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Abstract: Epidemiologists are often interested in examining the effect 
on a later-life outcome of an exposure measured repeatedly over the 
life course. When different hypotheses for this effect are proposed by 
competing theories, it is important to identify those most supported by 
observed data as a first step toward estimating causal associations. One 
method is to compare goodness-of-fit of hypothesized models with a 
saturated model, but it is unclear how to judge the “best” out of two 
hypothesized models that both pass criteria for a good fit. We developed 
a new method using the least absolute shrinkage and selection opera-
tor to identify which of a small set of hypothesized models explains 
most of the observed outcome variation. We analyzed a cohort study 
with repeated measures of socioeconomic position (exposure) through 
childhood, early- and mid-adulthood, and body mass index (outcome) 
measured in mid-adulthood. We confirmed previous findings regard-
ing support or lack of support for the following hypotheses: accumula-
tion (number of times exposed), three critical periods (only exposure in 
childhood, early- or mid-adulthood), and social mobility (transition from 
low to high socioeconomic position). Simulations showed that our least 
absolute shrinkage and selection operator approach identified the most 
suitable hypothesized model with high probability in moderately sized 
samples, but with lower probability for hypotheses involving change in 
exposure or highly correlated exposures. Identifying a single, simple 
hypothesis that represents the specified knowledge of the life course 
association allows more precise definition of the causal effect of interest.

(Epidemiology 2015;26: 719–726)

Medical research over the past two decades has examined 
fetal and early life antecedents of disease, and their 

interaction with other exposures throughout the life course to 
influence later-life conditions.1 Several hypothetical relations 
between repeated covariate measures (e.g., repeated measures 
of socioeconomic position in childhood) and a subsequent 
outcome (e.g., adult blood pressure) can be proposed, based on 
theoretical models or mechanisms of action.2,3 For example, a 
hypothesized “critical period” in early childhood specifies that 
socioeconomic position during this period has lasting effects 
on blood pressure. An alternative hypothesis is of an “accumu-
lation” of risk across the life course (i.e., that adverse social 
circumstances at any time increases subsequent risk of high 
blood pressure). The hypotheses examined should inform the 
analytic methods used.4–6 The first step in estimating a causal 
association is to specify knowledge about the system—in this 
case the life course—being studied.7 This knowledge will be 
incomplete unless the hypothesized relation between expo-
sures and outcome has been investigated. The initial investi-
gation may be thought of as exploratory: determining the most 
likely relation, while later analyses may be thought of as con-
firmatory: verifying the hypothesized relation and checking 
that no other relations are present.

There has been growing interest in a structured approach 
to life course hypotheses, in which a closed set of hypoth-
eses is proposed and tests conducted to identify best-fitting 
hypotheses.8 One such approach uses an F test to compare 
a saturated model with hypothesized models concerning the 
association between binary exposure variables, measured over 
the life course, and an outcome.9 This method has been used 
in several studies with continuous outcomes10–16 and adapted 
for binary outcomes.17–19 A hypothesis may be thought of as 
supported by observed data if the F test yields a P value above 
a certain threshold, although a large P value cannot be consid-
ered to “prove” the hypothesis. If more than one hypothesis 
passes the threshold, the hypothesis that renders the largest 
P value, or smallest Akaike information criterion,20,21 may be 
selected. The performance of these methods in the life course 
setting has not been formally assessed.

We describe an alternative model selection strategy 
that identifies which hypothesis, selected from an a priori-
compiled set of hypotheses, explains the most variation in 
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the outcome. We illustrate how the proposed method can be 
used in both exploratory and confirmatory studies. The per-
formance is contrasted with the structured F test approach in 
data from a previously published example,9 and also through 
simulation.

