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Abstract: In this study, an LMI (Linear Matrix Inequality) based H∞ robust controller design approach is proposed to improve 

the performance of the designed U-pole placement control systems. Unlike the classical design procedures, the control-oriented 

U-model based nonlinear control systems cancel the nonlinearity of the nonlinear models. Therefore, the closed loop transfer 

function of U-pole placement control system can be regarded as a linear block. The solvability and sub-optimality of 

discrete-time H∞ robust control are converted to find feasible solutions for LMIs. Once the internal parameters changed, the LMI 

based H∞ controllers have a higher level of robustness compared with traditional controllers. A nonlinear dynamic model is 

selected to test the performance of the LMI robust controller to demonstrate the proposed approach effective. 
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 

1 Introduction 

Control problems arising in a wide variety of engineering 

fields are characterised by essential nonlinearities. In this 

case, LMI based H∞ robust controller design approach 

generally cannot be directly applied because the dynamic 

behaviour of nonlinear plants cannot be easily determined 

according to the expressions cannot be written in the form of 

state space. It is obviously that applying pole placement to 

nonlinear plants is to synthesise a control system in such a 

way that the nonlinearities of the nonlinear plant should be 

removed and the resultant closed loop system behaves 

linearly. 

It must be noted that the main difficulty in the design of 

nonlinear control systems is the lack of a general modelling 

framework which allows the synthesis of a simple control 

law. In some instances linearizing structures have been used 

but these suffer from ‘local applicability’ (Isidori, 1995) and 

therefore, are not very attractive. In order to simplify the 

control law synthesis part in nonlinear modelling, a new 

control-oriented model termed as the U-Model has recently 

been suggested (Zhu and Guo, 2002). The U-Model has a 

more general appeal as compared to other nonlinear models 

(NARMAX model and Hammerstein model). Additionally, 

this model is control-oriented in nature which makes the 

control synthesis part easier. Specifically, the control law 

based on the U-model exhibits a polynomial structure in the 

current input term.  

Based on the U-Model, pole placement controllers (Zhu 

and Guo, 2002) for nonlinear plants with known parameters 

have been proposed. Some previous works (Zhu et al, 1991; 

Zhu and Warwick, 1991) discussed how to design the 

effective controller for nonlinear dynamic plants. Other 

works (Muhammad and Butt, 2011; Ali et al, 2010; Du et al, 

2012; Chang et al, 2011) focused on the research of different 
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methods of control system design enhanced by U-Model. 

The parameters of nonlinear plants in these studies are all 

regarded as given without considering the uncertainties. 

Therefore, the initial robustness analysis (Peng et al., 2013) 

of U-Model based controllers has been proposed to provide a 

basis procedure. Motivated by some previous theoretical 

results, in this study the LMI based robust controller is 

designed to improve the system performance of U-pole 

placement control system against the uncertainties. The 

uncertainty of the nonlinear plant is taken into consideration 

and the internal parameter changes of nonlinear plant are 

selected to test the robust performance of U-model robust 

control system. 

The main contents of this paper are divided into four 

sections. In section 2 the proposed approach of a U-model 

based pole placement controller is introduced to represent 

the fundamental methodologies. In section 3 the basic idea 

on LMI based robust controller design approach is 

introduced for enlarging the control system robustness 

against uncertainties. In section 4 a step by step procedure of 

proposed LMI robust control system design is listing. In 

section 5 a Hammerstein model is selected to demonstrate 

the robustness analysis and the corresponding simulation 

results are presented with graphical illustrations. In section 6 

a summary of the paper is presented. 

 

2 U-pole placement controller design 

The U-pole placement controller design proposed (Zhu 

and Guo, 2002) will be presented in this section as the 

fundamental methodology. 

Consider single input and single output (SISO) nonlinear 

dynamic plants with a NARMAX (nonlinear auto-regressive 

moving average with exogenous inputs) representation of the 

form  

))( ,..., )( ),( ,..., )1( ),( ,..., )1(()( ntetentutuntytyfty   (2.1) 
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where y(t) and u(t) are the output and input signals of the 

plant respectively at discrete time instant t, n is the plant 

order, f() is a nonlinear function, and the modelling error 

term e(t). The control oriented model can be obtained by 

expanding the nonlinear function f(.) as a polynomial with 

respect to u(t-1) as follows 

0

( ) ( ) ( 1)
M

j

j

j

y t t u t


     (2.2) 

where M is the degree of model input )1( tu , the time 

varying parameter vector   1

0( ) ( ) ( ) M

Mt t t R      

is a function of past inputs, outputs (u(t-2), …, u(t-n), y(t-1), 

…, y(t-n)), and errors (e(t), …, e(t-n)). By this arrangement, 

the control oriented model can be treated as a pure power 

series of input u(t-1) with associated time-varying 

parameters ( )j t .  

