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Abstract. Memristors close the loop for I-V characteristics of the traditional,

passive, semi-conductor devices. A memristor is a physical realisation of the material

implication and thus is a universal logical element. Memristors are getting particular

interest in the field of bioelectronics. Electrical properties of living substrates are

not binary and there is nearly a continuous transitions from being non-memristive

to mem-fractive (exhibiting a combination of passive memory) to ideally memristive.

In laboratory experiments we show that living oyster mushrooms Pleurotus ostreatus

exhibit mem-fractive properties. We offer a piece-wise polynomial approximation of

the I-V behaviour of the oyster mushrooms. We also report spiking activity, oscillations

in conduced current of the oyster mushrooms.
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1. Introduction

Originally proposed by Chua in 1971 [1], the memristor poses a fourth basic circuit

element, whose characteristics differ from that of R, L and C elements. Going through

a more general point of view, Chua with coauthors Abdelouahab and Lozi [2], using

fractional calculus, published 43 years after his original intuition, a global theory of

family of electric elements: the memfractance theory which is the most general theory of

such elements with memory, enlarging this family to mem-capacitive and mem-inductive

elements of first, second third, etc. order.

In the memfractance theory the pinch observed in the voltage-current curves of the

memristor is only a particular case (Figs. 1 and 2) of this memfractive electric element,

allowing more flexibility in modeling.
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Figure 1. Ideal plot of voltage-current memfractive elements: from memristor to

meminductor. [2].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5

10

15

 

 

α1=1, α2=0

α1=1, α2=0.2

α1=1, α2=0.5

α1=1, α2=0.8

α1=1, α2=1

v(t)

i(t)

Memcapacitor

Memristor

Figure 2. Ideal plot of voltage-current memfractive elements: from memristor to

memcapacitor [2].

Memristance has been seen in nano-scale devices where electronic and ionic

transport are coupled under an external bias voltage. Strukov et al. [3] posit that

the hysteric I-V characteristics observed in thin-film, two-terminal devices can be

understood as memristive. However, this is observed behaviour of devices that already

have other, large signal behaviours.

The ideal memristor model (Figs. 1, 2) is shown to display ‘lobes’ on the I-V

characterisation sweeps, indicating that the current resistance is a function of the

previous resistance — hence a memristor has memory. For the purposes of analysis,

graphs are referred to by their quadrants, starting with quadrant one as the top right

and being numbered anti-clockwise.

Similarly, the mem-capacitor and mem-inductor exhibit a change in capaci-

tance/inductance as a function of the applied voltage being swept. The introduction of

the mem-capacitor and mem-inductor in [2, 4] complete the non-binary solution space

of the mem-fractor that exerts a device may exhibit a combination of memristive, mem-

inductor and mem-capacitor elements.
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Finding a true memristor is by no means an easy task. Nevertheless, a number of

studies have turned to nature to provide the answer, with varying success. Memristive

properties of organic polymers were discovered before the ‘official’ discovery of the

memristor was announced in [3]. The first examples of memristors could go back

to the singing arc, invented by Duddell in 1900, which was originally used in wireless

telegraphy before the invention of the triode [5]. In addition, memristive properties

of organic polymers have been studied since 2005 in experiments focussing on hybrid

electronic devices based on the polyaniline-polyethylenoxide junction [6]. Memristive

properties of living creatures, their organs and fluids have been demonstrated in

skin [7, 8, 9], blood [10], plants [11, 12] (including fruits [13, 14]), slime mould [15, 16],

tubulin microtubules [17, 18, 19]. Most recent results include DNA and melanin based

memristive devices [20], biomaterials extracted from plant tissue [21].

This paper presents a study of the I-V characteristics of the fruit bodies of the grey

Oyster fungi Pleurotus ostreatus. Why fungi? Previously we recorded extracellular

electrical potential of Oyster’s fruit bodies, basidiocarps [22] and found that the

fungi generate action potential like impulses of electrical potential. The impulses can

propagate as isolated events, or in trains of similar impulses. Further, we demonstrated,

albeit in numerical modelling, that fungi can be used as computing devices, where

information is represented by spikes of electrical activity, a computation is implemented

in a mycelium network and an interface is realised via fruit bodies [23]. A computation

with fungi might not be useful per se, because the speed of spike propagation is

substantially lower than the clock speed in conventional computers. However, the fungal

computation becomes practically feasible when embedded in a slow developing spatial

process, e.g. growing architecture structures. Thus, in [24] we discussed how to:

produce adaptive building constructions by developing structural substrate using live

fungal mycelium, functionalising the substrate with nanoparticles and polymers to make

mycelium-based electronics, implementing sensorial fusion and decision making in the

fungal electronics.