METHODS
The proposed strategy involves selecting from an a pri-

ori-compiled set of potential hypotheses describing the asso-
ciation between exposure over the life course and outcome. 
Each hypothesis is encoded into one or more variables, which 
are then all included in a regression model, and the subset 
of variables that explains the greatest proportion of the out-
come variation is selected. The number of hypotheses is not 
limited; any hypothesis may be examined provided there are 
enough exposure measurements to identify it. Several varia-
tions of similar hypothesis may be considered (e.g., a set of 
critical period hypotheses covering a range of possibly over-
lapping periods). The choice of hypotheses to examine may be 
informed by knowledge of causal mechanisms, perhaps using 
a directed acyclic graph. Examples of typical hypotheses for 
binary exposures are described below.

An accumulation hypothesis states that there is a linear 
association between the outcome and the cumulative sum of 
the exposure over the life course.

A critical period hypothesis states that only exposure 
during one period is associated with the outcome. Under a 
sensitive period hypothesis, the outcome is associated with the 
amount of exposure, as in the accumulation hypothesis, but 
the association is stronger in a particular period.21

A mobility hypothesis states that the outcome is asso-
ciated with changes in the exposure over time. The simplest 
mobility hypotheses relate the outcome only to unidirectional 
changes. A more complex mobility hypothesis may relate the 
outcome to bidirectional changes9,22 (e.g., a positive associa-
tion with increased exposure and a negative association with 
decreased exposure). This would in general enhance the plau-
sibility of a causal association. The related interaction hypoth-
esis states that the outcome is associated with the exposure in 
a particular period, but that this association is altered by the 
exposure in a different period.

Encoding of Variables
Each hypothesis is encoded as a variable that is pro-

portional to the hypothesized outcome as the exposure var-
ies. Simpler hypotheses may be encoded by a single variable; 
more complex hypotheses need multiple variables. Below, 
we give details of the single variables that encode the simple 
hypotheses discussed above. We assume a set of m repeated 
binary measures of exposure X1,...,Xm.

The accumulation hypothesis is encoded by the variable 
A = X1 +

…+ Xm.
If there is only one measurement occasion during a 

hypothesized critical period then only that measurement will 

be associated with the outcome. A hypothesis of a critical 
period at the jth measurement occasion is encoded by the vari-
able Cj = Xj. If there are several measurement occasions dur-
ing the critical period (e.g., Xj,...,Xk), then the critical period 
hypothesis may be encoded by Cjk = Xj +

…+ Xk, i.e., as accu-
mulation within the critical period.

Under the simplest mobility hypothesis, the outcome 
varies with a unidirectional change in the exposure. A mobil-
ity hypothesis between the jth and kth measurement occasions 
may be encoded by M jk

+ = (1 − Xj)Xk if it is hypothesized that 
a positive change from j to k is associated with the outcome, or 
by M jk

− = Xj(1 − Xk) if it is hypothesized that a negative change 
from j to k is associated with the outcome.

Some hypotheses require more than one variable to 
encode, and can therefore be thought of as compound hypoth-
eses. All of these can be encoded by combinations of variables 
encoding simple hypotheses; some quite complex hypotheses 
can be encoded with two variables. The combinations of vari-
ables that encode compound hypotheses are described below, 
with further details provided in eAppendix A (http://links.
lww.com/EDE/A940).

A sensitive period hypothesis can be encoded by the 
combination of the accumulation variable and the relevant 
critical period variable.

Two simple mobility variables can, together, encode a 
more complex mobility hypothesis. For instance, mobility 
hypotheses may combine a variable encoding positive change 
with a variable encoding negative change, or variables encod-
ing change at different pairs of measurement occasions over 
the life course.9 An interaction hypothesis can be encoded by 
combining critical period and mobility variables. For example, 
combining the critical period variable Cj with mobility vari-
able M jk

+  encodes a hypothesis that the outcome is associated 
with the exposure measurement at occasion j, but this associa-
tion is modified by the exposure measurement at occasion k.

