione (GSNO). GSNO is considered as a NO reservoir, but it can also be further 

metabolized by GSNO reductase to form glutathione disulphide (GSSH) and ammonia 

(NH3). Further investigation is needed to identify the exact NO removal mechanism during 

a specific plant condition (Neil et al., 2008; Wilson et al., 2008). 
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Figure 1-3: Nitric oxide removal mechanisms in plants 

In plants, NO is removed after triggering specific signalling events by four different 
mechanisms. NO can be converted to nitrate or nitrite by oxygen or react with ROS to 
produce peroxynitrite or react with haemoglobin to form nitrite (NO3

-) in an NAD(P)H 
dependent reaction, or reduced to S-nitrosylated glutathione (GSNO) by glutathione (GSH) 
which will be further reduced to glutathione disulphide (GSSG) and ammonia (NH3) by 
GSNO reductase. 

1.4.5 NO perception and signalling in plants 

NO controls many important plant functions, which suggest plants perceive NO signals 

and respond accordingly. But the exact mechanism of NO perception is unclear and no 

plant NO receptor has been identified to date. Due to the reactive nature of NO it may have 

many NO perceptors (Neil et al., 2008; Wilson et al., 2008). External stimuli increase NO  

synthesis which further triggers physiological processes via second messengers such as  

cGMP, Ca
2+

, activation of MAP kinase pathways, and modulation of gene expression. 

Apart from this, post-translational modifications (PTM) of target proteins such as S-

nitrosylation, tyrosine nitrosylation and metal nitrosylation involve NO directly (Frohlich 

and Durner, 2011; Astier and Lindermayr, 2012).   
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Soluble guanylate cyclase (sGC) triggers the synthesis of cyclic guanosine monophosphate 

(cGMP). The cGMP will trigger a number of downstream signalling reactions. Hu et al. 

(2005) demonstrated asymmetric accumulation of cGMP in the bending zone of soybean 

roots during gravitropism in a similar way to the accumulation of  auxin and NO. They 

also demonstrated that exogenous application of auxin or NO could increase the cGMP 

level.  

NO also activates signalling through the MAP kinase signalling pathway, which is one of 

the important signalling cascades where by external stimuli are transduced into a cellular 

response in mammals, yeast and Fungi (Morris, 2001). MAP kinase genes have also been 

identified in several plant species. In tobacco, NO activates the salicylic acid induced MAP 

kinase signalling pathway during pathogen attack (Kumar and Klessig, 2000), and in 

cucumber NO activates the MAP kinase signalling pathway during IAA-induced 

adventitious rooting (Pagnussat et al.,  2004). 

The NO signalling mechanism also functions through post-translational modification 

(PTM) of target proteins by either direct S-nitrosylation or indirect trans-nitrosylation and 

nitration of a tyrosine residue. S-nitrosylation is a prototypic redox-based signalling 

mechanism, involving the formation of S-nitrosothiol (S-NO) by reversible covalent 

attachment of a NO moiety to the thiol (R-SH) side chain of cysteine (Cys) residue of 

target protein. S-nitrosylation is one of the most studied NO-dependent PTM in plants, 

especially during plant defence against biotic and abiotic stress. Based on proteomic 

studies, more than 200 S-nitrosylated proteins have been identified so far. To date only 15 

of the S-nitrosylated proteins were well characterised. (Astier and Lindermayr, 2012). 

Tyrosine nitration is one of the PTM of proteins induced by NO, in a non-enzymatic 

reaction. NO interacts with superoxide (O2
•-
) to produces peroxynitrite (ONOO

-
), one of 

the reactive nitrogen species (RNS) which acts as a nitrating agent, adding a nitro group to 
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the aromatic ring of tyrosine residues. In plants, tyrosine nitration can be detected using 

antibodies against 3-nitrotyrosine. Saito et al. (2006) in tobacco BY-2 cells treated with the 

1NF1 elicitor from Phytophthora infestans reported tyrosine nitration in a defence 

response. Similarly Valderrama et al. (2007) found tyrosine nitration in response to salt 

stress in olive leaves.  

Metal- nitrosylation is an another reversible PTM like S-nitrosylation. Being a free radical, 

NO reacts with transition metal centers like iron, copper, heme and zinc fingers. An  

example is soluble guanylate cyclase (sGC), which is one of the key players in animal NO 

signalling (Stasch and Evgenov, 2013). NO activates the sGC by binding with its heme 

domain, which further triggers the synthesis of cyclic guanosine monophosphate (cGMP). 

The cGMP will trigger a number of downstream signalling reactions. However, a NO-

sensitive sGC homologue has not yet been identified in plants. 

1.4.6 NO interaction with phytohormones. 

In response to wide range of environmental and endogenous stimuli, NO is produced and 

interacts with all major classes of phytohormones. It also modulates the biosynthesis of 

other hormones leading to changes in physiological functions. Hormones like auxin, 

ethylene, abscisic acid, gibberellins, cytokinin and jasmonic acids also influence the 

endogenous level of NO (Freschi, 2013). Depending upon the signal, NO acts either 

upstream or downstream of the plant hormones. For example, during root growth and 

development NO acts downstream of auxin (Simontacchi et al., 2013). In the case of 

salicylic acid accumulation, NO acts upstream of the signal. Even though NO interacts 

with many plant hormones, this thesis focusses on auxin and ethylene, and their 

interactions with NO.  
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1.5 Auxin 

The first hormone discovered in plants was auxin. Auxin is a multifunctional plant 

hormone that controls almost all aspects of a plant life such as embryo and fruit 

development, organogenesis, vascular tissue differentiation, apical hook formation and 

apical dominance, root patterning, elongation and gravitropic growth. Auxin can stimulate 

or inhibit cell expansion depending on the concentration and on the sensitivity of the cells. 

This can result in different effects in different parts of the plant. Auxin promotes cell 

elongation in shoots and inhibits it in roots. This reflects a dramatic difference in 

sensitivity of these two organs to auxin (Kaufman et al., 1995).  

1.5.1 Auxin biosynthesis 

Indole-3-acetic acid is the predominant form of active auxin found in plants. Auxin is 

synthesized in young leaves and transported downward to the root tip (Goldsmith, 1977). 

Understanding of IAA biosynthesis is still incomplete. Stable isotope studies have revealed 

that IAA can derive from two major pathways: the tryptophan (Trp) dependent and Trp-

independent pathways (Fig 1-4). Trp-independent pathway derives IAA from a precursor 

of Trp, anthranilate, but this pathway is not fully understood. Regulation of these 

biosynthetic pathways and crosstalk with other signals need to be further investigated 

(Tromas and Perrot-Rechemann, 2010). The Trp-dependent mechanism is well defined and 

it is the most important source of auxin. This is categorized into four different pathways 

based on the intermediates, namely indole acetamide (IAM), indole-3-pyruvic acid, 

tryptamine and indole-3-acetaldoxime (IAOx) (Saucer et al., 2013). 
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Figure 1-4: IAA biosynthesis pathways (Source: Tromas and Perrot-Rechemann, 2010) Copyright permission obtained from ELSEVIER France. 

IAA can be synthesized from Trp-independent and Trp-dependent pathways. In the Trp-independent pathway the precursor of Trp, anthranilate, 
is converted into IAA. Incase of Trp-dependent pathway IAA is synthesized from four different routes. 1) Indolacetamide (IAM) as an intermediate 
which is transformed into IAA by an aminohydrolase (AMI1). 2) Trp is transformed into indole-3-pyruvic acid (IPA) by an aminotransferase (TAA1) 
and then IPA decarboxylase transforms IPA into indole-3-acetaldehyde (IAAId) which is then converted into IAA by an IAAId oxidase. 3) Trp is 
transformed into tryptamine (TAM) by Trp-decarboxylase then the YUCCA (YUC) protein convert, TAM to N-hydroxyl-TAM (HTAM) then 
subsequently HTAM is converted to IAA by an unknown mechanism. 4) Trp is converted to Indole-3-acetaldoxime (IAoX) by two cytochrome P450 

(CYP79B2/CYP79B3) proteins. IAoX is then converted to indole acetonitrile (IAN) which is finally converted to IAA by nitrilases (NIT). 
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1.5.2 Auxin transport in the root 

The mobile signal hormone auxin needs to be transported to accomplish its role of 

messenger between cells, tissues and organs. As previously mentioned auxin is mainly 

synthesized in young leaves and transported throughout the whole plant. There are two 

different types of auxin transport: long distance transport via phloem; and cell to cell auxin 

transport by polar auxin transport (PAT) through auxin transport proteins. Auxin transport 

in roots occurs in two distinct directions, acropetally and basipetally, spatially separated in 

two different tissues (Tanaka et al., 2006). The cell-to-cell PAT mechanism depends on 

active uptake through an influx carrier, such as AUXIN INSENSITIVE1 (AUX1), and 

facilitated efflux through a carrier such as a member of the PIN-FORMED (PIN) family of 

proteins. Different expression patterns of PIN proteins form a route for auxin flow and 

local distribution. Multidrug resistance p-glycoprotein is also involved as an auxin efflux 

carrier. The auxin transport network-mediated local auxin distribution requires the 

interaction of PIN proteins with other components to trigger different cellular responses in 

various developmental processes (Paciorek et al., 2006). The response pathway during 

gravitropism in roots has been separated into three sequential steps: gravity perception, 

signal transduction, and asymmetric growth leading to bending (Moulia and Fournier, 

2009). The bending of the root is driven by formation of a differential auxin gradient 

between the upper and lower sides of the root and regulated by the polar transport of auxin 

(Muday and Rahman, 2008). 

1.5.3 Auxin perception 

In order to induce a biological response, auxin needs to be perceived by receptors. To date 

three auxin receptors/co-receptor systems have been identified in plants, namely 1) 

TIR1/AFB- Aux/IAA, 2) SKP2a and 3) ABP1. The former two systems regulate auxin 

dependent transcription in the nucleus, whereas ABP1 regulate auxin signalling at the 
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plasma membrane. Among these three receptor systems, TIR1/AFB-Aux/IAA is the best 

described sytem (Vanneste and Friml, 2012; Peer, 2013; Sauer et al., 2013).  

1.5.3.1 TIR1/AFB- auxin- Aux/IAA system 

Derepression of auxin response genes occurs during an increase in the intracellular auxin 

level. In this process auxin acts as molecular glue between domain II of AUX/IAA and 

Transport Inhibitor Response1/auxin related F-Box (TIR1/AFBs) subunits of the SCF 

complex, which adds multiple ubiquitins to the AUX/IAA substrate, thus targeting them 

for degradation by the proteasome (Figure1-5). This allows the derepression of ARF 

activators and transcription of auxin response genes (Tromas and Perrot-Rechemann, 

2010). Arabidopsis contains 6 TIR1/AFBs and 29 AUX/IAA proteins. Experiments in the 

yeast-two hybrid system by Villalobos et al. (2012) showed that the interaction between 

specific pairs of TIR1/AFBs and AUX/IAAs depends on auxin concentration. This 

experiment also suggested that AUX/IAA is the determining factor for auxin affinity. 
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Figure 1-5: The model for the action of TIR1/AFBs-Aux/IAA (re-drawn from Peer, 2013).    

Copyright permission License Number: 4237611031191. 

Auxin binds to the Aux/IAA and the F-box protein TIR1, leading to ubiqutinization and 
degradation of the Aux/IAA. This releases the transcription factor ARF allowing auxin- 
responsive gene expression. 

1.5.4 Interaction of nitric oxide with auxin 

NO and auxin function synergistically with each other. During the last decade, most of the 

NO and auxin interaction studies carried out were related to plant root development. Much 

less information is available about the role of NO in shoot and reproductive tissues 

(Freschi, 2013). Involvement of auxin during root development in response to nitrate has 

been demonstrated by Forde (2002). IAA-induced, NO-mediated adventitious rooting has 

been reported in cucumber; the authors suggested both NO and cGMP function 

downstream of auxin signalling (Pagnus et al., 2003). Exogenous application of auxin has 

been shown to induce NO accumulation in soybean root tip and root protoplast (Hu et al., 

2005). These authors also found that unilateral application of auxin via agar blocks 
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increased the accumulation of NO near to the agar blocks. Auxin-induced, NO-mediated 

root hair initiation and elongation have been reported in both lettuce and Arabidopsis. 

Application of a NO scavenger reduces the root hair formation (Lombardo et al., 2006). 

Exogenous application of indole-3-butyric acid (IBA) induces NO-mediated adventitious 

and lateral root formation in A. thaliana (Kolbert et al., 2008). IBA is an inactive form of 

auxin which needs to be converted to the active form (IAA) for the lateral root formation. 

Conversion of IBA to IAA takes place in the peroxisome, where NO is synthesised and 

then induces lateral root formation (Schlicht et al., 2013).     

1.6 Ethylene 

The phytohormone ethylene (C2H4) was the first example of a gaseous signalling molecule 

discovered in biological systems, which controls major plant growth and developmental 

responses. Ethylene is also a key regulator in response to biotic and abiotic stresses (Li and 

Guo, 2007). As a major plant hormone, it is involved in the regulation of essential 

physiological processes, such as seed germination, cell elongation, fruit ripening, 

senescence and abscission, root, shoot and flower development and root nodulation.  

1.6.1 Ethylene biosynthesis in plants 

Ethylene is synthesised via the methionine-S-Adomet-ACC cycle (Figure 1-6). Methionine 

is an amino acid, which acts as a building block for protein synthesis (Ravanel et al., 1998; 

Wang and Ecker, 2002). 80% of cellular methionine is converted to S-AdoMet by SAM 

synthase. S-AdoMet acts as a substrate for many biochemical pathways including 

polyamines and ethylene biosynthesis, and is also involved in methylation reactions to 

modify lipids, proteins and nucleic acids. Ethylene is synthesised from S-Adomet via 1-

aminocyclopropane-1-carboxylic acid (ACC), in a two-step reaction catalysed by ACC 

synthase and ACC oxidase. The first step is the conversion of S-Adomet to ACC by ACC 
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synthase (ACS). This reaction also produces 5’-methylthioadenosine (MTA), which is 

converted back to methionine, which facilitates the continuous supply of methionine for 

the synthesis of ethylene. ACC is further oxidised by ACC oxidase to produce ethylene, 

CO2 and cyanide. Cyanide is further oxidised to β-cyanoalanine to prevent toxicity during 

high rates of ethylene production (Wang and Ecker, 2002). Environmental and endogenous 

signals regulate ethylene biosynthesis through the differential expression of ACC synthase 

genes (Bleecker and Kende, 2000). 
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Figure 1-6: Ethylene biosynthetic pathway (Source: Wang et al., 2002). Copyright permission 

License Number- 4237880779137. 

Methionine was catalysed by SAM Synthetase to produce S-Adomet by consuming one 
molecule of ATP per molecule of S-AdoMet produced. S-AdoMet is the precursor of ACC , 
its also act as a precursor for polyamine synthesis pathway, ACC is synthesized from S-
AdoMet by ACC synthase. MTA is the by product of ACC synthesis step, it will be converted 
back to methionine, this will help to maintain the constant methionine concentration. ACC 
is the immediate precursor of ethylene, ACC is further catalysed by ACC oxidase to 
produce ethylene  and also generate carbon dioxide and cyanide. 
 

1.6.2 Ethylene perception 

Ethylene is perceived in the plasma membrane by a family of five ethylene receptors that 

includes ETR1, ERS1 ETR2, ERS2, and EIN4 (Figure 1-7). These receptors negatively 

regulate the ethylene signalling pathway. The ethylene signal is transduced from the 

membrane to the  nucleus through a series of proteins including CTR1, EIN2, EIN5, EIN6, 

and EIN7. In the nucleus the EIN3/EIN3-like (EIL) family of proteins initiates the effector 

genes involved in the diverse responses to the hormone (Solano and Ecker, 1998). 
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Figure 1-7: Ethylene receptors (re-drawn from Shakeel et al., 2013) 

Arabidopsis contains five ethylene receptors, further divided into two subfamilies based 
on phylogenetic analysis and structural difference. ETR1 and ERS1 belong to subfamily 1 
and contain conserved His-kinase domains. ETR2, ERS2 and EIN4 belong to subfamily 2, 
and have a diverged His-kinase domain. 
 
 

1.6.3 Ethylene signal transduction 

The first step in the ethylene synthesis pathway is binding of ethylene to its receptors 

(Figure 1-8). Copper acts as a cofactor for ethylene binding and the receptor activity, 

which is supplied by intracellular copper transporter RAN1 (Hirayama et al., 1999). RTE1 

is located in the ER. In the absence of ethylene, RTE1 activates the ETR1 which acts as a 

negative regulator of the ethylene response. In the absence of ethylene, receptors activate 

the CTR1, which is a Ser/Thr protein kinase, thus suppressing the ethylene response (Clark 

et al., 1998). Down stream of CTR1 is EIN2, which acts as a key player in ethylene 

synthesis. In the absence of ethylene, the C-terminal end of the EIN2 is phosporylated by 

CTR1 and will be in an inactive state. In the presence of ethylene, ethylene will bind to the 

receptor, inactivate the CTR1 and thus dephosphorylate the EIN2 and activate the 

downstream ethylene signalling events. Upon dephosphorylation C-terminal end of the 

EIN2 is cleaved and enters the nucleus, where it activates the EIN3 and EIN3 like (EIL1) 

transcription factor and further initiates the ethylene response (Merchante et al., 2013; 

Shakeel et al., 2013).  
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Figure 1-8: Ethylene signal transduction pathway (copied from Merchante et al., 2013). 

Copyright permission License Number- 4237611362856. 

In the current model of ethylene transduction pathway, ethylene is perceived by two 
subfamily of receptor with high affinity. Copper (red circles) act as a cofactor for ethylene 
binding. (a) In the absence of ethylene signal  CTR1 (in yellow) inactivate the EIN2 (in 
purple)  by phosphorylating its C-terminal end. (b) In the presence of ethylene, hormone 
will bind to the receptor and inactivate the CTR1. This further prevents the 
phosphorylation of EIN2, and thus C-Terminal end is cleaved by the unknown mechanism 
and moved into the nucleus and activate the EIN3/EIL1 and degrade the EBF1/2. Finally 
the transcription factors, EIN3/EIL1 dimerize and activate the ethylene response genes.   

1.6.4 Interaction between NO and ethylene 

Both NO and ethylene are gaseous signalling molecules. They interact antagonistically 

during ripening and leaf senescence and synergistically during biotic stress and Fe 

deficiency. NO may influence ethylene biosynthesis during the maturation and senescence 

of plant tissue (Arasimowicz and Floryszak-Wieczorek, 2007). Exogenous application of 

NO to plants decreased the ethylene synthesis by inhibiting ACC synthase activity (Zhu 

and Zhou, 2007). NO negatively regulates ethylene synthesis in fruits, This could be an 

useful technique in extending the shelf-life of fresh fruits. The first report on extending the 
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shelf-life of strawberry and kiwi fruits by NO fumigation has been demonstrated by 

Lesham and Wills (1998). After this discovery, many scientists used NO to delay the fruit 

ripening. Short time fumigation of vegetables like broccoli, green pea, and bok-choy with 

NO increased the shelf life, but the NO concentration required is unique to the vegetables 

(Soegiarto and Wills 2004). NO alleviates chilling injury and extends shelf life in Japanese 

plums (Singh et al., 2009). NO fumigation in Kensington Pride mango reduce both ACS 

and ACO activity, which affects the ACC content and leads to less ethylene synthesis, also 

affects the fruit softening enzyme such as exo-PG (polygalacturonase), endo-PG and 

EGase enzyme (Zaharah and Sing, 2011). Apart from this, NO decreases ethylene 

synthesis by directly binding to the enzyme ACO to produce an ACO-NO complex which 

further binds with ACC to form a stable ACO-NO-ACC complex. Studies on NO treated 

peach fruit showed the irreversible conversion of ACC to MACC, a non-volatile 

metabolite of ACC, which limits the ACC-ethylene conversion (Zhu et al., 2006). In 

contrast to the above antagonistic interactions, there are a few synergistic effects also 

reported. NO donors such as SNP and SNAP increase the ethylene production, which has 

earlier been reported to break the seed dormancy and germination by Gniazdowska et al. 

(2007). In Arabidopsis and cucumber roots, application of GSNO induces the expression of 

many genes involved in ethylene synthesis like SAM synthetase, ACO, ACS and the 5-

methylthioribose kinase which in turn increase the NO synthesis (Garcia et al., 2011). 

Further studies are needed to understand the cross talk between NO and ethylene, and how 

they regulate each other under specific conditions.      

1.6.5 Interaction between auxin and ethylene 

Synergistic effects of auxin and ethylene have been well defined in the regulation of 

hypocotyl elongation (Vandenbussche et al., 2003), root hair growth and differentiation 

(Pitts et al., 1998), apical hook formation (Lehman et al., 1996, Li et al., 2004), root 
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gravitropism (Lee et al., 1990; Buer et al., 2006), and root growth (Pickett et al., 1990; 

Rahman et al., 2001). This suggests that these two signaling pathways interact at the 

molecular level. 

Although ethylene and auxin signalling pathways are relatively well characterized, the 

mechanisms of their interaction are still poorly understood. One interaction occurs at the 

hormone biosynthesis level; where auxin induces ethylene biosynthesis by upregulation of 

ACC synthase, the key enzyme in ethylene production (Abel et al., 1995). By contrast, 

ethylene might influence auxin levels because ethylene has been shown to regulate the 

expression of two genes (WEAK ETHYLENE INSENSITIVE WEI2 and WEI7) that 

encode subunits of anthranilate synthase, a rate-limiting enzyme in Trp biosynthesis 

(Stepanova et al., 2005), from which pathway auxin is at least partially derived 

(Woodward and Bartel, 2005). 

Another process regulated by both hormones is gravitropic bending of the root. 

Asymmetric auxin redistribution in the basipetal (from the tip toward the base) direction 

mediated by the auxin influx (AUX1) and efflux carriers (PIN-FORMED3 [PIN3] and 

PIN2) is crucial for root gravitropism (Luschnig et al., 1998; Marchant et al., 1999; Friml 

et al., 2002). Exogenous application of ethylene reduces (Buer et al., 2006) or delays (Lee 

et al., 1990) the root gravitropic response. Although ethylene has been shown to down 

regulate lateral auxin movement in maize (Zea mays) root tips (Lee et al., 1990) and auxin 

transport in pea (Pisum sativum) epicotyls (Suttle, 1988), the mode of this auxin–ethylene 

interaction is not known. 
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1.6.6 ABA induces NR mediated NO synthesis in stomatal guard cells  

The plant hormone abscisic acid (ABA) is mainly synthesized during abiotic stress such as  

drought, cold and temperature. It helps to regulate transpiration by closing the stomata 

hence preventing water loss. Desikan et al. (2002) showed that external application of 

ABA increased the NO in stomatal guard cells, and observed that ABA induces NO 

synthesis and stomatal closure in WT Arabidopsis, but not in NR mutant’s. These 

experiments demonstrated the role of NR in guard cell NO synthesis and its closure. H2O2 

also induced the guard cell NO synthesis (Bright et al., 2006). 

1.7 Use of mutants to explore signalling  

Hormone response mutants were the key to elucidate a number of hormonal reaction 

mechanisms in plants. Further screening of the mutants will help to fill the blanks in 

hormonal transduction pathways. Plant hormone mutants can be classified into two 

categories: mutants that are impaired in hormone biosynthesis and mutants that are 

impaired in their response to hormones (Kende, 2001). The present study used NR, auxin, 

and ethylene mutants. 

1.7.1 NR mutants (nia1, nia2, nia1nia2) 

NR is involved in the first step of nitrate assimilation, and in Arabidopsis NR consists of 

two isoforms of genes, NIA1 and NIA2 (Wilson et al., 2008). A single NR mutant does not 

show any phenotypic variation from Col-0, but showed less NO synthesis. When both the 

NR genes NIA1 and NIA2 are mutated, the importance of NIA1 can be observed. 

The nia1 mutation is a single nucleotide substitution that converts an alanine to a threonine 

in a highly conserved region of the molybdenum cofactor-binding domain of the NR 

protein. NIA1 gene encodes a functional NR protein that contributes to the assimilation of 

nitrate in Arabidopsis. The nia2 null mutant was isolated from a chlorate resistant mutant 
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chl3 and molecular analysis studies proved that the CHL3 gene sequence is identical to the 

NIA2 gene. nia2 mutant showed less NR activity in the leaf and also are resistant to 

chlorate. The nia1, nia2 double mutants shows only 0.5% of wild-type shoot NR activity 

also normal growth was affected on media with nitrate as the only form of nitrogen 

(Wilkinson and Crawford, 1993). 

1.7.2 Auxin mutants 

1.7.2.1 aux1  

The AUX1 gene primarily functions in the root and aux1 mutations affect the gravitropic 

response of the seedling root. Plants with the aux1 mutation were selected as resistant to 

both auxin and ethylene (Pickett et al., 1990). AUX1 acts as an auxin influx carrier, which 

facilitates the uptake of auxin during the gravitropic root bending response (Marchant et 

al., 1999). Mutants in aux1 are agravitropic but can be rescued by exogenous NAA, a 

membrane permeable auxin.  

1.7.2.2 axr2-1 

The axr2-1 mutation is dominant and located on chromosome three. The mutant plants 

were isolated as resistant to the plant hormones auxin, ethylene and abcisic acid. Mutants 

have the phenotypic character of short hypocotyls, agravitropic root and shoot growth and 

no root hairs (Wilson et al., 1990). Timpte et al. (1994) proposed that axr2-1 severely 

disrupts an early auxin response. It has subsequently been shown that AXR2 is an 

Aux/IAA7 protein (Nagpal et al., 2000) 

1.7.2.3 axr3 

The axr3 mutation is semi-dominant and located on chromosome one. A mutant axr3 plant 

shows enhanced apical dominance, reduced root elongation, increased adventitious rooting 

and no shoot and root gravitropism. AXR3 is an Aux/IAA17 protein (Rouse et al., 1998). 
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1.7.3 Ethylene mutants 

1.7.3.1 ein3-1 

EIN3 (ethylene-insensitive3), is a nuclear transcription factor that initiates downstream 

transcriptional cascades for ethylene responses. The ein3-1 mutation is a loss-of-function 

mutation, leading to the suppression of ethylene-mediated effects including gene 

expression, the triple response (apical hook formation, thickening and shortening of 

hypocotyl), cell growth inhibition, and accelerated senescence. 

1.7.3.2 ein3OX  

The EIN3OX is a transgenic line which expresses the EIN3-1 gene under the control of 35S 

promoter in an ein3-1 mutant background. EIN3OX seedlings show the ethylene triple 

response phenotype in absence of ethylene. 

1.8 Analysis of nitric oxide  

1.8.1 Visualization of NO by confocal microscopy using specific dye  DAF-2D  

Real time visualization of the production and localisation of NO is achieved by confocal 

microscope using the fluorescent indicator DAF-2D. This method is useful to analyse the 

cellular function of NO. DAF-2D was originally designed and synthesized by Kojma et al. 

(1998). Non-fluorescent DAF-2D reacts with NO in the presence of oxygen and yields the 

highly fluorescent product triazolofluorescein (DAF-2T). Fluorescence intensity is directly 

proportional to the concentration of NO (Kojma et al., 1998) and has been used frequently 

to demonstrate NO production in roots (Hu et al., 2005; Stohr et al., 2006; Kolbert et al., 

2008), and stomata (Desikan et al., 2002). The specificity of this dye to NO has been 

questioned by researchers, although it is accepted when used with the proper positive and 

negative controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
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1.8.2 Quantification of gene expression by Quantitative Real-Time PCR (Q-RT-

PCR) 

Q-RT-PCR can be used to measure changes in mRNA levels and therefore suggest  

possible changes in the protein level and function in response to the external stimuli. 

qPCR-based copy number quantification has advantages, such as high sensitivity, low cost 

and rapid screening, compared to other methods. Real time PCR measures the progress of 

DNA amplification in real time by using fluorescent probes, like SYBR green-I. SYBR 

green-I binds to double stranded DNA (dsDNA) and then emits 1000 fold greater 

fluorescence than when it is free in solution (Valasek and Repa, 2005). An increase in 

DNA product during PCR therefore leads to an increase in fluorescence intensity and is 

measured at each cycle, thus allowing DNA concentrations to be quantified. 

