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ABSTRACT 10 

Water consumption varies with time of use, season and socio-economic status of consumers, and 11 

is defined as a continuous random variable. Incorporating probabilistic nature in water-12 

consumption modelling will lead to more realistic assessments of performance of water 13 

distribution systems. Furthermore, fitting water-consumption patterns into a suitable statistical 14 

distribution will assist in determining how often peaks will occur, or the probability of exceeding 15 

the peaking factor in a system, for incorporation into design calculations. There are few studies 16 

in the literature where the random variations of consumption have been considered. The purpose 17 

of this study is to evaluate real water-consumption data from the United Kingdom (UK) and 18 

North America and to investigate the possibility of establishing a standard probability 19 

distribution function to apply in simulating water consumption in developed countries. Daily 20 

water-consumption data for five years (2009–2013) were obtained from water companies in the 21 

UK and North America and analysed by fitting into normal, log-normal, log-logistic and Weibull 22 

distributions. Statistical modelling was performed using MINITAB version 18 statistical 23 

package. The Anderson-Darling goodness-of-fit test was used to show how well the selected 24 

statistical distribution fits the water-consumption data.  25 
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INTRODUCTION  30 

A major unresolved problem in water-consumption modelling is the identification of an 31 

appropriate statistical distribution which best represents the water-consumption pattern. Fitting 32 

water-consumption patterns into a suitable statistical distribution will assist in finding how often 33 

the peaks will occur, or the probability of exceeding the peaking factor, in the system to 34 

incorporate into design calculations with a scientifically proven method. The aim of this research 35 

is to study real water-consumption data and to find a standard statistical distribution to use in 36 

water-consumption modelling to address the probabilistic nature of water consumption.  The 37 

advantage of modelling real water-consumption data is that it will permit forecasting of the 38 

probability of occurrence in any consumption value and provide confidence in future projections.  39 

There are relatively few studies that have considered the random variations of water 40 

consumption. It is often assumed that variation in water consumption in distribution systems 41 

follows the normal distribution, usually with insufficient justification. Furthermore, there is 42 

inadequate reliable data regarding the suitability of various statistical distributions for modelling 43 

water consumption. Goulter and Bouchart (1990), Bao and Mays (1990), Xu and Goulter (1997, 44 

1998, 1999), Syntetos et al. (2001, 2005) and Kwietniewski (2003) made assumptions that water 45 

consumption has a normal distribution. Mays (1994) used randomly generated water-46 

consumption data using a range of distributions to study the sensitivity of a system’s 47 

performance to changes in water-consumption patterns. Khomsi et al. (1996) stated that the 48 

consumption of water has a normal distribution based on the Kolmogorov-Smirnov test (KS). 49 

However, the KS test is more sensitive near the centre of the distribution than at the tails and was 50 

not suitable to validate the water-consumption data, as the high consumption data points lie on 51 

the tail of the distribution. In the technical literature further research papers written by De 52 

Marinis et al. (2007); Tricarico et al. (2007) and Gato-Trinidad and Gan (2012) support the 53 

effectiveness of the normal distribution by means of rigorous statistical inferences on real data.  54 

The American Water Works Association (AWWA) Research Foundation sponsored a study 55 

(Bowen et al., 1993) in residential water-use patterns in the USA, and results revealed that the 56 

demand data was not distributed normally. Several data transformations to improve the data 57 

analysis were investigated and it was found that the log transformation was only mildly effective 58 

in reducing the positive skewness of the frequency distributions of the data. 59 



 Surendran and Tanyimboh (2004), and Tanyimboh et al. (2004) addressed the issue of the 60 

modelling of short-term consumption variations in a comprehensive way, using UK water-61 

consumption data and concluded that data fitted better with a long tail distribution rather than a 62 

normal distribution. However, the findings were limited to UK water-consumption data.  63 

The log-logistic distribution resembles the log-normal in shape, it has a more tractable 64 

form and is one of the few distributions for which the probability distribution, cumulative density 65 

and quartile functions exist in simple closed form (Kleiber, 2004). Furthermore, it can cope well 66 

with outliers in the upper tail (Dey & Kundu 2004). The log logistic distribution has been used 67 

by Swamee (2002), El-Saidi et al. (1990) and Rowinski et al. (2001), in hydrological studies 68 