Choosing Hypotheses Most Strongly Supported 
by Observed Data

After encoding potential hypotheses, our approach is to 
examine the association between all encoded variables and the 
outcome, and select only those encoded variable combinations 
that have the strongest association with the outcome. Since 
there are potentially more variables than available degrees 
of freedom it is inappropriate to put all encoded hypotheses 
into a linear model and choose the variable(s) with the largest 
parameter estimates. Instead, we propose placing an absolute 
value penalty on parameter estimates, whereby unimportant 
variables have their estimated association shrunk to zero. 
Hence, the resulting fit will provide the fullest explanation 
of the observed data from the fewest parameters. The Least 
Absolute Shrinkage and Selection Operator (lasso),23 which 
minimizes the residual sum of squares plus an absolute value 
penalty, provides a suitable method, but requires selection of a 
smoothing parameter. This can be simplified by implementing 
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the Least Angle Regression (LARS) approach to the lasso,24 
which provides lasso estimates for all smoothing parameter 
values and indicates the best lasso fit for each number of 
selected variables, reducing the problem to that of choosing 
the number of variables. The lasso is a constrained version 
of linear regression and may be used whenever the assump-
tions of linear regression are satisfied. The LARS algorithm 
first selects the variable with the strongest association with 
the outcome,25 hence this approach will always select first 
the hypothesis, or component of a compound hypothesis, that 
offers the strongest explanation for the observed data. Using 
an absolute value penalty causes subsequent variables to be 
added in order of strength of association with outcome varia-
tion.26 The overall hypothesized view of the data is thus built 
from the most relevant simple hypotheses or components of 
compound hypotheses.

When little is known regarding the association between 
the exposures and outcome over the life course, the struc-
tured approach can be used to suggest the most likely of an a 
priori-defined set of hypothesized associations. This set may 
extend to several hypotheses if we have little a priori infor-
mation about which are likely. In this exploratory setting, the 
choice of hypothesis is somewhat subjective and we require 
a method for choosing how many variables to include in our 
selected hypothesis. We use an elbow plot—a plot of the pro-
portion of outcome variation explained by the lasso fit (the R2 
value) against number of variables selected at each stage in 
the LARS procedure. The “elbow”—a sharp concave bend at 
which adding more variables does not substantially increase 
the R2 value—is used to choose the number of variables. Pro-
vided enough variables are included in the procedure, the 
elbow plot will show how the lasso selections approach a 
saturated model. It is useful to see the R2 value for a saturated 
model to check whether there is any association between the 
outcome and all exposure measurements over the life course. 
An alternative method for selecting the number of variables 
is provided by the lasso covariance hypothesis test.27 At each 
stage of the LARS procedure, this tests the null hypothesis 
that adding the next variable does not improve the R2 value. 
The covariance hypothesis test accounts for the fact that the 
next variable will have the greatest association out of the 
variables not already selected. An alternative option, a nested 
F test to discriminate between simple and complex hypoth-
eses,22 may be biased by the selection of the simpler model 
due to its greater association. In the exploratory setting, it may 
be necessary to reject more compound hypotheses in favor of 
simpler ones to maintain plausibility.

We may have a firmer idea of the nature of the life 
course association between exposures and outcome, and 
perhaps some causal information. In this setting, we might 
specify quite a small number of possible hypotheses a pri-
ori, and rather than choose the number of variables in our 
selected hypothesis we might simply choose the first variable 

or hypothesis selected by the LARS algorithm, to confirm our 
causal assumptions.

EXAMPLE
The proposed approach, in the exploratory setting, is 

illustrated using data on socioeconomic position and body 
mass index (BMI) from a cohort of 2,192 men and women, 
with binary measurements of the exposure, socioeconomic 
position, at ages 4, 26, and 43 years, and a continuous mea-
surement of the outcome, BMI, at age 53 years. These data 
were previously used to illustrate the structured approach, 
and full details are given in the original study.9 Issues such 
as confounding and measurement error were not the focus 
of the original study and are therefore ignored here for sake 
of simplicity and comparison with the alternative structured 
method. Figure 1 shows a possible directed acyclic graph for 
this example. While there are many potential confounders of 
the life course association between exposure and outcome, 
which in this example are unmeasured (as they were in the 
original study), the focus in this exploratory setting is to iden-
tify likely life course associations between exposure and out-
come, whether or not they are confounded. We considered the 
set of six hypotheses that have been previously proposed for 
this data: three critical period hypotheses corresponding to the 
three exposure measurement occasions, two mobility hypoth-
eses concerning change between adjacent measurement occa-
sions, and an accumulation hypothesis.9