1.9 Transgenic approach to visualize NIA1-mediated NO synthesis. 

Although NO research has fascinated many plant scientists for two decades, the only 

method available to visualize NO, has been the cell permeable dye DAF-2DA viewed with 

a fluorescence microscope. Also this method allow visualization of the NO already 

synthesized in different parts of the plant tissues. However it cannot reveal which NR gene 

is responsible for the synthesis of NO in a particular plant tissue. Recent studies have 

shown NR mediated NO synthesis is the most important source of NO in plants, and that 

NIA1 plays the major role in NO signalling. So producing transgenic plants expressing the 

NIA1 gene tagged with a fluorescent marker will be a viable alternative tool to find the role 

of the NIA1 gene in NO signalling. These plants will also be useful to find the location of 

the NIA1 expression with particular external stimuli, and to study the hormonal 

interactions.  
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1.9.1 Use of green fluorescent protein (mGFP4) as a reporter system  

The green fluorescent protein (GFP) has been used extensively by many scientists in both 

plant and animal systems. GFP is used for the direct visualization of gene expression and 

subcellular localization of fusion proteins in living cells (Siemering et al., 1996). GFP has 

two excitation peaks at 400 nm and 475 nm; the former excitation peak is useful to detect 

GFP fluorescence using a long wavelength UV lamp, the later one is used in the laser 

confocal microscope. This technique has several advantages over GUS reporter gene. In 

the present study mGFP4 has been used to produce the NIA1 construct. While expressing 

the original GFP from jellyfish Aequorea victoria in A. thaliana, the GFP coding sequence 

was cleaved because the sequence in GFP is similar to the plant intron recognition site. 

This cryptic intron was removed by using alternative codons and successfully expressed in 

Arabidopsis (Jim Haseloff et al., 1997). 
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1.10 Aim of the project 

It is clear that there is a considerable interaction between the different signalling pathways 

during the development of plants and it is likely that auxin, ethylene and NO signalling 

interact during the gravitropic responses of roots. The aim of this study was to investigate 

the effect of NO on gene expression in the bending zone of roots during response to 

gravity.  

Specific objectives were  

 To analyse the gravitropic curvature of roots in wild type and auxin, ethylene and 

NR mutants of Arabidopsis.  

 To localise the production and accumulation of NO in the roots of Col-0, aux1, 

axr2 and axr3 Arabidopsis seedlings in response to gravity by using confocal 

microscopy.  

 To quantify the changes in NIA1 transcript level in Col-0, aux1and axr2  root zones 

(root tip, middle region and hypocotyl zones)  in response to gravity by using Q-

RT-PCR.  

 To localise the NIA1 gene expression during gravitropism, by using mGFP4 tagged 

NIA1 transgenic plants.
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2 Materials & Methods 

2.1 Arabidopsis seeds 

Arabidopsis thaliana (L.) Heynh, Colombia ecotype (Col-0) and auxin mutants (aux1, axr2 

and axr3), ethylene mutants (ein3-1 and EIN3OX) and nitrate reductase mutants (nia1, 

nia2 and nia1nia2) were obtained from Nottingham Arabidopsis Stock Centre (NASC), 

Nottingham, United Kingdom. All the Arabidopsis genotypes used in this study were in 

Columbia (Col-0) background.  

2.2 Growth conditions for plants 

Seed stocks were stratified by storage at 4
o
C for at least three days before sowing. Plants 

were grown in a growth cabinet (MLR-351H, Sanyo Gallencamp, Loughborough, 

Leicestershire, UK) at 20
o
C with 12 h of white light (Active Photon flux: 150 µEi/m

2
/S) at 

60% relative humidity.  

2.2.1 Growth on compost 

Plants were grown on Levingtons compost F2+sand (JFC Monro, Hayle, Cornwall, UK). 

Seeds were sown in trays and then transferred to individual pots (10 cm diameter x 15 cm 

depth). Plants were watered twice weekly.  

2.2.2 Growth on MSR3  

2.2.2.1 Surface sterlization 

Prior to germination, seeds were surface sterilized to prevent contamination by immersing 

in 70% (v/v) ethanol for 15 min and 10% (v/v) household bleach for 15 min, followed by 

three rinses in sterile water, finally seeds were suspended in 1 ml sterile water. 
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2.2.2.2 MSR3 plates 

In order to study the gravity bending, seedlings were grown in plant growth medium- 

MSR3 (Gamborg et al., 1976) in a rectangular plates. MSR3 was prepared using 

bacteriological agar 0.8% (w/v), 2(N-morpholino) ethanesulfonic acid (MES) 0.05% (w/v), 

sucrose 0.15% (w/v). Murashige and Skoog basal salt mixture 0.44% (w/v), the pH was 

adjusted to 5.7 using NaOH. Medium was autoclaved at 121
o
C for 20 min, then poured 

into a rectangular plates (120 x 120 x 17 mm) inside the laminar flow hood and allowed to 

set for 20 min. 5-10 surface sterilized seeds were placed in MSR3 plates using a 

micropipette (Figure 2-1). If the plants required antibiotic selection then MSR3 media was 

cooled to 60
o
C before the addition of the relevant antibiotic. Kanamycin was used at 50 

µg/ml and hygromycin was used at 30 µg/ml.  

 

 

 

 

 

 

 

 

Figure 2-1: Schematic representation of MSR3 plates  

2.3 Imaging of root development and gravitropic curvature 

2.3.1 Measuring root gravitropism 

In order to measure the gravity bending, Seeds shown in MSR3 plates were placed 

vertically in the growth champer in 12 h photoperiod at 20
o
C and 60% humidity. After 5 

days, the seedlings were gravistimulated for 2 h by changing the direction of the plate 

Seeds 
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(Horizantal orientation) by 90
o 

and then allowed to bend in a light proof cupboard. Gravity 

bending was measured in a five-day-old seedlings photographs. A camera (Canon 600D, 

18-55 mm IS II Lens) was fixed above the sample. A millimetre-scale ruler is placed at the 

same focal depth as the subject to provide a scale reference. Plates were photographed at 

particular time intervals. Root bending curvature was measured from photographs using 

protractor and ruler.  

2.3.2 Statistical methods: 

Linear mixed-effects modelling was employed to assess the effect of various plant types on 

the change over time in the curvature of the individual samples. Analyses started with a 

model that incorporated: 

 fixed effects of plant type interacting with a quadratic change in curvature over 

time; 

 

 diagonal variance-covariance structure for random effects of quadratic time 

coefficients; 

 

 weighting for varying plant type within sample variability;  

 AR(1) correlation in residuals.   

A backwards elimination approach was taken to find the minimal model that adequately 

represented the data.  Models that differed in either the random effcts specification, plant 

type within sample variability or AR(1) correlation were compared by likelihood ratio 

tests. The significance of terms in the fixed-effcts specification was assessed by standard 

linear regression conditional t-tests. Visual inspection of residual plots of the final models 

did not reveal any obvious deviations from homogeneity of variance or normality.  

All analyses were carried out in the R programming language and environment (R 

Development Core Team, 2014) using the nlme software package (Pinheiro et al., 2016) 

for the linear mixed-effects modelling. 
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Two-way ANOVA was employed to analyse the overall difference between plants and 

treatments over time in terms of root bending. Turkey Post-hoc test was used to make a 

pairwise comparison. Normality was checked by Shapiro-Wilk test. Two-way ANOVA 

analyses were carried out in the IBM SPSS (IBM Corp. Released 2013. IBM SPSS 

Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.). 

2.4 Detection of endogenous nitric oxide (NO) by confocal microscopy 

Where indicated 50 μl of 100 μM specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) was applied to 5 days old Arabidopsis 

seedling roots by micropipette and incubated for 15 min. Seedlings were gravistimulated 

for 2 h by changing the direction of the plate (Horizantal orientation) by 90
o
. After 2 h of 

gravistimulation, 50 μl of a 20 μM solution of the cell-permeable fluorescent probe 4, 5-

diaminofluorescein diacetate (DAF-2DA); (Calbiochem, San Diego) was applied to the 

root by micropipette and incubated in the dark for 20 min. Thereafter, roots were washed 

three times with fresh MES buffer and examined using laser confocal microscopy (DAF-

2D excitation 495 nm, emission 515 nm). Slides were prepared by placing the seedling on 

a glass slide using forceps, the root was covered with immersion oil and coverslip placed 

on the sample. All micrographs were acquired under identical settings to indicate 

unadjusted fluorescence differences. Experiments were performed with and without cPTIO 

and gravistimulation.  

2.5 ABA treatment for stomatal bioassay 

Whole leaves from transformants and wilt type were incubated in MES-KCl buffer 

(10 mm 2-morpholino ethane sulfonic acid (MES), 5 mm KCl, 50 μm CaCl2, pH 6.15) for 

2 h under light condition in a growth chamber. After the incubation leef epitermal 

fragments were obtained from the leaves using a forceps, and they were further incubated 
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at 25
o
C and 37

o
C in light and dark for 4 h in MES buffer contains 150 μm ABA. Col-0 

wild type treated with ABA was used as a control. After 4 h of incubation stomata was 

observed for mGFP4 fluorescence using confocal microscopy. 

2.6 H2O2 treatment for root  

Col-0 wild type and transgenic seedlings root were pre-treated with 100 µM of H2O2 and 

then gravistimulated for 6 h by chaning the direction of the plate (Horizantal orientation) 

by 90
o
. After 6 h seedlings were placed on a glass slide using forceps, then the root was 

covered with immersion oil and coverslip. mGFP4 fluorescence was observed using 

confocal microscopy. 

2.7 Bacterial growth medium & condition 

Escherichia coli DH5-α and Agrobacterium tumefaciens (GV3101) were grown on solid 

Luria-Bertani (LB) agar plates consisting of tryptone 10 gl
-1

, yeast extract 5 g l
-1

, NaCl 10 

g l
-1

 and agar 15 g l
-1

. The medium was autoclaved at 121
o
C for 20 min and cooled to 

approximately 60
o
C before the addition of appropriate antibiotics. 

2.7.1 Antibiotics  

All antibiotics used in this study were purchased from Sigma Aldrich Ltd UK and are 

listed in the Table 2.1. Antibiotic stock solutions were filter sterilized using 0.22 μm filters 

(Millipore Corporation, USA). After autoclaving, MSR3 and LB media was cooled to 60
o
C 

before the addition of the relevant antibiotics.   

Table 2-1: Antibiotics solution used in this study 

Antibiotics Solvents Stock 

concentration(mg/ml) 

Working 

concentration(µg/ml) 

Ampicillin Water 100 100 

Kanamycin Water 100 50 

Hygromycin Water 100 30 
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Tetracyclin Water 10 5 

Rifampicin Methanol 50 25 

2.8 Extraction of nucleic acids 

2.8.1  Extraction of total RNA from Arabidopsis root 

Total RNA was extracted from Arabidopsis roots using Trizol reagent (Sigma Aldrich). 

Roots were collected from plants gravistimulated for 30 min, 1, 2, 4 and 6 h and non-

gravistimulated plants. The whole root was separated into three parts (root tip, middle 

region and hypocotyl region) by using a scalpel blade and frozen in liquid nitrogen. 

Approximately 100 mg of tissues from the each of the three parts of the roots were ground 

separately to a fine powder using a pestle and mortar and homogenised with 1 ml of Trizol 

reagent. Samples were vortexed for 5 min and incubated at room temperature for 5 min. 

200 µl of chloroform was added to the samples and tubes were shaken vigorously by hand 

for 15 s and incubated at room temperature for 5 min. Samples were centrifuged at 

15000xg for 15 min at 4
o
C and the clear aqueous phase was transferred to a fresh tube. 

RNA was precipitated by the addition of 0.5 ml of isopropanol and then further incubated 

at room temperature for 10 min. Samples were then centrifuged at 15000xg for 1 h at 4
o
C. 

The supernatant was removed and the pellet was dissolved with 25 μl of RNase free water, 

200 μl of 70% (v/v) ethanol, and then potassium acetate was added to the reaction mixture 

to a final concentration of 65 mM. The samples were kept at -80°C for 1 h then centrifuged 

at 15000xg for 1 h 30 min at 4
o
C. The pellet was washed with 1 ml of 75% (v/v) then 95% 

(v/v) ethanol, and incubated at room temperature for 5 min. Tubes were centrifuged at 

15000xg for 5 min at 4°C. The final RNA pellet was dried briefly under vacuum for 3-5 

min and dissolved in 20 μl of RNase free water and stored at -80
o
C until further use. 
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2.8.2 Extraction of plasmid DNA 

Plasmid DNA was extracted from 1.5 ml overnight grown LB liquid cultures of E. coli 

transformants using GenElute
TM 

Plasmid miniprep kit (Sigma Aldrich, UK) following the 

manufacturer’s instructions. The plasmid DNA was eluted from the column using 50 µl 

1xTE pH 8.0. Plasmid DNA was stored in a freezer at -20
o
C until further use. 

2.8.3 Extraction of plant genomic DNA (gDNA) 

Arabidopsis genomic DNA was extracted from 100 mg of young leaf tissues using a 

GeneJET Plant Genomic DNA purification kit (Thermo Scientific, UK) following the 

manufacturer’s instructions. The final DNA pellet was dissolved in 100 µl of 1xTE buffer. 

2.8.4  Quantification of nucleic acid by Nanodrop 

Nucleic acid (DNA and RNA) concentration were determined by measuring the 

absorbance at 260 nm using a Nanodrop (Thermo scientific). The concentration of a 2 µl 

sample was calculated based on the absorbance measured at 260 nm x conversion factor 

(40 for RNA and 50 for DNA). Samples were checked for purity by measuring the 

absorbance ratio at 260 nm/280 nm for the presence of protein contamination and at 260 

nm/230 nm for the presence of solvent or salt contamination. 

2.8.5 Analysis of RNA samples by agarose gel electrophoresis (Sambrook et al., 

1989) 

The quality of RNA was determined by agarose gel electrophoresis. Agarose (1.2% w/v) 

was mixed with 1X TAE buffer and melted in a microwave oven. The mixture was cooled 

to 60
o
C and a final concentration of 30 ng ethidium bromide (EtBr) was added, and then 

mixed gently to avoid bubble formation.  The mixture was poured into the gel mould 

containing comb and was allowed to solidify. 1X TAE buffer was poured into the gel 

buffer reservoir in the electrophoresis apparatus to about 2 mm above the gel surface. RNA 
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samples were mixed with a final concentration of 1x loading dye. Electrophoresis was 

carried out at 100 V. After the run, the gel was visualized on a UV (365 nm) 

transilluminator Fluorchem Q (Alpha Innotech, USA). 

2.9 cDNA synthesis 

2.9.1 DNase treatment 

Removal of genomic DNA from total RNA samples was done using a DNA-free
TM 

kit 

(Applied Biosystems) following the manufacturer’s instructions. Two units of rDNase I 

and 0.1 volumes of 10x DNase I buffer was used for 20 μg of RNA in a 50 μL reaction. 

The mixture was incubated at 37
o
C for 30 min, and then 0.1 volume of DNase inactivation 

reagent was added to the tube and incubated for 2 min. After incubation, the tube was 

centrifuged at 10000xg for 2 min, and the supernatant, which contains the RNA, was 

transferred to a fresh tube and stored at -80
o
C. 

2.9.2 First strand cDNA synthesis 

First strand complementary DNA (cDNA) was synthesized from 5 μg of total RNA in a 

total reaction volume of 50 μl. 5 μg of RNA was mixed with 8 μl of anchored dT(18) 

primer, 1 ng of Human Tumour Necrosis Receptor Associating Factor 1 transcript (TRAF 

spike- NCBI gene bank accession number NM_005658.4) and 8.5 μl of sterile distilled 

water. The reaction was incubated at 70
o
C for 10 min, cooled on ice for few seconds, 

microfuged briefly and allowed to anneal at room temperature for 5 min. 5 μl of 10X RT 

buffer, 2.5 μl of 20 mM dNTP mix and 4 μl of 0.1M DTT was added and microfuged 

briefly. 2 μl of superscript III reverse transcriptase (200 U/μl, Invitrogen, United Kingdom) 

was added to the reaction mixture, briefly mixed and incubated at 42°C for 2 h 30 min. The 

reaction mixture was heat inactivated at 65°C for 10 min. Finally, the cDNA synthesis 

reaction was diluted ten times with sterile distilled water and used for RT-PCR. 
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2.10 Polymerase chain reaction 

Polymerase chain reaction (PCR) was performed in a PTC200 Peltier Thermocycler (MJ 

Research). Genomic DNA or cDNA was used as template. The PCR products were 

analysed by agarose gel electrophoresis (see 2.65). 

2.10.1 DNA polymerase 

Taq DNA polymerase (Biolabs, UK) was used for general amplification. Amplification of 

PCR fragments for cloning was performed by using a proof reading polymerase (QIAGEN 

Long range PCR kit) with exonuclease activity. 

2.10.2 Primer design 

Primer pairs were designed to be between 18-25 base pair in length, with similar melting 

temperatures and a GC content of 40-60%. Primer pairs were designed using a primer 

design program (ABI-primer design 7000, Applied Biosystems). Primer pairs were 

selected in the final third of the cDNA sequence to give a product of 50-200 bp. All primer 

pairs were aligned with the Arabidopsis genome sequence from the NCBI database using 

the nucleotide BLAST search engine to determine their uniqueness. The chosen primers 

were synthesized by Eurofins Genomics, Germany (Table 2-2). 
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Table 2-2: Oligonucleotide primers 

 

Primer 

Name 

Primer sequence 5’-3’ Fragment 

size  

Annealing 

Temp (o
C) 

NIA1-F AATCGCAAAGGAAGGTTGG 150 bp 60 

NIA1-R 

 

CTCTAGATTTGGCTGCAACG 

TrafRT1F CATAAACTTTCCTCTTCCTGCC 150 bp 60 

Trafrt1R ACATTGCTCAGTGGCTTGG 

M13F GTAAAACGACGGCCAGT 150 bp 60 

M13R GTAAAACGACGGCCAGT 

mGFP Cloning  primers 

mGFP FP GCCTGCAGATGAGTAAAGGAGAAGAAC 717 bp 54 

mGFP RN GCGGCCGCTTATTTGTATAGTTCATCCAT 

mGFP Screening primers 

mGFP F ATGAGTAAAGGAGAAGAACTTTTCAC 717 bp 54 

mGFP R TTATTTGTATAGTTCATCCATGCC 

Cloning primer for 2kb Nia1 promoter 

Nia1 FK GCGGTACCGTGGGTTCATTTTGGTAGTTCGG 2 kb 54 

Nia1 P RP GCCTGCAGGGTTTAGTGATTGAACCGGTGATAA 

Cloning primer for 2kb Nia1 promoter with gene 

Nia1 FK GCGGTACCGTGGGTTCATTTTGGTAGTTCGG 5.5 kb 54 

Nia1 RP GCCTGCAGGAAGATTAAGAGATCCTCCTTCACG 

 

Primer sequences containing restriction endonucleases recognization sites KpnI (GGTACC), 

PstI (CTGCAG), NotI (GCGGCCG) are in bold and underlined  
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2.10.3 PCR conditions 

General PCR conditions are listed in Table 2-3. Annealing temperature was optimized for 

new DNA templates and primer pairs where they were used for the first time. 

Table 2-3: PCR condition for amplification of NIA1 gene 

Step Stage Temperature (
o
C) Time (min) 

1 Initial denaturation  94 10 

2 Denaturation 94 1 

3 Annealing 60 1 

4 Extension 72 1 min/Kb 

5 Step 2 to 4 34 cycles 

6 Final extension 72 10 

    

2.10.4 Standard PCR 

The polymerase chain reaction (PCR) mixture of 12.5 μl contained 2.5 μl of template 

(cDNA/gDNA/small amount of colony suspended in water), 2 μl of 10 μM oligonucleotide 

primers (Table 2-2), 0.25 μl of 20 mM dNTP mix, 1.25 µl of 10X PCR buffer (10 mM 

Tris-HCl; pH: 9.0, 50 mM KCl, 1.5 mM MgCl2), 0.5 U of Taq DNA polymerase and 6 μl 

of sterile distilled water. 

2.10.5 Quantitative Real-Time PCR (Q-RT-PCR) 

Q-RT-PCR was performed using a NIA1 gene specific primer with SYBR green (Primer 

Design). The reaction mixture of 20 μl contained 2X SYBR green master mix (10 μl), 300 

nM of each gene specific primer NIA1F and NIA1R, template cDNA (5μl of diluted) and 

DNase free water. The reaction was carried out in duplicate in microamp optical 96 well 

plates (Ambion), which were sealed with a clear plastic adhesive cover (Ambion). 

Template control (without RNA), enzyme control (without RT enzyme) and sterile water 

samples were used as negative controls in this experiment. The reaction plate was 

centrifuged at 1000xg at room temperature. The reaction was performed in 7300 real time 
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PCR system (Applied Biosystems). Reaction conditions were as described in Table 2-4. To 

derive a standard curve, serially diluted (0.1 ng/µl to 0.00001 ng/µl) pBluescript II SK (+) 

plasmid was used in the reaction, and the reaction mixture was prepared as described 

earlier, with M13F and M13R primers (Table 2-2). 

Table 2-4: Q-RT-PCR reaction condition 

Stage Temperature (
o
C) Time (min) cycle 

Activation 95 10 1 

Denaturation 95 0.15 40 

 Annealing/Extension 60 1.0 

Melting curve 

analysis 

95 0.15 
1 

 
60 1.0 

95 0.15 

2.10.6 Long range PCR 

Long range PCR was performed to amplify larger DNA fragments (NIA1 promoter and 

gene) from BAC clone (T32E7), using a two-step PCR programme (Table 2.5). The long 

range PCR (Qiagen) high fidelity Taq DNA polymerase was used to avoid amplification 

errors. PCR mixture contains 10 ng of DNA, 10 μM of forward and reverse 

oligonucleotide cloning primers (Table 2-2), 1 μl of 20 mM dNTP mix, 5 µl of Q solution, 

0.5 µl of 1.5 mM MgCl2, 0.5 U of Long range Taq polymerase, made up to 15 µl with 

RNase free water. PCR amplification was carried out at 54
o
C annealing Temp and an 

increased extension time (2 min for promoter and 6 min for promoter and gene, Table 2-5). 

The PCR products were then separated by agarose gel electrophoresis and visualized under 

UV light. 
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Table 2-5: Two step PCR reaction condition 

 

 

 

    

2.10.7 Inverse PCR 

Inverse polymerase chain reaction (inverse PCR) was carried out to select a single copy 

transformants and also to know the insert location. The whole plant genomic DNA was 

isolated and digested with kpn1-HF restriction enzyme. This enzyme was chosen because 

this will give a single cleavage point in the T-DNA region and another cleavage point 

somewhere in the plant genomic region. Digested products were circularised by T4-DNA 

ligase enzyme. Primers designed in the known T-DNA regions were used in the long range 

PCR to amplify the circularised templates.   

  

Step Stage Temperature (
o
C) Time (min) 

1 Initial denaturation  93 3 

2 Denaturation 93 0. 45 

3 Annealing 54 1 

4 Extension 68 1 min/Kb 

5 Step 2 to 4 9 cycles 

6 Denaturation 93 0. 40 

7 Annealing 54 1 

8 Extension 68 1 min/Kb then 10 s in each 

additional cycle 

 

 
9 Go to 6  19 cycles  

10 Final extension 68 10 
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2.11 Cloning and transformation 

2.12 Cloning strategy for PG35s-mGFP4 construct  

  Digested CaMV35S-mGFP4 gene 

cassette by EcoRV from 35S-mGFP 

plasmid (Insert) (Fig. 4-1) 

Digested pG0179 plasmid with 

EcoRV (Vector) 

Ligated Insert and Vector  

Transferred the construct (Fig. 2-2) into E. coli, 

Transferred the construct into Agrobacterium  

Transferred the construct into Arabidopsis by 

Agrobacterium mediated floral dip method 

Verified clone by PCR (Fig. 4-3) and Restriction digestion (Fig. 4-4)  

Figure 2-2: Overview of cloning strategy for PG35s-mGFP4  

To make a PG35s-mGFP4 construct CaMV35S-mGFP4 cassette was released from the 35S-

mGFP plasmid using EcoRV and then ligated with the pG0179 plasmid digested with the 

same enzyme. This construct was cloned into E. coli and then sub-cloned into 

Agrobacterium. CaMV35S-mGFP4 cassette was inserted into Col-0 wild type plants by using 

Agrobacterium harbouring PG35s-mGFP4 construct by floral tip method. 

 

To make a PG35s-mGFP4 construct CaMV35S-mGFP4 cassette was released from the 

35S-mGFP plasmid using EcoRV and then ligated with the pG0179 plasmid digested with 

the same enzyme. This construct was cloned into E. coli and then sub-cloned into 

Agrobacterium. CaMV35S-mGFP4 cassette was inserted into Col-0 wild type plants by 

using Agrobacterium harbouring PG35s-mGFP4 construct by floral tip method. 
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Figure 2-3: Schematic representation of pG35S-mGFP4 construct 

CaMV35s-mGFP4 cassette was cleaved from the pGreen 35S-GFP plasmid by EcoRV 

restriction digestion. The purified cassette was then inserted into the EcoRV digested 

pG0179 plasmid vector. This construct was transferred to the wild type Arabidopsis (Col-0) 

by floral dip method. Transformed plant was confirmed for the insertion of mGFP4 and 

used as a control to check the 35S promoter driven GFP expression in plants. 

LB- Left border, RB- Right border, hyg- Hygromycin resistance gene, 35S- CaMV35S 

promoter 
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2.13 Cloning strategy for NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 

  

Digested the amplified mGFP4 

gene with Pst1 & Not1 (Insert) 

(Fig. 4-7 A) 

Digested pG0179 plasmid with Pst1 & Not1 

(Vector) (Fig. 4-7 B) 

Ligated Insert and Vector  

Transferred the construct pGmGFP in to E. coli 

Transferred the construct in to Agrobacterium  

Transferred the construct in to Arabidopsis by 

Agrobacterium mediated floral dip method 

Amplified mGFP4 gene from 35S-

mGFP4 plasmid (Fig. 4-6) 

Isolated pGmGFP plasmid and 

digested with Kpn1 & Pst1 

(Vector) 

Amplified NIA1 2.2 kb promoter fragment and 

NIA1 2.2 kb promoter with gene (Fig. 4-11) 

Digested NIA1 2 kb promoter fragment and 

NIA1 2.2 kb promoter with gene by Kpn1 & 

Pst1 (Insert) (Fig. 4-12 A&B) 

 

 

Ligated Insert and Vector  

Transfered the construct NIA1pro-mGFP4 (Fig. 2-3) and NIA1pro-NIA1-mGFP4 (Fig. 2-4) in to E. coli, DH5α 

DH5α 

Verified the construct by PCR (Fig. 4-9) & digestion (Fig. 4-10) 

Verified the constructs by digestion NIA1pro-mGFP4 (Fig. 4-13) and NIA1pro-NIA1-mGFP4 (Fig. 4-14) 

)  
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Figure 2-4: Overview of cloning strategy for NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 

constructs 

To localise the Nia1 gene expression during gravitropism NIA1pro-mGFP4 and NIA1pro-

NIA1-mGFP4 constructs were made. First pGmGFP construct was made by inserting mGFP4 

gene into pG0179 plasmid in the Pst1 & Not1 restriction site. Nia1 promoter and Nia1 

promoter along with the Nia1 gene was amplified using PCR and then inserted into 

pGmGFP construct in the Kpn1 & Pst1 retriction site. This constructs was cloned into E. coli 

and then sub-cloned into Agrobacterium. Cloning was confirmed by colony PCR and 

restriction digestion. Inorder to produce transgenic plants NIA1pro-mGFP4 and NIA1pro-

NIA1-mGFP4 cassetts were introduced into Col-0 wild type and auxin, ethylene and NR 

mutants by floral tip method.                   
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Figure 2-5: Schematic representation of NIA1pro-mGFP4 construct  

The 2.2 kb NIA1 promoter fragment was amplified from the BAC clone (T32E7) using PCR 

long range Polymerase (Qiagen) and then further purified and digested with the restriction 

enzymes, Kpn1 and Pst1. This NIA1 promoter fragment was sub cloned into the pGmGFP4 

vector. This construct was transferred to wild type Arabidopsis plant Col-0 and auxin, 

ethylene, NR mutant plants by floral dip method. Transformed plants were confirmed by 

PCR and used for further interaction studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: Schematic representation of NIA1pro-NIA1-mGFP4 construct 

The 2.2 kb NIA1 promoter along with NIA1 gene 3.5 kb (Total length of 5.7 kb) fragment 

was amplified from the BAC clone (T32E7) by using PCR long range polymerase (Qiagen) 

and then further purified and digested with the restriction enzymes, Kpn1 and Pst1. This 5.7 

kb NIA1 fragment was sub cloned into the pGmGFP4 vector. This construct was transferred 

to the wild type Arabidopsis plant Col-0 and auxin, ethylene, NR mutant plants by floral dip 

method. Transformed plant were confirmed by PCR and used for further interaction 

studies.  
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2.13.1 Column purification of amplified DNA fragments 

The amplicon (mGFP4, NIA1 2.2 kb promoter and NIA1 2.2 kb promoter with gene) 

obtained by long range PCR was separated on a 1.0 % (w/v) agarose gel. The PCR product 

was column purified with a PCR clean up kit (Sigma) following the manufacturer’s 

instructions. The final concentration of the purified product was checked by resolving in a 

0.8 % (w/v) agarose gel. 