(frequency analysis of multi-year drought durations, precipitation data and flood frequency 69 

analysis) and survival (reliability) analysis, which have the outliers in upper tail. Gargano et al. 70 

(2016, 2017) stated that log-logistic distribution is the best fit for real water-consumption data.  71 

 72 



Ashkar and Mahdi (2006), Cordeiro et al. (2012) and Ramos et al. (2013) described the 73 

log-logistic distribution in detail and concluded that the log-logistic model is suitable for positive 74 

skewed data and positive random variables. As water consumption is a random variable and is 75 

positively skewed, it defines the suitability of log-logistic distribution in modelling water 76 

consumption.  77 

 78 

Identifying a suitable statistical distribution  79 

It is a general assumption that water consumption follows a normal distribution and literature 80 

review shows that the studies undertaken in the past supported this assumption. Water 81 

consumption will vary as a result of weather patterns, fire incidents and leakages, and these 82 

scenarios will lead to extreme usage conditions. Consequently, due to high consumption from 83 

time to time, the data would fit better in a positively skewed distribution than in a normal 84 

distribution 85 

As a preliminary check, to identify the distribution patterns of the real water-consumption 86 

data obtained from the two water companies, normal graphs were drawn to check the normality 87 

of the data. The normal graphs were drawn for the 20 data sets (yearly data) and they show that 88 

out of 20 data sets, 2 sets follow a normal distribution and the other 18 sets follow a positively 89 

skewed distribution. 90 

It can be concluded that water-consumption data will fit well into positively skewed distributions 91 

such as log-normal, log-logistic and Weibull distributions.  92 

This study used these distributions to select the best fit for water-consumption modelling. 93 

The normal distribution was used for comparison. These four distributions are described in Table 94 

1, providing their suitability on application to modelling water consumption.  95 

 96 

 97 

Table 1. Suitability for using normal, log-normal, log-logistic and Weilbull distributions in 98 

modelling 99 

Distribution Description Suitability for water-

consumption data modelling 

Probability distribution function (PDF) 

Normal Has the familiar 

symmetrical bell 

shape and its sample 

space extends from 

minus to plus infinity.    

The water-consumption 

data contains only positive 

values and since the data 

typically show skewed 

frequency patterns, the 
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 normal distribution must be 

approached with caution, 

particularly if inferences 

will focus on the tails of the 

distribution. 

the standard deviation. 

 

Log-normal  Logarithmically 

related to normal 

distribution and 

shows considerable 

flexibility of shape, 

which is always 

skewed to the right.  

In log-normal distribution 

its sample space admits 

only positive values and 

suitable to use in analysing 

water-consumption data. 
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where  is the mean and  is the standard 

deviation. 

 

Log-logistic  The log-logistic 

distribution resembles 

the log-normal in 

shape, has a more 

tractable form. It can 

cope well with 

outliers in the upper 

tail. 

It is a uni-model, defined 

only for positive random 

variables and positively 

skewed which is best 

representing the water 

consumption pattern. 

f (t) =
lk (lt)k-1

[1+ (lt)k ]2
     0t  

                                                      

where  is called a shape parameter, as 

 increases the density become more 

peaked. The parameter    is a scale 

parameter.  

Weibull  Depending on the 

values of the 

parameters, the 

Weibull distribution 

can be used to model 

a variety of life 

behaviors and 

provides better 

distribution for life 

length data.  

To use Weibull distribution 

in analysis, it is essential to 

have a very good justifiable 

estimate for the shape 

parameter to replicate the 

accurate distribution 

pattern. 

  
where β is the shape parameter and η is the 

scale parameter. 

 

 

 100 

Description of data and the relative water distribution systems 101 

The daily water-consumption data for the five years from 1st April 2009 to 1st April 2013 were 102 

obtained from a water utility company in North West Region of England to use in this research. 103 