Encoding of Variables
Each hypothesis was encoded based on the binary expo-

sure measurements X1, X2, and X3 at the three time points, 
where zero represents a manual socioeconomic position and 
one a nonmanual socioeconomic position. The simple hypoth-
eses, requiring one variable each, were the three critical period 
hypotheses, encoded by C1, C2, and C3, and the accumulation 
hypothesis, encoded by A = X1 + X2 + X3. The two mobility 
hypotheses required two variables each, with M12

+ and M12
−  

encoding mobility between ages 4 and 26 years, and M23
+  and 

M23
−  encoding mobility between ages 26 and 43 years.

Use of Elbow Plot
Figure  2 shows the elbow plot for men. The variance 

explained by the model with the greatest number of variables 
was 1.7%, which approached the 2% explained by the satu-
rated model; hence the maximum R2 value on the plot is close 
to the maximum R2 value achievable. There is a clear elbow 
where one variable is selected; adding additional variables did 
not considerably improve the R2 value. In addition, the P value 
for adding a second variable was 0.90, indicating no evidence 
that one variable was insufficient. The first variable selected 
encoded the hypothesis of an age 4 critical period; choosing 
this elbow point identified this hypothesis as offering the best 
explanation for the observed data in men.

Figure 3 shows the elbow plot for women. The maxi-
mum R2 value on the plot is 3.8%; that of the saturated model 
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was 3.9%. Therefore, socioeconomic position explained a 
greater proportion of the BMI variation in women than men. 
The position of an elbow point was less clear for women. The 
first variable selected encoded the accumulation hypothesis; 
the P value for adding a second variable was 0.52. It could 
thus be concluded that the accumulation hypothesis is the pri-
mary explanation for the observed data in women. The plot 
might also be considered to have an elbow at three variables, 
selecting variables that encoded the accumulation, childhood 
critical period, and adult nonmanual to manual mobility vari-
ables. Our interpretation of this is a hypothesis of two sensi-
tive periods: sensitivity (to manual socioeconomic position) 
in childhood and sensitivity to change (from nonmanual to 
manual socioeconomic position) in adulthood.

In the exploratory setting, further study would be 
required to clarify these hypotheses and examine causal 
mechanisms.

SIMULATION STUDY
To investigate how frequently the LARS algorithm 

selects the correct hypothesis in a confirmatory setting, we 
simulated data with two and three repeated binary exposures. 
The performance indicator is the selection probability: the 
proportion of simulations where the correct hypothesis is 
identified.

Two Exposure Measurements
Two exposure measurements were simulated as binary 

random variables, being zero or one with equal probability 
(see eAppendix B for details; http://links.lww.com/EDE/
A940). We considered the situation in which the outcome is 
known to be associated with change in the exposure, but it is 
yet to be confirmed whether a mobility or interaction hypoth-
esis defines the true association. We simulated mobility and 
interaction models, varying the correlation, ρ, between expo-
sure variables, and the residual variance, σ2. In each simula-
tion, we selected from six proposed compound hypotheses 
(four interaction hypotheses, full mobility, and an additive 
model).

We compared three approaches for identifying the 
hypotheses offering the best explanation for the simu-
lated data. The first was the LARS algorithm for the 
lasso, which was considered to have identified the correct 
hypothesis if the first two selected variables encoded that 
hypothesis. The second approach chose the hypothesized 
model with the largest F test P value when compared with 
the saturated model,9 and the third approach selected the 
hypothesized model yielding the smallest Akaike infor-
mation criterion of those models with an F test P value 
not less than 0.05.21

We varied the sample size from 400, which might rep-
resent a subset of a study, to 2,500, which might represent a 
moderate-sized study. We ran 500 simulations for each com-
bination of residual variance, correlation, model, and sample 

size. With 500 simulations, the 95% confidence interval for 
the selection probability will have a radius of less than 2% for 
a selection probability of 95%, and less than 5% for a selec-
tion probability of 50%.

