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METHODOLOGY

Multispectral imaging for presymptomatic 
analysis of light leaf spot in oilseed rape
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Melvyn Smith3, Hujun Yin1, Stephen Rolfe2 and Bruce Grieve1

Abstract 

Background:  The use of spectral imaging within the plant phenotyping and breeding community has been increas-
ing due its utility as a non-invasive diagnostic tool. However, there is a lack of imaging systems targeted specifically at 
plant science duties, resulting in low precision for canopy-scale measurements. This study trials a prototype multi-
spectral system designed specifically for plant studies and looks at its use as an early detection system for visually 
asymptomatic disease phases, in this case Pyrenopeziza brassicae in Brassica napus. The analysis takes advantage 
of machine learning in the form of feature selection and novelty detection to facilitate the classification. An initial 
study into recording the morphology of the samples is also included to allow for further improvement to the system 
performance.

Results:  The proposed method was able to detect light leaf spot infection with 92% accuracy when imaging entire 
oilseed rape plants from above, 12 days after inoculation and 13 days before the appearance of visible symptoms. 
False colour mapping of spectral vegetation indices was used to quantify disease severity and its distribution within 
the plant canopy. In addition, the structure of the plant was recorded using photometric stereo, with the output 
influencing regions used for diagnosis. The shape of the plants was also recorded using photometric stereo, which 
allowed for reconstruction of the leaf angle and surface texture, although further work is needed to improve the fidel-
ity due to uneven lighting distributions, to allow for reflectance compensation.

Conclusions:  The ability of active multispectral imaging has been demonstrated along with the improvement in 
time taken to detect light leaf spot at a high accuracy. The importance of capturing structural information is out-
lined, with its effect on reflectance and thus classification illustrated. The system could be used in plant breeding to 
enhance the selection of resistant cultivars, with its early and quantitative capability.

Keywords:  Disease detection, Light leaf spot, Oilseed rape, Multispectral, Preprocessing, Machine learning, Support 
vector machine, Novelty detection, Orientation effects, Photometric stereo
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Background
The development of precision agriculture has brought 
about huge advances in monitoring technologies that 
allow for quantifiable and early detection of plant stress 
factors [1, 2]. Despite these technological advances 
and continuous improvement in plant varieties, yield 
improvements in many crops have plateaued in recent 
years [3]. This has been blamed in part on ineffective 

crop management, due to a lack of reliable tools for in-
situ monitoring and intervention in increasingly varying 
conditions [4].

Plant disease is a leading contributor to global crop 
losses [5]. The selection of disease resistant crop varieties 
plays a central role in negating this diminution; typically 
achieved by visual scoring of symptom severity. Imag-
ing techniques have considerable potential to improve 
this process, by enabling quantification of disease sever-
ity and development rate. This would facilitate breeding 
for crops with quantitative resistance; with individual 
traits and associated genes each contributing a small 
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improvement to plant performance but, in combination, 
providing effective and sustainable disease resistance [6].

Plant diseases result in physiological and morpho-
logical alterations, with plant pigmentations caused by 
pathogen interactions [7]. In foliar fungal disease, infec-
tion is quantified by estimating the infected area on 
the leaf surface; a major limitation is the low accuracy 
due to the subjective nature of visual assessment [8]. 
Molecular methods have been exploited in plant pathol-
ogy to improve the accuracy of diagnosis with serologi-
cal assays, such as enzyme-linked immunosorbent assay 
(ELISA), used extensively for detection of pathogens 
[9] and nucleic acid-based methods, such as quantative 
polymerase chain reaction, based on using nucleotide 
primers with high affinity to target sequences. Although 
molecular methods are relatively low cost, they have dis-
advantages, as the sample preparation is destructive and 
labour intensive, and producing specific antibodies can 
be inefficient with the presence of inhibitors reducing 
the sensitivity of nucleic acid-based methods [10, 11]. As 
pathogens often do not spread uniformly inside plants, 
destructive molecular methods can be non-diagnostic, 
especially at the asymptomatic stage [10]. Therefore, 
new methods are required for precise non-invasive, non-
destructive and continuous diagnosis.

The light leaf spot (LLS) pathogen (Pyrenopeziza bras-
sicae) is an important disease of winter oilseed rape 
(OSR) (Brassica napus) [12–14]. This versatile crop has 
multiple uses, and is responsible for £0.7 billion of the 
UK agricultural market [15], with LLS responsible for 
losses of £400 million, between 2012 and 2014, with 95% 
OSR crops affected [16]. The onset of infection can be 
subtle, due to the hemibiotrophic nature of the pathogen. 
This makes in-situ analysis almost impossible during the 
initial infection stages [14, 17], relying on the emergence 
of late stage visual symptoms. Thus, novel approaches 
would benefit plant breeders seeking to develop new 
resistant varieties as well as farmers where early detec-
tion in the field opens the possibility of early intervention 
by sparse selective fungicide application, improving the 
efficacy of chemical applications.