The water works system delivers water to approximately 6.7 million households and businesses 104 

in the UK. The data were collected at the supply end of the network system using flow meters 105 

which are either connected to telemetry (which are live) or data loggers. The data loggers record 106 

the number of pulses within a 15-minute interval. This was then used to calculate and average 107 



the flow rate during the 15-minute period, depending on the pulse setting (i.e. how many litres 108 

per pulse). This raw data is imported daily into the data management system and converged to 109 

hourly and daily volumes.  110 

To analyse the North American daily water consumption, data for three demand zones 111 

from a Canadian city in Manitoba Province were obtained. The data were collected using flow 112 

meters connected to data loggers at the water treatment plant by the water services division. The 113 

data were received between 1st January 2009 and 31st December 2014. The water supply system 114 

delivers an average of 225 million liters per day of water to approximately 270,000 households 115 

and businesses across approximately 297 square kilometers (114 square miles) of developed area 116 

in Canada.  117 

 118 

METHODOLOGY 119 

In this research, a suitable statistical distribution was selected using a descriptive analysis. Data 120 

were screened and sorted by plotting raw demand data against time. This provided a quick 121 

reference to check the abnormality of data. If the points were homogeneously distributed and 122 

there were no negative points, this meant that the data were all most acceptable to use in the 123 

analysis. Similarly, if there were any inconsistencies in the distribution, these time series graphs 124 

would show the abnormal data points to be removed prior to analysis.  125 

The data were then analysed using MINITAB version 18 statistical package, and was 126 

fitted into a suitable probability distribution. As previously described, the descriptive analysis 127 

show that data fit well into a positively skewed distribution and log-normal, Weibull and log-128 

logistic distributions were applied to find an appropriate distribution. The normal distribution 129 

was used for comparison purposes. 130 

 131 

Analysing data  132 

Once data has been fitted in to any distribution, the ‘goodness-of-fit test’ should be used to see 133 

how well the data fit into the distribution. The parameters of distribution such as location, shape 134 

and scale are also essential to describe the distribution. 135 

 136 

The Anderson-Darling test 137 



The appropriateness of the distribution for water-consumption data was assessed by comparison 138 

to the normal, log-normal, log-logistic and Weibull distributions using the Anderson-Darling 139 

goodness of fit test. The Anderson-Darling Test (Stephens, 1974) is used to test if a sample of 140 

data came from a population with a specific distribution. It is a modification of the K-S test and 141 

gives more weight to the tails than the K-S test. The K-S test is distribution free in the sense that 142 

the critical values do not depend on the specific distribution being tested. The Anderson-Darling 143 

Test makes use of the specific distribution in calculating critical values. This has an advantage of 144 

allowing a more sensitive test and the disadvantage is that critical values must be calculated for 145 

each distribution. The critical values were calculated, tabulated and published by Stephens 146 

(1974), for a few specific distributions, including log-logistic distribution.  147 

The equation for the Anderson-Darling parameter, A2, is  148 

 149 
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where, n is the number of observations and i is the value of the distribution in question at the ith 151 

largest observation. A smaller AD value indicates that the distribution fits the data better. The 152 

critical value of the Anderson-Darling parameter at the 95% confidence interval is 2.492 the 1% 153 

point is 3.857 for n≥5 (Johnson, 2000). The Anderson-Darling test was preferred to the 154 

Kolmogorov-Smirnov test because of the latter’s lack of sensitivity in tails (Ahmad et al., 1988; 155 

Johnson, 2000). 156 

 157 

Parameter estimates 158 

The location and scale parameters are associated with central tendency and dispersion, 159 

respectively, and are essential to describe the distribution. The parameters for normal distribution 160 

are the mean and standard deviation and they are directly related to the location and scale 161 

parameters (Rigby, 2004). The log-normal, log-logistic and Weibull distributions use location, 162 

shape or scale as their parameters and unlike normal distribution they need to transform the 163 

location and scale parameters to represent mean and standard deviation using complex equations.  164 

These parameters have allowed the distribution to have flexibility and effectiveness in modelling 165 

applications. In simple terms the shape parameter allows a distribution to take on a variety of 166 

shapes depending on the value of the shape parameter. The effect of the location parameter is to 167 



shift the graph to the left or right of the horizontal axis. The scale parameter describes the 168 

stretching capacity of the probability distribution function.  169 

 170 

The graphical method   171 

There are various numerical and graphical methods used in the literature for estimating the 172 

parameters of a probability distribution. In this study, graphical methods were selected for the 173 

analysis along with the maximum likelihood method to draw the probability plots (see Figures 1 174 

and 2 in the following section). The data were analysed using 95% confidence intervals (5% 175 

significance level) and were fitted to normal, log-normal, Weibull and log-logistic distributions 176 

to establish the parameters for the distribution. The middle line in the probability plot shows the 177 

normal line and the other two lines show the 95% confidence intervals. Montgomery and Runger 178 