Table 1 shows the selection probabilities, in simulation, 
of the three methods. The selection probability of the LARS 
algorithm is very good in situations with low residual vari-
ance or large sample size: it was at least 83.6% when the R2 
value was at least 100/n. This approach always outperformed 
the alternative methods, except for a difference of 0.4% in 
one situation with the largest residual variance and smallest 
sample size.

Three Exposure Measurements
This hypothetical example considered that prior knowl-

edge provided evidence for either a critical or a sensitive period; 
the aim being to confirm the correct association using new 
data. Three measurements were simulated as binary variables 
as before, with adjacent measurements having correlations 
of ρ, and the first and last measurements having correlation 
ρ2. The models used to generate the outcome were: an early 
critical period, an accumulation model, and an early sensitive 
period model. The simple hypotheses that the LARS algo-
rithm was allowed to choose from were three critical period 
hypotheses and an accumulation hypothesis. The LARS algo-
rithm was considered to have chosen a simple hypothesis if 
it first selected the variable encoding that hypothesis, and the 
covariance test P value for including another variable was not 
less than 0.05. The LARS algorithm was considered to have 
identified a compound hypothesis if the first two selected vari-
ables encoded that hypothesis and the P value for including 
the second variable was less than 0.05. While we do not neces-
sarily advocate using P value thresholds to select hypotheses, 
this allowed comparisons with other approaches. The other 
two approaches used the F test and Akaike information cri-
terion as before, choosing between an accumulation model, 
three critical period models and three sensitive period models.

There was some evidence that selection probabilities 
decreased as the exposure correlation increased (Table 2). The 
selection probability of the LARS algorithm was very good 
with low residual variance or large sample size: it was at least 
90.2%, and higher than that of other methods, when the R2 
value was at least 100/n. The only exception to this was in 
sensitive period simulations with strong exposure correlation, 
where there was less distinction between accumulation and 
critical period hypotheses. The alternative methods had bet-
ter selection probabilities in compound models than simple 
models; it appears that Akaike information criterion or F test 
selection is more likely to select compound hypotheses over 
simple ones, regardless of the true underlying model.

Confidence Intervals
We repeated the simulation experiment with three expo-

sure measurements, testing a null model in place of a sensi-
tive period model. In each simulation, we calculated the usual 

http://links.lww.com/EDE/A940
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95% confidence interval for the regression parameter in the 
hypothesized model with the largest F test P value (coinciden-
tally the model with smallest Akaike information criterion) 
when compared with the saturated model. We also calculated 
an adjusted confidence interval based on the covariance test 
for the lasso (see eAppendix B for details; http://links.lww.
com/EDE/A940). Table 3 shows the coverage of these confi-
dence intervals. In the null model, the coverage of the usual 
confidence intervals was always less than 95%, showing that 
the F test or Akaike information criterion approach generates 
bias due to the fact that they consider the largest observed 
association to be selected at random. However, the adjusted 
confidence intervals have coverage between 92.2% and 96.2% 
in the null model, confirming that the covariance test corrects 
for selection of the variable with greatest association.

DISCUSSION
A causal life course association between exposure and 

outcome cannot be estimated without identifying knowledge 
of the system being studied.7 This can be achieved by assess-
ing prespecified competing hypotheses regarding that system 

and the life course association. We have described a strat-
egy for this, which involves encoding a set of hypotheses as 
covariates, and then using the LARS procedure for the lasso 
to identify the most appropriate covariate subset that accounts 
for the outcome variation. Variable selection is aided visually 
with an elbow plot, or guided by a hypothesis test. We showed 
that, for one example dataset, the LARS procedure identified 
the same hypotheses as earlier research using a structured 
approach.9 Furthermore, simulation showed, for reasonably 
large sample sizes, the LARS algorithm, even when com-
bined with a naive P value threshold, effectively identified 
the correct hypotheses. Alternative methods, based on F tests 
and Akaike information criterion, did not identify the correct 
hypotheses as often and were more likely to favor compound 
hypotheses over simple ones.