Why we are looking for mem-fractive properties of fungi? Mem-fractors [2]

have combinations of properties exhibited by memristors, mem-capacitors and mem-

inductors. A memristor is a material implication [25, 26] and can, therefore, can

be used for constructing other logical circuits, statefull logic operations [25], logic

operations in passive crossbar arrays of memristors [27], memory aided logic circuits [28],

self-programmable logic circuits [29], and memory devices [30]. If strands of fungal

mycelium in a mycelium bound composites and the fruit bodies show some mem-fractive

properties then we can implement a variety of memory and computing devices embedded

directly into architectural building materials made from the fungal substrates [24] and

living fungal wearables [31, 32]. The field of living fungal wearables is currently in

its infant stage, however it showed undeniably slim shape, good adaptability, and very

low energy consumption compared to artificial wearable sensory devices [33]. Mycelium

bound composites — masses of organic substrates colonised by fungi — are future

environmentally sustainable growing biomaterials [34, 35, 36], already they are used in
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acoustic [37, 38, 39] and thermal [40, 41, 42, 43, 44, 45] insulation wall cladding and

packaging materials [46, 47, 48].

In [24] it is proposed to develop a structural substrate by using live fungal

mycelium, functionalise the substrate with nanoparticles and polymers to make

mycelium-based electronics, implement sensorial fusion and decision making in the

mycelium networks [64] and to grow monolithic buildings from the functionalised fungal

substrate [65]. Fungal buildings would self-grow, build, and repair themselves subject

to substrate supplied, use natural adaptation to the environment, sense all that humans

can sense. To implement sensorial integration and make decisions fungal materials will

require electronic circuits, the fungal memristors will form essential part of the circuits.

The approach taken in the paper has a two-fold novelty component. First, we focus

on memfractive properties of a substrate, which offers more fuzzy logic like approach of

the IV properties of materials. Second, we study electrical IV properties of fungi, which

are per se is a novel substrate for future organic electronics.

The rest of this paper is organised as follows. Section 2 details the experimental set

up used to examine the I-V characteristics of fruit bodies. Section 3 presents the results

from the experimentation. Mathematical modelling of the mem-fractive behaviour of

the Grey Oyster mushrooms is given in Section 4. A discussion of the results is given

in Section 5 and finally conclusions are given in Section 3.

2. Experimental Set Up

We used grey Oyster fungi Pleurotus ostreatus (Ann Miller’s Speciality Mushrooms Ltd,

UK) cultivated on wood shavings. The iridium-coated stainless steel sub-dermal needles

with twisted cables (Spes Medica SRL, Italy) were inserted in fruit bodies (Fig. 3) of

grey Oyster fungi using two different arrangements: 10 mm apart in the cap of the fungi

(cap-to-cap), Fig. 3(a), and translocation zones (cap-to-stem), Fig. 3(b). I-V sweeps

were performed on the fungi samples with Keithley Source Measure Unit (SMU) 2450

(Keithley Instruments, USA) under the following conditions: [-500 mV to 500 mV, -

1 V to 1 V] with the samples in ambient lab light (965 Lux). Varying the step size

of the voltage sweep allowed testing the I-V characteristics of the subject at different

frequencies. The voltage ranges are limited so as not to cause the electrolysis of water.

Each condition was repeated at least six times over the samples. Voltage sweeps were

performed in both directions (cyclic voltammetry) and plots of the I-V characteristics

were produced.

MATLAB was used to analyse the frequency and distribution of spiking behaviour

observed in the I-V sweeps of the fruiting bodies under test (Sect. ??). All histogram

plots are binned according to the voltage interval set for the Kiethley SMU.
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(a)

(b)

Figure 3. Positions of electrodes in fruit bodies. (a) Electrodes inserted 10 mm apart

in the fruit body cap. (b) One electrode is inserted in the cap with the other in the

stem.

3. Results

Fruit body samples are shown to exhibit memristive properties when subject to a voltage

sweep. The ideal memristor model has a crossing point at 0V, where theoretically no

current flows. Figures 4 and 5 show the results of cyclic voltammetry of Grey Oyster

fungi with electrodes positioned both in the fungi caps and stems. From Figs. 4 and 5,

it can be seen that when 0 V is applied by the source meter, a reading of a nominally

small voltage and current is performed. The living membrane is capable of generating

potential across the electrodes, and hence a small current is observed. Mem-capacitors

produce similar curves to that of an ideal memristor in Fig. 1, when plotting charge (q)

against voltage (v) [49]. Additionally, mem-inductors produce similar plots for current
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(i) against flux (ϕ). However, the crossing point in the curves observed in quadrant 3

results to a pinched hysteresis loop. That is an indication that the cyclic voltammetry

measurement is provided by a device that has mem-fractance properties.