(2002) stated that normal probability plots are useful in identifying distributions that fit into the 179 

normal distribution and those which have skewed distributions with long tails. If the data falls 180 

below the normal line then data has a positively skewed distribution (Montgomery & Runger, 181 

2002). 182 

 183 

 184 

RESULTS AND DISCUSSION 185 

The normal probability plots for the UK and North American water-consumption data for the 186 

year 2009 is shown in Figure 1and Figure 2, respectively. The data shown in Figure 1 and Figure 187 

2 shows that values on both ends tend to fall below the normal line. This demonstrates that the 188 

data has a positively skewed distribution. Further to this, the graphs of four distributions for the 189 

UK and North American data show that more data points are within the 95% confidence level for 190 

log-logistic distribution than log-normal, Weibull and normal distributions.  191 



 192 

 193 

 194 

Figure 1. Probability plots for normal, log-normal, log-logistic and Weibull – UK 195 

196 



 197 

Figure 2. Probability plots for normal, log-normal, log-logistic and Weibull – North American 198 

data.  199 

 200 

 201 

The goodness-of-fit test  202 

The Anderson-Darling (AD) goodness-of-fit test was used to confirm the best fit of data for 203 

normal, log-normal, log-logistic and Weibull distribution.  The AD values for normal, log-204 

normal, log-logistic and Weibull distributions for the UK and North American data are shown in 205 

Figures 3 to 6. The data used in this study has shown that the log-logistic distribution has the 206 

lowest AD values when compared with the normal, Weibull and log-normal distributions.  207 



 208 

Figure 3. Anderson-Darling (AD) test values – UK. 209 

 210 

 211 

Figure 4. Anderson-Darling (AD) test values for Zone 1 – North America. 212 



 213 

Figure 5. Anderson-Darling (AD) test values for Zone 2 – North America. 214 

 215 

 216 

 217 

Figure 6. Anderson-Darling (AD) test values for Zone 3 – North America. 218 

 219 

 220 

Parameter estimates 221 

The location and scale parameters are associated with central tendency and dispersion, 222 

respectively, and are essential to describe the distribution.  The parameters for normal 223 

distribution are the mean and standard deviation and they are directly related to the location and 224 

scale parameters (Rigby, 2004). The log-normal, log-logistic and Weibull distributions use 225 

location, shape or scale as their parameters and unlike normal distribution they need to transform 226 



the location and scale parameters to represent mean and standard deviation using complex 227 

equations.  228 

These parameters have allowed the distribution to have flexibility and effectiveness in 229 

modelling applications. In simple terms the shape parameter allows a distribution to take on a 230 

variety of shapes depending on the value of the shape parameter. The effect of the location 231 

parameter is to shift the graph to the left or right on the horizontal axis. The scale parameter 232 

describes the stretching capacity of the probability distribution function.  233 

The location parameter obtained in this study for the log-logistic distribution is 234 

approximately 7.4 for the UK’s water-consumption data. The scale parameter is in between 235 

0.0107 and 0.026 (Table 2). With regard to the North American water-consumption data, the 236 

location parameter obtained for log-logistic distribution is between 3.92 and 4.562. Similarly, the 237 

scale parameter is between 0.0296 and 0.389 (Table 3). The standard deviation is in a range of 238 

1720 to 1792 and mean value is 35 to 96.51 for the UK’s consumption data (Table 4). 239 

 240 

Table 2. Location and scale parameters for log-logistic distribution for UK water demand data 241 

Date Location Scale 

2009 data 7.485 0.01776 

2010 data 7.482 0.0256 

2011 data 7.464 0.01517 

2012 data 7.448 0.01068 

 242 

Table 3. Location and scale parameters for log-logistic distribution for Canadian water demand 243 

data 244 

Date  Zone 1 Zone 2 Zone 3 

 Location Scale Location Scale Location  Scale 

2009 data 4.089 0.0415 4.545 0.0457 3.920 0.105 

2010 data 4.089 0.0415 4.545 0.0457 3.920 0.105 

2011 data 4.187 0.055 4.446 0.063 4.308 0.142 

2012 data 4.098 0.389 4.361 0.041 4.152 0.092 

2013 data 4.115 0.0296 4.562 0.054 3.992 0.088 

 245 

 246 
 247 



 248 

Table 4. Standard deviation and mean values for water-consumption data for UK water demand  249 
Data Standard Deviation Mean 