Multispectral imaging (MSI) collect light reflected 
from the leaf surface. The spectrum of the reflected light 
is governed by both physical and biochemical interac-
tions with the leaf, processes that will change during dis-
ease infection [18, 19]. Images are collected at different 
wavelengths in the optical range (350–1000 nm), where 
each pixel in the image represented by a vector, known 
as the spectral signature. Analysis typically uses spectral 
information to study plant properties and conditions 
through spectral vegetation indices (SVIs), used com-
monly in remote sensing to describe vegetation health 

and density [20]. Several SVIs have been developed to 
identify and detect plant disease [21, 22].

Using photometric stereo (PS) for analysing plant tissue 
has attracted limited attention in the literature. Recent 
work such as [23] has highlighted the usefulness of the 
approach for extracting high resolution 3D imagery of 
leaves in order to aid vein extraction. It has been shown 
that different wavelengths used for light sources affect 
the validity of the assumption that the surface exhibits 
Lambertian reflectance. For example in [24], reconstruc-
tions of human faces were shown to be more accurate 
under NIR than visible. This is thought to be due to the 
sub-surface scattering of NIR, which penetrates further 
into the skin, leading to a more diffuse reflectance. How-
ever, there is a compromise in using NIR for improving 
overall 3D reconstruction in that surface detail is lost. 
Whether the same issue affects plant tissue is not clear 
and will be the focus of further work, but for the pur-
poses of this study visible light is used in order to extract 
as much higher resolution information as possible.

This study aims to develop a MSI system for disease 
diagnosis. This has been applied in a controlled environ-
ment for the analysis of disease progression and has the 
potential, with further development, to be used in the 
field [25]. This MSI system uses narrowband light sources 
and a broadband silicon detector, in contrast to typical 
MSI and HSI systems where a broadband illumination 
source is used with a narrow band (typically diffraction 
grating based) detector. This selected spectral resolution 
allows the technology to be applied at a fraction of the 
cost of traditional systems, whilst improving signal-to-
noise ratio (SNR) due to targeted reflectance peaks. The 
use of machine vision algorithms allows for early symp-
tom detection (before symptoms can be detected by eye) 
allowing better quantification of disease progression 
with the potential, in field production scenarios, to allow 
earlier and hence more effective intervention. The main 
contributions of this work lie in (1) introducing a refined 
MSI device, (2) detection of a hemibiotrophic infection 
before visible symptoms appear and (3) improvements in 
classification performance using tailored machine learn-
ing techniques.

Materials and methods
The aim of this study was to demonstrate the detection 
capabilities of MSI whilst investigating the effect of mon-
itoring at canopy scape versus leaf scale. Detached leaf 
and entire plant assays were undertaken to provide infor-
mation with samples at different angles as found within 
canopies versus the orthogonal orientation achieved 
using detached leaves and compare the time to diagnosis 
between the two conditions.
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Host: oilseed rape
OSR (Brassica napus L.) has been selected as the host 
for these trials as it is an important crop and its broad 
leaf nature is useful to demonstrate the potential of can-
opy-scale imaging. Seeds (Department of Biology, Uni-
versity of York) were placed in Petri dishes on wet filter 
paper for three days until germination, when the seed-
lings were transferred to M3 (Levington) compost in 
80× 80× 90 mm square pots. The plants were grown at 
16 ◦ C with a photo-period of 12h light/12h dark at 75% 
humidity for two weeks prior to inoculation.

Pathogen: light leaf spot
Pyrenopeziza brassicae penetrates the cuticle directly 
as germ tubes [26], see Fig.  1, however no appresso-
ria are formed and entry via stomata has not been con-
firmed [27]. The expression of cutinases assists the initial 
penetration of the cuticle. [26, 28]. P. brassicae has a 
hemibiotrophic lifestyle. The fungus initially grows as a 
hypomecylium where hyphae develop slowly in the sub-
cuticular space between the cuticle and epidermal cells 
-no cell perforation or systematic spread is observed 
[27]. Therefore, the biotrophic phase of P. brassicae is 
visually symptomless, however the fungal growth will 
affect the plant tissue reflection properties [25], particu-
larly in the NIR. Asexual sporulation signifies the later 