Our proposed approach is part of the process toward 
estimation of causal effects. The set of hypotheses proposed 
a priori can be chosen using previous knowledge and theory 
regarding the plausibility of various hypotheses. We have 
demonstrated techniques for choosing the best-fitting of those 
hypotheses, which can then be further investigated both for 

TABLE 1.  Percentage of 500 Simulations in Which the Correct Model Was Identified, in Simulations with Two Binary Exposure 
Measurements, by Three Different Structured Approaches

σ2 = 1 (R2 = 0.50) ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Mobility LARS 99.4 100 99.8 100 100 100 100 100 100

F test 51.6 52.0 51.0 50.8 51.8 52.2 53.6 50.2 49.2

AIC and F test 51.2 52.0 51.0 50.8 51.8 51.8 53.6 50.2 48.8

Interaction LARS 100 100 100 100 100 100 100 100 100

F test 100 100 97.4 100 100 100 100 100 100

AIC and F test 94.6 94.2 95.6 97.8 96.4 94.6 95.8 96.8 94.2

σ2 = 9 (R2 = 0.10) ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Mobility LARS 62.8 70.8 61.0 86.6 95.8 87.4 98.2 100 98.2

F test 49.4 48.8 39.8 50.8 51.8 49.2 53.6 50.2 49.2

AIC and F test 49.4 48.8 39.8 50.8 51.8 49.2 53.6 50.2 48.8

Interaction LARS 97.2 97.2 84.2 100 100 97.2 100 100 100

F test 80.6 75.0 50.0 96.6 95.0 76.8 100 100 94.6

AIC and F test 80.0 75.0 50.0 95.4 94.2 76.8 95.8 96.8 92.8

σ2 = 24 (R2 = 0.04) ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Mobility LARS 38.4 46.2 39.2 57.0 69.8 60.8 83.6 94.0 94.0

F test 38.8 37.6 27.4 48.0 48.6 37.2 53.6 49.8 46.2

AIC and F test 38.8 37.6 27.4 48.0 48.6 37.2 53.6 49.8 46.2

Interaction LARS 82.2 80.0 62.4 96.4 97.2 84.2 100 100 97.0

F test 49.8 45.6 31.4 78.4 73.6 53.6 95.6 93.4 72.8

AIC and F test 49.8 45.6 31.4 78.2 73.6 53.6 93.6 92.0 72.6

AIC indicates Akaike information criterion; LARS, least angle regression.
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replication and to estimate causal effects. Advantages of the 
structured approach are that it requires the hypotheses to be 
carefully specified a priori, and can accommodate complex 
compound hypotheses that involve interactions. For exam-
ple, Forsdahl28 argued that a poor standard of living in early 
years followed by later life prosperity would increase the risk 
of arteriosclerotic disease. In this example, the highest risk 
would be seen in those who change exposure between ear-
lier and later time periods. Other hypotheses, such as nonlin-
ear accumulation, can also be investigated. The flexibility of 
our approach allows many hypotheses even if they are epi-
demiologically implausible: it is important to triangulate the 

statistical findings with knowledge about biological and social 
plausibility. If suggested hypotheses are thought to be “too 
complex,” our procedure allows for retreat to simpler, more 
interpretable, hypotheses if necessary. In further investigation, 
only the identified hypothesis need be considered, allowing 
precise definition of the causal effect(s) of interest and reduc-
ing their number, leading to improved estimation by marginal 
structural or structural nested models.7,29