2.13.2 Restriction digestion of insert and vector 

The plasmid DNA (pG0179 and pGmGFP) and purified PCR products (mGFP4, NIA1 2.2 

kb promoter and NIA1 2.2 kb promoter with gene) were digested with restriction enzymes 

to obtain DNA fragments for cloning. Restriction digestion was carried out in 0.5 ml PCR 

tube containing 1-2 µg of plasmids or purified PCR products, 0.1 volume of buffer, 1-2 U 

of restriction enzymes and the volume made up to 20 µl using distilled water. Double 

digestion was performed using buffer in which both enzymes could function at their 

optimal activity. The digestion was carried out at 37
o
C for 2-4 h. 

2.13.3 Extraction of nucleic acid from agarose gel 

Restriction digested plasmids (pG0179 and pGmGFP) and amplified DNA fragments 

(mGFP4, NIA1-2.2 kb promoter and NIA1-2.2 kb promoter with gene) separated by 

electrophoresis were extracted from agarose gel slices using the Qiaquick gel extraction kit 

(Qiagen Ltd, Crawley, West Sussex, UK), according to the manufacturers instructions.  

UV transilluminator was used to visualise DNA bands from agarose gels, which were 

excised using scalpel blades.  
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2.13.4 Ligation 

DNA fragments were ligated into a linearized vector backbone using T4-DNA ligase 

(Sigma, UK) in the supplied ligase buffer, according to the manufacturer’s instructions. 

The ligation was carried out in a 1:3 molar ratio of linearized plasmid and insert for every 

cloning. Reaction mixture was set up consisting of 2 U of T4-DNA ligase, 0.1 volume of 

ligase buffer and the volume made up to 20 µl using distilled water. Reaction was carried 

out in a PCR thermal cycler at 16
o
C overnight. The amount of insert to include in the 

reaction mixture was calculated based on the following equation. 

 

Amount of insert (ng) =                                                              

 

2.13.5 Preparation of E. coli competent cells 

The E. coli strain [DH5α] to be transformed was inoculated into 4 ml LB broth and grown 

overnight. This was used as mother culture for competent cell preparation. 250 μl of the 

mother culture was inoculated into 25 ml of LB broth in a 250 ml flask and grown with 

vigorous shaking at 37°C for about 2 h (OD600 = ~ 0.6).  The culture was transferred to a 

polypropylene tube and chilled on ice for 10 min. The cell suspension was pelleted by 

centrifugation at 5000xg for 10 min at 4°C.  The supernatant was discarded and the cell 

pellet was suspended in ice cold 20 mM CaCl2 (10 ml). The cell suspension was placed on 

ice for 20 min and centrifuged at 5000xg for 10 min at 4°C.  The supernatant was 

discarded completely and the pellet was resuspended in sterile ice cold solution of 20 mM 

CaCl2 (1.0 ml), followed by incubation in ice for 15 min. Competent cells were used 

immediately for transformation. 

Amount of vector (ng) X size of insert (bp) 

 

Size of vector (bp) 

 

Insert: vector 

molar ratio 
X 
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2.13.5.1 Transformation of vector into E. coli  

10 µl of ligation mixture were added to the competent cells and incubated on ice for 30 

min. The cells were then heat shocked for 1 min in a 42°C water bath, and rested 

immediately on ice for 5 min. To this, 1 ml LB broth was added to each tube, and the tubes 

were shaken gently to aerate (150 rpm) at 37°C for 1 h. Aliquots of 100 µl and 200 µl   

from cultures were then spread onto LB agar plates containing the appropriate antibiotics 

for selection of the plasmid. Plates were incubated at 37°C overnight to develop colonies, 

and kept at 4°C for longer term storage. 

2.13.5.2  Blue white screening 

To select the transformed colonies of E. coli carrying the insert DNA (mGFP4) and to 

eliminate the colonies with self-ligated vector, the α-complementation test was carried out 

as described by Sambrook et al. (1989). The XIA plates (X-Gal, IPTG and ampicillin) 

were prepared by spreading 40 µl of 0.1 M IPTG and 40 µl X-Gal  

(20 mg/ml) on LB agar medium containing ampicillin (100 μg/ml). The IPTG and X-Gal 

solutions were spread 30 min before inoculation. Recombinant colonies of E. coli were 

selected randomly from the LB amp plates and short streaked (Fig. 2-5) with a sterile tooth 

pick onto the XIA plates. The plates were wrapped with aluminium foil and incubated at 

37°C for 12-16 h. The plates were stored at 4°C for 6 h to allow full colour development 

and the results were recorded. 
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Figure 2-7: Schematic representation of short streaked plate 

2.13.6 Agrobacterium competent cell preparation  

 A single colony of Agrobacterium tumefaciens strain was streaked onto a fresh LB plate 

with appropriate antibiotics, and incubated for 2 d at 28°C. From this plate, a single colony 

of Agrobacterium was picked and used to inoculate a 5 ml of LB with appropriate 

antibiotics. Cultures were grown overnight at 28°C in a shaking incubator. The next day, 5 

ml of overnight culture were added to 500 ml of LB in a sterile 1000 ml flask and shaken 

vigorously (250 rpm) at 28
o
C until the culture reached an OD600 of 0.5-0.6. Cultures were 

chilled on ice and centrifuged at 3000xg for 5 min at 4
o
C to pellet the cells. The 

supernatant was discarded and cells were washed with 20 ml of ice cold TE (10 mM Tris-

HCl, pH 7.5; 1 mM EDTA, pH 8.0) and then centrifuged at 3000xg for 5 min. The 

supernatant was discarded completely and the pellet was resuspended in 5ml of LB. Finally 

cells were pipetted in 0.1 ml aliquots into ice cold 1.5 ml eppendorf tubes. Competent cells 

were used immediately for transformation.  

1.10.1.1 Transformation into Agrobacterium by freeze-thaw method 

Aliquots of A. tumefaciens competent cells were placed on ice. 500 ng each of plasmid 

construct and pSoup helper plasmid was mixed with the Agrobacterium competent cells, 

the tube was then incubated on ice for 5 min and liquid nitrogen for 5 min. The cells were 

then heat shocked at 37
o
C for 5 min using a water bath, and the tube rested on ice for 2 
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min. After addition of 1 ml LB medium, tubes were agitated for 4 h at 28
o
C to allow cells 

to grow. Aliquots were spread on LB agar plates containing 50 µg/ml Rifampicin, 50 

µg/ml kanamycin and 5 µg/ml tetracycline for vector selection. Plates were incubated at 

28
o
C for two days for colonies to develop. 

2.13.6.1  Glycerol stock preparation 

For long term storage, glycerol stocks were prepared from confirmed transformants of      

E. coli and Agrobacterium. Single colonies from the transformants were inoculated in 5 ml 

LB broth with appropriate antibiotics and allowed to grow overnight in the shaker at 37
o
C 

and 28
o
C. The next day, 500 µl of overnight grown bacterial culture was mixed with 40% 

(v/v) sterile glycerol solution in a 2 ml screw cap tube. Glycerol stocks were stored at -

80
o
C. 

2.13.7 Arabidopsis floral dip transformation 

Plant growth 

Arabidopsis wild type Col-0 and mutant’s were grown to flowering stage in the growth 

champer in 12 h photoperiod at 20
0
C and 60% humidity. Plants were grown in an 

individual pot. 2-3 seeds were showed per pot and allowed to grow for few days, then only 

one healthy seedlings were allowed to grow until flowerescence stage. To obtain more 

floral buds per plant, primary inflorescences were clipped and allowed for 5-8 days to 

produce more secondary inflorescences.     

Pre-culture 

10 ml of LB medium (10 g l
-1

 tryptone, 5 g l
-1

 yeast extract, 10 g l
-1

  NaCl) containing 

kanamycin, rifampicin and tetracycline was inoculated with A. tumefaciens carrying binary 

vectors and incubated at 28°C with vigorous agitation. After 2 days, 500 ml of LB medium 

was inoculated with 5 ml of pre-culture and incubated for a further 24 h at 28°C. The 
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Agrobacterium culture was then pelleted by centrifugation at 1000xg for 10 min at room 

temperature. The pellet was suspended in 500 ml of infiltration medium (1x MS salts 

(Sigma). 1X Gamborg’s B5 vitamins (Sigma), 5% w/v sucrose, 50 µl/L Silwet L-77 (Lehle 

Seeds, Round Rock, Texas, USA)). To prevent soil in pot from falling into infiltration 

medium, pot soil was covered with aluminium foil. Arabidopsis inflorescences with 

unopened floral buds were dipped into the medium and left to soak for 30 s. After dipping, 

plants were sealed in a bag and laid on their side for next 24 h. The covers were then 

removed and the plants rinsed with water and returned to their normal growing conditions. 

Seeds were collected from plants after 4-5 weeks. 

2.13.8 Selection of transformants 

Transformed lines were selected by sowing seeds in the MSR3 plates containing 

hygromycin (section 1.2.2.2 and 1.2.2.3) to select T-DNA insertion. Transformants which 

showed normal root development were then transferred to individual pots containing 

compost. 

2.14 Sequencing 

Plasmid DNA for sequencing was isolated by the mini prep method (Section 2.6.2). All 

sequencing reactions were performed by Eurofins Genomics, Germany. DNA sequence 

data was analysed using BLAST 2 sequencing tool (www.ncbi.nlm.nih.gov/blast/bl2seq). 

  

http://www.ncbi.nlm.nih.gov/blast/bl2seq
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Chapter 3 Role of NO in root growth and gravitropism  

As discussed in the introduction (section 1.3.1), gravitropism plays a crucial role in causing 

plant organs to grow in the correct orientation during the early stage of seed germination. It 

facilitates the roots to grow downwards and the shoots upward. NO plays an important role 

in plant root development, so it is important to understand the role of NO in the important 

phenomenon of gravitropism. To achieve this, the following were investigated. 

 1. The gravitropic response of Wildtype (Col-0) and auxin, ethylene, NR mutants over 

different time intervals. 

 2. The pattern of NO accumulation in the bending zone of wildtype and auxin mutant 

roots. 

 3. The expression of NIA1 gene in seedlings during gravitropism.  

 4. The gravitropic root bending response in Col-0 treated with auxin, ethylene and NO 

donors.   

 Gravitropic response in wild type and mutants 3.1

To examine the gravitropic response in the wildtype (Col-0) and auxin mutants (aux1, axr2 

and axr3), ethylene mutants (ein3-1 and EIN3OX) and NR mutants (nia1, nia2), seeds 

were sown on MSR3 plates and allowed to grow for five days in the growth chamber.  

After five days, plates were turned by 90
o
 vertically and allowed to gravistimulate in the 

dark. Photographs were taken at different times after gravistimulation (2, 4, 6, 8, 10 and  

24 h), and root bending was measured and analysed. 
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3.1.1 Gravitropic response in wild type and auxin mutants (Col-0, aux1, axr2 and 

axr3) 

The effect of gravity on root bending in wildtype and auxin mutants were analysed,            

(Fig. 3-1 A). Col-0 seedling roots responded to gravity and bend towards the gravity 

vector, bending was visible after 2 h of gravistimulation and reached the maximum at 24 h. 

In contrast, auxin mutants aux1, axr2 and axr3 did not respond to the gravistimulation 

(Fig. 3-1 B, C and D). The axr3 seedlings have a much shorter root length as compared to 

aux1, axr2. Even though aux1, axr2 roots did not respond to gravity signals, root coiling 

was observed from the beginning, whereas Col-0 root grows downwards. 
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Figure 3-1: Col-0 Wild type root showed gravitropic bending but not the auxin mutants 

 (Scale bar – 0.5 mm). Col-0 wild type and auxin mutants (aux1, axr2 and axr3) were 

germinated on MSR3 plates in 12 h photoperiod at 20oC and 60% relative humidity. After 5 

days past germination, seedlings were gravistimulated by changing the direction of the 

plate (Horizantal orientation) by 90o. 
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 Visualization of NO during gravitropism 3.2

To observe the location of NO produced in plant roots, a NO-specific dye, DAF-2DA was 

used. This dye will bind with NO and emit fluorescence under the laser confocal 

microscope (excitation; 495 nm and emission; 515 nm). The fluorescence intensity was 

directly proportional to the cumulative amount of NO in the root during the 

gravistimulation. The experiment was designed in such a way to compare the NO synthesis 

and accumulation during gravitropism. To do that a set of seedlings were treated with 

cPTIO (NO scavenger) so that it will remove the already synthesized NO from the root. 

The experiment was done with both cPTIO treated and untreated, gravistimulated and non-

gravistimulated roots. 

3.2.1 Gravistimulation induces asymmetric accumulation of NO in Col-0  

Gravistimulation induced the asymmetric accumulation of NO in the bending zone of the 

Col-0 root (Fig. 3-2 A and B). When the roots were pre-treated with the NO scavenger 

cPTIO and allowed to respond to gravity, the observed level of fluorescence was reduced 

throughout the root compared to cPTIO untreated gravistimulated root. In both cases, 

accumulation of NO was observed in the lower side of the bending region of the root (Fig. 

3-2 B). Whereas in non-gravistimulated root (Fig. 3-2 C) and cPTIO pre-treated non-

gravistimulated root (Fig. 3-2 D) asymmetric accumulation was not found. Equal amounts 

of fluorescence were observed in upper and lower side of the root. These results 

demonstrate that gravistimulation induced synthesis and asymmatric accumulation of NO 

in the lower side of the bending root.   
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Figure 3-2: Gravistimulation induces accumulation of NO in bending zone  

Seeds of Col-0  were germinated and grown in MSR3 plates placed vertically in the growth 

chamber in 12 h photoperiod at 20oC and 60% humidity. After 5 days, the seedlings were 

gravistimulated for 2 h by changing the direction of the plate (Horizantal orientation) by 

90o. For control to remove the initial NO, 100 µM cPTIO was applied on the roots by using a 

micropipette and  incubate at dark for 5 min, then gravistimulated for 2 h. Then 20 µM NO 

specific dye DAF-2DA was applied to the roots and incubated in dark for 20 min further, 

then seedlings were washed three times with fresh MES buffer and samples were observed 

by confocal microscopy for the presence of NO. Confocal images were obtained from root 

tip. Fig. 3-2 A gravistimulated Col-0 root. B, gravistimulated cPTIO pretreated Col-0 root. C, 

non-gravistimulated Col-0 root. D, non-gravistimulated cPTIO pretreated Col-0 root. 

Excitation 495 nm, emission 515 nm, gain- 4.5, exposures- 35 µs (Scale bar, 50.49 µm). 

(n=3). II. Fluorescence intensity/pixel was measured using Fiji image analysis software. All 

data are given as mean± SE; n=5/seedling.   
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3.2.2 aux1 produced ubiquitous amount of NO  

Gravistimulated agravitropic auxin mutant aux1 root showed elevated levels of NO 

fluorescence in the root (Fig. 3-3 A). It did not show asymmetrical accumulation of NO 

upon gravistimulation like Col-0. cPTIO pre-treated gravistimulated root showed reduced 

level of NO (Fig. 3-3 B). Non-gravistimulated aux1 root (Fig. 3-3 C) also showed the 

elevated level of NO fluorescence like aux1 gravistimulated root. Non-gravistimulated 

cPTIO pre-treated root showed reduced level of NO (Fig. 3-3 D). These results 

demonstrate that aux1 mutant root makes more NO at all the times, but NO does not 

accumulate asymmetrically in the lower side of the root in response to gravity.  
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Figure 3-3:  aux1 root showed increased NO.  

Seeds of aux1 were germinated and grown in MSR3 plates placed vertically in the growth 

chamber in 12 h photoperiod at 20oC and 60% humidity. After 5 days, the seedlings were 

gravistimulated for 2 h by changing the direction of the plate (Horizantal orientation) by 

90O. For control to remove the initial NO, 100 µM cPTIO was applied on the roots by using a 

micropipette and  incubate at dark for 5 min, then gravistimulated for 2 h.  then 

gravistimulated for 2 h. Then 20 µM NO specific dye DAF-2DA was applied to the roots and 

incubated in dark for 20 min further. Seedlings were washed three times with fresh MES 

buffer and samples were observed by confocal microscopy for the presence of NO. Fig. 3-3 

A, gravistimulated aux1 root. B, gravistimulated cPTIO pre-treated aux1 root. C, non-

gravistimulated aux1 root. D, non-gravistimulated cPTIO pretreated aux1 root. Excitation 

495 nm, emission 515 nm, gain- 4.5, exposures- 35 µs (Scale bar, 50.49 µm). II. 

Fluorescence intensity/pixel was measured using Fiji image analysis software. All data are 

given as mean± SE; n=5/seedling.   

3.2.3 axr2 auxin mutant makes elevated amount of NO  

Early auxin response mutant axr2 also did not showed any difference in the level of NO 

fluorescence in gravistimulated and non-gravistimulated roots (Fig. 3-4 A and C). Both 

showed elevated level of fluorescence like aux1 mutants. Gravistimulated cPTIO pre-

treated axr2 root showed reduced and equal level of fluorescence in the upper and lower 

side of the root (Fig. 3-4 B), whereas non-gravistimulated, cPTIO pre-treated axr2 root 

showed greatly reduced level of NO fluorescence (Fig. 3-4 D, II). 
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Figure 3-4: axr2 root showed increased level of NO  

Seeds of axr2 was germinated and grown in MSR3 plates placed vertically in the growth 

chamber in 12 h photoperiod at 20oC and 60% relative humidity. After 5 days, the seedlings 

were gravistimulated for 2 h by changing the direction of the plate (Horizantal orientation)  

by 90o. For control to remove the initial NO, 100 µM cPTIO was applied on the roots by 

using a micropipette and  incubate at dark for 5 min, then gravistimulated for 2 h. Then 20 

µM NO specific dye DAF-2DA was applied to the roots and incubated in dark for 20 min 

further. Seedlings were washed three times with fresh MES buffer and samples were 

observed by confocal microscopy for the presence of NO. Fig. 3-4 A, gravistimulated axr2 
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root. B, gravistimulated cPTIO pretreated axr2 root. C, non-gravistimulated axr2 root. D, 

non-gravistimulated cPTIO pretreated axr2 root excitation 495 nm, emission 515 nm, gain- 

4.5, exposures-35 µs (Scale bar, 50.49 µm). II. Fluorescence intensity/pixel was measured 

using Fiji image analysis software. All data are given as mean± SE; n=5/seedling.   

3.2.4 Effect of gravistimulation in auxin mutant axr3 

Gravistimulated axr3 mutant root showed equal levels of NO fluorescence in the upper and 

lower side of root (Fig. 3-5 A). Non-gravistimulated root (Fig. 3-5 C), cPTIO pretreated 

gravistimulated and non-gravistimulated roots (Fig. 3-5 B and D) all showed very low 

levels of fluorescence. 
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Figure 3-5: Confocal images of gravistimulated and non-gravistimulated axr3 root 

Seeds of axr3 were germinated and grown in MSR3 plates placed vertically in the growth 

chamber in 12 h photoperiod at 20oC and 60% humidity. After 5 days, the seedlings were 

gravistimulated for 2 h by changing the direction of the plate (Horizantal orientation) by 

90o. For control to remove the initial NO, 100 µM cPTIO was applied on the roots by using a 

micropipette and  incubate at dark for 5 min, then gravistimulated for 2 h. Then 20 µM NO 

specific dye DAF-2DA was applied to the roots and incubated in dark for 20 min further. 

Seedlings were washed three times with fresh MES buffer and samples were observed by 

confocal microscopy for the presence of NO. Fig. 3-5 A, gravistimulated axr3 root. B, 

gravistimulated cPTIO pretreated axr3 root. C, non-gravistimulated axr3 root. D, non-

gravistimulated cPTIO pretreated axr3 root. excitation 495 nm, emission 515 nm, gain- 4.5, 

exposures- 35 µs (Scale bar, 50.49 µm). II. Fluorescence intensity/pixel was measured using 

Fiji image analysis software. All data are given as mean± SE; n=5/seedling.   

 

 Quantification of NIA1 gene expression during gravitropism 3.3

3.3.1 Isolation of RNA from Arabidopsis root (Col-0) 

Total RNA was isolated from the root tip (I), middle region (II) and hypocotyls region (III) 

of Col-0, aux1 and axr2 seedlings and 3 μg of RNA was electrophoresed in a 1% (w/v) 

agarose gel (Fig. 3-6). Results showed good quality of intact RNA. RNA was quantified by 

measuring the absorbance at 260 nm using a Nanodrop machine. 
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Figure 3-6: Agarose gel electrophoresis of Col-0 RNA samples 

Lanes 1, 4, 7, 10, 13 and 16 represent the RNA from root tips (I), Lanes 2, 5, 8, 11, 14 and 17 

represent the RNA from middle region (II). Lanes 3, 6, 9, 12, 15 and 18 represent the RNA 

from hypocotyls (III). 

3.3.2 cDNA synthesis from Col-0, aux1 and axr2 RNA samples 

cDNA was synthesized from 5 μg of RNA sample (as described in 2.7) with negative 

controls (template control (without RNA) and enzyme control (without RT enzyme). 0.3 

ng of TRAF (Tumor necrosis Receptor Associate Factor) RNA  was mixed with each 

sample during the reverse transcription which was used as an external normalisation 

control. Ten times the product was diluted and used as a template for further PCR 

reactions. 

3.3.3 PCR amplification of NIA1 cDNA sequence from Col-0  

cDNA from root tip, middle region and hypocotyl region of  Col-0 non-gravistimulated 

and gravistimulated (30 min, 1, 2, 4 and 6 h) seedlings was used for the PCR amplification 

of a transcript encoded by the NIA1 gene. Results showed that all the samples were 

positive for the expression of NIA1 gene and gave the expected amplicon size of 150bp 

(Fig. 3-7). 
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Figure 3-7: Agarose gel image of amplification of NIA1 from cDNA of Col-0 

cDNA from the Col-0 root samples were used to check the amplification for NIA1 gene with 

NIA1 primers. Lane M – 100 bp DNA ladder. Lanes 1-3 amplicons of NIA1 transcript from  

Col-0 non-gravistimulated and lanes 4-9 gravistimulated (30 min (4, 5, 6), 1 h (7, 8, 9) ) roots 

(root tip (1, 4, 7), middle region (2, 5, 8) and hypocotyl region (3, 6, 9)).  

 

3.3.4 Quantification of NIA1 transcript by Q-RT-PCR 

To quantify the expression of NIA1 gene transcript in roots during gravitropism, Q-RT-

PCR was performed on total RNA extracted from the root regions (root tip, a middle 

region and hypocotyl region). RNA was extracted from Col-0, aux1 and axr2 non-

gravistimulated and gravistimulated roots. 5 µg of RNA was reverse transcribed with oligo 

dT, and 1 ng TRAF spike (Human Tumour Necrosis Receptor Associating Factor 1) used 

as an internal control. A 10 fold serially diluted M13 pBluescriptSK(+) plasmid was used 

as a standard. Samples were amplified using NIA1 gene specific primers, TRAF primers 

and M13 primers (see Table 2.1). Individual sample expression was normalised against the 

internal TRAF spikes.  
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3.3.4.1 Col-0 root tip shows a gradual increase in NIA1 transcript 2 h after 

gravistimulation 

Gravistimulated Col-0 root tip Q-PCR analysis showed a gradual increase in NIA1 

transcript over the first 2 h, NIA1 transcripts start to increase at 30 min after 

gravistimulation and showed a 3 fold increase at 2 h, where the gravity bending experiment 

also showed root bending at 2 h after gravistimulation (Fig. 3-1). After the initiation of root 

bending, the NIA1 transcript level starts to decrease (4 h) and after 6 h it showed 3.5 fold 

reduction in transcript level. In the elongation zone a similar NIA1 accumulation pattern 

was observed. This result clearly showed the accumulation NIA transcript in response to 

root gravitropism.  

 

 

Figure 3-8: qPCR shows an increase in NIA1 transcript in Col-0 following gravistimulation 

qPCR performed on RNA from Col-0 root tip (I), elongation (II) and hypocotyl regions (III). 

RNA was isolated from the seedlings with the different times of gravistimulation. Samples 

were analysed for the changes in NIA1 transcript level during the gravistimulation. All data 

are given as mean± SE; n=2.  
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3.3.4.2 aux1 root shows reduction of NIA1 transcript in response to gravistimulation 

The aux1 root tip Q-PCR analysis showed non-gravistimulated aux1 root has higher 

amount of NIA1 transcript. At 30 min after gravistimulation, a 2 fold reduction of NIA1 

transcript level was observed but did not show major changes after the initial reduction. In 

contrast, elongation and hypocotyl regions did not show major changes in transcript level. 

In general, 3 fold higher NIA1 transcript levels were observed in the root tip, elongation 

zone and hypocotyl region than Col-0.     

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9: aux1 qPCR shows initial reduction of NIA1 transcript in response to gravity 

qPCR performed on RNA from aux1 root tip (I), elongation (II) and hypocotyl regions (III). 

RNA was isolated from the seedlings with the different times of gravistimulation. Samples 

were analysed for the changes in NIA1 transcript level during the gravistimulation. All data 

are given as mean± SE; n=2. 
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3.3.4.3 axr2 root shows negligible amount of NIA1 expression in response to 

gravistimulation 

3.3.4.4 Gravistimulated axr2 root tip Q-PCR analysis showed reduced amount of NIA1 

gene expression in root tip, where as in elongation zone transcript level was 

increased 5 fold at 30 min then it was decreased.  In hypocotyl region NIA1 

transcript level was increased at  2 h. In general axr2 root tip, elongation and 

hypocotyl region NIA1 transcript level was 100 fold lower than aux1. 

 

 

Figure 3-10: axr2 showed lower levels of NIA1 transcript in root 

qPCR performed on RNA from axr2 root tip (I), elongation (II) and hypocotyl regions (III). 

RNA was isolated from the seedlings with the different times of gravistimulation. Samples 

were analysed for the changes in NIA1 transcript level during the gravistimulation. All data 

are given as mean± SE; n=2. 
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3.3.5 Roots of NR mutant nia1 bend more slower than nia2 and Col-0  

To investigate the importance of NR genes in root bending following gravistimulation, root 

bending was compared in nia1, nia2 and Col-0 seedlings. nia1 roots showed slower root 

bending than nia2, and both nia1 and nia2 showed much slower bending compared to Col-

0 (Fig. 3-11 A). Bending in Col-0 visible 2 h after gravistimulation, whereas in nia1 and 

nia2 bending visible only after 4 h (Fig. 3-11 B). Two-way ANOVA analysis results (Fig. 

3-11 A) (Appendix 1) showed that Col-0, nia1 and nia2 were significantly different from 

each other’s in terms of over all root bending, also root bending was significantly inteact 

during the course of time. All Pairwise comparison (Table 6) was carried out for each 

simple main effect to check exactly which time point Col-0, nia1 and nia2 were 

significantly different from each other. Col-0 and nia1 was significantly different at all-

time points. nia1 and nia2 were only significantly different at 2, 8 10 and 24 h, and they 

are not significantly different at  4 and 6 h. Col-0 and nia2 was significantly different at 2, 

4, 6, 8 and 24 h except 10 h. Statistical analysis by linear mixed model also showed 

significant level of difference in gravity bending between Col-0 and nia1 (Fig. 3-12), Col-0 

and nia2 (Fig. 3-13) and nia1 and nia2 (Fig. 3-14), (Appendix 2 to 4). 