While the sample under test is subjected to a positive voltage (quadrant 1), it can

be seen there is nominally a positive current flow. Higher voltages result in a larger

current flow. For an increasing voltage sweep there is a larger current flow for the

corresponding voltage during a negative sweep.

Similarly, in quadrant 3 where there is a negative potential across the electrodes, the

increasing voltage sweep yields a current with smaller magnitude than the magnitude

of the current on a negative voltage sweep. Put simply, the fruit body has a resistance

that is a function of the previous voltage conditions.

By applying averaging to the performed tests, a clear picture is produced that

demonstrates for a given set of conditions, a typical response shape can be expected

(Figs. 6 and 7). The stem-to-cap placement of the electrodes in the fruit body yields a

tighter range for the response (Figs. 6(b) and 7(b)). This can be expected due to the

arrangement of the transportation pathways, so-called translocation zone distinct from

any vascular hyphae [50, 51], in the fruit body which run from the edge of the cap and

down back through the stem to the root structure (mycelium). Cap-to-cap placement of

the electrodes applies the potential across a number of the solutes translocation pathways

and hence yields a wider range of results. However, for all results, it is observed that

the positive phase of the cyclic voltammetry produces a different conduced current than

the negative phase. The opening of the hysteresis curve around point zero suggests

the fungus is not an ideal mem-ristor, instead it is also exhibiting mem-capacitor and

mem-inductor effects. The build of charge in the device prevents the curve from closing

completely to produce the classic mem-ristor pinching shape.

Reducing the voltage step size (by ten fold, i.e. to 0.001 V) for the I-

V characterisation is synonymous to reducing the frequency of the voltage sweep.

Decreasing the sweep frequency of the voltage causes the chances of “pinching” in the I-V

sweep to increase, as seen in quadrant 1 of Fig. 8. This further reinforces the presence of

some mem-capacitor behaviour. Since the charging frequency of the fungus has now been

reduced there is a greater amount of time for capacitively stored energy to dissipate, thus

producing a more ‘resistive’ plot with a pinch in the hysteresis. However, as indicated

by two subsequent runs of voltammetry (Fig. 8), the electrical behaviour of the fungus is

heavily altered under these frequencies and, thus, the repeatable observation of similar

curves can not be realised (as it was observed in the aforementioned measurements

and especially the stem to cap electrode placement). Nonetheless, the production

of the curves can be controlled more efficiently by selecting appropriate frequencies

of operation, but less successfully from the fungus substrate part, as this is a living

substrate that has inherent stohasticity in the way it metabolises and grows.
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Figure 4. Raw data from cyclic voltammetry performed over -0.5 V to 0.5 V. (a) Cap-

to-cap electrode placement. (b) Stem-to-cap electrode placement.
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Figure 5. Raw data from cyclic voltammetry performed over -1 V to 1 V. (a) Cap-

to-cap electrode placement. (b) Stem-to-cap electrode placement.
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Figure 6. Average grey Oyster fungi fruit bodies I-V characteristics for cyclic

voltammetry of -0.5 V to 0.5 V. (a) Cap-to-cap electrode placement. (b) Stem-to-

cap electrode placement.

4. Mathematical Model of Mushroom Mem-fractance

Here we report the I-V characteristics of grey Oyster fungi Pleurotus ostreatus fruit

bodies. It is evident from the results that grey Oyster fungi display memristive
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Figure 7. Average fruit bodies I-V characteristics for cyclic voltammetry of -1 V to

1 V. (a) Cap-to-cap electrode placement. (b) Stem-to-cap electrode placement.

behaviour.

Although the fruit bodies typically do not demonstrate the “pinching” property of

an ideal memristor [52], it can be clearly seen that the biological matter exhibits memory

properties when the electrical potential across the substrate is swept. A positive sweep

yields a higher magnitude current when the applied voltage is positive; and a smaller
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Figure 8. I-V Characteristics of fungi fruit bodies with the voltage step size set to

0.001 V. The two traces represent repeated runs of the same experiment.

Figure 9. Principal memfractive elements

magnitude current when the applied voltage is negative.