phase of infection when visual symptoms become appar-
ent. The pathogen interacts with the metabolism of the 
host plants resulting in morphological and physiologi-
cal perturbations such as stunting and chlorotic lesions, 
see Fig. 1. In common with many foliar pathogens, cyto-
kinins are proposed to have a critical role in P. brassi-
cae pathogenicity, promoting the formation of localised 
carbohydrate sinks and a redirection of nutrients from 
host to the pathogen. Sporulation causes the breaks in 
the cuticle and lesions develop, expanding concentrically. 
Chlorotic regions break down or become sunken due to 
the separation of the epidermal membrane and cuticu-
lar layer, or because of the production of toxins by the 
pathogen. In cases of severe infection, lesions merge and 
leaves become necrotic [17]. An LLS isolate (LLS160803, 
Scotland’s Rural College) was grown on Malt Agar Media 
(LabM) at 18 ◦C for two months. Conidia were collected 
by flooding the Petri dishes with 3–5 ml of sterile water 
plus 0.01% (v/v) Tween20 and agitating the mycelium 
with a plastic spreader. The spore suspension was col-
lected in a 50ml Falcon tube and adjusted to 106 spores/
ml. The spore suspension was applied by spraying to 
plants when they had formed two true leaves. Infection 
was ensured by spraying the whole leaf surface area of the 
host until run-off. Mock controls were inoculated with 
sterile water plus Tween20 (0.01% v/v). The plants were 

Fig. 1  Pathogen life-cycle evolution. Pyrenopeziza brassicae infection necrotic development on leaf tissue showing early phase senescence (top) 
and lesions from a late-stage sample (bottom) both showing a colour-coded stage of infection. Included for information is a × 40 microscopy 
evaluation from each sample
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covered immediately by plastic lids for 48h to maintain 
the leaf humidity above 90% and the temperature set at 
16 ◦C [29].

Trials
In order to investigate the pathogen-host interaction, 
alongside sensing limitations, two trials were used at dif-
ferent perspectives with plants and detached leaves.

Canopy assay
A susceptible OSR rape (Brassica napus) genotype, 
Charger, was selected based on moderate resistance rat-
ing (4/10) A [30]. The irradiance in the growth chamber 
was 200 µmol m−2 s−1 . The study used 18 pathogen-
inoculated replicates and 5 mock-inoculated with scans 
taken at 03, 06, 09, 12, 15, 18, 21, 24, 27 and 31 days after 
inoculation (DAI). Images were taken of the main canopy 
for all time points before 24 DAI and taken on a mounted 
leaf after, due to the size of the samples outgrowing the 
field of view, see Fig. 2.

Detached leaf assays
Four OSR genotypes, Bristol(2), Charger(4), Cracker(9), 
Temple(7), were selected on the basis of their resistance, 
as per their given ratings (/10) [30]. The irradiance in the 
growth chamber was 160 µmol m−2 s−1 . At 25 DAI the 
inoculated leaves were removed with a sterile scalpel and 
placed on petri dishes within plastic trays with a small 
amount of distilled water. A small piece of tissue paper 

was wrapped around the leaf petiole and dipped into the 
water to keep the leaves moist. The study used 6 inocu-
lated replicates and 6 mock-controls, from each of the 
four different genotypes. Data was collected at 26, 28, 31 
and 34 DAI. Images were taken of leaf samples held in 
place using a wire mesh, see Fig. 2.

Imaging equipment
A multispectral imaging prototype, see Fig. 2, developed 
at the e-Agri Sensors Centre, University of Manches-
ter was used to obtain the data presented in this study. 
Detailed information on the system operation can be 
found in Veys et  al. [25]. The system can be used with 
multiple NIR sensitive detectors; the ones used for this 
trial were an Omnivision 5647 and a Sony IMX219; both 
included a Bayer filter, whose response artefacts were 
removed via calibration [25]. The device contained 36 
narrowband sources from 365–960 nm, full width half 
maximum (FWHM)   10  nm, illuminated sequentially. 
This transferred considerably less energy to the sample, 
whilst having better SNR, than the broadband illumina-
tion used in passive MSI imaging; this is important as the 
non-invasive nature of MSI is not realised if significant 
heat is transferred to the samples. The illumination was 
provided by back projecting lensed LEDs into a barium 
sulphate and latex [31] solution coated dome, which 
allowed homogeneous lighting of the sample. The current 
minimum spatial resolution is between 0.1 and 0.2 mm/
pix at an object distance of 300  mm. Dark-field images 

Fig. 2  Scanning set-up. Side-view diagram of apparatus set-up for canopy and PS imaging (left) and detached leaf assay with MSI (centre) showing 
the major system components with three-dimensional view (right)
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were subtracted from the multispectral cube during the 
acquisition. The raw data were acquired onto an on-
board USB-3 storage device during the trial, before being 
transferred to a host computer for analysis. The data are 
then normalised using a calibration file, created by using 
a barium sulphate white tile as a maximum target to pre-
vent saturation of the image sensor and remove slight 
variation due to the LED intensity and non-linear camera 
response [25].