Table 6: Pairwise comparition between Col-0, nia1 and nia2  

Plant type Over all 2hr 4hr 6hr 8hr 10hr 24hr 

Col-0 vs nia1 * * * * * * * 

nia1 vs nia2 * * - - * * * 

Col-0 vs nia2  * * * * * - * 

*- significantly different;   -  not significantly different. 
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Figure 3-11. Pair wise comparision of root bending in Col-0, nia1 and nia2 

Over all root bending between Col-0 and nia1 (I), Col-0 and nia2 (II), nia1 and nia2 (III) were compared. Col-0, nia1 and nia2 were significantly 

different  from each other in terms of root bending. All data are the mean of n=4 replicates ±SE.   
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Figure 3-12: Overall root bending graph for Col-0, nia1 and nia2 

A two-way ANOVA was conducted to explore the difference between sample type (Col-0, 

nia1 and nia2) and impact of time (2, 4, 6, 8, 10 and 24 h) on gravity bending. Normality 

was assessed using Shapiro-Wilks test, samples were normally distributed (p > 0.05). There 

was a statistically significant interaction between sample type and time interval on root 

bending F (10, 54) = 14.169, p = 0.0005. There was a statistically significant difference in 

main effect for sample type F (2, 54) = 224.782, p = 0.0005 and overall time F (5, 54) 

=429.712, p = 0.0005.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13: The nia1 showed slower bending compared to the roots of Col-0 and nia2 

Col-0 wild type and nia1 seedlings were grown in MSR3 plates under a 12 h photoperiod at 

20oC and 60% relative humidity. After 5 d seedlings were gravistimulated by changing the 

direction of the plate (Horizantal orientation) by 90o. Photographs were taken at different 

time intervals, root curvature was measured. All data are the mean of n=4 replicates ±SE.  
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Figure 3-14: Comparison of root bending between Col-0 and nia1  

Root bending between Col-0 and nia1 was analysed statistically by Linear mixed-effects model. Curvature versus time for the 8 samples 1-4 are Col-0, 

5-8 are nia1. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that nia1 roots bend slower 

that Col-0 and showed significant difference between Col-0 and nia1 in terms of gravity bending. p˂0.05. A and B raw data, C-fitted plot. 
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Figure 3-15: Comparison of root bending between Col-0 and nia2 

Root bending between Col-0 and nia2 was analysed statistically by Linear mixed-effects model. Curvature versus time for the 8 samples 1-4 are Col-0, 

5-8 are nia2. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that nia2 roots showed lesser 

bending than Col-0 and showed significant difference between Col-0 and nia2 in terms of gravity bending. p˂0.05. A and B raw data, C-fitted plot. 
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Figure 3-16: Comparison of root bending between nia1 and nia2 

Root bending between nia1 and nia2 were analysed statistically by Linear mixed-effects model. Curvature versus time for the 8 samples 1-4 are nia1, 

5-8 are nia2. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that nia2 roots bends slower 

than nia1. This model showed significant difference between these two plants in terms of gravity bending. p˂0.05 nia1 n=4, nia2 n=4. A and B raw 

data, C-fitted plot. 
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3.3.6 Ethylene mutant showed slower root bending than Col-0 

To investigate the role of ethylene in root bending following gravistimulation, root bending 

was compared in ethylene mutants (ein3-1 and EIN3Ox) and Col-0. Results showed both 

the ethylene mutants have a slower root bending than Col-0 (Fig. 3-15 A). When 

comparing the root bending between the mutants, ethylene over-expressing mutant 

EIN3Ox root showed slower and reduced root bending than ethylene insensitive mutant 

ein3-1. EIN3Ox mutant takes more than six hours to initiate root bending, hence the root 

bending starts around 8 h after gravistimulation, whereas in ein3-1 mutant root bending 

started just 4 h after gravistimulation. Two-way ANOVA analysis results (Appendix 5) 

showed that Col-0, ein3-1 and EIN3Ox were significantly different from each other’s in 

terms of overall root bending, also root bending was significantly inteact during the course 

of time. All Pairwise comparison (Table 7) was carried out for each simple main effect to 

check exactly which time point Col-0, ein3-1 and EIN3Ox significantly different from each 

other. Col-0 and ein3-1 was significantly different at 2, 4, 6, 8 h not differ at 10 & 24 h. 

ein3-1 and ein30x was significantly different at 4, 8, 10, 24 h. Col-0 and EIN3Ox was 

significantly different at all time points. Statistical analysis using a linear mixed effect 

model also showed a significant difference in bending between Col-0 and ein3-1 (Fig. 3-

16), Col-0 and EIN3Ox (Fig. 3-17) and ein3-1 and EIN3Ox (Fig. 3-18), (Appendix 6 to 8). 

Table 7: Pairwise comparition between Col-0, ein3-1 and EIN30X 

Plant type Over all 2hr 4hr 6hr 8hr 10hr 24hr 

Col-0 vs ein3-1 * * * * * - - 

ein3-1 vs EIN30X * - * * * * * 

Col-0 vs EIN30X * * * * * * * 

*- significantly different;   -  not significantly different. 
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Figure 3-17. Pair wise comparision of root bending in Col-0, ein3-1 and EIN3Ox 

Over all root bending between Col-0 and ein3-1 (I), Col-0 and EIN3Ox (II), ein3-1 and EIN3Ox (III) were compared. Col-0, ein3-1 and EIN3Ox were 

significantly different  from each other in terms of root bending. All data are the mean of n=4 replicates ±SE.   
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Figure 3-18: Overall root bending graph for Col-0, ein3-1 and EIN30X 

A two-way ANOVA was conducted to explore the difference between sample type (Col-0, 

ein3-1 and EIN30X) and impact of time (2, 4, 6, 8, 10 and 24 h) on gravity bending. 

Normality was assessed using Shapiro wilks test, samples were normally distributed (p > 

0.05). There was a statistically significant interaction between sample type and time 

interval on root bending F (10, 42) = 11.34, p = 0.0005. There was a statistically significant 

difference in main effect for sample type F (2, 42) = 353.233, p = 0.0005 and overall time F 

(5, 42) =278.723, p = 0.0005.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-19: The roots of EIN3Ox showed slower bending than the roots of Col-0 and ein3-1 

The ein3-1 and EIN3Ox seedlings were grown in MSR3 plates in 12 h photoperiod at 20oC 

and 60% relative humidity. After 5 d seedlings were gravistimulated by changing the 

direction of the plate (Horizantal orientation) by 90o. Photographs were taken at different 

time intervals, root curvature was measured. All data are the mean of n=3 replicates ±SE.  
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Figure 3-20: Comparison of root bending between Col-0 and ein3-1  

Root bending between Col-0 and ein3-1 were analysed statistically by Linear mixed-effects model. Curvature versus time for the 7 samples 1-4 are 

Col-0, 5-7 are ein3-1. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that ein3-1 roots bend 

slower than Col-0. This model showed significant difference between these two plants in terms of gravity bending. p˂0.05. A and B raw data, C-fitted 

plot 
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Figure 3-21: Comparison of root bending between Col-0 and EIN3Ox  

Root bending between Col-0 and EIN3Ox were analysed statistically by Linear mixed-effects model. Curvature versus time for the 7 samples 1-4 are 

Col-0, 5-7 are EIN3Ox. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that EIN3Ox roots 

bend slower than Col-0. This model showed significant difference between these two plants in terms of gravity bending. p˂0.05. A and B raw data, C-

fitted plot  
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Figure 3-22:  Comparison of root bending between ein3-1 and EIN3Ox 

Root bending between ein3-1and ein3ox were analysed statistically by Linear mixed-effects model. Curvature versus time for the 6 samples 1-3 are 

ein3-1, 5-7 are EIN3Ox. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that EIN3Ox roots 

bend slower than ein3-1. This model showed significant difference between these two plants in terms of gravity bending. p˂0.05. A and B raw data, 

C-fitted plot 
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Figure 3-23: Comparison of root bending between nia1 and ein3-1  

Root bending between ein3-1 and nia1were analysed statistically by Linear mixed-effects model. Curvature versus time for the 7 samples 1-4 are 

nia1, 5-7 are ein3-1. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that ein3-1 roots bend 

slower than nia1 initially, but later bending was faster than nia1. This model showed significant difference between these two plants in terms of 

gravity bending. p˂0.05 A and B raw data, C-fitted plot 

  

A B C 



 

85 

 

 

 

 

 

 

Figure 3-24: Comparison of root bending between nia1 and EIN3Ox  

Root bending between ein3-1 and ein3ox were analysed statistically by Linear mixed-effects model. Curvature versus time for the 7 samples 1-4 

are nia1, 5-7 are EIN3Ox. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that EIN3Ox 

roots bend slower than nia1. This model showed significant difference between these two plants in terms of gravity bending. p˂0.05. A and B 

raw data, C-fitted plot 
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 Effect of exogenous application of hormone in gravitropism 3.4

3.4.1 NAA increases the rate of gravitropic bending in Col-0 

To investigate the effect of auxin during gravitropism, Col-0 seedlings root were pre-

treated with 0.1 µM of membrane permeable auxin NAA, NAA was applied on the root by 

micro-pipette, and then seedlings were subjected to gravistimulation. Photographs were 

taken at different time intervals (2, 4, 6, 8, 24 h).  In this experiment the root bending was 

measured in Col-0, Col-0 pre-treated with the NO scavenger cPTIO, Col-0 pre-treated with 

NAA and Col-0 pre-treated with cPTIO and NAA. The results (Fig. 3-21 B) showed 

gravity induced root bending in Col-0, with a rate of bending that was increased in 

response to time. Bending starts at 2 h after the gravistimulation and reaches 90
o
 around 24 

h. Removal of NO by cPTIO reduced the root bending but did not completely inhibit, 

suggest that NO is not required to initiate root bending, but increases the rate of root 

bending. Following external application of 0.1 µm NAA, root bending was not observed at 

2 h, but the root started to bend around 4 h and was increased at 6 h compared to control 

after gravistimulation. Application of NAA after removing the initial endogenous NO by 

cPTIO led to greater degree of root bending compared to treatment with cPTIO alone. 

Roots that had been treated with NAA produced more root hairs (Fig. 3-25 A) in the 

bending region.  

 

 

 

 

 

Figure 3-25 A: Application of NAA produced more root hairs in bending zone. 

@2hr @24h
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Table 8: Pairwise wise comparison for Col-0 treated with NAA, cPTIO and NAA+cPTIO  

 

*- significantly different;   -  not significantly different. 

Two-way ANOVA analysis results (Fig. 3-21 B) (Appendix 11) showed that Col-0, Col-0 

treated with NAA, Col-0 treated with cPTIO and Col-0 treated with NAA and cPTIO were 

significantly different from each other’s in terms of overall root bending, also root bending 

was significantly inteact at certain time poins. All Pairwise comparison (Table 8) was carried 

out for each simple main effect to check exactly which time point Col-0, NAA treated, cPTIO 

treated and both cPTIO and NAA treated significantly different from each other. Col-0 

significantly different from cPTIO treated and both cPTIO and NAA treated, but not 

different from NAA treated alone. cPTIO treated is significantly different from NAA treated 

but not different from both cPTIO and NAA treated, NAA treated is not significantly 

different from both cPTIO and NAA treated. At 2 h all pairs were significantly different.   At 

4 h none of the pairs were significantly different. At 6 h cPTIO treated was significantly 

different from NAA treated. At 8 h NAA treated was significantly different from Col-0, cPTIO 

treated, and both NAA and cPTIO treated. At 24 h Col-0 was significantly different from 

cPTIO treated, all other pairs were not significantly different. Linear mixed effect model 

analysis also showed significant differences in gravity bending among the treatments (Fig. 

3-22), (Appendix 12). 

 

 

 

 

 

 

 

 

 

 

 

Treatment pairwise @2 h @4 h @6 h @8 h @24 h 

Col-0 vs cPTIO treated * * - - - * 

Col-0 vs NAA treated - * - - * - 

Col-0 vs cPTIO+NAA treated * * - - - - 

cPTIO treated vs NAA treated  * * - * * - 

cPTIO treated vs  cPTIO+NAA 

treated 

- * - - - - 

NAA treated vs  cPTIO+NAA treated - * - - * - 
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Figure 3-26 B: Overall root bending graph for Col-0 treated with NAA, cPTIO and 

NAA+cPTIO 

A two-way ANOVA was conducted to explore the difference between treatments (Col-

0(control), cPTIO treated, NAA treated, cPTIO+NAA treated samples) and impact of time (2, 

4, 6, 8, 10 and 24 h) treatment on gravity bending. Normality was assessed using Shapiro 

wilks test, samples were normally distributed (p > 0.05). There was a statistically significant 

interaction between treatment and time interval on root bending F (12, 60) = 9.288, p = 

0.0005. There was a statistically significant difference in main effect for treatment F (3, 60) 

= 14.517, p = 0.0005 and overall time F (4, 60) =264.411, p = 0.0005.  

 

 

 

 

 

 

 

 

 

 

Figure 3-27: External application of NAA increased the root bending  

Col-0 seedlings were germinated and grown in MSR3 plates in 12 h photoperiod at 20oC and 

60% relative humidity. Five days after germination, roots were incubated with 0.1 µM NAA, 

and then seedlings were gravistimulated by changing the direction of the plate (Horizantal 

orientation) by 90o. Photographs were taken at time intervals and root curvature was  

measured.  All data are the mean ±SE of n=4 replicates. 
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Figure 3-28: Analysis of the effect of externally applied NAA on root gravitropism  

Effect of external application of NAA on Col-0 root gravitropic bending in the presence and absence of NO scavenger cPTIO were analysed 

statistically by Linear mixed-effects model. Curvature versus time for the 16 samples 1-4 are Col-0, 5-8 Col-0+NAA 9-12 are Col-0+cPTIO 13-

16 are Col-0+cPTIO+NAA. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that 

significant difference in root bending in the cPTIO applied Col-0, NAA applied Col-0 and both cPTIO and NAA applied Col-0 seedlings. A-raw 

data, B-fitted plot. 
 

A B 



 

90 

 

3.4.2 ACC increases the root gravitropic response 

To investigate the effect of ethylene during gravitropism, seedlings root were treated with 

25 µM of the ethylene precursor ACC and then subjected to gravistimulation. ACC was 

applied on the root by micro-pipette, and then seedlings were subjected to gravistimulation.  

Photographs were taken at time intervals (2, 4, 6, 8, 24 h). In this experiment the root 

bending curvature was measured in Col-0, Col-0 pre-treated with cPTIO, Col-0 pre-treated 

with ACC and Col-0 pre-treated with cPTIO and ACC. The results (Fig. 3-23 A & B) 

showed that roots treated with ACC did not start bending at 2 h, but increased the root 

bending around 4 h and subsequently slowed down at 6, 8, 24 h. External application of 

ACC reduced the most of root bending, whereas application of ACC after removing the 

initial endogenous NO using cPTIO showed increased root bending compared to wildtype 

treatment with cPTIO alone or with ACC alone (except at 24 h). These results showed that 

application of both cPTIO and ACC increased root bending (except at 24 h). This suggests 

that in the presence of NO, ethylene negatively regulates root gravitropism, whereas in the 

absence of NO, ethylene positively regulates gravitropism.  
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Table 9: Pairwise wise comparison for Col-0 treated with ACC, cPTIO and ACC+cPTIO  

*- significantly different;   -  not significantly different. 

 

Two-way ANOVA analysis results (Appendix 13) showed that Col-0, Col-0 treated with ACC, 

Col-0 treated with cPTIO and Col-0 treated with both ACC and cPTIO were significantly 

different from each other’s in terms of overall root bending, also root bending was 

significantly inteact at certain time poins. All Pairwise comparison was carried out for each 

simple main effect to check exactly which time point Col-0, ACC treated, cPTIO treated and 

both cPTIO and ACC treated significantly different from each other. Col-0 significantly 

different from cPTIO treated, ACC treated and both cPTIO and NAA treated. But cPTIO 

treated was not different from ACC treated and both ACC and cPTIO treated. ACC treated 

was significantly different from both ACC and cPTIO treated. At 2 h all pairs were 

significantly different. At 4 h cPTIO treated was significantly different from ACC treated 

and both ACC and cPTIO treated. At 6 h and 8 h only cPTIO treated was significantly 

different from ACC treated, both ACC and cPTIO treated. At 24 h Col-0 was significantly 

different from cPTIO treated, ACC treated, and both ACC and cPTIO treated. Linear mixed 

effect model analysis also showed significant difference in gravity bending among the 

treatments (Fig. 3-24), (Appendix 14). 

 

  

Treatment overall @2 h @4 h @6 h @8 h @24 h 

Col-0 vs cPTIO treated * * - - - * 

Col-0 vs ACC treated * * - - - * 

Col-0 vs cPTIO+ACC treated * * - - - * 

cPTIO treated vs ACC treated  - * * - - - 

cPTIO treated vs  cPTIO+ACC treated - * * * * - 

ACC treated vs  cPTIO+ACC treated * * - - - - 



 

92 

 

0

20

40

60

80

100

120

2 h 4 h 6 h 8 h 24 h

Col-0

ACC

cPTIO

ACC+cPTIO

 

 

 

 

 
 

 

 

 

Figure 3-29: Overall root bending graph for Col-0 treated with ACC, cPTIO and 

ACC+cPTIO 

A two-way ANOVA was conducted to explore the difference between treatments (Col-
0(control), cPTIO treated, ACC treated, cPTIO+ACC treated samples) and impact of time (2, 
4, 6, 8, 10 and 24 h) treatment on gravity bending. Normality was assessed using Shapiro 
wilks test, samples were normally distributed (p > 0.05). There was a statistically 
significant interaction between treatment and time interval on root bending F (12, 60) = 
8.818, p = 0.0005. There was a statistically significant difference in main effect for 
treatment F (3, 60) = 15.689, p = 0.0005 and overall time F (4, 60) =179.246, p = 0.0005. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-30: External application of ACC alone slows root bending. However in the presence 

of NO scavenger cPTIO, ACC increases the root gravitropic response 

Col-0 seedlings were germinated and grown in MSR3 plates in 12 h photoperiod at 20oC and 

60% relative humidity. Five days after germination, roots were incubated with 25 µM ACC, 

and then seedlings were gravistimulated by changing the direction of the plate (Horizantal 

orientation) by 90o. Photographs were taken at time intervals and root curvature was  

measured. All data are the mean ±SE of n=4 replicates. 
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Figure 3-31: Analysis of the effect of externally applied ACC on root gravitropism  

Effect of external application of ACC on Col-0 root gravitropic bending in the presence and absence of NO scavenger cPTIO were analysed 

statistically by Linear mixed-effects model. Curvature versus time for the 16 samples 1-4 are Col-0, 5-8 Col-0+ACC 9-12 are Col-0+cPTIO 13-

16 are Col-0+cPTIO+ACC. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that 

significant difference in root bending in the cPTIO applied Col-0, ACC applied Col-0 and both cPTIO and ACC applied Col-0 seedlings. A-raw 

data, B-fitted plot. 
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3.4.3 The NO donor SNAP increases the root gravitropic response 

To investigate the effect of NO during gravitropism, seedlings roots were treated with the 

50 µM of NO donor SNAP. SNAP was applied on the root by micro-pipette, and then 

seedlings were subjected to gravistimulation.  Photographs were taken at time intervals (2, 

4, 6, 8, 24 h).  External application of 50 µm SNAP increased the degree of root bending 

during gravistimulation (Fig. 3-25). Initially NO increases root bending (4, 6, 8 h) and then 

decrease root bending (at 24 h). Application of SNAP after removing the initial 

endogenous NO by using cPTIO showed faster root bending compared to roots treated 

with cPTIO alone. but slower than roots treated with SNAP alone.  

Table 10: Pairwise wise comparison for Col-0 treated with SNAP, cPTIO and SNAP+cPTIO 

*- significantly different;   -  not significantly different. 

Two-way ANOVA analysis results (Appendix 15) showed that Col-0, Col-0 treated with 

SNAP, Col-0 treated with cPTIO and Col-0 treated with both SNAP and cPTIO were 

significantly different from each other’s in terms of overall root bending, also root bending 

was significantly inteact at certain time poins. All Pairwise comparison was carried out for 

each simple main effect to check exactly which time point Col-0, SNAP treated, cPTIO 

treated and both cPTIO and SNAP treated significantly different from each other. Col-0 

significantly different from cPTIO treated, SNAP treated but not different from both cPTIO 

and SNAP treated. cPTIO treated was significantly different from SNAP treated and both 

SNAP and cPTIO treated. SNAP treated was not significantly different from both SNAP and 

cPTIO treated. At 2 h Col-0 significantly different from cPTIO treated and both SNAP and 

cPTIO treated. At 4 h Col-0 significantly different from cPTIO treated and SNAP treated 

alone. But not different from both SNAP and cPTIO treated. cPTIO treated was significantly 

different from SNAP treated and both SNAP and cPTIO treated. At 6 h and 8 h Col-0 is 

significantly different from SNAP treated and both SNAP and cPTIO treated but not in cPTIO 

Treatment overall @2 h @4 h @6 h @8 h @24 h 

Col-0 vs cPTIO treated * * * - - * 

Col-0 vs SNAP treated * - * * * - 

Col-0 vs cPTIO+SNAP treated - * - * * - 

cPTIO treated vs SNAP treated  * - * * * - 

cPTIO treated vs  cPTIO+SNAP treated * - * * * - 

SNAP treated vs  cPTIO+SNAP treated - - - - - - 
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alone treated, cPTIO treated is significantly different from SNAP treated alone and both 

cPTIO and SNAP treated, SNAP treated is not different from both cPTIO and SNAP treated.  

At 24 h Col-0 was significantly different from cPTIO treated, all other pairs were not 

significantly different. Linear mixed effect model analysis also showed significant difference 

in gravity bending among the treatments (Fig 3-26), (Appendix 16). 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3-32: Overall root bending graph for Col-0 treated with SNAP, cPTIO and 

SNAP+cPTIO 

A two-way ANOVA was conducted to explore the difference between treatments (Col-0 

(control), cPTIO treated, SNAP treated, cPTIO+SNAP treated samples) and impact of time (2, 

4, 6, 8, 10 and 24 h) treatment on gravity bending. Normality was assessed using Shapiro 

wilks test, samples were normally distributed (p > 0.05). There was a statistically significant 

interaction between treatment and time interval on root bending F (12, 60) = 6.198, p = 

0.0005. There was a statistically significant difference in main effect for treatment F (3, 60) 

= 15.282, p = 0.0005 and overall time F (4, 60) =271.156, p = 0.0005.  
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Figure 3-33: External application of NO donor SNAP increases the degree of root bending 

Col-0 seedlings were germinated and grown in MSR3 plates in 12 h photoperiod at 20oC and 

60% relative humidity. Five days after germination, roots were incubated with 50 µM SNAP 

and then seedlings were gravistimulated by changing the direction of the plate (Horizantal 

orientation) by 90o. Photographs were taken at time intervals and root curvature was 

measured. All data are the mean ± SE of n=4 replicates. 
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Figure 3-34: Analysis of the effect of externally applied ACC on root gravitropism  

Effect of external application of ACC on Col-0 root gravitropic bending in the presence and absence of NO scavenger cPTIO were analysed 

statistically by Linear mixed-effects model. Curvature versus time for the 16 samples 1-4 are Col-0, 5-8 Col-0+SNAP 9-12 are Col-0+cPTIO 13-

16 are Col-0+cPTIO+SNAP. The fitted relationships are shown from the minimum adequate mixed-effect model. These demonstrate that 

significant difference in root bending in the cPTIO applied Col-0, ACC applied Col-0 and both cPTIO and ACC applied Col-0 seedlings. A-raw 

data, B-fitted plot 
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 Discussion 3.5

Roots are a vital part of the plant since these aid the uptake of water and nutrients from the 

soil, as well as providing anchorage to the plant. A full understanding of the developmental 

and signalling mechanism of the root will help us to improve the yield and biotic and 

abiotic stress tolerance in plants by modifying the genetic makeup of the plant. 

Nitric oxide plays many important physiological roles in the plant development. It also 

interacts with the other plant hormones like auxin, ethylene and abscisic acid. Through 

understanding of the exact mechanism of nitric oxide signalling and interaction,  

understanding of its role in the plant root development can be improved.  

3.5.1 Defects in auxin transport signal affects gravity sensing and response 

Gravistimulation experiments clearly showed Col-0 roots respond to gravity and start to 

bend upon receiving the gravity signals. Bending was visible to the naked eye after around 

2 h, and reached nearly 90
o
 angle around 24 h after gravistimulation. As expected (Bennett 

et al., 1996; Timpte et al., 1994; Leyser et al., 1996) roots of the auxin mutants aux1 

(auxin transport mutant), axr2, and axr3 (auxin signalling mutant) did not respond to 

gravity signals. The axr3 root was short and slow growing as compared to aux1 and axr2. 

axr3 root also did not respond to gravitropic signals. Non-gravity response of auxin 

mutants aux1, axr2 and axr3 were already reported by Marchant et al., 1999; Wilson et al., 

1990; Leyser et al., 1996, present study result also supports that mutation in auxin 

signalling severely affects the gravity sensing and response. Other than the agravitropic 

phenotype, aux1 and axr2 roots were coiled during the early growth period. This 

experiment suggests that aux1 and axr2 roots also do bend continuously to make a root 

coil, and this root bending is not related to gravity, and the direction of bending was very 

random. Also, the time required for each coiling was unknown. This coiling in the auxin 
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mutant raises questions about the role of auxin in root bending. Ethylene-induced root 

coiling has been demonstrated in tomato seedlings by Woods et al. (1994), who also 

reported an increased number of coils with increased ethylene concentration. However they 

failed to induce root coiling in the agravitropic mutant dgt, even at a higher ethylene 

concentration. They concluded that the coiling of roots is not related to gravitropism. dgt  

is less sensitive to auxin. They also found no root coiling in dgt in the absence of ethylene. 

In the experiments reported here, agravitropic auxin mutants exhibited root coiling. This 

may be because a defect in auxin transport/synthesis induces root coiling or it increases 

endogenous ethylene levels. 

3.5.2 Gravitropism induces asymmetric accumulation of NO 

Detection of NO using confocal microscopy showed gravistimulation induces the 

asymmetric accumulation of NO in the lower side of the bending zone of Col-0 roots. 

Gravity induced asymmetric accumulation of NO in the lower side of the bending zone of 

the root has been demonstrated by Hu et al. (2005) in maize and soybean root. Non-

gravitropic auxin mutants aux1, axr2 and axr3 did not show asymmetric accumulation of 

NO in the bending zone, but aux1 and axr2 showed elevated level of NO in both 

gravistimulated and non-gravistimulated roots, whereas axr3 did not produce much NO in 

their roots. This study suggests that defects in auxin transport, signalling or response affect 

NO synthesis during gravitropism and there is a strong interaction between nitric oxide 

signalling and auxin signalling in plant roots. Hu et al. (2005) also suggest that auxin 

induces the asymmetric accumulation of nitric oxide. current experiments showed gravity 

induced the accumulation of NO in the lower side of Arabidopsis root.  

3.5.3 NIA1 transcript levels increase during gravistimulation 

Nitrate reductase (NR) mediated NO synthesis occurs in roots (Kolbert and Erdei, 2008). 

Amplification of NIA1 transcript from the mRNA of gravistimulated and non-
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gravistimulated Col-0 root samples demonstrated the expression of NIA1 gene in the root 

tip, middle region of roots. These results suggest that the NIA1 gene is expressed in all the 

parts of the root. Expression of the NIA1 gene in the non-gravistimulated root revealed that 

NO is not only involved in the gravitropic response, it is likely to have other basic 

physiological roles in the development of roots. Few example, Pagnussat et al. (2002) 

demonstrated that NO induces adventitious root formation in cucumber.  

Q-PCR results from non-gravistimulated and gravistimulated Col-0 root tips showed a 

gradual increase in the NIA1 transcript level of about 3 fold after 2 h of gravistimilation. 