Fractional Order Memory Elements (FOME) are proposed as a combination

of Fractional Order Mem-Capacitors (FOMC) and Fractional Order Mem-Inductors

(FOMI) [2]. The FOME (Eq. 1) is based on the generalised Ohm’s law and

parameterised as follows: α1, α2 are arbitrary real numbers — it is proposed that
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Figure 10. Voltage versus time and its approximation by a 24-degree polynomial

0 ≤ α1, α2 ≤ 1 models the solution space by [4], Fα1,α2

M is the mem-fractance, q(t)

is the time dependent charge, ϕ(t) is the time dependent flux. Therefore, the mem-

fractance (Fα1,α2

M ) is an interpolation between four points: MC — mem-capacitance,

RM — memristor, MI — mem-inductance, and R2M — the second order memristor

(Fig. 9). Full derivations for the generalised FOME model are given by [2, 4]. The

definition of mem-fractance can be straightforward generalised to any value of α1, α2

(see Fig. 27 in [2]).

Dα1
t ϕ(t) = Fα1,α2

M (t)Dα2
t q(t) (1)

The appearance of characteristics from various memory elements in the fungal I-V

curves supports the assertion that the fungal is a mem-fractor where α1 and α2 are both

greater than 0 and less than 2.

There is no biological reason for mem-fractance of Oyster fungi fruit bodies with

stem to cap electrodes, to be a usual closed formula. Therefore, one can get only

a mathematical approximation of this function. In the following, we propose two

alternatives to obtain the best approximation for mem-fractance in the case of average

fruit bodies I-V characteristics for cyclic voltammetry of Fig. 7(b)

4.1. Approximation by polynomial on the whole interval of voltage

Raw data include the time, voltage and intensity of each reading. There are 171 readings

for each run. The process of these data, in order to obtain a mathematical approximation

of mem-fractance, in the first alternative, takes 4 steps as follows.

Step 1: approximate v(t) by a twenty-four-degree polynomial (Fig. 10) whose

coefficients are given in Table 1.

v(t) ≈ P (t) =

j=24∑
j=0

ajt
j (2)

The polynomial fits very well the experimental voltage curve, as the statistical

indexes show in Table 2.
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Table 1. Coefficient of P(t)

a0 -1.047361152400062 a13 1.48292987584698e-16

a1 0.135299293073760 a14 -8.60157726907686e-19

a2 -0.0726485498614107 a15 1.59013702626457e-22

a3 0.0240895989682110 a16 5.80230108481181e-23

a4 -0.00453232038841485 a17 -7.12198496974121e-25

a5 0.000531866967507868 a18 5.19611819410190e-27

a6 -4.19159536470121e-05 a19 -2.64464369703488e-29

a7 2.33484036114612e-06 a20 9.68672841708898e-32

a8 -9.51752589043893e-08 a21 -2.52211206380669e-34

a9 2.90458838155410e-09 a22 4.45025298649318e-37

a10 -6.72265349925510e-11 a23 -4.78342788514078e-40

a11 1.18302125464207e-12 a24 2.36810109946699e-43

a12 -1.56317950862153e-14

Table 2. Goodness of fit

Sum of squared estimate of errors SSE =
∑j=n

j=1 (vj − v̂j)2 0.0680517563652170

Sum of squared residuals SSR =
∑j=n

j=1 (v̂j − v)2 133.688517134422

Sum of square total SST = SSE + SSR 133.756568890787

Coefficient of determination R− square = SSR
SST

0.999491226809049
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#10-7

Figure 11. Current versus time and its approximation by a 24 degree polynomial

Step 2: in the same way approximate the current i(t) using a twenty-four-degree

polynomial (Fig. 11) whose coefficients are given in Table 3.

i(t) ≈ Q(t) =

j=24∑
j=0

bjt
j (3)

Again, the polynomial fits well the experimental intensity curve, as displayed in

Table 4.
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Table 3. Coefficient of Q(t)

b0 -2.69478636561017e-06 b13 5.61870303550308e-22

b1 1.95479195837707e-06 b14 -3.66183256804588e-24

b2 -7.34738169887512e-07 b15 8.14484000064489e-27

b3 1.67584032221916e-07 b16 1.36036443304302e-28

b4 -2.47326661661364e-08 b17 -2.04593370725626e-30

b5 2.48346182702953e-09 b18 1.59708666114599e-32

b6 -1.76692818009608e-10 b19 -8.46294727047340e-35

b7 9.19419585703268e-12 b20 3.19831491989559e-37

b8 -3.58289124918788e-13 b21 -8.56384614589988e-40

b9 1.06306849079070e-14 b22 1.55262364796050e-42

b10 -2.42471413376463e-16 b23 -1.71535341852628e-45

b11 4.25821973203331e-18 b24 8.73846352218898e-49

b12 -5.69947824465678e-20

Table 4. Goodness of fit

Sum of squared estimate of errors 5.84247524503151e-13

Sum of squared residuals 4.07366051979587e-11

Sum of square total 4.13208527224619e-11

Coefficient of determination 0.985860709883522

Step 3: From (Eq. 1) used under the following form Dα2
t q(t) 6= 0.

