
1 
26/01/2018 

Anodic Stripping Voltammetric Determination of Zinc 

at a 3-D Printed Carbon Nanofiber–Graphite–

Polystyrene Electrode Using a Carbon Pseudo-

Reference Electrode 

Kevin C. Honeychurch1, Zuhayr Rymansaib2, and Pejman Iravani2 

1Centre for Research in Biosciences, Department of Applied Sciences, University of the West of 
England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK 

2Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK 
 

Abstract 

The application of a novel fully 3-D printed carbon nanofiber–graphite–polystyrene electrode has 

been investigated for the trace determination of Zn2+ by differential pulse anodic stripping 

voltammetry.  The possibility of utilising a carbon pseudo-reference electrode was found to be 

successful.  The effect of accumulation potential and time were investigated and optimised.  Using 

an accumulation potential of -2.9 V (vs. C) and an accumulation time of 75 s a single sharp anodic 

stripping peak was recorded exhibiting a linear response from 12.7 µg/L to 450 µg/L.  The theoretical 

detection limit (3σ) was calculated as 8.6 µg/L.  Using the optimised conditions a mean recovery of 

97.8 %, (%CV = 2.0 %, n = 5) for a tap water sample fortified at 0.990 µg/mL was obtained indicating 

the method holds promise for the determination of Zn2+ in such samples. 

1. Introduction 

Zinc is an essential element required for the activity of >300 enzymes [1]. It is required in a number 

of important industries and in a wide range of common household applications such as; batteries [2] 

and personal care products [3-5].  Demand for this metal is expected to increase as a result of 

reduced capacity, environmental policy constraints, closure of exhausted mines and from increased 

industrial demand [6].  One common application for Zn is in the alloy brass, used widely in plumbing 

and water systems.  Concentrations of Zn leaching from plumbing fittings can result in a metallic or 

bitter taste that can sometimes occur in tap water.  Consequently, the World Health Organisation 
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advises that drinking water containing Zn levels above 3 mg/L may not be acceptable to consumers 

and set standards for Zn in potable water vary from 1 mg/L in Japan to 5 mg/L in Canada and the 

USA [7] for this reason.  Levels in tap water [8] and unpolluted environmental water [9] are generally 

much lower, in the µg/L range, but in some instances levels as high as 6.7 mg/L [10] have been 

reported in rivers and elevated concentrations in rainwater collection tanks in the range of 1.1 and 

10.8 mg/L have also been reported [11].  This is of possible concern, beyond that of taste issues, as 

studies have shown that elevated Zn levels in drinking water can be associated with type 1 diabetes 

in children [12]. 

Commonly, Zn is determined by atomic absorption spectrometry [13] and ICP-AES [14] or ICP-MS 

[15].  These approaches can be expensive, both in terms of infrastructure and resources [16] and in 

the requirement of highly trained staff for their application.  However, electrochemical techniques 

such as stripping voltammetry have been shown to be both economic and sensitive and can be used 

by relatively untrained persons.  Table 1 gives a summary of some recent applications of anodic 

stripping voltammetry (ASV) for the determination of Zn.  The possibility of using ASV for the 

determination of Zn has been demonstrated using Hg based electrodes.  However, the toxicity of Hg 

[17] has led to issues with its lack of acceptance in wide-scale routine analysis.  Commonly, 

alternatives to Hg such as carbon working electrodes modified with either Bi [18] or Sb [19] have 

been employed for the stripping voltammetric determination of Zn and a number of metal ions [20].  

Nevertheless, it has also been shown possible [21-24] to directly deposit the target metal analyte as 

a thin film directly on the carbon electrode itself.   

One common technique that has been used to manufacture such carbon electrodes is screen-

printing.  This has become an increasingly common approach due to the large commercial 

application of screen-printed electrodes (SPEs) in the determination of blood glucose [25] and a 

number of SPEs based approaches have been developed for the determination of Zn [20].  Screen-

printing requires well trained staff with an in-depth knowledge of the conditions required for 
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successful printing.  Parameters such as; the type of solvent [26], binder [27], the condition of the 

squeegee [28] and curing temperature [29] can all lead to changes in the electrodes produced and 

their behaviour [30,31].  Investigations into improving their performance and reproducibility are 

commonly reported [32,33].  However, this can be problematic, as the composition of the carbon 

printing inks is generally proprietary information, resulting in a lack of knowledge of the structure of 

the printed electrode.   