Confocal experiments also showed asymmetric accumulation of NO in the lower side of 

the Col-0 root at 2 h after gravistimulation. This increased NO accumulation initiates 

gravitropic root bending at 2 h. After initiating bending, the NIA1 transcript level 

gradually decreased 3.5 fold after 6 h. Taken together these result support the involvement 

of NIA1-mediated NO synthesis during gravitropic root bending. 

The aux1 root tip contains higher levels of NIA1 transcript than Col-0 at 0 h, NIA1 

transcript was attenuated two fold at 30 min and remaining constant till 24 h. Elongation 

and hypocotyl root zones did not show much change in response to gravity. aux1 NO 

levels were higher at all times than in Col-0 and aux1 seedlings produced 3 fold more 

NIA1 transcript than Col-0. In contrast, in axr2 the level of NIA1 transcript was 100 fold 

lower than aux1. At the same time, axr2 root confocal images showed equal fluorescence 

to aux1 root, which suggests that there is a weak correlation between the transcript level 

and the protein level. There is a possibility that a low level of mRNA is more preferentially 

translated to an abundant level of functional protein, or the protein has increased stability 

or a reduced rate of degradation or greater activity in axr2 than in aux1.   
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3.5.4 NIA1 is involved in gravity mediated root bending 

The degree of root bending in gravistimulated Col-0, nia1 and nia2 Arabidopsis seedlings 

were measured and analysed. The results showed nia1 seedling bend more slowly in 

response to gravity than Col-0 and nia2. Results from confocal and QPCR also 

demonstrate the NIA1 mediated NO role in gravity bending. 

3.5.5 Ethylene response reduces degree of root bending  

The degree of root bending in gravistimulated Col-0, ein3-1 and EIN3OX was investigated. 

Ethylene insensitive mutant ein3-1 showed reduced root bending than wild type, whereas 

the ein3 over producing transgenic line EIN3OX showed severely reduced root bending 

and slower gravity response. Ethylene insensitivity and ethylene response lines showed a 

similar effect, reduced root bending compared to Col-0, but the intensity of gravity 

bending was was very less incase of EIN3OX.  

3.5.6 Externally applied NAA, SNAP increase root bending but not ACC  

To determine the effect of auxin, NO and ethylene on gravity bending, curvature of roots 

after application of NAA, SNAP and ACC was analysed. Application of NAA and SNAP 

increased root bending, whereas ACC decreased the root bending. However the application 

of ACC after removing the NO increased the gravity bending. Buer et al. (2006) also 

reported that the external application of the ethylene precursor ACC to Col-0 seedlings 

reduced the root elongation and gravitropic curvature. The current experiment also showed 

external application of ACC reduced the gravitropic curvature. These results suggest that 

in the presence of NO, ethylene negatively regulates the gravity stimulated bending and in 

the absence of NO, ethylene positively regulates the root bending.  

The aim of the next chapter is to make a NIA1 transcriptional and translational reporter 

construct with mGFP4 reporter gene to study the expression pattern and subcellular 
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localization of NIA1 gene in Arabidopsis wild type and mutant seedlings in response to 

gravity.
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Chapter 4   Transgenic approach to investigate NIA1 gene expression 

Nitric oxide (NO) plays numerous physiological and developmental roles in plants. NO is 

synthesized in both an enzymatic and non-enzymatic way. In Arabidopsis, nitrate reductase 

(NR) activity is one of the enzymatic sources. This enzyme is encoded by two isoform 

genes namely Nia1 and Nia2. Studies by Kolbert et al. (2008) showed that NR genes are 

the main source of NO for lateral root development. Of these two isoforms, NIA1 plays the 

most significant role in NO synthesis (Wilson et al., 2008). Experiments in guard cells 

have shown the importance of the NIA1-mediated NO response during stomatal closure. 

Most studies the localization of NO in plants is detected by treating the samples with the 

cell-permeable dye DAF-2DA, which binds NO and is then visualized using a fluorescence 

microscope. Experiments by Planchet and Kaiser (2006) questioned the specificity of 

DAF-2DA fluorescence for NO and suggested that other DAF reactive compounds may be 

present in cells. Another way to understand the expression pattern and localization of 

individual genes is by making reporter constucts in transgenic plants. Transcriptional and 

translational fusion of NIA1-mGFP4 reporter construct was made to study the expression 

pattern, localization of NO and its interaction with other plant hormones auxin and 

ethylene. 

To achieve this aim, the following cloning work was carried out and presented in this 

chapter. 

1. Cloning of the CaMV35S-mGFP4 construct  

2. Cloning of mGFP4 gene in frame with 2.2 kb NIA1 promoter and 2.2 kb 

NIA1 promoter with 3.5 kb gene. 

3. Floral tip transformation of these constructs with Arabidopsis wild type, 

auxin, ethylene and NR mutants.  

4. Analysis of the transgenic plants to detect expression of the mGFP4 gene. 
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4.1 Making of 35S-mGFP4 construct  

4.1.1 Transformation of pGreen35S-mGFP4 plasmid into competent cells of E. coli 

pGreen plasmid DNA containing the 35S-mGFP4 cassette (Fig. 4-1) was received from 

John Innescentre (Norwich, UK). Plasmid DNA was diluted 1/100 times and 2 µl was used 

to transform competent cells of E. coli, DH5α. Transformed colonies were short streaked 

(See Fig. 2-5 in M&M) on LB ampicillin plates. Plasmid DNA was isolated from a single 

colony of transformed E. coli grown in LB ampicillin broth. Quantification of plasmid was 

done by measuring the absorbance at 260 nm using a Nanodrop. 

 

 

 

 

Figure 4-1: 35S mGFP4 cassette from pGreen 35S-GFP plasmid  

The mGFP4 gene shown here in the cassette was a modified GFP developed by Haseloff et 

al. (1997). While expressing the wild type GFP from jellyfish (Aequorea victoria) in A. 

thaliana, GFP coding sequence was cleaved, because sequence of GFP is similar to the plant 

introns recognition site. These cryptic introns in the wild type GFP was removed by codon 

usage and successfully expressed in the model plant Arabidopsis. 

 

 

 

 

 

 

 

 

 

 

EcoRV 

Sca I (1373) 
EcoRV (1) 

CaMV35S-mGFP4 



 

105 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Restriction digestion to release 35S-mGFP4 fragment 

2 µg of pGreen 35S-mGFP4 plasmid were digested with 20 U of EcoRV - HFTM enzyme at 

37oC for 1 h and then digested products were separated in 0.8% (w/v) agarose gel. The 

CaMV35S-mGFP4 band was purified using QIAquick Gel Extraction Kit (Qiagen) for further 

cloning.  Lane 1, HyperLadder-1 (Bioline); lane 2, blank;  lane 3, EcoRV digested PGreen 35S-

mGFP4 Plasmid showed the cleaved cassette. 

 

4.1.2 Cloning of pGreen35S-mGFP4 cassette into pG0179 Vector 

pGreen 35S-mGFP4 plasmid DNA was digested with EcoRV and the cleaved product 

separated by 0.8% (w/v) agarose gel electrophoresis. The 1400 bp 35S-mGFP4 cassette 

and plasmid backbone can be seen in (Fig. 4-2).  

The 35S-mGFP4 fragment was purified from the gel and then ligated with pG0179 vector 

digested with EcoRV (1:1 molar ratio). 10 µl of ligated product was transformed into DH5-

α E. coli competent cells by the heat shock method and spread onto LB Kan X-Gal-IPTG 

plates for blue white screening. Recombinant colonies appeared white, whereas non- 

recombinant formed blue colonies. White colonies were selected and short streaked on LB 

Kanamycin plates.  
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4.1.3 Selection of E. coli transformants harbouring pG35S-mGFP4 

4.1.3.1 Screening of E. coli transformants by colony PCR 

The presence of the 35S-mGFP4 cassette in pG0179 plasmid in the recombinant E. coli 

colonies was confirmed by colony PCR using forward and reverse  primers specific to the 

mGFP4 gene. Agarose gel electrophoresis showed amplification of the expected size of 

mGFP4 (Fig. 4-3).  

 

. 

 

 

 

 

 

Figure 4-3: Colony PCR confirming the presence of 35S-mGFP4 cassette in pG0179. 

A small amount of each single E. coli transformant colonies suspended in 15 µl of sterile 

water was used as a template for PCR to confirm the insertion of 35S-mGFP4 fragment in 

pG0179 vector. PCR was performed by using the Taq DNA polymerase in the presence of 

dNTPs using mGFP4 screening primers at 540C annealing temp. Lane1, HyperLadder 1; 2, 

lane (2-5), recombinant colonies; lane 6, positive control (35S-mGFP4 plasmid). 

4.1.3.2 Isolation of transformant plasmid for restriction analysis  

Plasmid DNA was isolated from the PCR positive colonies of E. coli grown in LB 

Kanamycin broth. Plasmid concentration was determined by measuring the absorbance at 

260 nm using a Nanodrop. 

4.1.3.3 Restriction analysis pG35S-mGFP4 

One of the recombinant clones was named as pG35S-mGFP4. The recombinant plasmid, 

pG35S-mGFP4 (Fig. 4-4) on restriction digestion with EcoRV released fragments of the 

expected size, viz., ~1.4 kb (35S-mGFP4) and ~5.1 kb (vector) (Fig. 4-4).  
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Figure 4-4: Restriction digestion confirming the presence of 35S-mGFP4 cassette in pG35S-

mGFP4  

Plasmid DNA (0.3 µg) isolated from pG35S-mGFP4 clone was digested with 10 U of EcoRV- 

HFTM restriction enzyme at 370C for 1 h. Cleaved product separated in a 0.8% (w/v) agarose 

gel shows the presence of the 1.4 kb 35S-mGFP4 in pG0179 vector. Lane 1, HyperLadder 1; 

lane 2, pG35S-mGFP4 plasmid digested with EcoRV; lane 3, undigested plasmid as a control. 
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Figure 4-5: Schematic representation of NIA1 locus and mGFP4 reporter construct 

A) The structure of NIA1 locus in chromosome 1 (Sequence id: CP002684.1). B & C) Graphical representation of NIA1pro-mGFP4 and NIA1pro-NIA1-

mGFP4 constructs.  Numbers represents nucleotide position relative to the translational start codon 
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4.2 Making pGmGFP4 (pG0179+mGFP4) construct 

4.2.1 Cloning of mGFP4 gene into the pG0179 Plasmid  

4.2.1.1 Amplification of mGFP4 from pGreen 35S-mGFP4 plasmid 

pGreen 35S-mGFP4 plasmid was used as a template for amplification of the 

mGFP4 gene fragment to use in future constructs. The mGFP4 gene of about 717bp was 

amplified by PCR, using a set of forward and reverse primers (Table 2-2). The forward 

primer (mGFP FP) and reverse primer (mGFP RN) introduce PstI and NotI sites at 5’and 

3’ ends of the product respectively. An intact band of 717 bp was amplified from the 

plasmid with mGFP FP and mGFP RN primers by PCR (Fig. 4-6). 

 

 

       

  

 

 

 

 

Figure 4-6: PCR amplification of mGFP4 gene  

10 ng of pG35S-mGFP4 plasmid was used as a template for the amplification of the mGFP4 

coding sequence. The mGFP4 gene was amplified by using Qiagen Longrange polymerase 

with mGFP FP & mGFP RN primers annealed at 54oC. These forward and reverse primers 

introduce Pst1 and Not1 restriction sites for further cloning. Amplification was verified by 

gel electrophoresis and visualized under UV light. Lane 1, HyperLadder 1 (Bioline); lane 2&3, 

blank; lane 4, mGFP4 amplicon. 

4.2.1.2 Restriction digestion of mGFP4 gene fragment with Pst1 and Not1 

The PCR amplified mGFP4 gene fragment was excised from the gel and eluted using a 

Sigma gel purification kit. The  resulting product was quantified using the Nanodrop and   
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1 µg of the mGFP4 gene fragment was used for further digestion with Pst1 and Not1 

together. Restriction digestion was carried out at 37
o
C for 1 h. The product was separated 

in a 0.8% (w/v) agarose gel (Fig. 4-9 A) then the digested gene fragment was excised from 

the gel and purified by the Sigma gel purification kit.  

4.2.1.3 Restriction digestion pG0179 plasmid with Pst1 and Not1 

The pG0179 plasmid (1 µg) was digested with Pst1 and Not1 together. Restriction 

digestion was carried out at 37
o
C for 1 h and the  product was loaded on an  0.8% (w/v) 

agarose gel (Fig. 4-7 B). Digested plasmid was excised from the gel and purified by the 

Sigma gel purification kit.    

      A B 

  

 

 

 

  

 

 

Figure 4-7: Linearised fragment of mGFP4 gene (A) and pG0179 vector (B). 

2 µg of PCR amplified, purified mGFP4 gene and 1 µg pG0179 vector was double digested 

with 20 U of Pst1- HFTM and Not1- HFTM restriction enzymes at 37oC for 1 h. Digested 

fragments were separated by gel electrophoresis and the band was excised from the gel 

and purified by QIAquick Gel Extraction Kit (Qiagen) and used for ligation. Lane 1, Hyper 

Ladder 1 (Bioline); lane 2, blank; lane 3, mGFP4/pG0179 digested with Pst1 and Not1. 

4.2.1.4 Cloning of mGFP4 into pG0179 Vector 

Quantification of Pst1 and Not1 digested and purified mGFP4 gene (insert) and pG0179 

vector was performed  by comparing with a known concentration of HyperLadder I (Fig. 

4-8). A 1:3 insert:vector molar ratio was used for the ligation. Ligation was carried out at 

 1        2        3             

1000 bp 
717 bp 

mGFP4 

 1        2      3             

1000 bp 

5100 bp 

pG0179 

10000 bp 



 

111 

 

  1    2    3                  

1000 bp 

717 bp 

 

5100 bp 

 

16
o
C overnight. 10 µl of ligated product was transformed into E. coli competent cells by 

the heat shock method and spread onto LB Kanamycin X-Gal-IPTG plates. White colonies 

were selected and short streaked on LB Kanamycin plates.  

 

 

 

 

 

 

 

Figure 4-8: Gel to determine the concentration of insert and vector 

2 µl of purified mGFP4 (insert) and (pG0179) vector were separated by agarose gel 

electrophoresis and visualized under UV light. The concentration was determined in 

comparison with the known concentration of hyperlader and also by Nanodrop. Lane 1, 

HyperLadder1 (Bioline); Lane 2, mGFP4 ; Lane 3, pG0179. 
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4.2.1.5 Confirmation of pGmGFP4  in E. coli transformants by colony PCR 

Cloning of mGFP4 in the pG0179 vector was confirmed by colony PCR with mGFP 

forward and reverse screening primers. Agarose gel (Fig. 4-9) showed amplification of a 

band of the expected size for  mGFP4. 

 

 

 

 

 

 

 

 

Figure 4-9: Colony PCR confirms pGmGFP4 construct. 

Small amounts of each single E. coli recombinant colonies were diluted in 15 µl of sterile 

water and used as template to confirm the insertion of mGFP4 gene in pG0179 vector. PCR 

was performed by using the Taq DNA polymerase in the presence of dNTPs with the help of 

set of mGFP screening primers at 54oC annealing temp. Lane 1, HyperLadder1 (Bioline); lane 

2-6, transformant colonies; Lane 7, Positive control 35S-GFP4 Plasmid. 
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4.2.1.6 Restriction analysis of recombinant plasmid pGmGFP4 

Plasmid DNA was isolated and quantified from the PCR positive white colonies of E. coli 

grown in LB Kanamycin broth. The selected recombinant clone was named as pGmGFP4. 

The recombinant plasmid pGmGFP4 was double digested with Pst1 and Not1 and released 

the expected fragments of 717 bp (mGFP4) and 5.1 kb (vector) (Fig. 4-10).  

 

 

 

 

  

 

 

 

 

Figure 4-10: Restriction digestion confirms the insertion of the mGFP4 gene in pG0179. 

Plasmid DNA was isolated from one of the PCR positive E. coli colonies and then digested 

with Pst1-HFTM and Not1-HFTM restriction enzyme. Release of a 717 bp band shows the 

presence of mGFP4 gene in the pG0179 plasmid. This plasmid was named as pGmGFP4. 

Lane1, HyperLadder1(Bioline); lane 2, pGmGFP4 digested with Pst1 and Not1; lane 3, 

undigested pGmGFP plasmid. 
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4.3 Making NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4  

4.3.1 Amplification of 2.2 kb NIA1 promoter and 2.2 kb promoter with 3.5 kb NIA1 

gene 

The 2.2 kb NIA1 promoter alone and promoter with its 3.5 kb gene were amplified from 

bacterial artificial chromosome (BAC) T32E7. Nia1P FK and Nia1P RP primers (Table 2-

2) were used for the amplification of the 2.2 kb NIA1 promoter region. Nia1P FK and 

Nia1R P primers were used for the amplification of the 5.7 kb fragment of promoter and 

gene. The forward primer (Nia1P FK) and reverse primer (Nia1P RP & Nia1RP) introduce 

Kpn1 and PstI sites at 5’and 3’ ends of produts respectively. The amplified PCR product 

was checked by agarose gel electrophoresis (Fig. 4-11). The band was excised from the gel 

and purified for further cloning. 

 

 

 

  

 

 

 

Figure 4-11: PCR amplification of 2.2 kb NIA1  promoter and 2.2 kb NIA1 promoter with 3.5 

kb NIA1 gene. 

T32E7 BAC clone was used as a template to amplify the 2.2 kb NIA1 promoter fragment 

alone and 2.2 kb promoter with NIA1 gene (2.2 kb promoter and 3.5 kb gene = 5.7 kb). In 

order to amplify the larger PCR product, a two step PCR programme was used. The long 

range PCR (Qiagen) high fidelity Taq DNA polymerase was used to avoid amplification 

errors. PCR amplification was carried out in the presence of dNTPs , Q-solution and MgCl2 at 

540C annealing temp and an increased extension time (2 min for promoter and 6 min for 

promoter and gene). The PCR products were then separated by agarose gel electrophoresis 

and visualized under UV light. Lane 1, HyperLadder1(Bioline); lane 2, 2.2 kb NIA1 promoter 

amplicon; lane 3, (5.7 kb) 2.2 kb NIA1 promoter with 3.5 kb NIA1 gene amplicon; lane 4,   

blank
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4.3.2 Restriction digestion of 2.2 kb NIA1 promoter and 2.2 kb promoter with 3.5 

kb NIA1 gene fragment with Kpn1 and Pst1. 

Amplified PCR product of 2.2 kb NIA1 promoter and 2.2 kb NIA1 promoter with 3.5 kb 

gene fragment was excised from the gel and purified. The resulting product was quantified 

using the Nanodrop and 2 ug of each gene fragment was used for digestion with Kpn1 and 

Pst1 restriction enzymes. Restriction digestion was carried out at 37
0
C for 1 h. The 

digested product was loaded in the 0.8% (w/v) agarose gel (Fig. 4-12 A&B) then the gene 

fragment was excised from the gel and eluted using the Sigma gel purification kit.  

                                                                                     

  

 

 

  

 

 

 

Figure 4-12: Restriction digestion of 2.2 kb NIA1 promoter (A) and 2.2 kb NIA1 promoter 

with 3.5 kb NIA1 gene amplicon (B) with Kpn1 and Pst1. 

2 µg of PCR amplified and purified 2.2 kb NIA1 promoter and 2.2 kb NIA1 promoter with 3.5 

kb NIA1 gene fragments was digested with Kpn1-HFTM and Pst1-HFTM restriction enzymes at 

37oC for 1 h. Digested products were separated by agarose gel electrophoresis and further 

purified and ligated with Kpn1-HFTM and Pst1-HFTM digested pGmGFP4 vector. Lane 1- 

HyperLadder1(Bioline); lane 2, blank; lane 3- 2.2 kb NIA1 promoter/2.2 kb NIA1 promoter 

with 3.5 kb NIA1 gene. 

4.3.3 Cloning of 2.2 kb promoter and 2.2 kb promoter with 3.5 kb gene into 

pGmGFP4 

Quantification of Kpn1 and Pst1 digested and purified NIA1 promoter, NIA1 promoter 

with gene (insert) and pGmGFP4 vector was done with the Nanodrop. A 1:3 insert vector 

molar ratio was used for the ligation. Ligation was carried out at 16
o
C overnight. 10 µl of 
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ligated product was transformed into E. coli competent cells by heat shock method and 

spread onto LB Kanamycin plates. Transformed colonies were confirmed by colony PCR. 

4.3.4 Restriction analysis of recombinant plasmid NIA1pro-mGFP4 

Plasmid DNA was isolated from the PCR positive colony of E. coli grown in LB 

Kanamycin broth. Quantification of the plasmid was done using the Nanodrop. The 

selected recombinant clone was named as NIA1pro-mGFP4. The recombinant plasmid 

NIA1pro-mGFP4 was digested with Kpn1 and Pst1 (Fig. 4-13: lane 2), Pst1 and Not1 (Fig. 

4-13: lane 3), to release the expected fragments of 2243 bp (NIA1 promoter) and ~5.1 kb 

(vector), 7.1 kb (promoter+vector) and 717 bp mGFP4 respectively. 

 

 

 

 

 

 

 

 

Figure 4-13: Restriction digestion confirmation of NIA1pro-mGFP4. 

0.5 µg of plasmid DNA isolated from a NIA1pro-mGFP4 transformant was digested with 

different enzyme combinations to verify the construct. Digestion was carried out at 370C for 

1 h. Upon digestion the products were separated by agarose gel electrophoresis. Lane 1, 

Hyperladder1 (Bioline); lane 2, NIA1pro-mGFP4 plasmid digested with Kpn1 and Pst1; lane 

3, NIA1pro-mGFP4 Plasmid digested with Pst1 & Not1; lane 4, undigested NIA1pro-mGFP4. 

 

4.3.5 Restriction analysis of recombinant plasmid NIA1pro-NIA1-mGFP4 

Plasmid DNA was isolated from the PCR positive colonies of E. coli grown in LB+Kan 

broth. Quantification of plasmid was done by Nanodrop. The recombinant clone was 

named as NIA1pro-NIA1-mGFP4. The recombinant plasmid NIA1pro-NIA1-mGFP4 was 
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digested with Kpn1 and Pst1 (Fig. 4-14 lane 2), Pst1 and Not1 (Fig. 4-14 lane 3), released 

the expected fragments size of 5.7 kb (NIA1 promoter and gene) and ~5.1 kb (vector), 10.6 

kb (promoter+gene+ vector) and 717 bp mGFP4 respectively. 

 

 

 

 

 

 

 

Figure 4-14: Restriction digestion confirmation of NIA1pro-NIA1-mGFP4 

0.5 µg of Plasmid DNA isolated from NIA1pro-NIA1-mGFP4 transformant was digested with 

different enzyme combination to verify the construct. Digestion was carried out at 370C for 

1 h. Upon digestion product was separated by agarose gel electrophoresis. Kpn1 and Pst1 

enzyme was used to release the 5.7 kb NIA1 promoter and gene and Pst1 & Not1 was used 

to release the mGFP4 gene. Above gel shows the release of correct size of the product 

corresponding to the enzyme digestion. Lane 1, Hyperladder1; lane 2, NIA1pro-NIA1-

mGFP4 plasmid digested with Kpn1 and Pst1 (released approximately equal size of NIA1 

promoter+gene (5.7 kb) and vector (5. kb)); lane 3, NIA1pro-NIA1-mGFP4 Plasmid digested 

with Pst1 & Not1; lane 4, undigested NIA1pro-NIA1-mGFP4. 

 

4.4 Transformation of pG35SmGFP4, NIA1pro-mGFP4 and NIA1pro-

NIA1-mGFP4 constructs into Agrobacterium strain 

0.5 µg of each construct (pG35SmGFP4, NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4) 

was transformed into the three separate lot of Agrobacterium competent cells with the help 

of helper plasmid pSoup by a freeze and thaw method (Weigel and Glazebrook, 2006). 

Cells were spread on LB Rif+Kan+Tet plates after 3 h incubation at 28
o
C. Recombinant 

colonies were developed after 48 h incubation at 28
o
C. Transformed colonies were further 

confirmed by colony PCR.  
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4.5 Making transgenic plants expressing GFP driven by NIA1  

Arabidopsis wild type (Col-0), auxin mutants aux1 and axr2, ethylene mutants ein3-1 and 

EIN3OX and NR gene mutants nia1 and nia2 were transformed by the floral dip method. 

During the unopened flowerbud stage the inforescence was dipped into the transformation 

media containing Agrobacterium carrying the NIA1pro-mGFP4 and NIA1pro-NIA1-

mGFP4 construct. To make a control, the 35S-mGFP4 construct was transformed into the 

WT plant Col-0. Seeds from these plants were collected and transformed plants were 

selected by allowing them to grow on plates containing ½ MS media with 30 µg/ml of 

hygromycin. The T-DNA contains the hygromycin resistance gene, so the transformed 

plants containing the cassette  grow normally and produce roots and shoots. In contrast, 

wild type plants failed to grow on the hygromycin plate. Once the transformed seeds had 

produced healthy plants with long roots (Fig. 4-15), they were transferred to soil and 

grown to produce seeds for further analysis. 

 

 

 

 

 

 

 

Figure 4-15: Selection of promising transgenic lines.  

T0 seeds were surface sterilized and germinated on an MSR3 plate containing 30 mg/ml 

hygromycin in a 12 h photoperiod at 20oC and 60% relative humidity. Hygromycin resistant 

seedlings (red arrows) were transferred to soil. 
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4.6 Confirmation of transgenic plants by PCR 

Genomic DNA from young leaves of transgenic plants were isolated and quality of the 

DNA was analysed by agarose gel electrophoresis (Fig. 4-16). After the hygromycin 

selection, presence of construct in the transgenic line was confirmed by PCR using mGFP4 

screening primers. 10 ng of plant genomic DNA was used as a template to verify 

transgenic plants. PCR results showed the presence of 717 bp mGFP4 gene fragments in 

transgenic plants (Fig. 4-17) and further confirmed by sequencing. 

 

 

 

 

 

Figure 4-16: Plant genomic DNA isolated from transgenic plants. 

Total plant genomic DNA was isolated from the leaves of transgenic plants, and 2 µl was 

loaded in the agarose gel and visualized under UV to check the quality of the DNA. Lane 1, 

HyperLadder1 (Bioline); lanes 2-17, genomic DNA samples. 

 

 

 

 

 

 

 

 

Figure 4-17: Transgenic plants showed the presence of mGFP4 gene. 

Genomic DNA isolated from transgenic plants was used as a template for PCR. mGFP4 

screening primers were used to check the presence of mGFP4 in the transgenic plants. PCR 

result showed all the transgenic lines harbouring the mGFP4 reporter constructs.  

Lane1, HyperLadder1 (Bioline); lane 2-7, transgenic plants. Image showed here is the 

representative image of transgenic plants screening. 
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4.7 Screening for single copy transgenic lines by inverse PCR 

For each construct, a single copy insertion transgenic line was selected by performing 

inverse PCR. Total genomic DNA from the young leaves of transgenic plants were isolated 

and digested with Kpn1-HF
TM

 restriction enzyme, which cleaved one position in the         

T-DNA region and another one will be somewhere in the unknown plant genomic region  

(Fig. 4-18). Restriction digested DNA fragments were ligated by T4-DNA ligase; this 

circularised the cleaved DNA fragments. Primers were designed in the known T-DNA 

region (forward primer in the 5’ end of mGFP4 region and reverse primer in the 3’ region 

of the 2.2 kb promoter) and used to amplify the unknown genomic region. Sequencing of 

this PCR product showed the insertion region. A single copy insertion line gave a single 

PCR band in the agarose gel electrophoresis. The size of the PCR products being amplified 

from the circularised T-DNA will vary, because the cleavage site of Kpn1 in the plant 

genome is depending upon where T-DNA integrates. To amplify the unknown size of the 

product, Qiagen long range PCR polymerase was used, as it allows the amplification of 

PCR product up to 40 kb in length. The PCR product was run through a 1.5% (w/v) 

agarose gel (Fig. 4-19). Wild type plant DNA digested with Kpn1 was used as a control for 

a PCR which did not give any amplification. 

 

To determine the location of the T-DNA insertion in the independent lines, the PCR 

fragment was excised and purified using QIAquick Gel Extraction Kit (Qiagen) and 

sequenced. This sequence was analysed through NCBI BLAST. The final analysed result 

will showed the insertion region of the T-DNA. These single copy lines were used for 

further studies. 
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Figure 4-18: Schematic representation of inverse PCR steps to find the single copy insertion line. 