Fα1,α2

M (t) =
Dα1
t ϕt

Dα2
t q(t)

(4)

and the Rieman-Liouville fractional derivative defined by [53].

RL
0 Dα

t f(t) = 1
Γ(m−α)

dm

dtm

∫ t
0
(t− s)m−α−1f(s)ds, m - 1 < α < m(5)

together with the formula for the power function

RL
0 Dα

t

(
atβ
)

= aΓ(β+1)
Γ(β−α+1)

tβ−α, β > −1, α > 0,(6)

we obtain the closed formula of Fα1,α2

M (t), approximation of the true biological

mem-fractance of the Oyster mushroom

Fα1,α2

M (t) =
D
α1
t ϕ(t)

D
α2
t ϕ(t)

=
RL
0 D

α1
t

∑j=24
j=0

aj
j+1

tj+1

RL
0 D

α2
t

∑j=24
j=0

bj
j+1

tj+1
=

∑j=24
j=0

ajΓ(j+1)

Γ(j+2−α1)
tj+1−α1∑j=24

j=0

bjΓ(j+1)

Γ(j+2−α2)
tj+1−α2

(7)

Step 4: choice of parameter α1 and α2: We are looking for the best value of these

parameters in the range (α1, α2) ∈ [0, 2]2. In this goal, we are considering first the

singularities of Fα1,α2

M (t) in order to avoid their existence, using suitable values of the
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Figure 12. Zeros t∗(α2) of the denominator of Fα1,α2

M (t).
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Figure 13. Zeros t∗(α2) of Fα1,α2

M (t) denominator (red dots), and zeros t∗(α1) of the

numerator (blue dots).
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Figure 14. Values of (α1, α2) ∈ [0, 2]2 for which the zeros t∗(α2) of denominator of

Fα1,α2

M (t) correspond to the zeros t∗(α1) of denominator.

parameters. Secondly, we will choose the most regular approximation. We compute

numerically, the values t∗(α2) which vanish the denominator of Fα1,α2

M (t) (Fig. 12).

We observe one, two or three coexisting solutions depending on the value of α2.

Moreover, there is no value of α2 without zero of the denominator. Therefore, in order to

eliminate the singularities, we need to determine the couples (α1, α2) ∈ [0, 2]2, vanishing

simultaneously denominator and numerator of Fα1,α2

M (t) (Figs. 13 and 14).

In the second part of step 4, we choose the most regular approximation. We consider

that the most regular approximation is the one for which the function range (Fα1,α2

M (t))
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Figure 15. Values of range (Fα1,α2

M (t)) for (α1, α2) ∈ [0, 2]2
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Figure 16. Magnification of Fig. 15.

Table 5. Minimum Fα1,α2

M (t)

α1 α2 Minimum range Fα1,α2

M (t)

1.08642731 0.25709492 825770.46017259

is minimal (Figs. 15 and 16).

range (Fα1,α2

M (t)) = maxt∈[0,171] (Fα1,α2

M (t))−mint∈[0,171] (Fα1,α2

M (t))(8)

From the numerical results, the best couple (α1, α2) and the minimum range of

Fα1,α2

M (t) are given in Table 5, and the corresponding Mem-fractance is displayed in

Fig. 17.

The value of (α1, α2) given in Table 5 belongs to the triangle T of Fig. 9, whose

vertices are Memristor, Memcapacitor and Capacitor. Which means that Oyster

mushroom fruit bodies with stem to cap electrodes, is like a mix of such basic electronic

devices.

As a counter-example of our method for choosing the best possible Mem-

fractance, Fig. 18 displays, the Mem-fractance for a non-optimal couple (α1, α2) =

(1, 1.78348389322388) which presents two singularities.
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Figure 17. Mem-fractance for (α1, α2) given in Table 5.
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Figure 18. Mem-fractance with two singularities for (α1, α2) =

(1, 1.78348389322388).