2009 data 67.9 1792 

2010 data 96.51 1787 

2011 data 45.31 1746 

2012 data 35 1720 

 250 

CONCLUSIONS 251 

It was observed that by analysing water-consumption data, 88% of the water-consumption data 252 

has a positively skewed distribution. This means that data would fit better for positively skewed 253 

distributions such as log-normal, log-logistic and Weibull. Following detailed analysis of data, 254 

the study shows that from the four selected distribution patterns studied, the log-logistic 255 

distribution provided the lowest AD values and was the most suitable water-distribution pattern 256 

to standardise when modelling the water demand.  257 

The findings in this study are in accordance with the literature which stated that log-258 

logistic distribution is the best fit for real water-consumption data.  Although log-normal and 259 

log-logistic distributions may be similar for moderate sample sizes, it is still desirable to choose a 260 

more suitable model to obtain an accurate probability values at tails.   261 

Moreover, the normal and log-normal distributions produced marginally acceptable AD 262 

values. The AD values obtained for the Weibull distribution have higher values when compared 263 

with the other three distributions (log-logistic, log-normal and normal) and were found not to be 264 

suitable in simulating the water demand data.  265 

To the best of the authors’ knowledge, there are no prior studies which have incorporated 266 

the probability of occurrence using real water-consumption data built upon a statistically 267 

analysed method focused on the upper tails. Using AD test to validate the data, this study 268 

focused on the data on upper tails which best represents the water-consumption data.  269 

The log-logistic distribution could be used as a standard statistical distribution in 270 

quantifying the probability of exceedence of the water consumption. Additionally, this work also 271 

has the potential to provide, significant information to help policy makers forecast future 272 

demands using a fully probabilistic method.  273 

 274 



ACKNOWLEDGEMENTS 275 

The authors wish to express their gratitude to the Environment Agency for supporting this 276 

research initiative, and water utility companies from the UK and North America for providing 277 

the data sets for this study.  278 

 279 

REFERENCES 280 
 281 
[1] Ahmad, M. I., Sinclair, C. D. & Spurr, B. D. (1988) Assessment of flood frequency 282 

models using empirical distribution function statistics. Wat. Resour. Res. 24 (8), 1323-283 
1328 284 

 285 
[2]    Ashkar F and Mahdi S, (2006). Fitting the log-logistic distribution by generalized moments. 286 

Journal of Hydrology, 328, 694-703 287 
[3] Bao, Y. and Mays, L.W., (1990). Model for water distribution system reliability. J. of 288 

Hydraul. Eng., Vol.116(9), 1119-1137 289 
[4] Bowen P T, Harp J F, Baxter W J and Shull R D, (1993). Residential water use patterns. 290 

American Water Works Association - Research Foundation, USA. 291 
[5] Cordeiro G M, Santana T V F, Ortega E M M and Silva G O. (2012). The 292 

Kumaraswamy-LogLogistic distribution. Journal of Statistical Theory and Applications, 293 

11, 265-291. 294 
[6]      De Marinis, G., Gargano, R. and Tricarico, C. (2007). Water demand models for a small 295 

number of users. ASCE Proceedings of the 8th Annual International Symposium on 296 

Water Distribution Systems Analysis, Cincinnati, OH, doi: 10.1061/40941(247)41. 297 

[7] Dey, A. K. & Kundu, D. (2004), Discriminating between Log normal and Log logistic 298 
distributions, Journal of Statistical Computation and Simulation vol.74, no.2, 107–121. 299 

[8]       El-Saidi M A, Singh K P and Bartolucci A A. (1990), A note on a characterisation of the 300 
generalised log-logistic distribution. Environmetrics; 1 (4), 337-342. 301 

[9]       Gargano, R.; Tricarico, C.; Del Giudice, G.; Granata, F. (2016). A Stochastic Model for 302 

Daily Residential Water Demand. Water Sci. Technol. Water Supply 2016, 16, 1753-303 
1767. 304 