Analysis software
The following sections include descriptions, with funda-
mental theory, on different processing and classification 
algorithms, which were written in MATLAB.

Background removal
The background was removed using an optimised soil 
adjusted vegetation index (OSAVI) mask, see Eq. (1) [32]:

where Rxxx parameters are the reflectance intensities 
at xxx nm and 0.16 the soil calibration factor. A mask is 
then corrected using an Otsu thresholding method [33]; 
a standard algorithm that finds the threshold that mini-
mises the weighted sum of variances of the two classes in 
the histogram, below and above the threshold.

Region of interest identification
SVIs have long been linked to plant status and are par-
ticularly powerful for demonstrating spatial variation. 
This positional information was used to identify areas of 
infection to allow targeted reflectance values to be clas-
sified using machine learning techniques. The two SVIs 
of note in this study, for LLS detection were the Carter 
index 1 (CTR1) [34], used for its ability to detect plant 
stress as a ratio of red to violet, see Eq. (2):

and the light leaf spot index (LLSI), developed during this 
trial to detect areas of LLS infected tissue, see Eq. (3):

where the Rxxx values have the same meaning as in Eq. 
(1). The index is based on the findings of the Cercos-
pora leaf spot (CLS) index, which showed promise in a 
related analysis [35], with the values edited to target this 
pathogen/host variety based on maximising the varia-
tion within the SVI matrix. The reason the same index 
could not be used for both trials was due to the vari-
ance in reflected intensity in the NIR bands at different 

(1)OSAVI = (1+ 0.16)
R800− R670

R800+ R670+ 0.16

(2)CTR1 =
R700

R420

(3)LLSI =
R720− R530

R720+ R530
− R830

orientations. This meant that the LLSI worked much 
better with the flat samples while the CTR1 was less 
affected by sample angle. In order to identify regions 
of interest (ROI) the resulting SVI is thresholded again 
using the Otsu method [33]. Other SVIs used for clas-
sification comparison are referenced in Table  1. These 
were selected heuristically due to their spatial differentia-
tion on the dataset and published links to disease-stress 
symptoms.

Data extraction
Spectral signatures were automatically extracted, using 
random indexing within the identified regions of interest 
of each replicate. For the analysis 690 pixels were extracted 
for entire plants, 150 control and 540 inoculated, and 435 
pixels were extracted for individual leaves, 222 control and 
213 inoculated. Each of these samples was labelled whether 
from an inoculated or control plant to aid classifier train-
ing and allow calculation of error. The number of samples 
extracted was increased until there was minimal variation 
present within each replicate set. The standard deviation 
within the sub-sampled information was negligible for this 
number of samples, which can been seen in the standard 
deviation in the classification.

Spectral processing
To aid the analysis, unwanted variation between wave-
bands is removed whilst the spectrum is preserved by using 
an appropriate Savitsky–Golay (SG) smoothing filter, see 
Eq. (4):

(4)ISGj =

3
∑

i=−3

ciIRi+j

Table 1  Average classification rate of LLS in OSR (Charger) 
using spectral indices and selected wavelength at canopy 
and leaf scale

Note this classification uses one variety to compare the trials over all time points

Input Average classification rate % (std)

Plant Leaf

NDVI [45] 36.6 (0.02) 63.1 (0.02)

PSRI [46] 40.5 (0.04) 61.9 (0.02)

DWSI [47] 49.0 (0.04) 55.1 (0.02)

CLS [22] 52.2 (0.06) 65.6 (0.03)

CTR1 [34] 52.4 (0.05) 67.9 (0.03)

ARI [48] 56.8 (0.05) 70.5 (0.02)

PRI [49] 59.5 (0.04) 55.3 (0.02)

LLSI [this study] 59.5 (0.04) 75.0 (0.02)

MSI spectra 60.4 (0.05) 71.6 (0.02)

FS spectra 62.4 (0.05) 75.3 (0.02)



Page 6 of 12Veys et al. Plant Methods            (2019) 15:4 

ISG is the smoothed intensity spectrum, IR is the raw 
intensity and c the convolution coefficients, calculated 
using a window size of seven and fifth order polynomial. 
Then, in order to compare the signature shape and negate 
a shift in the magnitude of the whole spectra due to slight 
varying of distances, a standard normal variate (SNV) 
normalisation is applied, to all wavelengths of a pixel, see 
Eq. (5):

where zip is the processed spectra, and:

and

These remove a large proportion of noise variation 
and help to mitigate the scattering artefacts of reflec-
tance imaging. Without the pre-processing steps, then 
the classification algorithms will start to differentiate the 
variance due to unwanted artefacts such as distance from 
camera variations in leaf angle.