4.2. Approximate cycling voltammetry

From the closed formula of F
α∗1,α

∗
2

M (t) it is possible to retrieve the formula of the current

function i(t) using (Eq. 1).

i(t) = D1−α2
t

[
Dα1
t ϕ(t)

Fα1,α2

M (t)

]

= D1−α2
t


∑j=24

j=0
ajΓ(j+1)

Γ(j+2−α1)
tj+1−α1

∑j=24
j=0

ajΓ(j+1)

Γ(j+2−α1)
tj+1−α1∑j=24

j=0

bjΓ(j+1)

Γ(j+2−α2)
tj+1−α2


= D1−α2

t

[
j=24∑
j=0

bjΓ(j + 1)

Γ(j + 2− α2)
tj+1−α2

]

=

j=24∑
j=0

Γ(j + 2− α2)bjΓ(j + 1)

Γ(j + 2− α2)Γ(j + 1)
tj+1−α2−(1−α2)

=

j=24∑
j=0

bjt
j (9)
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Figure 19. Comparison between average experimental data of cyclic voltammetry

performed over -1 V to 1 V, Stem-to-cap electrode placement, and approximate values

of v(t) and i(t).

 

Figure 20. Both average experimental data curve and the curve computed from closed

approximative formula are nested into the histogram of data of all runs.

The comparison of average experimental data of cyclic voltammetry performed

over -1 V to 1 V, stem-to-cap electrode placement, and closed approximative formula is

displayed in Fig. 19, showing a good agreement between both curves except near the

maximum value of v(t) and i(t). Figure 20 shows that the curve computed from closed

approximative formula belongs to the histogram of data of all runs. The discrepancy

between both curves is due to the method of approximation chosen in (2) and (3).

It is possible, as we show in the next subsection to improve the fitting of

the approximated curve near the right hand-side vertex, using piecewise polynomial

approximation of both v(t) and i(t).

4.3. Alternative approximation of the cycling voltammetry

Due to the way of conducting the experiments, the voltage curve presents a vertex, that

means that the function v(t) is non-differentiable for T = 87.23747459. In fact, the
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Table 6. Coefficient for i(t)

Coefficient

Value for

0 ≤ t ≤
T

Coefficient

Value for

T ≤ t <

T

a0 -0.98299 a′0 37.16955

a1 0.02665 a′1 -1.2986

a2
-5.91565

E -4
a′2 0.01826

a3
1.12211 E

-5
a′3

-1.25146

E -4

a4
-6.28483

E -8
a′4

4.12302 E

-7

a5
6.9675 E -

11
a′5

-5.25359

E-19

Table 7. Goodness of fit

Approximation t < T t > T

Coefficient of determination 0.99983 0.9999

value of T is the average value of the non-differentiable points for the 20 runs.

In this alternative approximation, we follow the same 4 steps as previously, changing

the approximation by a twenty-four-degree polynomial to an approximation by a 2-

piecewise fifth-degree-polynomial, for both v(t) and i(t).

Step 1: approximation of v(t) by a 2-piecewise fifth-degree-polynomial (Fig. 21)

whose coefficients are given in Table 6.

v(t) =


P1(t) = a0 + a1t+ a2t

2 + a3t
3

+a4t
4 + a5t

5, for 0 ≤ t ≤ T

P2(t) = a′0 + a′1t+ a′2t
2 + a′3t

3

+a′4t
4 + a′5t

5, for T ≤ t < 171

(10)

The flux is obtained integrating v(t) versus time. The polynomial fits very well the

experimental voltage curve, as the statistical indexes show in Table 7.

ϕ(t) =


IP1(t) = a0t+ a1

2
t2 + a2

3
t3 + a3

4
t4

+a4

5
t5 + a5

6
t6, for 0 ≤ t ≤ T

IP2(t) = a′0t+
a′1
2
t2 +

a′2
3
t3 +

a′3
4
t4

+
a′4
5
t5 +

a′5
6
t6, for T ≤ t < 171

(11)

Step 2: in the same way, one approximates the current i(t) using a 2-piecewise
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Figure 21. Voltage versus time and its approximation by 2-piecewise fifth degree

polynomial
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Figure 22. Current versus time and its approximation by 2-piecewise fifth degree

polynomial

fifth degree polynomial (Fig. 22) whose coefficients are given in Table 8.

i(t) =


P3(t) = b0 + b1t+ b2t

2 + b3t
3

+b4t
4 + b5t

5, for 0 ≤ t ≤ T

P4(t) = b′0 + b′1t+ b′2t
2 + b′3t

3

+b′4t
4 + b′5t

5, for T ≤ t < 171

(12)