[10]      Gargano, R., Tricarico, C., Granata, F., Santopietro, S., de Marinis, G. (2017). 305 
Probabilistic Models for the Peak Residential Water Demand. Water (Switzerland), 9, 306 

417. 307 
[11]   Gato-Trinidad, S. and Gan, K., (2012). Characterizing maximum residential water demand. 308 

Urban Water - WIT Transactions on The Built Environment, Vol.122, 15-24. 309 

 310 
[12] Goulter I C and Boulchart F, (1990). Reliability constrained pipe network model, Journal 311 

of hydraulic engineering, ASCE, 116, (2), 211- 227.  312 
[13] Johnson R A, (2000). Probability and statistics for Engineers, Prentice Hall, London. 313 

[14] Khomsi D, Walters G A, Thorly A R D and Ouazar D, (1996). Reliability tester for water 314 
distribution networks, Journal of Computing in Civil Engineering, ASCE, 10, (1), 11-19. 315 

[15]     Kleiber C (2004). ‘Lorenz ordering of order statistics from log-logistic and related 316 
distributions’, Journal of Statistical Planning and Inference’, 120 (1-2),13-19 317 



[16] Kwietniewski M, (2003). ‘Reliability Modelling of Water Distribution System (WDS) for 318 

Operation and Maintenance Needs’, Journal of Hydro-Engineering and Environmental 319 

Mechanics Vol. 51 (2004), No. 1, pp. 85–92. 320 
[17] Mays L W, (1994). Computer Modelling of Free Surface and Pressurised flows,  321 

Chaudray M H and Mays L W (editors), Kluwer Academic Publishers, Netherland, 485-322 
517.  323 

[18] Montogomary D C and Runger G C, (2002). ‘Applied statistics and probability for 324 

Engineers’, 3rd edition, Printed in USA. 325 

[19]    Ramos M W A, Cordeiro G, Marinho P, Dias C (2013). The Zografos-Balakrishnan Log-326 
Logistic Distribution: Properties and Applications, Journal of Statistical Theory and 327 
Applications, Vol. 12, No. 3 (September 2013), 225-244 328 

[20]    Rowinski P M, Strupczewski W G and Singh V P (2001), ‘A note on the applicability of 329 
log-Gumbel and log-logistic probability distributions in hydrological analyses’: I. 330 
Hydrological Sciences Journal, 47 (1), 107-122. 331 

[21]     Stephens M A (1974), ‘EDF statistics for goodness of fit and some comparisons’, J. 332 
American Statistical Association, Vol.69, pp. 730-737. 333 

[22] Surendran, S., Tanyimboh, T. and Tabesh, M. (2005). Peaking demand factor-based 334 
reliability analysis of water distribution systems. Advances in Engineering Software, 335 
36(11-12), pp.789-796.96. 336 

[23]     Swamee, P.K. (2002). Near lognormal distribution. J. Hydrol. Eng., 7(6), 441-444. 337 
[24] Syntetos A. A. & Boylan, J E, (2001). On the bias of intermittent demand estimates. 338 

International Journal of Production Economics, 71, 457– 466. 339 

[25] Syntetos A.A, and Boylan, J E, (2005). The accuracy of intermittent demand estimates, 340 

International Journal of Forecasting 21 (2005) 303– 314 341 
[26] Tanyimboh T T and Surendran S, (2002). Log-logistic Distribution Models for Water 342 

Demands, 4th International Conference on Engineering and Technology Civil-Comp 343 
press, Sterling.  344 

[27]    Tricarico, C., de Marinis, G., Gargano, R. and Leopardi, A., (2007). Peak residential water 345 

demand. Water Management Journal, Vol.160(WM2), pp.115-121. 346 
 347 
[28] Xu C and Goulter I C,  (1997). A New model for reliability based optimal design of water 348 

distribution networks, The 27th Congress of the International Association for Hydraulic 349 
Research, ASCE, 423-428. 350 

[29] Xu C and Goulter I C, (1998). Probabilistic model for distribution reliability, Journal of 351 

Water Resources Planning and Management, ASCE, 124, (4), 218-228. 352 
[30] Xu C and Goulter I C, (1999). Reliability based optimal design of water distribution 353 

networks, Journal of Water Resources Planning and Management, ASCE, 125, (6), 352-354 
362. 355 

 356 