Data redundancy reduction
In order to minimise the processing time, feature selec-
tion (FS) was used. FS is the process of removing redun-
dant features and retaining those relevant to the problem 
that is being investigated [36]. Finding the informative 
subspace not only leads to a better utilisation of data stor-
age, but also improves the predictive performance. A cor-
relation-based feature selection (CFS) algorithm [37] was 
applied to the MSI signatures, to remove wavelengths 
that were not informative for disease classification. The 
concepts of information theory, Shannon’s entropy H(x), 
see Eq. (8):

where P(xj) = Pr[Xi = xi] , and information gain I(x, y) , 
see Eq. (9):

were used in CFS to measure average feature-class ¯rcf  
and feature-feature ¯rff  correlations since it minimises 
the information gain bias introduced to the features and 
normalises the values [37]. The wavelengths were then 

(5)zip =
xip − x̄p

sp

(6)x̄p =

N
∑

i=1

xip

N

(7)sp =

∑N
i=1(xip − x̄p)

2

N − 1

(8)H(x) = −

m
∑

j=1

P(xj) log2 P(xj)

(9)I(x, y) = H(x)−H(x|y)

evaluated heuristically to determine the most significant 
when considering LLS investigations, see Eq. (10):

N is the number of wavelengths. The search was based on 
first-best and the process terminated if no improvement 
was achieved after five consecutive runs.

Conventional classification
The support vector machine (SVM) was employed in this 
study. Samples were grouped based on scale and vari-
ety, due to varying resistance, across current time series 
and preceding dates; to prevent a new algorithm for each 
time point. It was developed for two-class classification 
problem, in which the optimal hyperplane, defined as the 
maximal margin between the two classes, is used to clas-
sify the unseen test examples [38]. A training set is used 
to solve a quadratic problem for the best linear hyper-
plane, see Eq. (11):

Subject to: 1− ξi ≤ yi(ω.xi + b) . Where ω represents 
the weight vector, b the learning bias, xi the training set, 
ξi a non-zero slack variable, yi the desired class label, 
and C the regularisation parameter. Note that the regu-
larisation parameter is used to penalise the misclassified 
samples, thus determining the flexibility of the decision 
boundary. Moreover, a radial basis function (RBF) ker-
nel is often used to utilise the non-linear hyperplane, see 
Eq. (12):

Half of the spectral signature samples were used for 
training with 10-fold cross-validation and the remaining 
samples were used for testing. The best parameters of the 
RBF kernel were achieved via cross-validation step (10-
fold). The last step was substituting the weighting vector 
and the bias to solve the decision function, see Eq. (13):

The value of decision function f (x) ∈ ±1 in which 1 
denotes one class and −1 represents the other class. The 
classification rate was represented as an average of 100 
independent runs, showing the number of times a pixel 
was misclassified as inoculated.

One‑class classification
One-class SVM is an extension of the conventional 
SVM and it is used in unbalanced data cases. The lack of 

(10)Merits =
N ¯rcf

N+ (N+N(N-1))r̄ff

(11)min
ω∈Rd ,ξi∈R+

�ω�2

2
+ C

N
∑

i

ξi

(12)K (x, y) = e−γ �x−y�2 , γ =
1

2σ 2

(13)f (x) = sgn(ω.K(xi, x)− b)
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infected classes is usually due to the difficulties of obtain-
ing them or the low frequencies of their detections. The 
model is generated to define the normal class bounda-
ries, thus describing the unseen testing samples based 
on the boundaries. The output of the decision function 
was then further calibrated into class probability using 
non-decreasing (i.e. isotonic) regression [39]. Isotonic 
regression is an intermediary approach between bin-
ning and sigmoid fitting and it is achieved by employing 
a pair-adjacent violator routine to sort the training sam-
ples. This step is used to map the output onto the range 
of [0, 1] to define the best threshold as well as the clas-
sifier parameters. The calibrated output of the classifier, 
termed as ND-SVM in this study, is given as a score and 
used to differentiate the abnormal from the normal class, 
see Eq. (14):

φ(xi) represents the transformed vector xi . This allows 
for automated limits to be set, depending on the train-
ing set, labelling all samples with FS wavelengths that lie 
outside the defined deviation to be classified as infected. 
It should be noted that if the training set includes control 
plants with other deficiencies (e.g. nutrient stress) then 
those conditions will be included in the accepted nega-
tive result classification.