Fig. 1 shows the block diagram of the U-model based pole 

placement control system. In the U-pole placement design, 

the U-model is firstly transferred from the nonlinear model. 

With the polynomial equation of U-model as a root solver, 

the Newton-Raphson algorithm can be used to find the 

controller output. 

Fig. 1: Block diagram of U-pole placement control system 

 

A standard reference (Astrom and Wittenmark, 1995) is 

used to develop following formulations for designing pole 

placement controller. Consider the U-model of (2.2), a 

general controller can be described by 

)()()( tSytTwtRU     (2.3) 

where w(t) is the reference for output target and R, S, and T 

are the polynomials of the forward shift operator. 

The control law of (2.3) represents a negative feedback 

with transfer function –S/R and a feedforward with transfer 

function T/R. It thus has two degree of freedom. A block 

diagram of the closed loop control system is shown in Fig. 1. 

The output y(t) can be linked to the reference w(t) as 

)()()( tw
A

T
tw

SR

T
ty

c




    (2.4) 

where polynomial cA  is the closed loop characteristic 

equation. The polynomials R, S, and T can be resolved by a   

Diophantine equation to make control output equals the 

desire output, which means that the steady state error equal 

to zero at the control output. The polynomial T is specified 

with )1(cAT  from equation (2.4). The key idea of the 

design is to specify the desired closed loop characteristic 

polynomial cA , then resolve. The signal U(t) can be obtained 

by (2.3) as long as polynomials R, S, and T are determined. 

With U(t) a root solver, Newton-Raphson algorithm (Yan, 

1999), can be used to find the controller output u(t-1). 

 The identification error and stability of the controller of 

the U-pole placement control system have been discussed in 

(Zhu and Guo, 2002). An enhanced Newton-Raphson 

algorithm is proposed to guarantee the stability of the 

controller in a minimum phase system (Zhu et al, 1999). 

Due to the U-model framework, the nonlinearity of the 

nonlinear model is cancelled. The closed loop of U-pole 

placement control system behaves similarly to that of a linear 

system. The equivalent block diagram of U-model based 

pole placement closed loop system is shown in Fig. 2. 

 

Fig. 2: Equivalent block diagram of U-pole placement control system 

 

The LMI based robust controller is designed to enhance 

the performance of the closed loop system as shown in Fig. 3. 

When internal parameters are changed, the robustness of the 

closed loop system will be guaranteed in order to meet the 

specified requirements. 

 

 
Fig. 3: Block diagram of U-pole placement control system with LMI based 

robust controller 

 

3 Basic ideas on robust controller design 

In the robustness analysis of control systems, the 

definition of uncertainty is very significant (Calafiore and 

Dabbene, 2002). To design an effective control system, a 

complex dynamic plant should be described as a relative 

simple model. The model uncertainty always exists in the 

control systems. Besides the uncertain of the simplified 

model expression, the uncertainties are caused by the 

environmental change, components aging, parameters drift 

and unknown errors. This uncertainty is quite different from 

the external factors such as external disturbance and 

measurement noise. In this section, the disturbance of 

internal parameter variation is picked up as the first 
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concerned uncertain factor. The robustness analysis includes 

two aspects, one is the robust stability, and the other one is 

robust performance which means make control system not 

only has stability robustness, but also satisfy some 

performance constrains. 

The H∞ state space model adopted for U-pole placement 

control system is shown in Fig. 3 and can be expressed as 

(Yu, 2002): 

       

       

       

1 2

inf inf inf 1 inf 2

1 2

1

o o o

x k Ax k B w k B u k

z k C x t D w k D u k

y k C x k D w k D u k

   

  

  

   (3.1) 

where        inf, , ,u k w k y k z k is the discrete-time state 

variable,        inf, , ,u k w k y k z k  are the discrete-time 

robust controller output, system disturbance input, system 

output, and disturbance output respectively. By the way, A  

is the state matrix, 21, BB  is the disturbance input matrix 

and regulated input matrix respectively, oCC ,inf  are the H∞ 

output matrix and system output matrix. Matrices 

D (
212inf1inf ,,, oo DDDD ) with different subscribes are real 

matrices with proper dimension for the system. 

As mentioned by (3.1), a H∞ output feedback controller 

 zK  should be designed forcing the closed loop system to 

have the performance of asymptotic stability. The state space 

expression for  zK  can be present as: 

     

     

1k k k k

k k k

x k A x k B u k

u k C x k D y k

  

 
   (3.2) 

where kx  is the state variable and kkkk DCBA ,,,  are 

unknown H∞ output feedback controller matrices. 