More recently, studies have shown the possibility of using the alternative technology of 3-D printing 

to fabricate carbon electrodes [34-40].  Unlike screen-printing, a considerable percentage of 3-D 

printing technology is presently based on the open-source model, facilitating the creative adaption 

of methods and for open sharing of expertise and innovation [41].  3-D printing also has the 

advantages of allowing for the simple fabrication of new bespoke composite designs and other 

important sensor components, other than just the electrodes, such as micro-fluidic sample handling 

systems [42], analyte accumulation layers [43] and even whole electrochemical cells [42] to be 

fabricated using the same process, with the possibility of producing these with high precision 

utilising robotic printing techniques [44] having also been shown.  3-D printed carbon electrodes 

have been described for applications such as ECG monitoring [35] and for the detection of alkaline 

phosphatase via the chronoamperometric determination of p-nitrophenol [36].  However, these 

applications required multiple masking and patterning steps with PDMS and Au sputtering to give 

the finished device.  As with the majority of previous applications of 3-D technology for electrode 

fabrication, these only use 3-D printing for part of the production process and ultimately still 

required further steps.  Nevertheless, in a recent study [34], it has been shown possible to fabricate 

electrodes using 3-D-printing alone, without the need for further fabrication steps.   

In this present study we have investigated the voltammetric behaviour of Zn at these newly designed 

and fully fabricated nanofiber 3-D printed carbon electrode initially as part of a conventional three 

electrode cell, using a saturated calomel reference electrode (SCE) and a carbon rod auxiliary 
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electrode.  In the second section of our study we investigated the possibility of utilising this same 3-

D printed working electrode as part of a novel all carbon electrochemical cell by using it in 

conjunction with a carbon pseudo-reference/counter electrode.  In the final section we then 

investigated and optimised the conditions required for the differential pulse anodic stripping 

voltammetric (DPASV) determination of Zn in a fortified tap water sample.   
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Working 
electrode 

Supporting 
electrolyte 

Measurement 
technique 

 

Linear 
range, 
µg/L 

Detection 
limit, 
µg/L 

Sample Ref. 

Ex situ 
deposited 
bismuth 
SPE 

0.01 M KNO3 
and 
maleic/maleate 
buffer at pH 6. 

DPASV, -1.5 V, 60 s. 
stripping 
chronopotentiometry 

Up to: 
250 

3.5 
 

Barcelona 
tap water 

[45] 

Bismuth 
oxide 
modified 
ink SPE 

0.1 M sodium 
acetate 
solution 
containing 0.05 
M HCl or 0.1 M 
HCl 

SWASV, -1.2 V 40 - 
150 

30 River 
water 

[46] 

Hg thin 
film SPE 

20 mM KH 
phthalate, 
0.1 M MgCl2 

DPASV -1.4 (300 s) 10 -
500 

 -- [47] 

Hg thin 
film SPE 

120 mg/mL 
Hg2Cl2, 20 mM 
potassium 
hydrogen 
phthalate, 0.1 
MgCl2 

DPASV Up to 
1000 

55.7 Water [48] 

In situ 
plated Bi 
SPE 

0.1 M pH 4.5 
acetate buffer, 
10-2 M KCl 

SWASV 10 –
100 

8.2 Tap 
water 
and 
waste 
water 

[49] 

Hanging 
mercury 
drop 
electrode 

0.1 M sodium 
acetate buffer 
at pH 6.5–7.0, 
and 1 µM 
Aluminon 

Adsorptive cathodic 
stripping 
voltammetry 

30 –
120 

30 -- [50] 

Hanging 
mercury 
drop 
electrode 

4% (v/v) acetic 
acid solution 

SWASV Up to 
200 

0.5 Glazed 
ceramic 
surfaces 

[51] 

Glassy 
carbon 
electrode 

Pyrophosphate 
(pH 4.0) 

DPASV 100 –
400 

14.7 Boiler 
feed 
water 

[52] 

Glassy 
carbon 
electrode 

0.01 M acetate 
buffer solution 
(pH 4.6) 

SWASV with the aid 
of sonication 

13 – 
65 

6.5 Blood [53] 

3-D 
printed 
carbon 
electrode 

0.1 M acetic 
acid 

DPASV 12.7 – 
450 

8.6 Tap 
water 

This 
study 

Differential pulse anodic stripping voltammetry (DPASV), Screen-printed electrode (SPE), Square 
wave anodic stripping voltammetry (SWASV). 