Again, the polynomial fits very well the experimental voltage curve, as the statistical

indexes show in Table 9. Therefore, the charge is given by:

q(t) =


IP3(t) = b0t+ b1

2
t2 + b2

3
t3 + b3

4
t4

+ b4
5
t5 + b5

6
t6, for 0 ≤ t ≤ T

IP4(t) = b′0t+
b′1
2
t2 +

b′2
3
t3

+
b′3
4
t4 +

b′4
5
t5 +

b′5
6
t6, for T ≤ t < 171

(13)
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Table 8. Coefficient for i(t)

Coefficient Value for 0 ≤ t ≤ T Coefficient Value for T ≤ t < 171

b0 -7.21418 E -7 b′0 2.69466 E -4

b1 1.11765 E -7 b′1 -1.05461 E -5

b2 -6.3792 E -9 b′2 1.63678 E -7

b3 1.57327 E -10 b′3 -1.25915 E -9

b4 -1.7745 E -12 b′4 4.80107 E -12

b5 7.52304 E -15 b′5 -7.26253 E-15

Table 9. Goodness of fit

Approximation t < T t > T

Coefficient of determination 0.99171 0.98613

Step 3: Following the same calculus as before with (4), one obtains:

for 0 ≤ t ≤ T , Fα1,α2

M (t) =
RL
0 Dα1

t ϕ(t)
RL
0 Dα2

t q(t)
=

RL
0 Dα1

t [IP1(t)]
RL
0 Dα2

t [IP3(t)]

=

∑j=5
j=1

ajΓ(j+1)

Γ(j+2−α1)
tj+1−α1∑j=5

j=0
bjΓ(j+1)

Γ(j+2−α2)
tj+1−α2

(14)

However, because fractional derivative has memory effect, for T < t < 171, the

formula is slightly more complicated (depicted in Eq. 15).

Using integration by part repeatedly six times we obtain Eq. 16. In this 2-piece

wise approximation, the vertex is non-differentiable, this implies that Eq. 16 expression

has a singularity at T (because (t − T )−α1,2 → ∞). It could be possible to avoid this

singularity, using a 3-piece wise approximation, smoothing the vertex. However, the

calculus are very tedious. We will explain, below, what our simpler choice implies.

Finally, Eqs. 17 and 18 are obtained.
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Figure 23. The first zero t∗(α2) ≥ T , of the denominator of Fα1,α2

M (t), as function of

α2.
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Figure 24. Couples (α1, α2) for which the denominator and numerator of Fα1,α2

M (t)

are null simultaneously for t < T (blue dot) and t > T (red dot).

Step 4: choice of parameter α1 and α2: Following the same idea as for the first

alternative, we try to avoid singularity for Fα1,α2

M (t), except of course the singularity

near T , which is of mathematical nature (non-differentiability of voltage and intensity

at t = T ). Figure 23 displays the first zero t∗(α2) ≥ T , of the denominator of Fα1,α2

M (t).

One can see that t∗(1) ∼= T .

Figure 24 displays the curves of couples (α1, α2) for which the denominator and

numerator of Fα1,α2

M (t) are null simultaneously for t < T and t > T . On this figure, the

value of α1, that corresponds to α2 = 1 is α1 ≈ 1.78348389322388. The corresponding

Mem-fractance is displayed in Fig. 25.

The singularity observed in Figs. 25 and 26 is due to the non-differentiability of

both voltage and intensity functions at point T . It is only a mathematical problem

of approximation which can be solved using a 3-piecewise polynomial instead of the

2-piecewise polynomial (P1(t), P2(t)) and (P3(t), P4(t)). The third added piecewise

polynomials for v(t) and i(t) being defined on the tiny interval [87.24, 87.90]. However

due to more tedious calculus, we do not consider this option in the present study. It

is only a math problem, and one can consider that Fig. 28 represents the value of the

mem-fractance in the interval [0, 87.24] ∪ [87.90, 171].

The value of (α1 = 1.78, α2 = 1.00) belongs to the line segment of Fig. 9, whose
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Figure 25. Mem-fractance for (α1 = 1.78, α2 = 1.00) given in Table 5
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Figure 27. Comparison between average experimental data of cyclic voltammetry

performed over -1 V to 1 V, Stem-to-cap electrode placement, and closed approximative

formula.

extremities are Memristor, and Capacitor. Which means that Oyster mushroom fruit

bodies with stem-to-cap electrodes, is like a mix of such basic electronic devices. The

comparison of average experimental data of cyclic voltammetry performed over -1 V to

1 V, stem-to-cap electrode placement, and closed approximative formula is displayed in

Fig. 27, showing a very good agreement between both curves.