First transgenic plant total genomic DNA was digested with Kpn1-HF restriction enzyme and then the digested product was circularised by using T4-

DNA ligase. Primers in the known T-DNA region were used to amplify the circularised template by long range PCR. FP, forward primer; RP, reverse 

primer; RB, right border.  
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Figure 4-19: Gel electrophoresis to detect single copy insertion lines. 

10 µl ligated and circularised Kpn1-digested genomic DNA of transgenic lines was used as a 

template to select single-copy-insertion lines. Long range PCR was used to amplify the 

unknown length of the PCR fragment. Lanes 2, 3, 4 and 5 showed random circularised 

fragments like the WT control (lane 9). Lanes 6 and 7 showed amplified single copy PCR 

fragments. These band was excised from the gel and used for sequencing. 

 

Gel electrophoresis (Fig. 4-19) showed amplification in lanes 6 and 7 from Col-0 

harbouring NIA1Pro-NIA1-mGFP4 transgenic line 2. The amplified fragment (~2 kb) 

from lanes 6 and 7 was purified from the gel and sent for sequencing. All other lanes 

showed a similar pattern of fragments to the WT control. These fragments are random 

circularised DNA fragments from the plant genome. Sequence analysis from Col-0 

NIA1Pro-NIA1-mGFP4 transgenic line 2 revealed that T-DNA is located in chromosome 5 

at position 24,250,885 (Appendix 12). 
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4.8 Discussion 

Cloning a gene of interest, in-frame with the GFP reporter gene is a useful tool to  

understand the role of the gene in a biological process as well as its detailed spatial and 

temporal gene expression profile, and the subcellular localization of the corresponding 

protein (Zhou et al., 2011). In order to find out the role and function of the NIA1 gene in 

gravitropism, the NIA1-mGFP4 reporter construct was made. The wild type Col-0, auxin 

mutants (aux1, axr2 and axr3), NR mutants (nia1, and nia2), ethylene mutants ein3-1 and 

ethylene transgenic line EIN3OX were transformed with NIA1pro-mGFP4 and NIA1pro-

NIA1-mGFP4 constructs. In addition Col-0 was transformed with the pG0179 containing 

35S-mGFP4, which can be utilized as a positive control. Transgenic efficiency varied 

among mutants, Col-0, auxin and ethylene mutant showed low transgenic efficiency, 

whereas the NR mutant harbouring NIA1pro-NIA1-mGFP4 constructs produced high 

transformation efficiency (data not shown). Lower transformation efficiency may be due to 

NO toxicity. 

T0 plants were allowed to self and produce T1 seeds. Further homozygous T1 transgenic 

lines were selected by germinating them on an MSR3 plate containing 30 mg/ml 

hygromycin. This is the optimal concentration of hygromycin to decrease the hypocotyl 

length, produce cholorotic tiny leaves and no root growth in non-transformant plants (Ee et 

al., 2014). Plants containing the construct produced healthy roots and leaves, whereas the 

growth of non-transformants was inhibited. A transgenic line with a single copy number 

was selected based on inverse PCR (Fig. 4-20, 4-21). Insertional position was identified by 

further sequencing (Appendix 12).  
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Chapter 5 Optimization of mGFP4 expression in transgenic plants   

In the previous chapter, the cloning of 35S-mGFP4, mGFP4 in-frame with the NIA1 

promoter and NIA1 promoter along with the NIA1 gene was described, together with  

transformation of these cassettes into the WT, NR, auxin and ethylene mutants. Successful 

integration of these cassettes into the plant genome was confirmed by PCR and inverse 

PCR followed by sequencing.      

GFP has been used as a reporter system in many animal cells and plant species, but while 

expressing in Arabidopsis wild-type GFP failed to express, because Arabidopsis recognises 

sequence in the coding region of WT-GFP as a plant intron and undergoes inappropriate 

splicing (Haseloff et al., 1997). Wild-type GFP requires a strong promoter and low 

incubation temperature. whereas modified GFP (mGFP) requires higher temperature for 

fluorescence. GFP protein is highly stable after chromophore maturation and the 

fluorescence was unaffected up to 65
0
C (Ward and Bokman, 1982). After expression of 

GFP it has to undergo folding followed by cyclisation, oxidation and dehydration to 

become a fully functional fluorescence protein (Craggs, 2009). These processes together 

are called maturation. 

ABA and H2O2  have been shown to induce NIA1-mediated NO synthesis in stomatal guard 

cells. Hence to optimize the expression of mGFP4, experiments were carried out in ABA 

and H2O2 treated stomatal guard cells. The results from these experiments are discussed in 

this chapter. 
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5.1 Expression of 35S driven mGFP4 in transgenic plants 

In order to examine the expression of mGFP4 in transformed plants, roots and stomatal 

peels of Col-0 harbouring the 35S-mGFP4 construct along with the negative control were 

observed by confocal microscopy. Roots showed bright mGFP4 fluroscence, and leaf peels 

(Fig. 5-1 A&D) showed fluorescence throughout, especially in the guard cells. Images 

were compared with WT Col-0 plants (Fig. 5-1 B&E). Bright fluorescence from the 35S-

mGFP4 indicates the successful expression of mGFP4 under the control of the CaMV35S 

promoter. Quantitative measurement of mGFP4 total fluoresence was carried out using Fiji 

image analysis software and the results showed the difference in fluorescence level 

between the root and stomata in the Col-0:35S-mGFP4 and WT plants. Insignificant auto 

fluorescence was observed in the Col-0 WT plant.  

 

 

 

 

 

 

 

 

 

Figure 5-1: Expression of 35S-driven mGFP4 in roots and stomata of Col-0. 

Five day old WT seedlings and transformants harbouring 35S-mGFP4 were used to observe 

the functional expression of mGFP4. Transgenic plant root (A) and young leaf peel (D) 

showed bright fluorescence compared to the WT Col-0 root (B) and leaf peel (E). Imaging 

conditions (excitation, 475 nm; emission, 510 nm; gain, 4.5; exposure, 35 µs) were identical 

for all the plants in the experiments. Graph C and F showed the difference in the 

fluorescence intensity (measured by Fiji image analysis software) between the transgenic 

and control plants (n=3). 
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5.2 Optimization of time and temperature for mGFP4 expression in 

transgenic lines 

5.2.1 mGFP4 did not fluorescence at 25
o
C after 4 h of incubation 

In order to find the temperature and time required for optimal mGFP4 expression, 

fluorescence was measured in ABA-treated (section 2.5) stomata at 25
o
C in both light and 

dark conditions. After 4 h of incubation samples were observed using the confocal 

microscopy, but no expression of mGFP4 was detected in Col-0 harbouring NIA1pro-

mGFP4 and NIA1pro-NIA1-mGFP4 (Fig. 5-2 I); in both the transgenic lines, stomata look 

similar to WT Col-0, only auto fluorescence in stomatal pore was visible. (due to lack of 

control at 25
o
C, images were compared to control at 37

o
C in Fig. 5-2 II).  

5.2.2 mGFP4 expression starts at 37
o
C after 4 h of incubation 

ABA treated samples were incubated  at 37
o
C for 4 h in light and dark environments were 

imaged using the confocal microscopy,  WT Col-0 showed auto-fluorescence from the cell 

wall of the stomatal pore, whereas, Col-0 harbouring NIA1pro-mGFP4 (Light and dark 

incubated) and NIA1pro-NIA1-mGFP4 (Light incubated) stomatal guard cells showed 

some mGFP4 fluorescence in the guard cells (Fig. 5-2 II).  

 

 

 

 



 

127 

 

Dark 

Treatment at 25
o
C for 4 h 

Light  

Col-0  

NIA1pro-mGFP4 

Col-0  

NIA1pro-NIA1mGFP4 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: mGFP4 was not visible after 4 h at 25
o
C, but visible at 37

o
C 

Epidermal fragments from Col-0 harbouring NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 stomata were treated with 150 µM ABA and then incubated 

at 25 oC and 37oC in both light and dark conditions. samples were observed after 4 h of incubation. Imaging conditions (excitation 475 nm; emission 

510 nm; gain, 4.5; exposures, 35 µs) were identical for all the plants in the experiments. The images displayed here were from representative samples 

(n=3). 
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5.2.3 Bright mGFP4 fluorescence was observed at 37
o
C after 6 and 10 h of 

incubation 

After observing the initiation of mGFP4 expression in stomatal guard cells after 4 h, 

samples were further incubated up to 10 h and visualized using the confocal microscopy. 

Col-0 harbouring NIA1pro-mGFP4 guard cells showed NIA1-promoter-mediated mGFP4 

fluorescence in both light and dark incubated samples, but the sample incubated in the light 

showed brighter fluorescence than the sample incubated in the dark (Fig. 5-4). In contrast,  

Col-0 guard cells harbouring NIA1pro-NIA1-mGFP4 showed NIA1-promoter and gene 

mediated mGFP4 expression only in the light incubated sample. In the case of nia1 

harbouring NIA1pro-NIA1-mGFP4, mGFP4 fluorescence was observed in both dark and 

light after 6 h of incubation. The sample incubated in light showed brighter fluorescence 

than the sample incubated in the dark. 
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Figure 5-2: mGFP4 fluorescence found after longer incubation at 37
o
C 

Epidermal fragments from Col-0 and nia1 harbouring NIA1pro-mGFP4 and NIA1pro-NIA1-

mGFP4 stomata were treated with 150 µM ABA and incubated at 37oC in both light and 

dark conditions. Samples were observed after 6 h and 10 h of incubation. Imaging 

conditions (excitation 475 nm; emission 510 nm; gain, 4.5; exposure, 35 µs) were identical 

for all the plants in the experiments. The images displayed here were from representative 

samples (n=3). 

5.3 Expression of mGFP4 in transgenic root 

To demonstrate NIA1- promoter and gene mediated mGFP4 expression in roots, Col-0 

transgenic seedlings harbouring NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 were 

incubated with 100 µM H2O2 (section 2.6) and then gravistimulated for 6 h. After 6 h, 

roots were observed using laser scanning confocal microscopy (Fig. 5-5). In both the 

transgenic lines, roots showed bright fluorescence compared to control (Col-0) roots. 

These images represent the expression of NIA1-promoter and NIA1-promoter and gene 

mediated mGFP4 fluorescence during gravitropism. mGFP4 fluorescence was observed in 

the lower side of the root, which shows gravity induces the expression of nia1 gene in the 

lower side of the root. 
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Figure 5-3: mGFP4 fluorescence in root induced by gravitropism 

Col-0 seedlings harbouring NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 were pre-treated 

with 100 µM of H2O2 and then gravistimulated for 6 h. After 6 h, roots were mounted on 

slides and images were taken. Transgenic seedling roots showed bright mGFP4 

fluorescence. All the images were taken at identical settings (excitation 475 nm; emission 

510 nm; gain, 4.5; exposure, 35 µs). The images displayed here were from representative 

samples (n=3). 

5.4 Discussion 

Reporter proteins are useful to monitor cellular events in plants and other organisms. In the 

past, two important reporter proteins, beta-glucuronidase (GUS) and luciferase (LUC) were 

used extensively in plants, but they do have limitations. They need an additional substrate 

to express inside the biological system, and they are not suitable to test primary 

transformant seedlings because of the destructive nature of the assay. The green 

fluorescent protein (GFP) from Aequorea victoria is being widely used as a standard 

reporter system in both animal and plant systems. GFP does not require an exogenous 

substrate and can be used in living cells. Wild-type GFP was successfully expressed in 

tobacco (dicot), and some monocot plants, but when expressed in Arabidopsis thaliana 

GFP failed to fluorescence. This is because the wild-type GFP mRNA undergoes abberant 

splicing within its coding sequence, due to a sequence similarity to the plant intron splice 

site. This splicing limits the use of  wild type GFP in Arabidopsis plants. The cryptic intron 

of the wildtype GFP was modified by altering the codon, and then named as mGFP4 

(modified GFP4) (Haseloff et al., 1997). Arabidopsis callus expressing mGFP4 showed a 

brighter green fluorescence using a handheld 100 W long-wavelength UV lamp and also 

showed a major peak of fluorescence at 395 nm (excitation) and 509 nm (emission) in the 

confocal microscopy (Haseloff et al., 1997). Therefore mGFP4 was used in this 

investigation. 
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The cauliflower mosaic virus promoter (CaMV35S) is one of the widely used constitutive 

promoters in plant transformation. Stable integration of 35S gene fused upstream of  a 

GUS reporter gene into the plant chromosome showed GUS expression in all the cells 

(Jefferson et al., 1987).   Dutt et al. (2014) reported expression of 35S promoter is species 

specific with diverse levels of expression found in strawberry, tomato and petunia plants. 

In the present study, mGFP4 driven by CaMV35S was constitutively expressed in root and 

leaf cells of transformed Col-0 plants.  

Hu et al. (2006) have already demonstrated the asymmetric accumulation of NO in 

soybean and maize root and Desikan et al. (2002) demonstrated ABA-induced NO 

synthesis in stomatal guard cells, but in this current study transgenic plants harbouring 

NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 construct did not show any fluorescence in 

H2O2 pre-treated gravistimulated root or in ABA pre-treated stomatal guard cells at room 

temperature. Lin et al. (1994) showed 1.5 kb sequence of 5’ flanking region of NIA1 

promoter is enough for nitrate response induction by expressing the native promoter fused 

with the reporter gene in tobacco plants. In contrast Konishi et al. (2011) failed to find 1.9 

kb NIA1 promoter response to nitrate in Arabidopsis. Also, they have reported the 

downstream sequence of NIA1 gene along with the promoter was required for the nitrate 

response. Most of the plant promoters contains its regulatory region within the 2 kb 

upstream sequence. These 2 kb regions are enough to provide critical information about the 

gene expression pattern (Xiao et al., 2010). In the present study 2.2 kb NIA1 promoter 

sequence was used to drive the mGFP4 expression, however failed to see the mGFP4 

expression at room temperature. In addition, expression of modified GFP has been shown 

to be temperature sensitive and the maturation of GFP protein is depends on time 

(Haseloff, et al., 1997). To optimise the temperature and time required for the expression 

of mGFP4, experiments were performed at 25
o
C and 37

o
C in both light and dark 
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conditions. These results showed bright mGFP4 fluorescence at 37
o
C in gravistimulated 

root and ABA-induced stomatal guard cells. The maturation of mGFP4 takes 6-10 h. 

Hence, all experiments need to be carried out at 37
o
C. This result demonstrates that the 2.2 

kb NIA1 promoter region is sufficient for expression of the NIA1 gene, gravity and ABA 

induces NIA1-promoter, NIA1-promoter and gene mediated expression of mGFP4 in roots 

and in stomatal guard cells respectively. The mGFP4 fluorescence in the lower side of the 

root especially in the lower epidermal cells, shows the localisation of nia1 gene in gravity 

bending. Even though several NO synthesis mechanism exist in the plants NR-mediated 

NO synthesis in the root was reported earlier. Hu et al. (2006) also demonstrated the 

asymmetric synthesis and accumulation of NO in the lower half of the gravistimulated 

soybean root, induced the gravitropic response, they have also reported putative NR 

inhibitor (sodium azide) reduces both NO synthesis and gravity bending. This suggested 

that NR (either NIA1 or NIA2 ) plays important role in the NO synthesis and root bending. 

In the present study, most of the NIA1-mediated mGFP4 fluorescence was also observed in 

the lower side of the gravistimulated root, which shows that gravity induces the expression 

of NIA1 promoter and gene, especially in the lower side of the root. This experiment 

results could support the role of NIA1-mediated asymmetric accumulation of NO in the 

lower half of the root during gravity bending. Further studies are required to investigate the 

role of NIA1 in NO synthesis in root and light to dark induction of NO synthesis in 

stomatal guard cells. Function, synthesis and interaction of the gene of interest can be 

thoroughly studied when GFP is cloned in frame with the particular gene or protein (Tian, 

1999). With the availability of mutants (auxin, ethylene and NR mutants) harbouring the 

NIA1pro-mGFP4 or NIApro-NIA1-mGFP4 cassette, further experiments could be 

performed to study the role of nia1 in NO synthesis and the interaction between NO, auxin 
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and ethylene during root gravitropism and stomatal opening and closure in response to 

biotic and abiotic stress.   
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Chapter 6 Summary and future work 

6.1 Summary 

The aim of this investigation was to identify the role of NIA1 mediated NO synthesis and 

signalling in root growth and development. Experiment results demonstrating the 

localisation of NIA1 during gravitropic bending. 

Gravitropic analysis of Col-0 and auxin mutants confirmed that Col-0 responds to gravity 

and starts to bend towards the gravity signal, whereas auxin mutants did not respond to 

gravity. Confocal analysis also showed that gravity induced the synthesis and accumulation 

of NO in the lower side of the bending region of the Col-0 root, whereas auxin mutants did 

not show any accumulation in the lower side of the root. Quantitative analysis of NIA1 by 

qPCR also demonstrate that NIA transcript accumulation increased 2 h after 

gravistimulation in Col-0 root. It was therefore concluded that gravity induces NIA1- 

mediated NO synthesis and accumulation, which further induces root bending.  

Analysis of root bending in NIA mutants showed that nia1 bends significantly slower than 

nia2 and Col-0. This result suggest that NIA1 has more prominent role in root bending than 

NIA2. The ethylene mutant ein3-1 and the over expression line EIN3OX both showed 

slower root bending than Col-0. EIN3OX showed significantly reduced and slower root 

bending than ein3-1 and Col-0. These results suggest that ethylene negatively regulates  

root bending. External application of NAA and SNAP significantly increased the root 

bending, whereas external application of ACC significantly decreased the root bending. 

Removal of NO using a NO scavenger also significantly reduced gravitropic bending. All 

these results suggest that NO and auxin positively regulate root bending, whilst ethylene 

negatively regulates root bending.  
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Arabidopsis ecotype Col-0 and auxin, ethylene and NIA mutants were successfully 

transformed with NIA1 transcriptional (NIA1pro-mGFP4) and translational (NIA1pro-

NIA1-mGFP4) reporter construct. These transgenic lines were optimized for mGFP4 

expression. Successful expression of ABA and H2O2 induced NIA1-mediated mGFP4 

fluorescence was detected by confocal microscopy in the stomata and root respectively. 

Further experiments would be carried out to find out the role of NIA1 in root development 

and possible NO interaction with other phytohormones during biotic and abiotic stress.     

6.2 Conclusion  

 

 

 

 

 

 

 

 

 

 

Figure 6-1: Model for NO, auxin and ethylene interaction 

Initial stage of gravity perception induces auxin and NIA1 mediated NO signalling, which will   

produce and differential distribution/accumulation of auxin and NO in the lower side of 

root. Increased accumulation of auxin and NO in the lower part of cells in the root inhibit 

cell elongation and initiate gravity bending. After the initiation of gravity bending later 

stage auxin positively regulated ethylene signalling which produces and accumulates 

ethylene and negatively regulate the root bending. 
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6.2.1 Proposed model for NO, auxin and ethylene interaction 

Based on the results from current experiments, here proposed a model for interaction 

between NO, auxin and ethylene signalling during root bending (Figure 6.1). Gravity 

signals positively regulate auxin signalling which induces the synthesis of NIA1-mediated 

NO signalling, which further induces root bending. Intial gravity perception switches on 

auxin and NIA1 mediated NO signalling, which leads to the asymmetric accumulation of 

auxin and NO in the lower side of the root. Low concentration of auxin and NO in the 

upper side of the root induces cell elongation, whereas high auxin and NO in the lower side 

of the root inhibits cell elongation leading to root bending. Later stage auxin positively 

regulate ethylene signalling, which negatively regulate the NO signalling and decrease the 

gravity bending. Exposure to ethylene has been shown to rapidly reduce cell elongation 

(Le et al., 2001). Hence auxin and NO positively regulate root bending, whereas ethylene 

negatively regulates the root bending. 

6.3 Future work  

Further work with NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 transgenic lines would 

focus on the importance of role of NIA1 in NO synthesis, also to investigate the expression 

and localisation of NIA1 and NO in response to gravistimulation, drought, nutrient 

availability, light and temperature. 

Interaction of NO with other phytohormones like auxin, ethylene, ABA, cytokinin and 

gibberellic acid would be investigated by the external application of  IAA, NAA, ACC, 

ABA and other phytohormones cytokinin, GA. Also it would be possible to study the 

interactions by crossing the NIA1pro-mGFP4 and NIA1pro-NIA1-mGFP4 transgenic lines 

with the relavant hormone mutant lines. 
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The interaction of NO and ABA signalling in stomatal closure would be further 

investigated with the help of transgenic lines.  

Experiments based on the promoter-report-system has provided significant insight in auxin 

signalling. Spatial and temporal expression of auxin genes during root development, other 

physiological development and interaction with phytohormones has been demonstrated 

using a DR5 reporter construct (Chen et al., 2003).  

NO is also an important plant signalling molecule that participates in many physiological 

functions. However, NO research in plants is at an early stage. To date, no receptor for NO 

has been identified. Therefore, further experiments with the transgenic lines could be a 

useful tool to explore the importance of NO signalling in plants.  
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Chapter 7 Appendix  

1. Two-way ANOVA result for Col-0 vs nia1 vs nia2    

Tests of Normality 

plant Shapiro-Wilk 

Statistic df Sig. 

2hr col 0 .813 4 .129 

4hr col 0 .998 4 .993 

nia1 .831 4 .170 

nia2 .966 4 .814 

6hr col 0 .998 4 .993 

nia1 .863 4 .270 

nia2 .901 4 .434 

8hr col 0 .783 4 .075 

nia1 .832 4 .173 

nia2 .821 4 .147 

10hr col 0 .950 4 .716 

nia1 .914 4 .505 

nia2 .790 4 .085 

24hr col 0 .820 4 .143 

nia1 .911 4 .489 

nia2 .878 4 .332 

 

b. 2hr is constant when plant = nia1. It has been omitted. 

c. 2hr is constant when plant = nia2. It has been omitted. 

 

 

Descriptive Statistics 

Dependent Variable:   curvature   

time interval sample type Mean Std. Deviation N 

2hr Col-0 37.0100 1.91896 4 

nia1 .0000 .00000 4 

nia2 .0000 .00000 4 

Total 12.3367 18.25000 12 

4hr Col-0 40.3375 1.38615 4 

nia1 20.0175 2.10410 4 

nia2 22.2325 3.38051 4 

Total 27.5292 9.75827 12 

6hr Col-0 46.1325 3.05382 4 
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nia1 26.9650 2.76947 4 

nia2 30.0975 5.29149 4 

Total 34.3983 9.44244 12 

8hr Col-0 53.5175 1.66820 4 

nia1 37.1900 2.01779 4 

nia2 44.5825 6.49745 4 

Total 45.0967 7.87386 12 

10hr Col-0 55.9150 1.30926 4 

nia1 46.7200 3.98520 4 

nia2 55.1625 3.17998 4 

Total 52.5992 5.14909 12 

24hr Col-0 85.5000 5.80230 4 

nia1 60.3850 1.64371 4 

nia2 75.6250 7.01635 4 

Total 73.8367 11.82258 12 

Total Col-0 53.0688 16.51344 24 

nia1 31.8796 19.86140 24 

nia2 37.9500 25.07141 24 

Total 40.9661 22.36615 72 

 

 

Tests of Between-Subjects Effects 

Dependent Variable:   curvature   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 34830.880a 17 2048.875 161.165 .000 .981 

Intercept 120832.003 1 120832.003 9504.699 .000 .994 

timeinterval 27314.342 5 5462.868 429.712 .000 .975 

sampletype 5715.259 2 2857.629 224.782 .000 .893 

timeinterval * sampletype 1801.280 10 180.128 14.169 .000 .724 

Error 686.495 54 12.713    

Total 156349.378 72     

Corrected Total 35517.375 71     

a. R Squared = .981 (Adjusted R Squared = .975) 
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Estimates 

Dependent Variable:   curvature   

time interval sample type Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

2hr Col-0 37.010 1.783 33.436 40.584 

nia1 .000 1.783 -3.574 3.574 

nia2 -1.421E-14 1.783 -3.574 3.574 

4hr Col-0 40.337 1.783 36.763 43.912 

nia1 20.017 1.783 16.443 23.592 

nia2 22.232 1.783 18.658 25.807 

6hr Col-0 46.132 1.783 42.558 49.707 

nia1 26.965 1.783 23.391 30.539 

nia2 30.097 1.783 26.523 33.672 

8hr Col-0 53.518 1.783 49.943 57.092 

nia1 37.190 1.783 33.616 40.764 

nia2 44.583 1.783 41.008 48.157 

10hr Col-0 55.915 1.783 52.341 59.489 

nia1 46.720 1.783 43.146 50.294 

nia2 55.163 1.783 51.588 58.737 

24hr Col-0 85.500 1.783 81.926 89.074 

nia1 60.385 1.783 56.811 63.959 

nia2 75.625 1.783 72.051 79.199 

 

 

 

Pairwise Comparisons 

Dependent Variable:   curvature   

time interval (I) sample type 

(J) 

sample 

type 

Mean Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound 

Upper 

Bound 

2hr Col-0 nia1 37.010* 2.521 .000 30.781 43.239 

nia2 37.010* 2.521 .000 30.781 43.239 

nia1 Col-0 -37.010* 2.521 .000 -43.239 -30.781 

nia2 1.776E-14 2.521 1.000 -6.229 6.229 

nia2 Col-0 -37.010* 2.521 .000 -43.239 -30.781 

nia1 -1.776E-14 2.521 1.000 -6.229 6.229 

4hr Col-0 nia1 20.320* 2.521 .000 14.091 26.549 

nia2 18.105* 2.521 .000 11.876 24.334 
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nia1 Col-0 -20.320* 2.521 .000 -26.549 -14.091 

nia2 -2.215 2.521 1.000 -8.444 4.014 

nia2 Col-0 -18.105* 2.521 .000 -24.334 -11.876 

nia1 2.215 2.521 1.000 -4.014 8.444 

6hr Col-0 nia1 19.167* 2.521 .000 12.938 25.397 

nia2 16.035* 2.521 .000 9.806 22.264 

nia1 Col-0 -19.167* 2.521 .000 -25.397 -12.938 

nia2 -3.132 2.521 .658 -9.362 3.097 

nia2 Col-0 -16.035* 2.521 .000 -22.264 -9.806 

nia1 3.132 2.521 .658 -3.097 9.362 

8hr Col-0 nia1 16.328* 2.521 .000 10.098 22.557 

nia2 8.935* 2.521 .002 2.706 15.164 

nia1 Col-0 -16.328* 2.521 .000 -22.557 -10.098 

nia2 -7.393* 2.521 .015 -13.622 -1.163 

nia2 Col-0 -8.935* 2.521 .002 -15.164 -2.706 

nia1 7.393* 2.521 .015 1.163 13.622 

10hr Col-0 nia1 9.195* 2.521 .002 2.966 15.424 

nia2 .752 2.521 1.000 -5.477 6.982 

nia1 Col-0 -9.195* 2.521 .002 -15.424 -2.966 

nia2 -8.443* 2.521 .004 -14.672 -2.213 

nia2 Col-0 -.752 2.521 1.000 -6.982 5.477 

nia1 8.443* 2.521 .004 2.213 14.672 

24hr Col-0 nia1 25.115* 2.521 .000 18.886 31.344 

nia2 9.875* 2.521 .001 3.646 16.104 

nia1 Col-0 -25.115* 2.521 .000 -31.344 -18.886 

nia2 -15.240* 2.521 .000 -21.469 -9.011 

nia2 Col-0 -9.875* 2.521 .001 -16.104 -3.646 

nia1 15.240* 2.521 .000 9.011 21.469 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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curvature 

Tukey HSDa,b   

sample type N 

Subset 

1 2 3 

nia1 24 31.8796   

nia2 24  37.9500  

Col-0 24   53.0688 

Sig.  1.000 1.000 1.000 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 12.713. 

a. Uses Harmonic Mean Sample Size = 24.000. 

b. Alpha = .05. 
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2. Linear mixed-effects model fit by REML for Col-0 vs nia1 

“Best” fitted model: 
Random effects: 

 Formula: ~-1 + time + I(time^2) | Sample 

 Structure: Diagonal 

 time I(time^2) Residual 
StdDev: 0.2561972 0.09533836 2.481843 
 

Fixed effects: Curvature ~ time * plant + I(time^2)  