Table 1. Previously reported methods for the stripping voltammetric determination of zinc. 
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2. Experimental Section  

2.1 Chemical and Reagents  

Polystyrene pellets (441147), and graphite flakes (28286-3) were supplied by Sigma-Aldrich (Poole, 

UK).  Acrylonitrile butadiene styrene (ABS) granules, MG94 resin were supplied by Sabic 

(OS3DP.com).   High Impact Polystyrene (HIPS) filament (HIPS175W1) was obtained from CPC Farnell 

(Preston, UK) and Pyrograf III carbon nanofibers from Pyrograf Products, Inc. (pyrografproducts.com, 

PR-24-XT HHT).   

Zinc stock solutions were prepared by dissolving the appropriate mass of Zn(NO3)2.6H2O (Sigma-

Aldrich, Poole, UK) in deionised water.  Working standards, for optimisation of studies, were 

prepared by dilution of the primary stock solution with deionised water.  Deionised water was 

obtained from a Purite RO200–Stillplus HP System, (Purite Oxon, UK).  Supporting electrolyte 

solutions for voltammetric studies were prepared by dilution of glacial acetic acid (Fisher, 

Loughborough, UK) to give a 0.1 M solution.  Acetate solutions were made by mixing of acetic acid 

and sodium acetate (Fisher, Loughborough, UK) to give the desired pH. 

2.2 Apparatus  

Cyclic voltammetry and differential pulse anodic stripping voltammetry (DPASV) were performed 

with a Pstat10 potentiostat interfaced to a PC for data acquisition via the General Purpose 

Electrochemical System Software Package (GPES) version 3.4 (Autolab, Windsor Scientific Limited, 

Slough Berkshire UK).  The cell used for the voltammetric measurements was obtained from 

Metrohm (Switzerland); a small magnetic stirrer bar was placed in the bottom of the cell for stirring 

in the pre-concentration step of DPASV.  This was rotated at a fixed constant rate by a rotary stirrer 

(Mini MR Stirrer, Whatman, Maidstone, Kent, UK).  All measurements were made using the 3-D 

printed working electrode with a graphite rod counter/pseudo-reference electrode.  The 3-D printed 

working electrode was initially polished manually with slurries prepared from 50 µm aluminium 
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oxide on a smooth polishing mat.  Residual polishing material was removed by rinsing with deionized 

water.  The electrode was then repeatedly scanned using the cyclic voltammetric conditions 

described in section 2.4 until a constant background current was obtained.  

 

2.3 Fabrication of Electrodes 

2.3.1 Composite Thermoplastic Filament Fabrication 

For a total 5 g of electrode conductor material, 4 g of polystyrene pellets are dissolved in 50 mL of 

chloroform and stirred with a magnetic stirrer until fully dissolved. The additives, 0.5 g of CNF and 

0.5 g of graphite flakes are sonicated for 20 minutes in 50 mL of chloroform. Containers were sealed 

to prevent solvent evaporation. The two mixtures are then combined in a single open container and 

placed on a heated magnetic stirrer at 50 °C in a fume cupboard until all the solvent has evaporated. 

After the complete evaporation of the solvent, the solid thermoplastic composite is placed in a 

heated (220 °C) aluminium barrel with a 2 mm orifice and extruded into lengths of composite 

conductive filament to be used for 3D-printing.  

2.3.2 Filament Characterization 

Filament admittance measurements were carried out by pressing material into a disc, coating both 

sides with silver paint and analysing using a Solartron 1296 impedance analyser (UK). A 100 mV RMS 

AC signal is applied, sweeping from 1 Hz to 1 MHz. AC conductivity (admittance) is then calculated 

using eq. 1, 

𝜎 =
𝑍′

𝑍′2 + 𝑍′′2
.

𝑡

𝐴
                                                                         (1) 

where Z’ and Z’’ are the real and imaginary parts of the impedance, A is the area of the sample and t 

is the sample thickness. AC conductivity of the composite was thus evaluated to be 5.03 Sm-1 up to ≈ 
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100 kHz.  

2.3.3 CAD Design and 3D-Printing 

The electrode was designed as a multi-material part using a CAD package (Solid Edge ST6). Electrode 

tip dimensions are 4.5 mm × 7.5 mm with a 0.81 mm × 0.81 mm active area in the centre (figure 1).  

The CAD file is subsequently processed with open source software Slic3r to convert to printing 

commands. A 350 μm layer height was used resulting in 9 layers for printing of the complete 

electrode.  The electrodes were then printed using a custom-built fused filament deposition 3D-

printer equipped with two 0.5 mm extruders. 