3D reconstruction of plants
The 3D reconstruction of each sample was obtained 
using a PS facility integrated into the MSI system. This 
approach uses a circular array of point sources, in this 
case LEDs, positioned concentrically to the camera, then 
an image taken with each source illuminated in turn. 
This creates a series of images with differing illumina-
tion perspectives, allowing for the extraction of surface 
vectors. This is done by comparing the sample series of 
images with a calibration set of lighting vectors [24, 40], 
see Eq. (15):

N(x, y) are the surface normal vectors, g(x, y) is defined 
in Eq. (16):

L is the illumination direction and I(x, y) is the back-
scattered reflectance intensity. This yields the surface 
normals, from which there are a number of methods to 
recover depth information. The Frankot–Chellappa algo-
rithm [41] enforces integrability in Brooks and Horn’s 
algorithm [42] in order to recover integrable surfaces. 
Integrable surfaces are the ones that obey the relation-
ship outlined in Eq. (17):

(14)z(x) = b− ω.φ(xi)

(15)N(x, y) =
g(x, y)

|| g(x, y) ||

(16)g(x, y) = (LT
L)−1

L
T · I

This algorithm reconstructs the surface f by 
projecting p,  q (the gradient fields) onto the 
set of integrable Fourier basis functions. Let 
F(f (x, y)) =

∫ ∫

f (x, y)e−j(ξxx+ξyy)dxdy denote the Fou-
rier transform of f(x, y). Thus, given p, q, then f is defined 
in Eq. (18):

There are many other methods for reconstructing the 
surface from normals such as using the Discrete Cosine 
Transform to enforce integrability instead of the Fourier 
basis [43] or the M-estimator approach of [44], but the 
Frankot–Challappa method was chosen due to its effi-
ciency and proven performance.

Results
The system was used to analyse disease development in 
detached leaves and canopy. It was possible to detect 
infection using the MSI device before it became detect-
able via manual inspection methods. Canopy-scale 
analysis detected infected samples with a 92% (Charger) 
accuracy at 12 DAI, whilst the individual leaf-scale analy-
sis had 83% (Bristol), 51% (Charger), 82% (Cracker), 83% 
(Temple) accuracies at 26 DAI respectively, see Table 4. 
Visible symptoms become apparent after 24 and 31 DAI 
for canopy and detached leaf trials respectively, although 
this varied slightly by cultivar. SVIs were used to quantify 
disease severity and provide a visual representation of 
disease distribution within the leaf or plant canopy.

Multispectral backscattered reflectance
Due to the localised nature of the infection symptoms, 
the mean spectra of all plant tissue did not change sig-
nificantly compared to the control. This is not surprising 
with early infection only present on 15% of the individual 
leaf surface, and inoculated leaves becoming occluded as 
the plant grows. However, by using thresholded SVIs to 
identify ROI (see Fig. 3) and then extracting spectra from 
these regions, the spectral changes due to infection can 
be seen, see Fig. 4.

Support vector machine classification
The performance of SVIs, full MSI spectra and feature 
selection (FS) values for a conventional SVM classifica-
tion were compared for both canopy and detached leaves 
within the same OSR variety (Charger). The FS outper-
formed the other approaches with values of 62% and 75% 

(17)
δ2f

δxδy
=

δ2f

δyδx

(18)f = F−1

(

−j
ξxF(p)+ ξyF(q)

ξ2x + ξ2y

)
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for plant and leaf images respectively, see Table  1. This 
is mainly due to the removal of superfluous informa-
tion that provides misinformation to the classifier. The 
selected wavelengths may be of use for future experi-
ments in order to reduce the acquisition and processing 
time whilst improving accuracy. The major wavelengths 
identified for this experiment were 520, 540, 580, 610, 
630, 650 and 770 nm, these can be seen in Fig. 4. These 
wavelengths are consistent with the key values used in 
plant analysis, with areas inferring chlorophyll, carot-
enoid and phytochorome selected. These are of particu-
lar interest to the research community looking to develop 

portable devices with a cut-down number of wavelengths, 
targeted at particular duties.