Our approach has the advantage that the selected hypoth-
esis will always be easy to interpret, provided that interpre-
table hypotheses are proposed a priori. This is in contrast to 
methods that provide a plot and invite interpretation based on 

TABLE 2. Percentage of 500 Simulations in Which the Correct Model Was Identified, in Simulations with Three Binary Exposure 
Measurements, by Three Different Structured Approaches

σ2 = 1 (R2 = 0.50) ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Critical period LARS 97.2 97.0 97.2 98.2 97.4 97.2 96.6 96.8 97.8

F test 67.2 66.2 67.8 68.4 66.4 68.2 66.4 66.4 64.0

AIC and F test 83.6 82.2 79.6 81.4 81.8 83.2 83.6 81.4 79.0

Accumulation LARS 93.6 92.8 92.4 94.4 92.4 90.2 91.6 93.0 91.2

F test 40.8 37.4 38.4 40.0 38.4 33.8 38.4 35.6 35.6

AIC and F test 66.0 65.4 65.4 66.0 67.2 64.2 66.8 66.6 65.2

Sensitive period LARS 100 100 99.6 100 100 100 100 100 100

F test 100 99.8 96.8 100 100 99.6 100 100 100

AIC and F test 96.8 95.2 93.0 94.4 95.4 95.0 96.4 95.0 94.2

σ2 = 9 (R2 = 0.10) ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Critical period LARS 97.2 97.0 92.2 98.2 97.4 97.2 96.6 96.8 97.8

F test 67.0 64.6 58.4 68.4 66.4 64.8 66.4 66.4 64.0

AIC and F test 83.2 81.0 72.8 81.4 81.8 80.8 83.6 81.4 79.0

Accumulation LARS 93.6 92.8 90.2 94.4 92.4 90.2 91.6 93.0 91.2

F test 40.8 37.4 38.4 40.0 38.4 33.8 38.4 35.6 35.6

AIC and F test 66.0 65.4 65.4 66.0 67.2 64.2 66.8 66.6 65.2

Sensitive period LARS 71.8 62.8 17.6 99.4 98.0 69.2 100 100 98.4

F test 84.6 77.4 48.6 98.8 94.2 71.8 100 100 91.8

AIC and F test 78.4 70.8 34.6 93.8 90.2 66.8 96.4 95.0 87.2

σ2 = 24 (R2 = 0.04) ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Critical period LARS 95.2 93.0 79.8 98.2 97.2 92.8 96.6 96.8 97.8

F test 62.0 59.4 48.4 68.0 65.4 56.6 66.4 66.4 61.2

AIC and F test 79.4 76.0 62.6 81.4 81.6 74.4 83.6 81.4 77.2

Accumulation LARS 88.8 90.2 71.8 94.4 92.4 88.0 91.6 93.0 91.2

F test 40.8 37.4 37.8 40.0 38.4 33.8 38.4 35.6 35.6

AIC and F test 65.2 65.2 58.6 66.0 67.2 64.0 66.8 66.6 65.2

Sensitive period LARS 11.4 9.8 0.0 66.8 63.6 13.8 98.8 97.8 66.8

F test 47.2 38.8 17.6 83.4 75.6 44.2 98.0 94.2 76.0

AIC and F test 30.2 24.6 2.8 74.6 67.2 30.8 95.0 90.2 68.6

AIC indicates Akaike information criterion; LARS, least angle regression.
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curves on the graph.3,4 The LARS algorithm has the advantage 
of choosing the most important hypothesis first: that corre-
sponding to the greatest proportion of the variability in the 
outcome, while unimportant effects are deselected. Unlike the 
structured F test approach,9 our approach can be employed 
without using P values. Using the covariance test for the lasso, 
we calculated confidence intervals with coverage unaffected 
by the fact that the selected hypothesis offers the best fit to 
the observed data. The covariance test for the lasso should be 
used in preference to an F test between simple and compound 
hypothesized models.