2.4 Cyclic Voltammetry  

Cyclic voltammograms were initially recorded with plain solutions of 0.1 M of the supporting 

electrolyte under investigation and then in the same solution containing 1.2 mM Zn.  Degassing was 

achieved by purging with oxygen free nitrogen (BOC, Guildford, UK) for 5 minutes to eliminate 

oxygen reduction waves.  A starting and final potential of 0.0 V was employed, with a switching 

potential of -2.5 V and a scan rate of 50 mV/s.  A 3-D printed carbon working electrode with either a 

carbon pseudo-reference counter electrode or a saturated calomel reference electrode (SCE) and 

carbon rod counter electrode was employed. 

2.5 Differential Pulse Anodic Stripping Voltammetry  

Accumulation was carried out for 75 s at -2.9 V (vs. carbon).  The stripping voltammogram was 

recorded using a differential pulse waveform using a step height of 10 mV, pulse repetition time 0.2 

s, pulse amplitude of 50 mV, and pulse duration of 50 ms.  The stripping voltammogram was 

recorded over the potential range -2.9 V to 0.0 V (vs. carbon).  Degassing of the sample with nitrogen 

was found to be unnecessary. 
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2.6 Analytical Application 

For evaluation of the method we determined Zn in a tap water sample collected from our 

laboratory, fortified to be 0.990 µg/mL using the following procedure.  Aliquots (1.0 mL) of either un-

spiked tap water or tap water fortified to be 0.990 µg/mL of added Zn were transferred to the 

electrochemical cell and diluted to be 10 mL 0.1 M acetic acid.  The concentration of Zn present was 

determined using the optimised DPASV conditions described.  Quantification was performed using 

the method of multiple standard additions. 

3. Results and Discussion 

3.1 Cyclic Voltammetric Behaviour of Zinc 

3.1.1 Effect of Supporting Electrolyte 

Previous studies undertaken at carbon working electrodes have shown the importance of both the 

pH and the chemical nature of the supporting electrolyte [21,23].  A number of studies utilising 

carbon working electrodes have shown the advantages of acetate based supporting electrolytes 

[20].  Thus, in this present study we investigated 0.1 M acetate solutions at pH 3, 4, 5 and 6, and 

acetic acid itself as possible supporting electrolytes for the voltammetric determination of Zn2+.  

Cyclic voltammetric investigations showed that the largest oxidation peaks (figure 2) were obtained 

in 0.1 M acetic acid.  Consequently, a 0.1 M acetic acid supporting electrolyte was used in further 

studies. 

3.1.2 Carbon Auxiliary/Pseudo-Reference Electrode  

Our initial DPASV investigations utilising a SCE as a reference electrode and a carbon auxiliary 

electrode were hampered by contamination of the supporting electrolyte with Zn2+ ions presumably 

diffusing from the internal salt solution of the saturated calomel reference electrode salt bridge [54].  

To overcome this issue we investigated the possibility of utilising an alternative two electrode 
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carbon system.  Previous investigations by Panzer and Elving [55] have demonstrated the possibility 

of utilising a carbon electrode as a reference electrode.  It was critical to first demonstrate that this 

carbon counter/pseudo-reference electrode could provide stable electrochemical conditions during 

the accumulation and stripping steps of ASV.  Thus, we assessed the suitability of our carbon 

counter/pseudo-reference electrode by investigating the cyclic voltammetric responses of a 1.2 mM 

Zn2+ solution in 0.1 M acetic acid supporting electrolyte (figure 3).  The performance of the 3-D 

printed carbon electrode was investigated with both a conventional three electrode system (SCE and 

carbon counter electrode) and with a two electrode carbon counter/pseudo-reference.  Our 

investigations showed the carbon based two electrode system overcame the problems of supporting 

electrolyte contamination and both peak currents (ipa) (%CV = 4.50 %, n = 15) and peak potentials 

(Ep) (%CV = 2.60 %, n = 15) were highly reproducible.  The voltammetric profiles were found to shift 

by approximately, 0.6 V but the overall behaviour of voltammogram was found to be very similar for 

both systems (figure 3).  Consequently, the carbon counter/pseudo-reference system was utilised in 

further investigations. 