Novelty detection
Due to the localised nature of infection, the amount of 
data given to the SVM for infected tissue, despite ROI 
was limited, which constrained classification perfor-
mance (see Table  1). Thus novelty detection (ND) was 
applied, using control plants for training and looking for 
instances that fall outside the accepted control variance. 
The FS wavelengths from the canopy dataset were clas-
sified using SVM and ND-SVM with the improvement 
shown in Table  2. The comparison for fixed leaves is 
shown by Tables 3 and 4.

It should be noted that whilst this method enhanced 
the rate of detection in this instance, it does not distin-
guish between disease and other stresses, not present in 
control plants, that may cause the reflectance to deviate 
beyond the devised limits. Hence, in practice, it could 
be used to detect areas of interest before a conventional 
SVM is applied to classify the type of stress; using a 
library of labelled responses. This is of particular interest 
due to the high classification rate from very early in the 
trial (09 DAI).

Although a larger population is required for phe-
notyping applications, an example of the difference in 
resistance of the four selected cultivars can be found in 
Table 4. Note that by tailoring the classifier to the correct 
type, the performance is improved significantly as the 
training sets become more representative with similar 
features and infection rates.

Fig. 3  Infection Detection. Pathogen ingress detection 
demonstrated using the LLS for leaf and CTR1 for plant to outline 
disease severity, shown as a percentage, and distribution across 
a representative subset of the trial dates. The SVI colormap is 
normalised between 0 and 1 to display the infection intensity and 
distribution. The spatial scale is 1:25 with the 10 mm grid shown

Fig. 4  Reflectance Spectra. Reflectance spectra of ROI, identified by LLSI for detached leaves (left) and CTR1 for entire plants (right) normalised to a 
control spectra at each time-point. The FS wavelengths are highlighted to show points of differentiation
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3D plant reconstruction
The effect of leaf orientation on the reflectance magni-
tude can be minimised using spectral pre-processing 
techniques [50], however, it still has a pronounced effect 
on the overall shape which can have adverse effects on 
the classification and thus increase the minimum detec-
tion time. This meant that for each plant there is detailed 
morphological information, which can give biomass and 
growth characteristics, and allow an insight into the 
variation of backscattered reflectance, see Fig. 5. This is 

important due to the growing interest in the apparent 
non-Lambertian reflectance properties of leaf-tissue at 
varying angles with respect to the imaging plane [51], 
which manifested in the lower classification levels on 
entire plant samples.

Discussion
The classification accuracy of the plant analysis (83-97%) 
was in-line with existing literature (61–99%) [20] how-
ever, the time from inoculation to 90+% diagnosis was 
a significant improvement (12 DAI), particularly due to 
the clandestine nature of the hemibiotrophic pathogen 
at early stages of its life-cycle. The active MSI technique 
allowed detection of disease regions allowing for local-
ised classification of infected tissue areas. The method, 
with application of machine learning algorithms, allowed 
infection detection for entire plants at 92% accuracy 13 
days earlier than visual inspection. The authors would 
urge caution with the early rates of classification for ND-
SVM, caused by the difference in residue left from the 
control and pathogen inoculum. Although this is of inter-
est in this study, it is a similar infection mechanism that 
could occur in-field or during high-throughput trials, 
which did not give any visible symptoms and thus out-
lines the requirement for spectral applications.

The dual-scale nature of the experiment allowed for a 
detailed investigation into the orientation effects that 
are so problematical in the HSI imaging of plant mate-
rial [51–53]. The detached-leaf assay also had a number 
of drawbacks despite being the measurement of refer-
ence for flat samples. This difference in the time-scales 
between the two experimental set-ups, was chosen to 
reduce the development of chlorosis on detached leaf 
assay but also meant the infection took longer to mani-
fest; resulting in visual symptoms seven days later for 
detatched leaves. The simulated view of the entire leaf 
on a flat plane gave an important insight into the patho-
gen mechanism on a leaf scale (see Fig.  3) and gave an 
example of what could be seen on the canopy, should 
orientation reflections be fully compensated. Since the 
leaf images were taken alongside the canopy, the signifi-
cance of this effect on detection rates can be examined 
(see Fig. 5) with an average increase in classification rate 
of 15% for flat orthogonal samples.