Combining (3.1) with (3.2), the closed loop system can be 

expressed as 

     

     inf inf inf

1ct ct ct ct

ct ct ct ct

x k A x k B w k

z k C x k D w k

  

 
   (3.3) 

where 
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The H∞ output feedback controller should be designed to 

take H∞ performance (   1 zTcl
) into consideration, 

where  
 zTcl

 is the H∞ norm of the transfer function 

from w  to ctzinf , and 1  is the upper bound of  
 zTcl . 

Such output feedback controller ought to be designed to 

make the system to have an acceptable H∞ norm form w  to 

ctzinf  to keep the system robustness. 

In order to enhance the performance of the U-pole 

placement control system, LMIs is applied to discuss the 

solvability of discrete-time H∞ robust control system design 

problems. With the theorem of  -suboptimal controller for 

discrete-time plants (Gahinet and Apkarian, 1994), consider 

a proper discrete-time plant realization (3.1), and assume 

that  

(a) 
2 0( , , )A B C  is stabilisable and detectable 

(b) 
02 0D   

Let W12 and W21 denotes bases of null spaces of 

inf 2 inf 2 2( ) TI D D B  and 
1 01 0( )oI D D C , where 

inf 2D  and 

01D  are respectively for the Moore-Penrose pseudoinverse 

of matrix 
inf 2D and 

1oD . 

The discrete-time  -suboptimal H∞ problem is solvable if 

and only if there exist symmetric matrices R, S satisfying the 

following LMI system (Gahinet and Apkarian, 1994): 

inf 1

inf 1 inf inf inf 1

1 inf 1 1

0 0
0

0 0

T T
T

R RT T

T T

ARA R ARC B
N N

C RA I C RC D
I I

B D I





 
    

      
     

   (3.4) 
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T
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T
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N N
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I I

C D I





 
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      
     

   (3.5) 

0
R I

I S

 
 

 
   (3.6) 

where RN  and SN  respectively denotes bases of the null 

spaces of 
2 inf 2( , )T TB D  and 

2 01( , )C D . 

Lemma (Zhai et al, 2001) the following statements are 

equivalent: 

(i) A is Schur stable and 1

1( )C zI A B D 


    

(ii) The desired H∞ controller exists if and only if there are 

matrices P and K positive definite solution P to the LMI: 

0

0
0

0

0

cl cl

T T

cl cl

T T

cl cl

cl cl

P PA PB

A P P C

B P I D

C D I




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 


  
 
 

 

   (3.7) 

where 
k k

k k

A B
K

C D

 
  
 

. The LMI (3.7) is a BMI with respect 

to P and K. The controller matrices 
kkkk DCBA ,,,  can be 

obtained by solving bilinear matrix inequalities (3.7) 

mentioned in the lemma. 



  

4 The proposed robust control system design 

procedure 

A step-by-step procedure for the H∞ robust controller 

design of U-model pole placement control system can be 

specified as following: 

Step 1. Design the controller for the selected nonlinear 

model converted into U-model framework (2.2) to 

reach the requirement of desired closed loop system 

characteristic equation (Zhu and Guo, 2002). 

Step 2. Design a LMI based H∞ robust controller to 

achieve a higher performance for the desired closed 

loop system with U-model framework in step 1.  

Step 3. Determine the variation of the internal 

parameter for the selected nonlinear model and test 

the system response of the U-pole placement 

control system with these uncertainties. 

Step 4. Apply the designed robust controller in step 2 to 

the U-pole placement control system with the same 

uncertainties and simulate the performance of the U 

robust control system. 

5 Case studies 

A Hammerstein model is selected for the robust stability 

test. The closed loop characteristic equation is specified with 

4966.03205.12  qqAc    (4.1) 

Therefore the closed loop poles are a complex conjugate pair 

of -0.6603  j0.2463 . This design specification 

corresponds to a natural frequency of 1 rad/sec and a 

damping ratio of 0.7. To achieve zero steady state error, 

specify 

1761.04966.03205.11)1(  cAT    (4.2) 

For the polynomials R and S, specify 

10

21

2

sqsS

rqrqR




   (4.3) 

Substitute the specifications of (4.1) and (4.3) into 

Diophantine equation of (3.5), the coefficients in 

polynomials R and S can be expressed with 

3205.1

4966.0

01

12





sr

sr
   (4.4) 

To guarantee the computation convergence of the 

sequence U(t), that is to keep the difference equation with 

stable dynamic, let 009.09.0 21  rr . This assignment 

corresponds the characteristic equation of U(t) as 

0)01.0)(89.0(  qq . Then the coefficients in polynomial 

S can be determined from the Diophantine equation of (4.4) 

4876.04205.0 10  ss  

Substitute the coefficients of the polynomials R and S into 

controller of (2.3), gives rise to 

)1(009.0)(9.0)1(  tUtUtU  

               )1(4876.0)(4205.0)1(1761.0  tytytw    (4.5) 

Therefore the controller output u(t) can be determined. 