3.2 Differential Pulse Anodic Stripping Voltammetry 

As we were particularly interested in developing a method capable of determining trace levels of 

Zn2+ we elected to explore the possibility of utilising the more sensitive and selective differential 

pulse voltammetric waveform [21].  Figure 4 shows a typical differential pulse anodic stripping 

voltammogram obtained using an accumulation potential of -2.4 V (vs. C) and an accumulation time 

of 60 s for a 773.5 µg/L (ppb) in a non-degassed solution.  A well-defined stripping peak for Zn was 

obtained with a peak potential (Ep) of -1.8 V (vs. C).  As this exhibited good analytical properties, we 

decided to explore this further.   

3.2.1 Effect of Accumulation Potential 

The Zn stripping peak was found to increase in magnitude as the accumulation potential was made 

more negative, and reached a maxima which became independent of accumulation potentials at 
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values more negative than -2.8 V (vs. C).  Figure 5 shows the resulting plot of peak current vs. 

accumulation potential for a 773.5 µg/L Zn2+ 0.1 M acetic acid solution, using an accumulation time 

of 60 s.  An accumulation potential of -2.9 V (vs. C) was hence used in further investigations.  No 

evidence of hydrogen evolution was recorded at this potential. 

3.2.2 Effect of Accumulation Time  

The effect of accumulation time was studied over the range of 10 s to 80 s using a 773.5 µg/L Zn 

solution in 0.1 M acetic acid.  Figure 6 shows a plot of deposition time vs. peak current.  The peak 

current for the stripping peak increased linearly with accumulation times up to 75 s.  At 

accumulation times greater than this the stripping peak became distorted and non-reproducible.  

We consequently decided to select a deposition time of 75 s for further studies.   

3.2.4 Calibration Curve and Limit of Detection 

A calibration study was carried out using Zn2+ standards prepared in 0.1 M acetic acid.  These 

standards were subjected to DPASV using the optimised deposition time and deposition potentials 

values.  Using an accumulation time of 75 s with an applied potential of -2.9 V (vs. C) a linear 

response was obtained from 12.7 µg/L to 450 µg/L with a slope of 3.552 nA/ng/mL (R2 = 0.999) with 

a corresponding theoretical detection limit of 8.6 µg/L Zn (3 σ).  A coefficient of variation of 1.8 % 

was obtained for the determination of an 80.9 ng/mL Zn standard. 

3.2.5 Interference Study 

Investigations indicated that common ions found in tap water including nitrate, sulphate, chloride, 

sodium, calcium and magnesium did not interfere with the voltammetric determination of Zn (115 

ng/mL) at molar ratios of (interferent : Zn2+) <75.  As shown in Figure 7, 2:1 molar ratios of Cd2+, Pb2+ 

and Cu2+ were found to have no effect on the anodic stripping voltammetric response of Zn.  Well 

defined stripping voltammetric peaks were also recorded for Cd, Pb and Cu.  The formation of mono 

and multilayer stripping peaks commonly seen at solid electrodes are clearly observable for these 
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metals under the conditions employed.  Both the peak shape and peak current of the Zn stripping 

peak remind unaffected by the presence of these three other metals demonstrating the possibility of 

using this approach in future studies for the simulations determination of all four metals. 

4. Analytical Application 

The 3-D printed carbon electrode was evaluated by carrying out Zn2+ determinations on a tap water 

sample.  The deposition time and potential, as well as DPASV parameters were the same as used 

previously.  The concentration of Zn2+ was determined using the method of multiple standard 

additions.  The unfortified sample was found to contain 180 ng/mL Zn, similar levels to that reported 

in previous studies [8,23].  An aliquot (100 mL) of the sample was then fortified to be 0.990 µg/mL 

Zn and an aliquot (1.0 mL) added to the electrochemical cell.  This was then diluted to be 10 mL 0.1 

M acetic acid.  The solution was then examined using the optimised DPASV method and a mean 

percentage recovery of 97.8 %, (n = 5, %CV = 2.0 %) was obtained.  Figure 8 shows DPASVs of a 

representative fortified tap water sample. 

5. Conclusions 

A fully 3-D printed carbon working electrode has been successfully employed for the differential 

pulse voltammetric determination of trace concentrations of Zn2+ in water.  The study shows that 

the fully 3-D printed nanocomposite electrodes exhibited good conductivity with low background 

currents and allowed for the formation of stable metal film formation essential for ASV.  The 

electrode was found to be stable for at least a period of four months, with no special storage 

conditions being required.  As previously noted [21], Zn can be a difficult element to determine by 