The 3D capabilities are still in the testing phase as there 
are a number of limitations to the current design. The 
PS method manages to represent the surface features 
with high-fidelity but suffers on discontinuous surfaces; 
to negate this an OSAVI mask is applied to remove non-
plant shapes from the scan, but in future, the inclusion 
of structured light will prevent this and allow for more 
macro surface orientation based morphology to be 
extracted. The current LED design means that a Gaussian 

Table 2  Classification rate improvement of using ND-SVM 
compared to  conventional SVM for  FS spectra of  LLS 
in OSR entire plants (Charger)

DAI Average classification rate % (std)

SVM ND-SVM

03 61.6 (0.04) 82.6 (0.07)

06 64.4 (0.04) 83.4 (0.03)

09 66.7 (0.04) 88.3 (0.02)

12 73.3 (0.03) 92.2 (0.01)

15 75.0 (0.03) 92.3 (0.02)

21 78.8 (0.04) 93.5 (0.01)

24 91.8 (0.02) 94.5 (0.02)

27 94.2 (0.03) 94.7 (0.02)

31 97.7 (0.03) 96.7 (0.03)

Table 3  Classification rate comparison using conventional 
SVM for  each cultivar with  the  resistance rating (/10) 
shown on fixed leaf data

DAI Average classification rate % (std)

Bristol (2) Charger (4) Cracker (9) Temple (7)

26 69.3 (0.03) 72.9 (0.05) 57.1 (0.06) 73.7 (0.06)

28 68.0 (0.04) 75.2 (0.06) 60.6 (0.06) 69.3 (0.07)

31 70.0 (0.04) 77.8 (0.08) 67.6 (0.09) 70.2 (0.08)

34 74.2 (0.06) 78.5 (0.04) 75.8 (0.11) 77.0 (0.09)

Table 4  Classification rate comparison using ND-SVM 
for  each cultivar with  the  resistance rating (/10) shown 
on fixed leaf data

DAI Average classification rate % (std)

Bristol (2) Charger (4) Cracker (9) Temple (7)

26 82.8 (0.04) 50.8 (0.07) 81.8 (0.04) 82.9 (0.05)

28 81.7 (0.05) 61.8 (0.08) 82.5 (0.05) 74.0 (0.07)

31 85.3 (0.07) 77.2 (0.07) 80.6 (0.06) 81.2 (0.06)

34 87.0 (0.10) 80.7 (0.12) 83.8 (0.08) 87.0 (0.11)
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distortion is introduced into the reconstruction, which 
can be seen in the model in Fig. 5; as the curvature of the 
leaf tip is exaggerated.

The study found that automated FS can play an impor-
tant role in improving classification performance, when 
compared to SVIs or even full spectra with SVM. This is 
due to the limitation of specific wavelengths with mixed 
relevance to disease ingress and additional data-points 
obfuscating the classification respectively. A compari-
son demonstrating the improvement is shown in Table 1. 
Another important finding was that the improvement in 
prediction accuracy between the conventional (SVM) and 
one-class (ND-SVM) classifiers, illustrated in Table 2.

There are not sufficient replicates of the cultivars to be 
able to infer a clear relationship between the resistance 
and classification rates. However, since these rates have 
been defined on visual symptoms [30] then they would 
not be a good reference when compared to destructive 
molecular techniques. This system would need some 
modification before it could be utilised outside the lab 
environment as the performance would be affected by 
additional stresses (e.g. nutrient deficiency) and ambient 
lighting; thus the current design may prove of more value 
in controlled indoor environments.

Future work
There are a number of potential improvements to 
improve the data acquisition process, with a major focal 
point on fully incorporating the canopy orientation mod-
els into the spectral processing to remove the variation 
seen in Fig. 5. A faster global shutter system could replace 
the rolling shutter sensor; allowing a significant improve-
ment in SNR. On-line visualisation of the multispectral 
cube and 3D information would inform the user of cur-
rent limitations of imaging technique, which is often not 
found until the data is analysed. Finally, to improve the 

static nature of the current system, a common commu-
nication interface to a translational stage would allow 
integration in high-throughput applications. A revised 
system will be implemented in a field setting, incorpo-
rated into the spot-spraying equipment. This location 
has the added benefit of the shade created by the health 
and safety enclosures on all operational farm machinery, 
which in turn improves the SNR.

Conclusions
In this paper, a low-cost active MSI system has been 
developed. Different analysis techniques have been used 
with the primary goal of evaluating the application of 
this system to the study of plant pathogen interactions. 
The findings clearly indicate the ability to detect disease 
using spectral information, with the minimum detection 
level affected by leaf orientation. The paper also exploits 
machine learning methods to extend the diagnosis 
beyond user supervised techniques. The outcome of this 
will not only help to detect the onset of disease but will 
also help in breeding varieties in the future by extending 
current breeding capabilities, by allowing for better dif-
ferentiation of resistant cultivars.
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