Page 25 of 30 AUTHOR SUBMITTED MANUSCRIPT - BB-102664.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

5. Discussion

Two are the main remarks of this study. First, both approximations used in Section 4

converge to Mem-fractance with parameter value (α1, α2) - belonging inside or on edge

of the triangle T of Fig. 9, whose vertices are Memristor, Memcapacitor and Capacitor.

Of course, the value for these approximations are not exactly the same. This is in part,

due to the fact that we consider that the most regular approximation is the one for

which the function range (F α1,α2

M (t)) is minimal. Other choices based on physiology of

Mushroom could be invoked. Moreover, the Mem-fractance is computed on the averaged

curve of 20 runs which do not present exactly the same characteristic voltammetry.

Oyster mushroom fruit bodies are living substrates. Commonly for living substrates

their morphology, i.e. geometry of the translocation zones [50], is changing from one

fruit body to another. This high variability prevents exact reproduction of electrical

property between the experimental trials.

The second remark is the fact that the use of fractional derivatives to analyze

the mem-fractance, is obvious if one considers that fractional derivatives have memory,

which allows a perfect modelling of memristive elements. Their handling is however

delicate if one wants to avoid any flaw.

Similar I-V characteristics have been experienced for slime mould [15] and

apples [13]. The cyclic voltammetry experiments demonstrate that the I-V curve

produced from these living substrates is a closed loop where the negative path does

not match the positive path. Hence the fungi display the characteristics of a memristor.

A similar conclusion is drawn for the microtubule experiments [54]. The microtubule

exhibits different resistive properties for the same applied voltage depending on the

history of applied voltages.

Additionally, the fruit bodies produce current oscillations during the cyclic

voltammetry. This oscillatory effect is only observed on one phase of the voltammetry

for a given voltage range which is, again, a behaviour that can be associated to a

device whose resistance is a function of its previous resistance. This spiking activity

is typical of a device that exhibits memristive behaviours. Firstly, it was reported in

experiments with electrochemical devices using graphite reference electrodes, that a

temporal dependence of the current of the device - at constant applied voltage - causes

charge accumulation and discharge [55]. The spiking is also apparent in some plots, for

a large electrode size, in experiments with electrode metal on solution-processed flexible

titanium dioxide memristors [56]. A detailed analysis of types of spiking emerging in

simulated memristive networks was undertaken in [57]. Repeatable observations of the

spiking behaviour in I-V of the fungi is very important because this opens new pathways

for the implementation of neuromorphic computing with fungi. A fruitful theoretical

foundation of this field is already well developed [58, 59, 60, 61, 62, 63].
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6. Conclusion

The fruit bodies of grey oyster fungi Pleurotus ostreatus were subjected to I-V

characterisation a number of times, from which it was clearly shown that they

exhibit mem-fractor properties. Under cyclic voltammetry, the fruit body will conduct

differently depending on the phase (positive or negative) of the voltammetry. This

behaviour produces the classic “lobes” in the I-V characteristics of a memristor.

However, a biological medium, such as the fruit body of the grey Oyster fungi

presented here, will differ from that of the ideal memristor model since the “pinching”

behaviour and size of the hysteresis lobes are functions of the frequency of the voltage

sweep as well as the previous resistance. Typically, the biological medium generates

its own potential across the electrodes, therefore, even when no additional potential

is supplied, there is still current flow between the probes. This property of the fungi

produces an opening in the I-V curve that is a classic property of the mem-capacitor.

Since the fungi are exhibiting properties of both memristors and mem-capacitors, their

electrical memory behaviour puts them somewhere in the mem-fractor solution space

where 0 < α1, α2 < 1. Hence, it has been shown that fungi act as mem-fractors.

We believe a potential practical implementation of the mem-fractive properties of

the fungi would be in the sensorial and computing circuits embedded into mycelium

bound composites. In [24] we proposed to develop a structural substrate by using

live fungal mycelium, functionalise the substrate with nanoparticles and polymers to

make mycelium-based electronics, implement sensorial fusion and decision making in

the mycelium networks [64] and to grow monolithic buildings from the functionalised

fungal substrate [65]. Fungal buildings would self-grow, build, and repair themselves

subject to substrate supplied, use natural adaptation to the environment, sense all that

humans can sense. Whilst major parts of a building will be made from dried and cured

mycelium composites there is an opportunity to use blocks with living mycelium as

embedded living computing elements. Right now we established just some components

of the computing fungal architectures. Future challenges will be in implementation of a

large scale computing circuits employing mem-fractive properties of the living mycelium

and fruit bodies and an integration of living mycelium computers into buildings made

from biomaterials.
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