ASV as it deposits and stripping responses are often accompanied by hydrogen evolution at extreme 

negative potentials.  However, our investigation as shown that trace levels of Zn could be readily 

determined by DPASV at our 3-D printed electrodes without the requirement to degas the sample or 

for the application of Bi, Hg or other metal films.  Similar deposition and stripping characteristics 
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have been recorded to that seen at other carbon based electrodes [22,56].  The importance of both 

the nature of the supporting electrolyte and the deposition potential used have been shown to have 

notable effects on the nature of the stripping peaks recorded.  It was shown possible to use this 

electrode as part of a carbon auxiliary/pseudo-reference two electrode system.  This could offer a 

number of advantages overcoming contamination problems resulting from the components of the 

reference electrode and would in future studies allow for the possibility of 3-D printing the entire 

electrochemical cell; including the reference, counter and working electrodes.  The performance 

characterises of the developed method compare well with those reported for other common 

electrode materials (table 1) such as SPE and Hg based electrodes and is better than that recently 

reported for the determination of Pb and Cd at a 3-D printed metal electrode [57].   
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Figure 1. CAD image of electrode as shown in Slic3r software, annotated with part dimensions (mm)  
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Figure 2. Effect of supporting electrolyte for a 1.2 mM Zn2+ 0.1 M supporting electrolyte solution.  

Error bars represent ±σ. 
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Figure 3. Cyclic voltammograms of 1.2 mM Zn2+ in 0.1 M acetic acid. Dashed line SCE reference; solid 

line carbon pseudo-reference electrode. 
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Figure 4. Typical differential pulse stripping voltammogram obtained for 773.5 µg/L Zn2+ using an 

accumulation potential of -2.4 V and an accumulation time of 60 s. 
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Figure 5.  Effect of accumulation potential for a 773.5 µg/L Zn2+ solution in 0.1 M acetic acid.  

Accumulation time 75 s.  Error bars represent ±σ. 
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Figure 6.  Effect of accumulation time on the magnitude of stripping peak current for 773.5 µg/L 

Zn2+. Accumulation potential -2.9 V (vs. C) and other conditions as Figure 4.  Insert shows resulting 

plot of peak current vs. accumulation time.  Error bars represent ±σ. 
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Figure 7.  Anodic stripping voltammogram of 115 ng/mL Zn in absence of (dashed line) and in the 

presence of Pb, Cd and Cu (solid line) in 2:1 molar ratio. 
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Figure 8.  DPASVs of a representative tap water sample spiked with 0.990 µg/mL Zn2+ (diluted 10 

times in 0.1 M acetic acid) with added concentrations of Zn2+: 0 ng/mL; 61.8 ng/mL; 123.8 ng/mL; 

185.6 ng/mL; Zn2+ added.  Accumulation time: 75 s, deposition potential:  -2.9 V (vs. C).  Insert shows 

resulting standard addition plot for the fortified sample. 
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Figure and table legends 

Figure 1. CAD image of electrode as shown in Slic3r software, annotated with part dimensions (mm) 

Figure 2. Effect of supporting electrolyte for a 1.2 mM Zn2+ 0.1 M supporting electrolyte solution.  

Error bars represent ±σ. 

Figure 3. Cyclic voltammograms of 1.2 mM Zn2+ in 0.1 M acetic acid. Dashed line SCE reference; solid 

line carbon pseudo-reference electrode. 

Figure 4. Typical differential pulse stripping voltammogram obtained for 773.5 µg/L Zn2+ using an 

accumulation potential of -2.4 V and an accumulation time of 60 s. 

Figure 5.  Effect of accumulation potential for a 773.5 µg/L Zn2+ solution in 0.1 M acetic acid.  

Accumulation time 75 s.  Error bars represent ±σ. 

Figure 6.  Effect of accumulation time on the magnitude of stripping peak current for 773.5 µg/L 

Zn2+. Accumulation potential -2.9 V (vs. C) and other conditions as Figure 4.  Insert shows resulting 

plot of peak current vs. accumulation time.  Error bars represent ±σ. 

Figure 7.  Anodic stripping voltammogram of 115 ng/mL Zn in absence of (dashed line) and in the 

presence of Pb, Cd and Cu (solid line) in 2:1 molar ratio. 

Figure 8.  DPASVs of a representative tap water sample spiked with 0.990 µg/mL Zn2+ (diluted 10 

times in 0.1 M acetic acid) with added concentrations of Zn2+: 0 ng/mL; 61.8 ng/mL; 123.8 ng/mL; 

185.6 ng/mL; Zn2+ added.  Accumulation time: 75 s, deposition potential:  -2.9 V (vs. C).  Insert shows 

resulting standard addition plot for the fortified sample. 
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