 Value Std.Error DF t-value p-value 
(Intercept) 30.09153 1.5488639 37 19.428131    0.000 
time 2.95351 0.3506545 37 8.422839    0.000 
plantNia1 -42.52309 2.1664747   6 -19.627780    0.000 
I(time^2) -0.11537 0.0347335 37 -3.321505    0.002 
time:plantNia1 4.97068 0.4897197 37 10.150049    0.000 
 

Approximate 95% confidence intervals 
Fixed effects: 

 Lower Est. upper 
(Intercept) 26.9532331   30.0915294   33.22982570 
time 2.2430131    2.9535067    3.66400028 
plantNia1 -47.8242599 -42.5230874 -37.22191488 
I(time^2) -0.1857444   -0.1153676   -0.04499077 
time:plantNia1 3.9784122    4.9706785    5.96294478 
 

Within-group standard error: 

lower est. upper 

1.920000 2.481843 3.208096 

 

LRT of fixed effects: 

 numDF denDF F-value p-value 
(Intercept)      1 37 2708.7482   <.0001 
time 1 37 460.6789   <.0001 
plant 1 6 441.8329   <.0001 
I(time^2)        1 37 11.0324    0.002 
time:plant       1 37 103.0235   <.0001 
 

Significance of need of quadratic random effect: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  update(mod, random = pdDiag(~-

1 + time)) 
1 8 292.6681 306.7577 -138.334 

1 vs 2 18.74186   <.0001 
2 7 309.4100 321.7384 -147.7050 

 

Approaching significance in differences of plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  update(mod,weights=varIdent 

(form =~1| plant)) 
1 8 292.6681 306.7577 -138.3341 

1 vs 2 3.176238   0.0747 
2 9 291.4919 307.3427 -136.7459 

 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

Mod update(mod, correlation = 

corAR1()) 
1 8 292.6681 306.7577 -138.3341 

1 vs 2 0.5374411   0.4635 
2 9 294.1307 309.9815 -138.0653 
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3. Linear mixed-effects model fit by REML for Col-0 vs nia2  

 

“Best” fitted model: 
Random effects: 
 Formula: ~time | Sample 

 Structure: Diagonal 

 (Intercept) time Residual 
StdDev: 0.8021707 0.1731107 4.840363 
 

Variance function: 
 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  

 Parameter estimates: 

nia2 Col-0 
1.000000 0.401897 
 

Fixed effects: Curvature ~ (time + I(time^2)) * plant  

 Value Std.Error DF t-value p-value 
(Intercept) 30.70740   1.291049 36 23.784843   0.0000 
time 2.80470   0.273542 36 10.253281   0.0000 
plantNia1 -0.02172   0.009290 36 -2.337427   0.0251 
I(time^2) -46.81511   3.339334   6 -14.019297   0.0000 
time:plantnia2 6.68189   0.706531 36 9.457332   0.0000 
I(time^2):plantnia2   -0.21438   0.024913 36 -8.604901   0.0000 

 

Approximate 95% confidence intervals 
Fixed effects: 

 Lower Est. upper 
(Intercept) 28.08903332   30.70740247   33.325771619 
time 2.24993016    2.80469807    3.359465982 
I(time^2)             -0.04055736   -0.02171559   -0.002873822 
plantnia2 -54.98616506 -46.81510996 -38.644054870 
time:plantnia2         5.24898347    6.68189386    8.114804244 
I(time^2):plantnia2   -0.26490366   -0.21437702   -0.163850378 

attr(,"label") 

[1] "Fixed effects:" 

 

Random Effects: 

  Level: Sample  

 Lower Est. upper 
sd((Intercept)) 0.06793005 0.8021707 9.472652 
sd(time)         0.07735155 0.1731107 0.387417 
 

Variance function: 

 lower est. upper 
Col-0 0.2505205 0.401897 0.6447426 
attr(,"label") 
[1] "Variance function:" 

Within-group standard error: 

lower est. upper 
3.512413 4.840363 6.670375 

 

  



 

160 

 

 

LRT of fixed effects: 

 numDF denDF F-value p-value 
(Intercept)          1 36 3607.726   <.0001 
time 1 36 682.086   <.0001 
I(time^2) 1 36 35.730   <.0001 
plant 1 6 151.410   <.0001 
time:plant 1 36 18.721    1e-04 
I(time^2):plant 1 36 74.044   <.0001 
 

plant within variability: 
>  anova(mod,update(mod,weights=NULL)) 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, weights = NULL) 
1 10 284.9281 302.3048 -132.4640 

1 vs 2 12.81665    3e-04 
2 9 295.7447 311.3838 -138.8724 

 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = corAR1()) 
1 10 284.9281 302.3048 -132.4640 

1 vs 2 0.1370398 0.7112 
2 11 286.7910 305.9054 -132.3955 
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4. Linear mixed-effects model fit by REML for nia1 vs nia2 

“Best” fitted model: 
Random effects: 

 Formula: ~1 | Sample 

 (Intercept) Residual 
StdDev: 0.9309631 2.879836 
 

Variance function: 
 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  

Parameter estimates: 

nia1 nia2 
1.000000 1.708996 
 

Fixed effects: Curvature ~ time:plant + I(time^2)  

 Value Std.Error DF t-value p-value 
(Intercept) -13.828048 1.6093505 37 -8.592316 0 
I(time^2) -0.215925 0.0118705 37 -18.190001 0 
time:plantnia1 8.261477 0.3327250 37 24.829747 0 
time:plantnia2    8.936094 0.3414345 37 26.172207 0 

 

Approximate 95% confidence intervals 
Approximate 95% confidence intervals 
 

 Fixed effects: 

 Lower Est. upper 
(Intercept) -17.0889018 -13.8280479 -10.5671941 
I(time^2)             -0.2399767   -0.2159248   -0.1918728 
time:plantnia1 7.5873125    8.2614774    8.9356422 
time:plantnia2    8.2442820    8.9360940    9.6279060 
 

attr(,"label") 

[1] "Fixed effects:" 
 

 Random Effects: 

  Level: Sample  

 Lower Est. upper 
sd((Intercept)) 0.1109245 0.9309631 7.813352 
 

Variance function 

 Lower Est. upper 
nia2 1.085958 1.708996 2.689486 
attr(,"label") 

[1] "Variance function:" 

Within-group standard error: 

lower est. upper 
2.047539 2.879836 4.050452 
significance in differences of plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, weights = NULL) 
1 7 288.4040 300.8934 -137.2020 

1 vs 2 0.01553615 0.9008 
2 6 291.6529 302.3580 -139.8265 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = 

corAR1()) 

1 7 288.4040 300.8934 -137.2020 
1 vs 2 0.01553615   0.9008 

2 8 290.3885 304.6620 -137.1943 
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5. Two-way ANOVA result for Col-0, ein3-1 and ein30x 

Tests of Normality 

plant Shapiro-Wilk 

Statistic df Sig. 

2hr Col-0 .813 4 .129 

4hr Col-0 .998 4 .993 

ein3-1 .887 3 .347 

6hr Col-0 .998 4 .993 

ein3-1 .898 3 .379 

8hr Col-0 .783 4 .075 

ein3-1 1.000 3 .992 

ein3ox .999 3 .937 

10hr Col-0 .950 4 .716 

ein3-1 .860 3 .267 

ein3ox .861 3 .270 

24hr Col-0 .820 4 .143 

ein3-1 .987 3 .780 

ein3ox .997 3 .895 

a. Lilliefors Significance Correction 

b. 2hr is constant when plant = ein3-1. It has been omitted. 

c. 2hr is constant when plant = ein3ox. It has been omitted. 

d. 4hr is constant when plant = ein3ox. It has been omitted. 

e. 6hr is constant when plant = ein3ox. It has been omitted. 

Descriptive Statistics 

Dependent Variable:   curvature   

time interval sample type Mean Std. Deviation N 

2hr Col-0 37.0100 1.91896 4 

ein3-1 .0000 .00000 3 

ein30x .0000 .00000 3 

Total 14.8040 19.14397 10 

4hr Col-0 40.3375 1.38615 4 

ein3-1 17.6333 5.56762 3 

ein30x .0000 .00000 3 

Total 21.4250 18.00837 10 

6hr Col-0 46.1325 3.05382 4 

ein3-1 34.6067 7.10786 3 

ein30x .0000 .00000 3 

Total 28.8350 20.87035 10 

8hr Col-0 53.5175 1.66820 4 

ein3-1 40.0733 9.13508 3 
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ein30x 23.4467 7.66421 3 

Total 40.4630 14.31212 10 

10hr Col-0 55.9150 1.30926 4 

ein3-1 50.6833 3.04645 3 

ein30x 35.0433 5.07644 3 

Total 48.0840 9.72391 10 

24hr Col-0 85.5000 5.80230 4 

ein3-1 79.6667 2.51661 3 

ein30x 54.2133 3.90585 3 

Total 74.3640 14.69211 10 

Total Col-0 53.0688 16.51344 24 

ein3-1 37.1106 26.19127 18 

ein30x 18.7839 21.69184 18 

Total 37.9958 25.39294 60 

 

Tests of Between-Subjects Effects 

Dependent Variable:   curvature   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 37323.304a 17 2195.488 128.074 .000 .981 

Intercept 77714.036 1 77714.036 4533.446 .000 .991 

timeinterval 23889.847 5 4777.969 278.723 .000 .971 

sampletype 12110.513 2 6055.257 353.233 .000 .944 

timeinterval * sampletype 1944.030 10 194.403 11.340 .000 .730 

Error 719.980 42 17.142    

Total 124664.285 60     

Corrected Total 38043.284 59     

a. R Squared = .981 (Adjusted R Squared = .973) 
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Pairwise Comparisons 

Dependent Variable:   curvature   

(I) sample type (J) sample type 

Mean 

Difference (I-J) 

Std. 

Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

Col-0 ein3-1 15.958* 1.291 .000 12.739 19.177 

ein30x 34.285* 1.291 .000 31.066 37.504 

ein3-1 Col-0 -15.958* 1.291 .000 -19.177 -12.739 

ein30x 18.327* 1.380 .000 14.885 21.768 

ein30x Col-0 -34.285* 1.291 .000 -37.504 -31.066 

ein3-1 -18.327* 1.380 .000 -21.768 -14.885 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

Pairwise Comparisons 

Dependent Variable:   curvature   

time interval (I) sample type 

(J) sample 

type 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound 

Upper 

Bound 

2hr Col-0 ein3-1 37.010* 3.162 .000 29.124 44.896 

ein30x 37.010* 3.162 .000 29.124 44.896 

ein3-1 Col-0 -37.010* 3.162 .000 -44.896 -29.124 

ein30x -1.421E-14 3.381 1.000 -8.430 8.430 

ein30x Col-0 -37.010* 3.162 .000 -44.896 -29.124 

ein3-1 1.421E-14 3.381 1.000 -8.430 8.430 

4hr Col-0 ein3-1 22.704* 3.162 .000 14.819 30.590 

ein30x 40.337* 3.162 .000 32.452 48.223 

ein3-1 Col-0 -22.704* 3.162 .000 -30.590 -14.819 

ein30x 17.633* 3.381 .000 9.203 26.063 

ein30x Col-0 -40.337* 3.162 .000 -48.223 -32.452 

ein3-1 -17.633* 3.381 .000 -26.063 -9.203 

6hr Col-0 ein3-1 11.526* 3.162 .002 3.640 19.411 

ein30x 46.132* 3.162 .000 38.247 54.018 

ein3-1 Col-0 -11.526* 3.162 .002 -19.411 -3.640 

ein30x 34.607* 3.381 .000 26.177 43.037 
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ein30x Col-0 -46.132* 3.162 .000 -54.018 -38.247 

ein3-1 -34.607* 3.381 .000 -43.037 -26.177 

8hr Col-0 ein3-1 13.444* 3.162 .000 5.559 21.330 

ein30x 30.071* 3.162 .000 22.185 37.956 

ein3-1 Col-0 -13.444* 3.162 .000 -21.330 -5.559 

ein30x 16.627* 3.381 .000 8.197 25.057 

ein30x Col-0 -30.071* 3.162 .000 -37.956 -22.185 

ein3-1 -16.627* 3.381 .000 -25.057 -8.197 

10hr Col-0 ein3-1 5.232 3.162 .316 -2.654 13.117 

ein30x 20.872* 3.162 .000 12.986 28.757 

ein3-1 Col-0 -5.232 3.162 .316 -13.117 2.654 

ein30x 15.640* 3.381 .000 7.210 24.070 

ein30x Col-0 -20.872* 3.162 .000 -28.757 -12.986 

ein3-1 -15.640* 3.381 .000 -24.070 -7.210 

24hr Col-0 ein3-1 5.833 3.162 .216 -2.052 13.719 

ein30x 31.287* 3.162 .000 23.401 39.172 

ein3-1 Col-0 -5.833 3.162 .216 -13.719 2.052 

ein30x 25.453* 3.381 .000 17.023 33.883 

ein30x Col-0 -31.287* 3.162 .000 -39.172 -23.401 

ein3-1 -25.453* 3.381 .000 -33.883 -17.023 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

curvature 

Tukey HSDa,b,c   

sample type N 

Subset 

1 2 3 

ein30x 18 18.7839   

ein3-1 18  37.1106  

Col-0 24   53.0688 

Sig.  1.000 1.000 1.000 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 17.142. 

a. Uses Harmonic Mean Sample Size = 19.636. 

b. The group sizes are unequal. The harmonic mean of the group sizes is used. 

Type I error levels are not guaranteed. 

c. Alpha = .05. 
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6. Linear mixed-effects model fit by REML for Col-0 vs ein3-1 

 

“Best” fitted model: 
Random effects: 
 Formula: ~1 | Sample 

 (Intercept) Residual 
StdDev: 2.366761 2.350185 
Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  
 Parameter estimates: 

Col-0 ein3-1 
1.000000 1.982251 
Fixed effects: Curvature ~ (time + I(time^2)) * plant  

 Value Std.Error DF t-value p-value 
(Intercept) 30.70740   1.896940 31 16.187863   0.0000 
time 2.80470   0.313490 31 8.946689   0.0000 
I(time^2) -0.02172   0.011224 31 -1.934767   0.0622 
plantein3-1 -45.21066   4.120807   5 -10.971312   0.0000 
time:plantein3-1 5.82569   0.783041 31 7.439832   0.0000 
I(time^2):plantein3-1   -0.17471   0.028035 31 -6.231967   0.0000 

Approximate 95% confidence intervals 
Fixed effects: 

 Lower Est. upper 
(Intercept) 26.83856817   30.70740247   34.576236761 
time 2.16533091    2.80469807    3.444065235 
I(time^2)             -0.04460684   -0.02171559    0.001175658 
plantein3-1 -55.80352794 -45.21065657 -34.617785202 
time:plantein3-1         4.22867145    5.82569418    7.422716917 
I(time^2):plantein3-1   -0.23189264   -0.17471446   -0.117536291 

attr(,"label") 
[1] "Fixed effects:" 

Random Effects: 
  Level: Sample  

 Lower Est. upper 
sd((Intercept)) 0.9826139 2.366761 5.70067 
Variance function: 

 Lower Est. upper 
ein3-1 1.189733 1.982251 3.302691 
attr(,"label") 

[1] "Variance function:" 
Within-group standard error: 

Lower Est. upper 
1.699085 2.350185 3.250790 
LRT of fixed effects: 

plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  

update(mod, weights = NULL)                    
1 9 251.0748 265.3264 -116.5374 

1 vs 2 7.012493   0.0081 
2 8 256.0873 268.7554 -120.0436 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = corAR1()) 
1 9 251.0748 265.3264    -116.5374 

1 vs 2 1.411543 0.2348 
2 10 251.6632       267.4984    -115.8316     
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7. Linear mixed-effects model fit by REML for Col-0 vs EIN3OX 

 

“Best” fitted model: 

 
Random effects: 

 Formula: ~time | Sample 

 Structure: Diagonal 

 (Intercept) time Residual 
StdDev: 0.8402527 0.1878045 9.030223 
Variance function: 

 Structure: Different standard deviations per stratum 
 Formula: ~1 | plant  

 Parameter estimates: 

ein30x Col-0 
1.000000 0.2152903 
Fixed effects: Curvature ~ plant + time + I(time^2)  

 Value Std.Error DF t-value p-value 
(Intercept) 30.25376 1.2794023 33 23.646792 0.0000 
plantein30x -35.03110 2.5412758   5 -13.784848 0.0000 
time 2.93541 0.2695281 33 10.890941 0.0000 
I(time^2) -0.02475 0.0091273 33 -2.711991 0.0105 

 

Approximate 95% confidence intervals 
Fixed effects: 

 

 Lower Est. upper 
(Intercept) 27.6507964   30.25375995   32.856723520 
plantein30x -41.5636573 -35.03109978 -28.498542314 
time 2.3870558 2.93541487    3.483773938 
I(time^2)     -0.0433229   -0.02475322   -0.006183539 
 
attr(,"label") 

[1] "Fixed effects:" 

 
Random Effects: 

  Level: Sample 

 

 Lower Est. upper 
sd((Intercept)) 0.08349386 0.8402527 8.4560061 
sd(time)         0.07531395 0.1878045 0.4683132 
Variance function: 

 Lower Est. upper 
Col-0 0.1304086 0.2152903 0.3554206 
attr(,"label") 

[1] "Variance function:" 
Within-group standard error: 

Lower Est. upper 
6.354409   9.030223 12.832811 
LRT of fixed effects: 

 numDF denDF F-value p-value 

(Intercept) 1 33 2794.9989   <.0001 
plant 1 5 81.3761   0.0003 
time 1 33 481.7686   <.0001 
I(time^2)        1 33 7.3549   0.0105 

plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  

update(mod, weights = NULL)                    
1 8 259.0572 272.1578 -121.5286 

1 vs 2 27.85039   <.0001 
2 7 284.9076 296.3707 -135.4538 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = corAR1()) 
1 8 259.0572 272.1578 -121.5286 

1 vs 2 1.798303   0.1799 
2 9 259.2588 273.9971 -120.6294 
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8. Linear mixed-effects model fit by REML Ein3-1 vs ein30x 

 

“Best” fitted model: 
Random effects: 
 Formula: ~1 | Sample 

 (Intercept) Residual 
StdDev: 0.0005836563 9.535959 
Correlation Structure: AR(1) 

 Formula: ~1 | Sample  

 Parameter estimate(s): 
      Phi  

0.4477447  

Variance function: 
 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  

 Parameter estimates: 

ein3ox ein3-1 
1.0000000 0.5515923 
Fixed effects: Curvature ~ time * plant + I(time^2)  

 Value Std.Error DF t-value p-value 
(Intercept) -13.093605   3.867672 27 -3.385397   0.0022 
time 8.162945   0.741553 27 11.007912   0.0000 
plantein3ox -9.671090   5.059821   4 -1.911350   0.1285 
I(time^2) -0.178343   0.024757 27 -7.203874   0.0000 

time:plantein3ox   -0.757703   0.351702 27 -2.154390   0.0403 

Approximate 95% confidence intervals 
 
Fixed effects: 

 Lower Est. upper 
(Intercept) -21.0294120 -13.0936054 -5.15779880 
time 6.6414048    8.1629448   9.68448487 
plantein3ox -23.7194055   -9.6710903   4.37722496 
I(time^2)          -0.2291389   -0.1783428 -0.12754660 
time:plantein3ox   -1.4793362   -0.7577033 -0.03607036 
attr(,"label") 
[1] "Fixed effects:" 

 

 Random Effects: 
  Level: Sample  

 Lower Est. upper 
sd((Intercept)) 6.098575e-165 0.0005836563 5.585808e+157 
Correlation structure: 

 Lower Est. upper 
Phi 0.06714011 0.4477447 0.7145946 
attr(,"label") 

[1] "Correlation structure:" 

Variance function: 

 Lower Est. upper 
ein3-1 0.3252931 0.5515923 0.935323 
attr(,"label") 

[1] "Variance function:" 

Within-group standard error: 

Lower Est. upper 
6.224305   9.535959 14.609586 
LRT of fixed effects: 

plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  

update(mod, weights = NULL)                    
1 9 250.0087 262.9146 -116.0043 

1 vs 2 4.497777   0.0339 
2 8 252.5065 263.9783 -118.2532 

signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = NULL) 
1 9 250.0087      262.9146       -116.0043 

1 vs 2 4.009509      0.0452 
2 8 252.0182      263.4901       -118.0091        
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9. Linear mixed-effects model fit by REML nia1 vs ein3-1 

 

“Best” fitted model: 
Random effects: 
 Formula: ~1 | Sample 

 (Intercept) Residual 
StdDev: 2.350118 3.627519 
Fixed effects: Curvature ~ time * plant + I(time^2)  

 Value Std.Error DF t-value p-value 
(Intercept) -12.438029 2.2307891 32 -5.575618   0.0000 
time 7.925749 0.3719387 32 21.309289   0.0000 
plantein3-1 -2.877762 2.5508412   5 -1.128162   0.3105 
I(time^2) -0.203624 0.0130958 32 -15.548823   0.0000 

time:plantein3-1   0.900970 0.1573574 32 5.725629   0.0000 

Approximate 95% confidence intervals 
 

Fixed effects: 

 Lower Est. upper 
(Intercept) -16.9819976 -12.4380288 -7.8940600 
time 7.1681344    7.9257487   8.6833630 
plantein3-1 -9.4349078   -2.8777616   3.6793845 
I(time^2)          -0.2302993 -0.2036241 -0.1769488 
time:plantein3-1  0.5804438    0.9009704   1.2214971 
attr(,"label") 

[1] "Fixed effects:" 
 

 Random Effects: 

  Level: Sample  

 Lower Est. upper 
sd((Intercept)) 0.9835342 2.350118 5.615521 
Within-group standard error: 

Lower Est. upper 
2.839307 3.627519 4.634545 
Approaching  significance in differences of plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  
update(mod, weights = varIdent(form = ~1 | 

plant)) 

1 7 251.9185 263.1949 -118.9592 
1 vs 2 3.835739   

0.0502 

 2 8 250.0828 262.9701 -117.0414 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = corAR1()) 
1 7 251.9185 263.1949 -118.9592 

1 vs 2 2.741499   0.0978 
2 8 251.1770 264.0643 -117.5885 
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10. Linear mixed-effects model fit by REML nia1 vs ein3ox 

 
“Best” fitted model: 

 
Random effects: 

Formula: ~1 | Sample 

 (Intercept) Residual 
StdDev: 1.194791 8.156669 
 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  
 Parameter estimates: 

ein3ox nia1 
1.0000000 0.3504705 
 
Fixed effects: Curvature ~ (time + I(time^2)) * plant  

 Value Std.Error DF t-value p-value 
(Intercept) -13.047431   1.899705 31 6.868134   0.0000 
time 8.072994   0.381317 31 21.171352   0.0000 
I(time^2)               -0.209020   0.013652 31 -15.310231   0.0000 
plantein3ox -4.779698   6.275800   5 -0.761608   0.4807 

time:plantein3ox   -2.352139   1.312924 31 -1.791527   0.0830 

I(time^2):plantein30x    0.096884   0.047007 31 2.061070   0.0478 

 

Approximate 95% confidence intervals 
Approximate 95% confidence intervals 

 
 Fixed effects: 

 Lower Est. upper 
(Intercept) -16.921905944 -13.04743106 -9.1729562 
time 7.295292901    8.07299382   8.8506947 
I(time^2)             -0.236863583   -0.20901957 -0.1811756 
plantein30x -20.912155351   -4.77969848 11.3527584 
time:plantein30x -5.029864972   -2.35213915   0.3255867 
I(time^2):plantein30x 0.001013278    0.09688384   0.1927544 

attr(,"label") 
[1] "Fixed effects:" 

 

 Random Effects: 

 Lower Est. upper 
sd((Intercept)) 0.266978  1.194791 5.346975 
Variance function: 

 Lower Est. upper 

nia1 0.2152791  0.3504705 0.5705598 

attr(,"label") 

[1] "Variance function:" 
Within-group standard error: 

Lower Est. upper 
5.684447   8.156669 11.704085 
LRT of fixed effects: 

 

significance in differences of plant within variability: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod  

update(mod, weights = NULL) 
1 9 270.7522 285.0039 -126.3761 1 vs 2 16.81562   <.0001 
2 8 285.5678 298.2360 -134.7839 

No signs of AR(1) correlation in residuals: 

 Model df AIC BIC logLik Test L.Ratio p-value 

mod   

update(mod, correlation = corAR1()) 
1 9 270.7522 285.0039 -126.3761 1 vs 2 0.2691548   0.6039 
2 10 272.4831 288.3183 -126.2415 
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11. Two way ANOVA for the effect of external application of NAA and cPTIO 

 

Between-Subjects Factors 

 Value Label N 

time interval 2 2hr 16 

4 4hr 16 

6 6hr 16 

8 8hr 16 

24 24hr 16 

treatments 1 control 20 

2 cPTIO 20 

3 NAA 20 

4 cPTIO+NAA 20 

 

 

Tests of Between-Subjects Effects 

Dependent Variable:   curvature   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 44084.950a 19 2320.261 63.824 .000 .953 

Intercept 181260.800 1 181260.800 4985.970 .000 .988 

timeinterval 38449.794 4 9612.448 264.411 .000 .946 

treatment 1583.275 3 527.758 14.517 .000 .421 

timeinterval * treatment 4051.881 12 337.657 9.288 .000 .650 

Error 2181.250 60 36.354    

Total 227527.000 80     

Corrected Total 46266.200 79     

a. R Squared = .953 (Adjusted R Squared = .938) 
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Multiple Comparisons 

Dependent Variable:   curvature   

Tukey HSD   

(I) treatments (J) treatments 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

control cPTIO 11.725* 1.9067 .000 6.687 16.763 

NAA 4.600 1.9067 .086 -.438 9.638 

cPTIO+NAA 8.975* 1.9067 .000 3.937 14.013 

cPTIO control -11.725* 1.9067 .000 -16.763 -6.687 

NAA -7.125* 1.9067 .002 -12.163 -2.087 

cPTIO+NAA -2.750 1.9067 .478 -7.788 2.288 

NAA control -4.600 1.9067 .086 -9.638 .438 

cPTIO 7.125* 1.9067 .002 2.087 12.163 

cPTIO+NAA 4.375 1.9067 .111 -.663 9.413 

cPTIO+NAA control -8.975* 1.9067 .000 -14.013 -3.937 

cPTIO 2.750 1.9067 .478 -2.288 7.788 

NAA -4.375 1.9067 .111 -9.413 .663 

Based on observed means. 

 The error term is Mean Square(Error) = 36.354. 

*. The mean difference is significant at the .05 level. 