If the association between exposure and outcome is 
weak, with little variation in the outcome explained by the 
exposure, then the reliability of structured approaches in iden-
tifying the true model is diminished. It is therefore important 
first to examine the overall amount of variation explained by 
the exposure, perhaps using the R2 value in a saturated model 
or extreme end of the elbow plot, and second to examine the 
correlation structure among the exposure measurements. 
If exposure measurements are highly correlated, it may be 
impossible to distinguish hypotheses without a large sample 
size or many repeated measures. Additional study is required 

to extend this approach to continuous exposures and categori-
cal outcomes, consider measurement error in the exposure, 
and accommodate possible confounding.

Within the same overall structure, other variable selec-
tion methods might be used instead of the lasso. One possibil-
ity is the elastic net,30 although this could select more variables 
than parameters in the saturated model, which would not be an 
advantage in understanding the hypothesized life course asso-
ciation, as less parsimonious models are less interpretable. 
The grouped lasso would allow all variables encoding a com-
pound hypothesis to be selected at the same time,31 and pre-
vent only one component variable of a compound hypothesis 
being identified on its own. However, if compound hypoth-
eses are misspecified, for example not all of their components 
are associated with the outcome, then not grouping variables 
still allows the important components to be extracted and the 
hypothesis to be identified.

Our conclusion is that the LARS procedure, imple-
menting the lasso, can select hypotheses from a prespecified 
set, identifying the optimal hypothesis that offers the great-
est consistency with the data. Compound hypotheses can be 
built from simpler hypotheses in a straightforward way, using 

TABLE 3. Percentage of 500 Simulations in Which a 95% Confidence Interval Contained the True Parameter Value, in 
Simulations with Three Binary Exposure Measurements, Calculated by Two Different Structured Approaches

σ2 = 1 ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Null LARS 95.0 94.2 95.2 93.8 95.0 96.2 92.2 94.6 94.4

AIC and/or F test 86.2 87.8 92.4 86.8 89.0 92.2 84.2 84.2 87.2

Critical period LARS 95.6 96.2 96.2 96.0 96.2 95.6 94.8 94.4 94.0

AIC and/or F test 95.6 96.2 96.2 96.0 96.2 95.6 94.8 94.4 94.0

Accumulation LARS 95.2 96.0 97.0 97.4 97.6 97.0 94.4 93.8 94.0

AIC and/or F test 95.2 96.0 97.0 97.4 97.6 97.0 94.4 93.8 94.0

σ2 = 9 ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Null LARS 95.0 94.2 95.2 93.8 95.0 96.2 92.2 94.6 94.4

AIC and/or F test 86.2 87.8 92.4 86.8 89.0 92.2 84.2 84.2 87.2

Critical period LARS 95.6 95.6 89.2 96.0 96.2 94.4 94.8 94.4 94.0

AIC and/or F test 95.6 95.8 89.2 96.0 96.2 94.4 94.8 94.4 94.0

Accumulation LARS 95.4 95.8 92.2 97.4 97.6 96.0 94.4 93.8 94.0

AIC and/or F test 95.0 95.8 92.2 97.4 97.6 96.0 94.4 93.8 94.0

σ2 = 24 ρ

n = 400 n = 1,000 n = 2,500

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8

Null LARS 95.0 94.2 95.2 93.8 95.0 96.2 92.2 94.6 94.4
AIC and/or F test 86.2 87.8 92.4 86.8 89.0 92.2 84.2 84.2 87.2

Critical period LARS 93.2 90.2 83.5 96.0 95.2 90.0 94.8 94.4 93.0

AIC and/or F test 93.2 90.8 83.8 96.0 95.2 90.0 94.8 94.4 93.0

Accumulation LARS 94.8 90.2 70.4 97.4 97.4 89.2 94.4 93.8 93.6

AIC and/or F test 94.8 89.2 70.4 97.4 97.4 89.0 94.4 93.8 93.6

AIC indicates Akaike information criterion; LARS, least angle regression.
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a small number of variables. The selected hypothesis and its 
potential causality may then be more precisely defined and 
further studied.
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