Consider the following Hammerstein model  

)(2.0)()(1)(

)2(1.0)1()1(5.0)(

32 tutututx

txtxtyty




   (4.6) 

The corresponding control oriented model is obtained from 

formulation (2.2) 

2 3

0 1 2 3( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1)y t t t u t t u t t u t           

where 

0 1

2 3

( ) 0.5 ( 1) 1 0.1 ( 2) ( ) 1

( ) 1 ( ) 0.2

t y t x t t

t t

 

 

     

  
 

The system response under the proposed pole placement 

control has been discussed in (Zhu and Guo, 2002). It can be 

seen from simulation result that the resultant closed loop 

system behaves similar to that of a linear system, which is 

due to cancellation of the nonlinearity by the proposed 

control-oriented model and controller design approach. 

However, if the internal parameter of the nonlinear model 

is changed, the controller performance will not be same 

standard and that is the purpose of using a robust controller 

which is going to be studied in the simulations. 

In the simulation of this paper, the LMI based H-infinity 

output feedback controller is tested to improve the system 

performance of the designed U-pole placement control 

system. To the selected Hammerstein model, the variation of 

the internal parameter is the change of ( )j t . The 

characteristic equation of the LMI based H∞ robust 

controller (step 2) can be expressed as: 

2( ) 0.4084 0.1452rcA z z      (4.7) 

The controller is going to be applied for all cases in the 

U-model system simulations. 

Case I: For the selected model with uncertainty, that is the 

internal parameter ( )j t is changed to 

0 ( ) 1.1 ( 1) 3 ( 2)t y t x t         (4.8) 

The plant output of the U-model pole placement control 

system before and after robust controller applied are shown 

in Fig. 4. The output of the U-model pole placement control 

system without plant uncertainty is also shown in Fig. 4. 
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Fig. 4: System output after internal parameter changed – case I 

 

Deriving from the simulation result, the system 

performance after internal parameter variations have been 

improved by the designed robust controller. The amplitude 

of the output decreased from 8.8 to 7.6 compared with the 

case without robust controller. 

Case II: In the other different case, that is the internal 

parameter ( )j t is changed to 

0( ) 0.2 ( 1) 1 0.1 ( 2)t y t x t          (4.9) 

The closed loop system becomes unstable and the output of 

the system without robust control is shown in Fig. 5. 
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Fig. 5: System output after internal parameter changed – case II (No robust 

controller) 

 

While the LMI based robust controller is applied to the 

closed loop system, acceptable simulation results can be 

achieved. Fig. 6 shows the system output response. 
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Fig. 6: System output after internal parameter changed – case II (With 

robust controller) 

 

It can be inspected from the figure that the system can be 

stabilised with the help of the robust controller. In another 

aspect, the variation of the internal parameter exceeds the 

stability margin (Peng et al, 2013) of the U-model pole 

placement control system itself. However, with the help of 

the LMI based robust controller, the stability margin of the 

system is enlarged and such internal parameter variation can 

be guaranteed with a stable performance.  

The simulation results for both cases show that the 

robustness of the robust controller design for U-model based 

pole placement control system is effective. The U-model 

controller can keep the system to be stable within a certain 

range of the parameter uncertainty. However, if the 

parameter of the nonlinear model is changed far away from 

the original one, the performance of the controller cannot be 

guaranteed. At this time, the LMI based robust controller can 

help to main its stability in a relatively large range of 

uncertainty. 

 

6 Conclusions 

A general control oriented U-model and the 

corresponding pole placement controller design for the 

dynamic nonlinear plants have been introduced to be the 

fundamental methodologies. With the modularisation the 

procedure of nonlinear control system design can be 

conducted as linear control system design. The LMI based 

output feedback H-infinity robust controller design can be 

implemented for nonlinear models within U-model 

framework. The simulation results show that robust control 

system design is effective and efficient against nonlinear 

system uncertainties. 

Further studies on the developed methodology, such as 

different robust controller design approaches for general 

nonlinear systems within U-model framework, expansion to 

other types of controllers, and so on, will be conducted to 

provide a comprehensive prospectus in designing nonlinear 

control systems by using linear control system design 

techniques. 
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