 

 

curvature 

Tukey HSDa,b   

treatments N 

Subset 

1 2 3 

cPTIO 20 42.200   

cPTIO+NAA 20 44.950 44.950  

NAA 20  49.325 49.325 

control 20   53.925 

Sig.  .478 .111 .086 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 36.354. 

a. Uses Harmonic Mean Sample Size = 20.000. 

b. Alpha = .05. 
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Pairwise Comparisons 

Dependent Variable:   curvature   

time interval (I) treatments (J) treatments 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

2hr control cPTIO 13.875* 4.263 .011 2.242 25.508 

NAA 34.625* 4.263 .000 22.992 46.258 

cPTIO+NAA 34.625* 4.263 .000 22.992 46.258 

cPTIO control -13.875* 4.263 .011 -25.508 -2.242 

NAA 20.750* 4.263 .000 9.117 32.383 

cPTIO+NAA 20.750* 4.263 .000 9.117 32.383 

NAA control -34.625* 4.263 .000 -46.258 -22.992 

cPTIO -20.750* 4.263 .000 -32.383 -9.117 

cPTIO+NAA 1.243E-14 4.263 1.000 -11.633 11.633 

cPTIO+NAA control -34.625* 4.263 .000 -46.258 -22.992 

cPTIO -20.750* 4.263 .000 -32.383 -9.117 

NAA -1.243E-14 4.263 1.000 -11.633 11.633 

4hr control cPTIO 10.375 4.263 .108 -1.258 22.008 

NAA 4.000 4.263 1.000 -7.633 15.633 

cPTIO+NAA 4.875 4.263 1.000 -6.758 16.508 

cPTIO control -10.375 4.263 .108 -22.008 1.258 

NAA -6.375 4.263 .841 -18.008 5.258 

cPTIO+NAA -5.500 4.263 1.000 -17.133 6.133 

NAA control -4.000 4.263 1.000 -15.633 7.633 

cPTIO 6.375 4.263 .841 -5.258 18.008 

cPTIO+NAA .875 4.263 1.000 -10.758 12.508 

cPTIO+NAA control -4.875 4.263 1.000 -16.508 6.758 

cPTIO 5.500 4.263 1.000 -6.133 17.133 

NAA -.875 4.263 1.000 -12.508 10.758 

6hr control cPTIO 11.500 4.263 .054 -.133 23.133 

NAA -5.250 4.263 1.000 -16.883 6.383 

cPTIO+NAA .750 4.263 1.000 -10.883 12.383 

cPTIO control -11.500 4.263 .054 -23.133 .133 

NAA -16.750* 4.263 .001 -28.383 -5.117 

cPTIO+NAA -10.750 4.263 .086 -22.383 .883 

NAA control 5.250 4.263 1.000 -6.383 16.883 

cPTIO 16.750* 4.263 .001 5.117 28.383 

cPTIO+NAA 6.000 4.263 .987 -5.633 17.633 

cPTIO+NAA control -.750 4.263 1.000 -12.383 10.883 
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cPTIO 10.750 4.263 .086 -.883 22.383 

NAA -6.000 4.263 .987 -17.633 5.633 

8hr control cPTIO 9.500 4.263 .178 -2.133 21.133 

NAA -12.250* 4.263 .034 -23.883 -.617 

cPTIO+NAA -.250 4.263 1.000 -11.883 11.383 

cPTIO control -9.500 4.263 .178 -21.133 2.133 

NAA -21.750* 4.263 .000 -33.383 -10.117 

cPTIO+NAA -9.750 4.263 .154 -21.383 1.883 

NAA control 12.250* 4.263 .034 .617 23.883 

cPTIO 21.750* 4.263 .000 10.117 33.383 

cPTIO+NAA 12.000* 4.263 .040 .367 23.633 

cPTIO+NAA control .250 4.263 1.000 -11.383 11.883 

cPTIO 9.750 4.263 .154 -1.883 21.383 

NAA -12.000* 4.263 .040 -23.633 -.367 

24hr control cPTIO 13.375* 4.263 .016 1.742 25.008 

NAA 1.875 4.263 1.000 -9.758 13.508 

cPTIO+NAA 4.875 4.263 1.000 -6.758 16.508 

cPTIO control -13.375* 4.263 .016 -25.008 -1.742 

NAA -11.500 4.263 .054 -23.133 .133 

cPTIO+NAA -8.500 4.263 .304 -20.133 3.133 

NAA control -1.875 4.263 1.000 -13.508 9.758 

cPTIO 11.500 4.263 .054 -.133 23.133 

cPTIO+NAA 3.000 4.263 1.000 -8.633 14.633 

cPTIO+NAA control -4.875 4.263 1.000 -16.508 6.758 

cPTIO 8.500 4.263 .304 -3.133 20.133 

NAA -3.000 4.263 1.000 -14.633 8.633 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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12. Linear mixed-effects model fit by REML for the effect of external application 

of NAA and cPTIO 

 Linear mixed-effects model fit by REML 

 Data: xdata  
AIC BIC logLik 
534.7499 562.2354 -255.375 

Random effects: 

 Formula: ~1 | Sample 

 (Intercept) Residual 

StdDev: 2.435027   10.6079 

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  

 Parameter estimates: 
Col-0+NAA+cPTIO Col 0+cPTIO Col-0+NAA Col-0 

1.0000000 0.4667150 0.6346207 0.2115160 

 

Fixed effects: Curvature ~ (time + I(time^2)) * NAA + CPTIO  
 Value Std.Error DF t-value p-value 

(Intercept)     24.98683   1.862832 60 13.413358    0e+00 

time 4.57438   0.350245 60 13.060541    0e+00 

I(time^2)       -0.08728   0.012549 60 -6.955322    0e+00 

NAA -45.03746   4.516679 13 -9.971365    0e+00 

CPTIO -9.59098   1.775461 13 -5.401965    1e-04 

time:NAA 10.63074   1.035182 60 10.269441    0e+00 

I(time^2):NAA   -0.36264   0.037089 60 -9.777474    0e+00 

 

intervals(mod) 

Approximate 95% confidence intervals 

Fixed effects: 
 lower est. upper 

(Intercept)     21.2606114   24.98682970   28.71304802 

time 3.8737893    4.57438261    5.27497593 

I(time^2) -0.1123820   -0.08728074   -0.06217946 

NAA -54.7951496 -45.03745769 -35.27976578 

CPTIO -13.4266327   -9.59098133   -5.75532997 

time:NAA 8.5600697   10.63074237   12.70141507 

I(time^2):NAA   -0.4368273   -0.36263799   -0.28844869 

attr(,"label") 

[1] "Fixed effects:" 

 Random Effects: 

  Level: Sample  
 lower est. upper 

sd((Intercept)) 1.093699 2.435027 5.421382 

 

Variance function: 
 lower est. upper 

Col 0+cPTIO 0.2829638 0.4667150 0.7697908 

Col-0+NAA     0.3793524 0.6346207 1.0616604 

Col-0 0.1267874 0.2115160 0.3528663 

attr(,"label") 

[1] "Variance function:" 

 

 Within-group standard error: 

   
lower est. upper 

7.402756 10.607902 15.200769 
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13. Two way ANOVA for the effect of external application of ACC and cPTIO 

Between-Subjects Factors 

 Value Label N 

time interval 2 2hr 16 

4 4hr 16 

6 6hr 16 

8 8hr 16 

24 24hr 16 

treatments 1 control 20 

2 cPTIO 20 

3 ACC 20 

4 cPTIO+ACC 20 

 

 

Tests of Between-Subjects Effects 

Dependent Variable:   curvature   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 35470.825a 19 1866.886 45.783 .000 .935 

Intercept 171310.050 1 171310.050 4201.135 .000 .986 

timeinterval 29236.513 4 7309.128 179.246 .000 .923 

treatment 1919.275 3 639.758 15.689 .000 .440 

timeinterval * treatment 4315.038 12 359.586 8.818 .000 .638 

Error 2446.625 60 40.777    

Total 209227.500 80     

Corrected Total 37917.450 79     

a. R Squared = .935 (Adjusted R Squared = .915) 
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Multiple Comparisons 

Dependent Variable:   curvature   

Tukey HSD   

(I) treatments (J) treatments 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower 

Bound Upper Bound 

control cPTIO 11.725* 2.0193 .000 6.389 17.061 

ACC 12.125* 2.0193 .000 6.789 17.461 

cPTIO+ACC 6.750* 2.0193 .008 1.414 12.086 

cPTIO control -11.725* 2.0193 .000 -17.061 -6.389 

ACC .400 2.0193 .997 -4.936 5.736 

cPTIO+ACC -4.975 2.0193 .076 -10.311 .361 

ACC control -12.125* 2.0193 .000 -17.461 -6.789 

cPTIO -.400 2.0193 .997 -5.736 4.936 

cPTIO+ACC -5.375* 2.0193 .048 -10.711 -.039 

cPTIO+ACC control -6.750* 2.0193 .008 -12.086 -1.414 

cPTIO 4.975 2.0193 .076 -.361 10.311 

ACC 5.375* 2.0193 .048 .039 10.711 

Based on observed means. 

 The error term is Mean Square(Error) = 40.777. 

*. The mean difference is significant at the .05 level. 

 
 

 

curvature 

Tukey HSDa,b   

treatments N 

Subset 

1 2 3 

ACC 20 41.800   

cPTIO 20 42.200 42.200  

cPTIO+ACC 20  47.175  

control 20   53.925 

Sig.  .997 .076 1.000 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 40.777. 

a. Uses Harmonic Mean Sample Size = 20.000. 

b. Alpha = .05. 
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Pairwise Comparisons 

Dependent Variable:   curvature   

treatments (I) time interval 

(J) time 

interval 

Mean 

Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

control 2hr 4hr -8.500 4.515 .646 -21.660 4.660 

6hr -15.375* 4.515 .012 -28.535 -2.215 

8hr -21.625* 4.515 .000 -34.785 -8.465 

24hr -51.000* 4.515 .000 -64.160 -37.840 

4hr 2hr 8.500 4.515 .646 -4.660 21.660 

6hr -6.875 4.515 1.000 -20.035 6.285 

8hr -13.125 4.515 .051 -26.285 .035 

24hr -42.500* 4.515 .000 -55.660 -29.340 

6hr 2hr 15.375* 4.515 .012 2.215 28.535 

4hr 6.875 4.515 1.000 -6.285 20.035 

8hr -6.250 4.515 1.000 -19.410 6.910 

24hr -35.625* 4.515 .000 -48.785 -22.465 

8hr 2hr 21.625* 4.515 .000 8.465 34.785 

4hr 13.125 4.515 .051 -.035 26.285 

6hr 6.250 4.515 1.000 -6.910 19.410 

24hr -29.375* 4.515 .000 -42.535 -16.215 

24hr 2hr 51.000* 4.515 .000 37.840 64.160 

4hr 42.500* 4.515 .000 29.340 55.660 

6hr 35.625* 4.515 .000 22.465 48.785 

8hr 29.375* 4.515 .000 16.215 42.535 

cPTIO 2hr 4hr -12.000 4.515 .101 -25.160 1.160 

6hr -17.750* 4.515 .002 -30.910 -4.590 

8hr -26.000* 4.515 .000 -39.160 -12.840 

24hr -51.500* 4.515 .000 -64.660 -38.340 

4hr 2hr 12.000 4.515 .101 -1.160 25.160 

6hr -5.750 4.515 1.000 -18.910 7.410 

8hr -14.000* 4.515 .029 -27.160 -.840 

24hr -39.500* 4.515 .000 -52.660 -26.340 

6hr 2hr 17.750* 4.515 .002 4.590 30.910 

4hr 5.750 4.515 1.000 -7.410 18.910 

8hr -8.250 4.515 .727 -21.410 4.910 

24hr -33.750* 4.515 .000 -46.910 -20.590 

8hr 2hr 26.000* 4.515 .000 12.840 39.160 

4hr 14.000* 4.515 .029 .840 27.160 

6hr 8.250 4.515 .727 -4.910 21.410 

24hr -25.500* 4.515 .000 -38.660 -12.340 
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24hr 2hr 51.500* 4.515 .000 38.340 64.660 

4hr 39.500* 4.515 .000 26.340 52.660 

6hr 33.750* 4.515 .000 20.590 46.910 

8hr 25.500* 4.515 .000 12.340 38.660 

ACC 2hr 4hr -46.500* 4.515 .000 -59.660 -33.340 

6hr -49.625* 4.515 .000 -62.785 -36.465 

8hr -50.625* 4.515 .000 -63.785 -37.465 

24hr -62.250* 4.515 .000 -75.410 -49.090 

4hr 2hr 46.500* 4.515 .000 33.340 59.660 

6hr -3.125 4.515 1.000 -16.285 10.035 

8hr -4.125 4.515 1.000 -17.285 9.035 

24hr -15.750* 4.515 .009 -28.910 -2.590 

6hr 2hr 49.625* 4.515 .000 36.465 62.785 

4hr 3.125 4.515 1.000 -10.035 16.285 

8hr -1.000 4.515 1.000 -14.160 12.160 

24hr -12.625 4.515 .069 -25.785 .535 

8hr 2hr 50.625* 4.515 .000 37.465 63.785 

4hr 4.125 4.515 1.000 -9.035 17.285 

6hr 1.000 4.515 1.000 -12.160 14.160 

24hr -11.625 4.515 .125 -24.785 1.535 

24hr 2hr 62.250* 4.515 .000 49.090 75.410 

4hr 15.750* 4.515 .009 2.590 28.910 

6hr 12.625 4.515 .069 -.535 25.785 

8hr 11.625 4.515 .125 -1.535 24.785 

cPTIO+ACC 2hr 4hr -48.250* 4.515 .000 -61.410 -35.090 

6hr -55.375* 4.515 .000 -68.535 -42.215 

8hr -61.250* 4.515 .000 -74.410 -48.090 

24hr -71.000* 4.515 .000 -84.160 -57.840 

4hr 2hr 48.250* 4.515 .000 35.090 61.410 

6hr -7.125 4.515 1.000 -20.285 6.035 

8hr -13.000 4.515 .055 -26.160 .160 

24hr -22.750* 4.515 .000 -35.910 -9.590 

6hr 2hr 55.375* 4.515 .000 42.215 68.535 

4hr 7.125 4.515 1.000 -6.035 20.285 

8hr -5.875 4.515 1.000 -19.035 7.285 

24hr -15.625* 4.515 .010 -28.785 -2.465 

8hr 2hr 61.250* 4.515 .000 48.090 74.410 
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4hr 13.000 4.515 .055 -.160 26.160 

6hr 5.875 4.515 1.000 -7.285 19.035 

24hr -9.750 4.515 .348 -22.910 3.410 

24hr 2hr 71.000* 4.515 .000 57.840 84.160 

4hr 22.750* 4.515 .000 9.590 35.910 

6hr 15.625* 4.515 .010 2.465 28.785 

8hr 9.750 4.515 .348 -3.410 22.910 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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14. Linear mixed-effects model fit by REML for the effect of external application 

of ACC and cPTIO 

Linear mixed-effects model fit by REML 

 Data: xdata  

 
AIC BIC logLik 

568.6581 596.1436 -272.3291 

       

Random effects: 

 Formula: ~1 | Sample 

 (Intercept) Residual 

StdDev: 4.294053 13.06868 

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  

 Parameter estimates: 
Col-0+ACC+cPTIO Col-0+ACC Col 0+cPTIO Col-0 

1.0000000 0.9048999 0.3724916 0.1717896 

 

Fixed effects: Curvature ~ (time + I(time^2)) * ACC + CPTIO  
 Value Std.Error DF t-value p-value 

(Intercept)     23.45498   2.473346 60 9.483096   0.0000 

time 4.57935   0.349394 60 13.106549   0.0000 

I(time^2)       -0.08747   0.012518 60 -6.987572   0.0000 

ACC   -34.28600   6.805243 13 -5.038174   0.0002 

CPTIO -6.57859   2.729322 13 -2.410339   0.0315 

time:ACC 8.40530   1.542868 60 5.447844   0.0000 

I(time^2):ACC   -0.31505   0.055279 60 -5.699230   0.0000 

 

Approximate 95% confidence intervals 

Fixed effects: 
 lower est. upper 

(Intercept)     18.5075470   23.45497534   28.40240365 

time 3.8804537    4.57934503    5.27823638 

I(time^2) -0.1125127   -0.08747242   -0.06243212 

ACC -48.9878307 -34.28599744 -19.58416420 

CPTIO -12.4749328   -6.57859127   -0.68224976 

time:ACC         5.3191082    8.40530376   11.49149930 

I(time^2):ACC   -0.4256207   -0.31504659   -0.20447252 

 

attr(,"label") 

[1] "Fixed effects:" 

 Random Effects: 

  Level: Sample  
 lower est. upper 

sd((Intercept)) 1.840286 4.294053 10.01958 

 

 Variance function: 
 lower est. upper 

Col-0+ACC     0.52400733 0.9048999 1.5626573 

Col 0+cPTIO 0.21531716 0.3724916 0.6443982 

Col-0 0.09794928 0.1717896 0.3012953 

 

attr(,"label") 

[1] "Variance function:" 

 Within-group standard error: 

lower est. upper 

8.545841 13.068676 19.985195 
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15. Two way ANOVA for the effect of external application of SNAP and cPTIO 

 

Between-Subjects Factors 

 Value Label N 

time interval 2 2hr 16 

4 4hr 16 

6 6hr 16 

8 8hr 16 

24 24hr 16 

treatments 1 control 20 

2 cPTIO 20 

3 SNAP 20 

4 cPTIO+SNAP 20 

 

Tests of Between-Subjects Effects 

Dependent Variable:   curvature   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 29672.200a 19 1561.695 69.255 .000 .956 

Intercept 225993.800 1 225993.800 10021.898 .000 .994 

timeinterval 24458.231 4 6114.558 271.156 .000 .948 

treatment 3536.875 3 1178.958 52.282 .000 .723 

timeinterval * treatment 1677.094 12 139.758 6.198 .000 .553 

Error 1353.000 60 22.550    

Total 257019.000 80     

Corrected Total 31025.200 79     

a. R Squared = .956 (Adjusted R Squared = .943) 
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Multiple Comparisons 

Dependent Variable:   curvature   

Tukey HSD   

(I) treatments (J) treatments 

Mean 

Difference (I-

J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

control cPTIO 11.725* 1.5017 .000 7.757 15.693 

SNAP -5.825* 1.5017 .001 -9.793 -1.857 

cPTIO+SNAP -2.800 1.5017 .254 -6.768 1.168 

cPTIO control -11.725* 1.5017 .000 -15.693 -7.757 

SNAP -17.550* 1.5017 .000 -21.518 -13.582 

cPTIO+SNAP -14.525* 1.5017 .000 -18.493 -10.557 

SNAP control 5.825* 1.5017 .001 1.857 9.793 

cPTIO 17.550* 1.5017 .000 13.582 21.518 

cPTIO+SNAP 3.025 1.5017 .194 -.943 6.993 

cPTIO+SNAP control 2.800 1.5017 .254 -1.168 6.768 

cPTIO 14.525* 1.5017 .000 10.557 18.493 

SNAP -3.025 1.5017 .194 -6.993 .943 

Based on observed means. 

 The error term is Mean Square(Error) = 22.550. 

*. The mean difference is significant at the .05 level. 

 

 

curvature 

Tukey HSDa,b   

treatments N 

Subset 

1 2 3 

cPTIO 20 42.200   

control 20  53.925  

cPTIO+SNAP 20  56.725 56.725 

SNAP 20   59.750 

Sig.  1.000 .254 .194 

Means for groups in homogeneous subsets are displayed. 

 Based on observed means. 

 The error term is Mean Square(Error) = 22.550. 

a. Uses Harmonic Mean Sample Size = 20.000. 

b. Alpha = .05. 
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Pairwise Comparisons 

Dependent Variable:   curvature   

time interval (I) treatments (J) treatments 

Mean 

Difference 

(I-J) 

Std. 

Error Sig.b 

95% Confidence Interval 

for Differenceb 

Lower 

Bound 

Upper 

Bound 

2hr control cPTIO 13.875* 3.358 .001 4.713 23.037 

SNAP 7.625 3.358 .161 -1.537 16.787 

cPTIO+SNAP 10.875* 3.358 .012 1.713 20.037 

cPTIO control -13.875* 3.358 .001 -23.037 -4.713 

SNAP -6.250 3.358 .406 -15.412 2.912 

cPTIO+SNAP -3.000 3.358 1.000 -12.162 6.162 

SNAP control -7.625 3.358 .161 -16.787 1.537 

cPTIO 6.250 3.358 .406 -2.912 15.412 

cPTIO+SNAP 3.250 3.358 1.000 -5.912 12.412 

cPTIO+SNAP control -10.875* 3.358 .012 -20.037 -1.713 

cPTIO 3.000 3.358 1.000 -6.162 12.162 

SNAP -3.250 3.358 1.000 -12.412 5.912 

4hr control cPTIO 10.375* 3.358 .018 1.213 19.537 

SNAP -10.500* 3.358 .016 -19.662 -1.338 

cPTIO+SNAP -8.125 3.358 .111 -17.287 1.037 

cPTIO control -10.375* 3.358 .018 -19.537 -1.213 

SNAP -20.875* 3.358 .000 -30.037 -11.713 

cPTIO+SNAP -18.500* 3.358 .000 -27.662 -9.338 

SNAP control 10.500* 3.358 .016 1.338 19.662 

cPTIO 20.875* 3.358 .000 11.713 30.037 

cPTIO+SNAP 2.375 3.358 1.000 -6.787 11.537 

cPTIO+SNAP control 8.125 3.358 .111 -1.037 17.287 

cPTIO 18.500* 3.358 .000 9.338 27.662 

SNAP -2.375 3.358 1.000 -11.537 6.787 

6hr control cPTIO 11.500* 3.358 .007 2.338 20.662 

SNAP -13.750* 3.358 .001 -22.912 -4.588 

cPTIO+SNAP -11.125* 3.358 .009 -20.287 -1.963 

cPTIO control -11.500* 3.358 .007 -20.662 -2.338 

SNAP -25.250* 3.358 .000 -34.412 -16.088 

cPTIO+SNAP -22.625* 3.358 .000 -31.787 -13.463 

SNAP control 13.750* 3.358 .001 4.588 22.912 

cPTIO 25.250* 3.358 .000 16.088 34.412 

cPTIO+SNAP 2.625 3.358 1.000 -6.537 11.787 
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cPTIO+SNAP control 11.125* 3.358 .009 1.963 20.287 

cPTIO 22.625* 3.358 .000 13.463 31.787 

SNAP -2.625 3.358 1.000 -11.787 6.537 

8hr control cPTIO 9.500* 3.358 .038 .338 18.662 

SNAP -17.125* 3.358 .000 -26.287 -7.963 

cPTIO+SNAP -12.375* 3.358 .003 -21.537 -3.213 

cPTIO control -9.500* 3.358 .038 -18.662 -.338 

SNAP -26.625* 3.358 .000 -35.787 -17.463 

cPTIO+SNAP -21.875* 3.358 .000 -31.037 -12.713 

SNAP control 17.125* 3.358 .000 7.963 26.287 

cPTIO 26.625* 3.358 .000 17.463 35.787 

cPTIO+SNAP 4.750 3.358 .974 -4.412 13.912 

cPTIO+SNAP control 12.375* 3.358 .003 3.213 21.537 

cPTIO 21.875* 3.358 .000 12.713 31.037 

SNAP -4.750 3.358 .974 -13.912 4.412 

24hr control cPTIO 13.375* 3.358 .001 4.213 22.537 

SNAP 4.625 3.358 1.000 -4.537 13.787 

cPTIO+SNAP 6.750 3.358 .293 -2.412 15.912 

cPTIO control -13.375* 3.358 .001 -22.537 -4.213 

SNAP -8.750 3.358 .069 -17.912 .412 

cPTIO+SNAP -6.625 3.358 .319 -15.787 2.537 

SNAP control -4.625 3.358 1.000 -13.787 4.537 

cPTIO 8.750 3.358 .069 -.412 17.912 

cPTIO+SNAP 2.125 3.358 1.000 -7.037 11.287 

cPTIO+SNAP control -6.750 3.358 .293 -15.912 2.412 

cPTIO 6.625 3.358 .319 -2.537 15.787 

SNAP -2.125 3.358 1.000 -11.287 7.037 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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16. Linear mixed-effects model fit by REML for the effect of external application 

of SNAP and cPTIO 

Data: xdata  
AIC BIC logLik 

506.0241 533.5096 -241.012 

        

Random effects: 

 Formula: ~1 | Sample 

 (Intercept) Residual 

StdDev: 3.216746 4.906842 

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | plant  

 Parameter estimates: 
Col-0+ACC+cPTIO Col-

0+SNAP 

Col-

0+SNAP+cPTIO 

Col-0 

1.0000000 1.1178255 1.0063424 0.4573264 

 

Fixed effects: Curvature ~ (time + I(time^2)) * SNAP + CPTIO  
 Value Std.Error DF t-value p-value 

(Intercept)     24.111074   2.052088 60 11.749534   0.0000 

time 4.576941   0.349745 60 13.086514   0.0000 

I(time^2)       -0.087380   0.012531 60 -6.973146   0.0000 

SNAP   -11.148867   3.432663 13 -3.247877   0.0064 

CPTIO -7.754643   1.898413 13 -4.084804   0.0013 

time:SNAP         6.129684   0.719649 60 8.517602   0.0000 

I(time^2):SNAP   -0.235755   0.025784 60 -9.143452   0.0000 

 

Approximate 95% confidence intervals 
 lower est. upper 

(Intercept)     20.0062875 24.11107410 28.21586075 

time 3.8773475    4.57694146   5.27653542 

I(time^2) -0.1124450 -0.08737958 -0.06231411 

SNAP -18.5646837 -11.14886663 -3.73304952 

CPTIO -11.8559144   -7.75464349 -3.65337263 

time:SNAP 4.6901713    6.12968357   7.56919582 

I(time^2):SNAP   -0.2873306   -0.23575488 -0.18417918 

  

attr(,"label") 

[1] "Fixed effects:" 

 

 Random Effects: 

  Level: Sample  
 lower est. upper 

sd((Intercept)) 1.842989 3.216746 5.614499 

 Variance function: 
 lower est. upper 

Col-0+SNAP 0.6675413 1.1178255 1.8718452 

Col-

0+SNAP+cPTIO 

0.5997378 1.0063424 1.6886131 

Col-0 0.2719230 0.4573264 0.7691422 

 

attr(,"label") 

[1] "Variance function:" 

 Within-group standard error: 
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lower est. upper 

3.402177 4.906842 7.076966 
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17. Sequence analysis for single copy transgenic line selection  

 
       >C2+3.5-1_IGFP-F -- 17..823 of sequence 
GAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAAT
AAGCGGCCGCCACCGCGGTGGAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGTAA
TCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCA
TAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTT
TCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT
ATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA
GCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGAAGGCCTT
GATTAGCCTTCGGGTTCTGCAAGAGCTTTTGCTTCAGCTCCTTTCCATTTCCATCTAGGCGCCATGGAATTGA
GCTGCATATATAGCACTAAAAATCAAACCTTTTGACCAAAAGATGTAAAAGCTTTTCTTAGTCTATTACCAAC
CTACAACTCTTATAATCTAGGAAATCAGATAAACATTGTCACTACGACATAGTTGTTTAACGTTTAAGGTATC
TTGAAGAACCAAGTAGGAATTGGAAATGAGCAAAACCAGAGCTTTTTGATTCTTTTCCCACTTTTGTATTCAA
AAATCAAATCTC 

 

Arabidopsis thaliana chromosome 5, complete sequence 

Sequence ID: gb|CP002688.1|Length: 26975502Number of Matches: 1 

 
Range 1: 24250885 to 24251168 

Score Expect Identities Gaps Strand 

499 bits(270) 3e-140 283/288(98%) 5/288(1%) Plus/Plus 

 

Query  11        GGTTCTGCAAGAGCTTTTGCTTCAGCTCCTTTCCATTTCCATCTAGGCGCCATGGAATTG  70 

                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  24250885  GGTTCTGCAAGAGCTTTTGCTTCAGCTCCTTTCCATTTCCATCTAGGCGCCATGGAATTG  24250944 

 

Query  71        AGCTGCATATATAGCACTAAAAATCAAACCTTTTGACCAAAAGATGTAAAAGCTTTTCTT  130 

                 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  24250945  AGCTGCATATATAGCACTAAAAATCAAACCTTTTGACCAAAAGATGTAAAAGCTTTTCTT  24251004 

 

Query  131       AGTCTATTACCAACCTACAACTCTTATAATCTAGGAAATCAGATAAACATTGTCACTACG  190 

                 ||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  24251005  AGTCTATTACCAA-CTACAACTCTTATAATCTAGGAAATCAGATAAACATTGTCACTACG  24251063 

 

Query  191       ACATAGTTGTTTAACGTTTAAGGTATCTTGAAGAACCAAGTAGGAATTGGAAATGAGCAA  250 

                 ||||||||| |||||||||||||||||||||||||||||||||||||||| ||||||||| 

Sbjct  24251064  ACATAGTTG-TTAACGTTTAAGGTATCTTGAAGAACCAAGTAGGAATTGG-AATGAGCAA  24251121 

 

Query  251       AACCA-GAGCTTTTTGATTCTTTTCCCACTTTTGTATTCAAAAATCAA  297 

                 ||||| |||| ||||||||||||||||||||||||||||||||||||| 

Sbjct  24251122  AACCAAGAGC-TTTTGATTCTTTTCCCACTTTTGTATTCAAAAATCAA  24251168 

 

In Col-0 NIA1Pro-NIA1-mGFP4 tranagenic line-2, T-DNA was inserted in chromosome 

five at 24,250,885 position. 

 

http://www.ncbi.nlm.nih.gov/nucleotide/332002898?report=genbank&log$=nuclalign&blast_rank=1&RID=H161XY8J015

